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Abstract—Variational Quantum Algorithms (VQAs) have
emerged as a powerful class of algorithms that is highly suitable
for noisy quantum devices. Therefore, investigating their design
has become key in quantum computing research. Previous works
have shown that choosing an effective parameterized quantum
circuit (PQC) or ansatz for a VQA is crucial to its overall
performance, especially on near-term devices. In this paper,
we utilize pulse-level access to quantum machines, our under-
standing of their two-qubit interactions, and, more importantly,
our knowledge of VQAs, to customize the design of two-qubit
entanglers. Our analysis shows that utilizing customized pulse
gates for ansatze reduces state preparation times by more than
half, maintains expressibility relative to standard ansatze, and
produces PQCs that are more trainable through local cost
function analysis. Our algorithm performance results show that
in three cases, our PQC configuration outperforms the base
implementation. Experiments using IBM Quantum hardware
demonstrate that our pulse-based PQC configurations are more
capable of solving MaxCut and Chemistry problems compared
to a standard configuration.

Index Terms—Quantum computing, variational quantum algo-
rithms (VQAs), parameterized quantum circuits (PQCs), pulse
level control, hamiltonian tomography, barren-plateaus

I. INTRODUCTION

Looking at various limitations in current noisy quantum
hardware, one might first think that the development of such
systems at this stage relies heavily on quantum hardware
engineers and experimental physicists. However, algorithm
designers have successfully contributed to pushing limitations
such as limited numbers of qubits, limited qubit connectivity,
and coherence times by designing algorithms tailored for such
systems. For example, the Variational Quantum Algorithm
(VQA) employs a quantum-classical approach to counter cur-
rent device limitations.

The general framework of VQA begins with identifying a
problem-specific cost function. Next, a trainable Parameterized
Quantum Circuit (PQC) or ansatz is used to evaluate this
cost. This PQC is then trained in a hybrid quantum-classical
loop that tries to minimize the cost. By pushing the parameter
optimization load to the classical optimizer, VQAs are able to
run short-depth circuits and hence are very suitable for current
machines [1].

Two of the most prominent examples of VQAs are the
Variational Quantum Eigensolver (VQE) [2], and the Quan-
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tum Approximate Optimization Algorithm (QAOA) [3]. With
VQAs being one of the most promising candidates for demon-
strating advantage, and with various companies and institutes
releasing devices with 10s–100s of qubits, VQAs have become
one of the most investigated topics in quantum computing re-
search. They are established as major quantum workloads, with
researchers proposing optimizations to their implementation
through all layers of the quantum computing stack [1].

In this work, we demonstrate how a deeper understanding
of quantum device control can impact VQAs. We optimize
VQAs by exploring the lowest level of quantum control: pulse-
level access [4], [5], targeting the most integral part of the
algorithm, its ansatz. There exist several ansatz architectures:
ones that are problem-specific and others that are problem-
agnostic creating Hardware Efficient Ansatz (HEA) [6]. We
focus mainly on HEA in this paper.

One major problem VQAs encounter is the occurrence of
barren plateaus in PQC training. It has been proven that if
an anstaz is sufficiently random, the gradient of the cost
function vanishes exponentially with the number of qubits [7].
Therefore, the majority of studies on PQCs [7]–[18] focus
mainly on trainability and optimization procedures, and lesser
attention is given to their device-specific performance and
optimization. More recently, hardware-oriented analysis and
optimization of PQCs has been explored in [19]–[28]. A core
design challenge in this direction is realizing the degree to
which hardware should influence the algorithm implementa-
tion without sacrificing performance [7]. Thus, our goal in this
paper is to identify a suitable combination of algorithm and
hardware metrics that can guide pulse-level VQA optimization
approaches.

From the hardware side, we utilize Hamiltonian Tomogra-
phy (HT) [29], an accurate Hamiltonian calibration technique,
to characterize our pulse implementations. We utilize HT
to benchmark and customize the cross resonance (CR) gate
[29]–[31], the entangling gate used by IBM’s superconducting
backends. We utilize the results obtained from HT to analyze
our PQCs for the algorithmic descriptors: expressibility [32],
entanglement entropy, and trainability [7]–[9]. Our pulse-
driven PQCs achieve a speedup of up to 2.9x with an av-
erage of 2.51x over a base PQC design. We demonstrate
VQE performance for MaxCut and Chemistry benchmarks on
IBM’s 27-qubit machine ibmq montreal, accessible through
the IBM Quantum cloud service. Our algorithm performance
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Fig. 1: Block Diagram of the VQE Algorithm.

results show that in at least three cases, the pulse-driven PQC
configurations outperform the base PQC in trainability and
solution quality.

II. BACKGROUND

A. Quantum Computing Basics

One of the essential differences between classical and quan-
tum computing algorithms is that the latter are intrinsically
probabilistic models. The quantum measurement operation
collapses the “definite” state of a qubit in a two-dimensional
Hilbert space to one of the two computational basis states.
Quantum operations or gates are used to manipulate/modify
information stored in qubits. A gate is defined by a unitary
operation that can be considered as a rotation over the Bloch
Sphere [33] and can either act on single or multiple qubits. The
physical implementation of gates depends largely on the type
of quantum hardware. For example, in IBM superconducting
quantum computers, microwave voltage pulses are applied to
qubits [34], [35] to implement the gates. The same principle is
used to implement entanglement between qubits, which results
in non-classical correlated effects [34].

Today’s implementations of quantum workloads are con-
strained by limitations in current noisy quantum hardware. In
the past decade, tremendous efforts have been made to im-
prove the fidelity of quantum hardware, along with algorithms
specifically targeting current and near-term machines. A major
class of such algorithms is the variational quantum algorithm
(VQA).

B. Variational Quantum Algorithms

A Variational Quantum Algorithm (VQA) is a hybrid scheme
of computation that allocates tasks to both quantum and
classical computing resources and coordinates the execution
between the two through a tight feedback loop to achieve a
larger computational goal. In contrast to quantum algorithms
developed for the fault-tolerant era, VQAs are highly suitable
for current noisy quantum hardware. This suitability stems
from utilizing classical optimizers for parameter tuning, which
helps keep the quantum circuit depth shallow, hence mitigating
noise.

The algorithm’s modular structure and suitability to current
and near-term systems have led to its widespread use. In

fact, exploring various aspects of VQAs is a key part of the
research on quantum systems, and identifying the conditions
under which this class of algorithms will succeed is still an
open question [36]. VQAs have been applied to a wide variety
of applications [1] such as quantum chemistry [6], [37]–[39],
combinatorial optimization [40]–[42], and machine learning
[43]–[47]. A complete discussion of VQAs can be found in
the review paper by Cerezo et al. [1].

A prime example of VQAs is the Variational Quantum
Eigensolver (VQE) [2] shown in Fig. 1. The trial wave
function ψθ is generated by applying the PQC (U(~θ)), which
is expected to explore the Hilbert space efficiently. Once the
trial state is prepared, the expectation value of the problem
Hamiltonian H is determined. The Hamiltonian first needs
to be decomposed or “mapped” from its original form (e.g.,
fermionic modes) to spin (Pauli) operators in a way that
preserves the commutation relations [48]. Once decomposed,
H can be represented as H =

∑
aiPi, where Pauli string Pi

is the tensor product of Pauli operators.
VQE utilizes classical optimization to find suitable parame-

ters for the PQC, with the goal of minimizing the expectation
value of H . The variational principle guarantees that the
expectation value 〈H〉 is always greater than the minimum
eigenvalue of the system (the ground state energy E0). The
classical optimizer is applied iteratively to update the PQC
parameter set (~θ), and a quantum computer is used to compute
information about the Hamiltonian’s expectation value for the
calculated ~θ based on the measurements. The algorithm is
repeated until convergence, or an optimizer limit is reached.
Various types of optimization procedures, such as gradient
descent algorithms or direct search methods, can be used to
update the circuit parameters [1].

C. Parameterized Quantum Circuits

A Parameterized Quantum Circuit (PQC) or ansatz is
defined as a tunable unitary operation U(~θ) that is applied
to a quantum state |ψ0〉, often initialized to |0〉⊗n [32] or a
problem-influenced initial state. This results in the quantum
state

|ψθ〉 = U(~θ) |ψ0〉 (1)

where ~θ is a vector of a polynomial number of circuit param-
eters. These parameters can represent any tunable feature of a
quantum operation, but they usually correspond to angles of
rotation gates. A PQC can be further decomposed to a product
of L sequentially applied sub-unitaries [1], usually referred to
as layers

U(~θ) = UL( ~θL)...U2(~θ2)U1(~θ1) (2)

This modular nature of PQCs has been recently compared
to classical computing, in which the parameters of the PQC
are analogous to the weights and biases of a classical neural
network [32]. Similar to the broad spectrum of neural network
architectures, PQC designs can vary widely in their design
goals and performance. Nonetheless, they can be classified
into two main types: a problem-specific approach that utilizes
knowledge of the problem to tailor the PQC architecture [19],



Fig. 2: Schematic diagram of a Hardware-Efficient PQC with
example layer designs.

[49], [50], and a problem-agnostic or hardware-efficient design
[6] that focuses more on the suitability of the design to
hardware [1]. This paper focuses mainly on the latter type,
hardware-efficient PQCs, and expands on various aspects of
their design.

Hardware-efficient PQCs generally aim at reducing both
gate count and circuit depth. A single layer in this approach
is usually composed of single-qubit operations followed by
entangling two-qubit operations based on the physical connec-
tions of the hardware. A multi-layer PQC with this approach
has been shown to be more suitable to current noisy machines
compared to unitary coupled-cluster ansatze [6]. Fig. 2 shows
examples of layer designs following this strategy. Additionally,
other device-specific information such as gate decomposition,
physical connections between qubits, crosstalk, and other
noise characteristics can also influence the design choices for
hardware-efficient PQCs.

Besides their structure, classifying and understanding the
usefulness of different PQC designs is necessary for better
VQA design. The next section (II-D) expands further on the
topic.

D. Expressibility, Trainability, and Entanglement

With the wide range of PQC architectures, a fundamental
question is whether a circuit can adequately prepare the
target quantum state. In this regard, researchers have proposed
different metrics to estimate the quality of an ansatz [32],
[43], [47], [51]–[53]. In this section, we describe the three
qualitative metrics we used in this paper to estimate a PQCs
expressibility, trainability, and entanglement.

1) Expressibility: Proposed by Sim et al. [32], Expressibil-
ity (Expr) is defined as a PQC’s ability to produce quantum
states that well represent the Hilbert space. The general
idea is to compare the distribution of states obtained from
a PQC’s U(~θ) to the maximally expressive uniform (Haar)
random states. By sampling pairs of parameter values and their
associated quantum states (e.g. using U(~θ1) and U(~θ2)), we
can compute the probability distribution of the quantum state

fidelities P̂PQC(F ; ~θ) [32]. Expr is then estimated using the
Kullback-Leibler divergence DKL [54] as follows

Expr = DKL|(P̂PQC(F ; ~θ)||P Haar(F )) (3)

where P Haar(F ) is the probability distribution of fidelities for
the Haar random state. Please refer to the paper [32] for more
details on this metric. In short, a smaller Expr value for a PQC
indicates a closer approximation to random states and, hence,
a more expressible circuit.

2) Trainability: A more expressive ansatz does not nec-
essarily lead to better VQA performance. It is also essen-
tial to characterize the properties of the VQA’s optimization
landscape and employ efficient training routines to guarantee
performance. Perfectly expressive ansatze are actually proven
to have flatter optimization landscapes and thus are less
trainable [53]. The first work to investigate the trainability
of PQCs was by McClean et al. [7]. Their work proved that
a wide variety of PQCs, particularly hardware-efficient ones,
suffer from vanishing gradients exponentially in the number
of qubits - a phenomenon known as barren plateaus. This
observation has been further expanded by Cerezo et al. [8] to
indicate that the occurrence of barren plateaus is cost-function-
dependent for shallow ansatze. In recent years, more works
have shown that other factors can also impact barren plateaus,
such as noise [28] and entanglement [9], [10].

A general definition of a cost function can be

C = 〈ψ|U†(~θ)Ô(ω)U(~θ) |ψ〉 (4)

where U(~θ) is the ansatz unitary acting on state |ψ〉, and
Ô(ω) =

∑
i ωiÔi is an observable or Hamiltonian that acts

nontrivially on a subset of the circuit qubits (local) or the
total circuit qubits (global). The classical learning algorithm
minimizes C by updating a parameter θi through the use
of the partial derivatives (i.e., ∂C

∂θi
) which represents the

contribution to the gradient ∂C from the change in parameter
∂θi. In Section IV, we utilize cost-function-dependent barren
plateau analysis [8] to evaluate our PQC’s trainability. We
use V ar[∂iC], which represents the variance of the partial
derivative of the cost function C with respect to θi for n
sampled circuits. The magnitude of the variance quantifies
the partial derivative’s concentration around zero [8]. Thus,
smaller values indicate less trainability.

3) Entanglement: Entanglement measurement quantifies
the amount of entanglement contained in a quantum state.
It is first essential to realize the advantages of generating
highly-entangled states for VQAs. Prior works have shown
that highly-entangled PQCs are potentially more capable of
capturing non-trivial correlations in the quantum data and
efficiently represent the solution space for tasks like the ground
state preparation or data classification [6], [32], [44], [55],
[56]. On the other hand, excessive entanglement can possibly
lead to concentration of measure, making a PQC too random
and less trainable [10]. In recent works, entanglement has been
investigated as a primary source of barren plateaus [9], [10].
With such tradeoffs between entanglement and trainability,
optimization problems vary in their utilization of entanglement



for performance [11], [57]–[59]. This ultimately leads to the
importance of developing a comprehensive understanding of
the role of entanglement in VQAs.

There exist several methods for quantifying entanglement
[32], [60]–[62]. In this paper, we use the bipartite entan-
glement entropy, which is the Von Neumann entropy of the
reduced density matrix of any of the subsystems, to estimate
the spread S of circuit entanglement

S = Tr[ρα log2 ρα] (5)

where ρα is the reduced density matrix of (n−1)/2 connected
qubits containing as many cost function qubits as possible [9].
In Section IV, we analyze the entanglement of our PQCs by
observing both S and HT results and tie this to their trainability
with respect to cost function size and number of layers.

E. Pulse-Level Control of Quantum Systems

The lowest level of control of a quantum computer is
through pulses. Such a level of control can be realized/enabled
by a classical microprocessor with an embedded pulse digital-
to-analog converter [4]. A pulse is defined as a time-series
of complex-valued analog amplitudes, each called a sample,
applied to qubits on any type of input channels, at each
system cycle time dt [4]. Typically, the timing of scheduled
operations is inconsequential in the standard quantum circuit
model as long as the order of non-commuting operators is
preserved [4], [63]. However, timing considerations are very
critical once we move to the pulse model on quantum hardware
such as transmons [4], [5].

Quantum computers are routinely calibrated to account for
drifts in their state by updating their experimental parameter
settings [34], [64], [65]. Such calibrations are key to obtaining
the translations from gates to pulses or pulse schedules. For
example, current IBM quantum backends implement the X
gate as an almost-Gaussian DRAG pulse [66] (with a carrier
frequency equal to that of the ground-to-excited state transi-
tion), while Z and RZ(θ) gates are purely implemented in
software [64]. Figures 3(a) and (b) show a quantum circuit
and its corresponding pulse schedule. We demonstrate pulse
control of quantum systems using IBM’s framework for pulse-
level access, Qiskit Pulse [4], [5]. Table I shows a summary of
the different pulse channels used in IBM machines and their
descriptions.

III. METHODOLOGY

A. Dissecting the Cross Resonance Gate

The Cross Resonance (CR) gate is an all-microwave en-
tangling gate, obviating the need for tunable qubits or cou-
plers [29]–[31], [67]. This feature makes for better scaling
to larger numbers of qubits by minimizing the overhead of
control electronics and control wires [68], [69]. Thus, the
CR gate emerged as a promising two-qubit entangling gate
in quantum architectures based on planar, fixed-frequency
superconducting transmons [29], [69]. Transmon qubits are
designed to have reduced sensitivity to charge noise while

maintaining sufficient anharmonicity, allowing the lowest two
levels to be addressed as a qubit [70].

For a pair of coupled fixed-frequency transmons, a CR
interaction is realized by driving the control transmon at the
frequency of the target transmon. This interaction produces an
effective Hamiltonian of the form [4]

H̄CR =
Z ⊗A

2
+
I ⊗B

2
A = ωZII + ωZXX + ωZY Y + ωZZZ

B = ωIXX + ωIY Y + ωIZZ

(6)

where each term represents Pauli operators applied to both
control and target, with the control being first and the target
being second in the tensor product reading from left to right.
For example, the term ωIZ

IZ
2 corresponds to Pauli-I and

Z operators applied to the driven control and target qubits,
respectively, generating an uncontrolled (because of the Pauli-
I on the control) Z-rotation on the target transmon of strength
ωIZ .

If isolated, the ZX conditional rotation term in (6), with
rotation angle π

2 , would result in the unitary UZX(π2 ) =
e−i

π
4 ZX , which is locally-equivalent to the standard CNOT

(i.e., equivalent up to single-qubit gates). The CNOT gate is
sufficient for universal quantum computation when combined
with arbitrary single-qubit operations [4], [69]. However, the
other terms in the effective Hamiltonian (6) are coherent error
terms and “unwanted” for generating the unitary equivalent to
CNOT. Developing strategies to characterize and control these
terms in order to create high-fidelity entangling gates is still
ongoing research [4], [69]. Figures 3(a) and 3(b) show IBM
Quantum’s standard echoed technique used to suppress these
terms and implement the CNOT gate. This pulse sequence is
comprised of three main components:

• Echoed CR Pulses: two CR pulses with opposite phases
on the control channel (u) and two single-qubit pulses
on the drive channel, one before each CR pulse. This
sequence (grouped with the echoed CR pulses) refo-
cuses/echoes away unwanted terms (mainly IX and ZI)
in the interaction Hamiltonian [4], [71].

• Compensation Pulses: also known as target rotaries,
these are used to address and reduce errors identified in
the echoed CR Hamiltonian arising from driven ZZ in-
teractions and classical crosstalk (IY ). Additionally, they
suppress unwanted entanglements with target nearest-
neighbors or spectators due to static coupling, without
increasing the CR pulse length [69].

• Single Qubit Pulses: Additional single-qubit pulses on
the control and target are used to build a CNOT from
the generated UZX(π/2) unitary. This sequence can be
“reversed” in that the physical CR control qubit may be a
logical CNOT target qubit with the appropriate addition
of single-qubit gates.

In the next section (Section-III-B), we use our understanding
of the CR Hamiltonian and pulse sequence to implement a
pulse-efficient entanglement gate suitable to VQAs.



TABLE I: Qiskit Pulse Channels Summary

Channel Description
DriveChannel di Main drive channel connected to qubit i, with signals modulated at the resonance frequency of the qubit
MeasureChannel mi Connected to the readout component of qubit i
ControlChannel ui Transmit channel associated with arbitrary interaction between specific 2 qubits j and k
AcquireChannel ai Connected to the readout component of qubit i to digitize and acquire measurement data

Fig. 3: (a) The gate representation of the CR-based CNOT
implementation. (b) The equivalent pulse sequence on
ibmq montreal. Note that all pulse parameters (durations,
amplitudes, etc) shown are specific to qubits 23 and 24 from
the device calibrations. The circular arrows represent phase
shifts. Note here that pulses are scheduled with an As-Late-
as-Possible (ALAP) method, which minimizes the idle time
between instructions on the same channel and maximizes
the qubit idle time before the first pulse [4]. The pulse
envelopes are filled with bright and dark colors representing
the real (in-phase) and imaginary (quadrature-phase) compo-
nents of the waveform, respectively. (c) The custom pulse
implementation of CR(π/4) for the same set of qubits. The
pulse parameters are derived from the calibrations returned by
the instruction_schedule_map. (d) The custom pulse
implementation of CR(150 ns), which uses a fixed duration
of 150 ns.

B. Custom Entanglement Gate Implementations

Table II shows Qiskit’s gate decomposition of some of the
available two-qubit gates on IBM Quantum devices. We notice
that CNOT is a base of these decompositions since it is a
basis gate for IBM backends. Our main design principle is that
PQCs do not necessarily need such standard two-qubit gates,
but the goal is to use two-qubit entangling gates in general [6].
Therefore, we utilize pulse-level access to quantum systems to

TABLE II: Decomposition of Some IBM two-Qubit Gates
using Qiskit’s Transpiler

Gate Decomposition
Controlled-Z 2 single-qubit gates, 1 CNOT
Controlled-Ry 2 single-qubit gates, 2 CNOTs
Controlled-Phase 3 single-qubit gates, 2 CNOTs
Controlled-H 6 single-qubit gates, 1 CNOTs
Controlled-U(θ, φ, δ) 4 single-qubit gates, 2 CNOTs

design a faster entangling gate.
Figures 3(c) and 3(d) show the pulse schedule of two custom

entanglement gates: CR(π/4) and CR(150ns) respectively.
CR(π/4)’s implementation is based on the standard CNOT
shown in Fig. 3(b), where each pulse’s amp and duration
are carefully calibrated for each qubit. For example, the
CNOT’s CR tone directions intentionally avoid qubit-qubit
collisions: accidentally driving terms with control-spectators
[72]. Moreover, its pulses are calibrated to the largest ampli-
tude without noticeable leakage in order to reduce the duration
which the qubit is subject to decoherence [64], [73]. Thus, as
its name suggests, CR(π/4) uses the first CR tone in the
CNOT’s echoed cross-resonance sequence to achieve a ZX
rotation of π/4 (and uncancelled single-qubit rotations). We
chose a fixed duration of 150ns for our second entangling
gate CR(150ns) (similar to the gates used in [6]), with
the goal of minimizing the effect of decoherence without
compromising the optimization accuracy. The fixed duration
is the average duration for the CR(π/4) gate for different
backend pairs. For the rest of pulse parameters in both CR
gates, we chose to utilize the daily calibrations performed
on IBM quantum devices. In this paper, we demonstrate
how straightforward customized pulse gates, along with PQC
analysis for parameters such as trainability, can lead to better
algorithm performance. In future work, will explore optimizing
the CR pulse parameters with different ansatze and study their
correlation with trainability more closely.

We generally modify the standard CNOT implementation in
the following way:
• We removed the echoed CR sequence and replaced it with

one, bare CR tone [29]. As a result, we also remove the
X rotations on the control channel associated with the
sequence. This design choice was made for two reasons:
First, by reducing the duration to less than half that of the
basis CNOT, we sped up our custom gate compared to any
standard two-qubit gate. With limited coherence times in
today’s noisy quantum systems, even small improvements
to single- and two-qubit gate speeds are essential and



Fig. 4: (a) The circuit diagram for the CR Hamiltonian
Tomography experiment. The p gate is used to drive the
control qubit to the 0 or 1 states. The target qubit is then
measured by projecting it to the X (green dotted square),
Y (red dotted square), and Z bases. (b) Shows the pulse
sequence for the experiment shown in (a) measuring the target
qubit in the X basis. The figure also shows the different pulse
parameters changeable as part of the experiement.

can significantly enhance performance [74]. Second, the
echoed CR sequence (as mentioned in Section III-A)
cancels uncontrolled single-qubit rotation terms such as
IX and ZI in the CR Hamiltonian. We make the case
that such terms are unwanted when the target unitary is
CNOT, but not in our case.

• We removed the target rotary pulses (target qubit pulses).
As mentioned in Section III-A, these rotary echoes are
used to suppress the driven ZZ interaction and entangle-
ments with target spectators [75]. We argue that entan-
glements with the target’s spectators are not necessarily
detrimental to the VQAs and this should be further
explored.

In Section IV, we use Hamiltonian Tomography (HT) to
extract unitary representations of our custom gates, assuming
a block-diagonal cross resonance Hamiltonian.

C. Characterizing CR-based Gates

Characterizing the pulse gates is essential to understanding
their components and performance. For this purpose, we used
Hamiltonian Tomography (HT), an accurate Hamiltonian cali-
bration technique developed by Sheldon et al. [29], to estimate
the coefficients (strengths) ω(s) of the CR Hamiltonian terms
in (6).

Fig. 5: (a) The mapping of the two PQC configurations shown
in (b) and (c) on ibmq montreal. (b) The base configuration
using CNOT as entangling gates. (c) The CP ang and CP dur
configurations using CR(π4 ) or CR(150ns) as entangling
gates respectively.

Fig. 4(a) and (b) show the gate and pulse sequence for
HT. The experiment is performed by applying a CR tone
(or the echoed CR tones for the standard implementation)
with different durations. The target qubit is then measured by
projecting to the X , Y , and Z bases, with the control qubit
either in the 0 or 1 state. The measurements (from the resulting
six sets of experiments) are of the expectation values of each
term in the Hamiltonian. It is important to note that HT is
not sensitive to the ZI term arising from a Stark shift (an
off-resonant drive that dressed the qubit frequency) because
the control qubit is in an eigenstate of the Z operator. Thus,
an additional Ramsey experiment on the control qubit was
performed to estimate the strength of this term. Estimating the
CR Hamiltonian terms can also be used to extract the unitary
representation of custom gate implementations according to
Schrodinger’s equation

UHCR
= e−iHCRt (7)

where HCR is our CR Hamiltonian, and t represents the
CR tone’s duration. This unitary can then be used to
further analyze the PQCs for algorithmic descriptors such as
expressibility, trainability, and entanglement.

IV. RESULTS AND EVALUATION

A. Experimental Setup

We conducted our experiments on ibmq montreal, a 27-
qubit backend available through IBM Quantum Services. The
backend has average T1 and T2 times of 84.24 µs and 85.32 µs
respectively, and an average CNOT error rate of 4.703e−2.
Note that these values fluctuate and are monitored through
daily calibrations available through Qiskit. We utilize Qiskit
Runtime [76], a programming model that allows for faster
execution of quantum workloads on the cloud, to run our
algorithm benchmarks.

Fig. 5(b) shows one layer of a base n-qubit PQC design.
We will refer to PQCs constructed using this layer as base



PQCs. Fig 5(c) shows a single layer design utilizing our CR-
based entanglers. We refer to PQCs utilizing these gates as
Customized Pulse PQCs or CP. We refer to PQCs that use the
CR(π/4) gate as CP ang, and PQCs utilizing CR(150ns) as
CP dur. We used a linear entanglement arrangement in both
circuits, which applies two-qubit gates to neighboring qubits
only. The mapping of the circuits on ibmq montreal’s topology
is shown in Fig. 5(a).

In this section, we analyze the three PQC designs’ circuit
duration, expressibility, trainability, and entanglement. Next,
we evaluate their performance for a set of chemistry and
MaxCut problems.

B. Circuit Duration

We analyzed the three PQC configurations for total gate
count, circuit depth, and duration. Since the three config-
urations share the same structure, they have identical gate
counts and circuit depth (not shown). This was expected as
our method only changes the pulse implementation of the
entanglers and does not change the circuits’ structure.

To measure the duration of base, we compiled the circuit
with the three levels of optimization available in Qiskit and
picked the lowest duration. We left the measurement operation
out of our speed calculations. As we mentioned in Section-
III-B, optimizations leading to faster quantum circuits are
crucial as we are still competing with limited qubit coherence
times. It is also critical as it gives more freedom to perform
measurement pulses.

We observe a speedup of up to 2.28× in the execution time
of CP ang compared base, with an average speedup of (2.2×).
CP dur on the other hand observes a maximum speedup of
(2.9× over base, with an average of (2.8×). This is a direct
result of using faster two-qubit entangling gates. As shown in
Figures 3(c) and 3(d), the custom gates are at least (2×) faster
compared to standard CNOT. This reduction in duration is
essentially equivalent to reducing the number of layers by half,
as the echo pulse and subsequent CR(π/4) are removed. As
the CR(150ns) use a fixed duration compared to CR(π/4)’s
calibrated duration, CP dur observes an average speedup of
(1.28×) over CP ang.

C. CR Gates Characterization

Table III shows the characterization of the CR tones using
HT. As expected, the CR tones have a higher strength of the
ZX entangling term compared to other Hamiltonian terms
(except for ZI). As our CR implementations do not use
an echoed pulse implementation, we see a high frequency
for the ZI term. However, this doesn’t affect the algorithm
performance as VQAs are unaffected by coherent terms which
can be dealt with by the optimizer. Notably, the CR tones also
experience a high frequency of the IX term as a result of not
using the echoed CR sequence.

As mentioned in Section III-C, this characterization was
used to obtain the unitary representation of our pulse gates
according to (7) by substituting t with the appropriate pulse
duration (i.e. 150ns for CR(150ns) and the calibrated duration

TABLE III: Average strength of CR Hamiltonian terms across
all backend pairs

Term Avg Frequency (MHz)
ωzx 0.69645487
ωzy -0.0112463
ωzz -0.04056
ωix -0.1102794
ωiy 0.03167672
ωiz 0.03557382
ωzi 14.5783

Fig. 6: Expressibility of different PQC configurations (n is
number of qubits & L is the number of layers). (Inset) Shows
the average increase in expressibility for base over CP PQCs
as a function of the number of layers.

Fig. 7: The trend lines of entanglement entropy S for the three
PQC configurations vs. circuit depth (Layers) for a 4-5 qubit
bipartition, as defined in (5) and illustrated in the inset of the
figure.

for CR(π/4)). The unitaries were then used to analyze the
PQCs in the following sections for expressibility, entangle-
ment, and trainability.

D. Expressibility

We used state-vector simulation to perform the necessary
sampling for expressibility calculation, as detailed in Section-



II-D. As we mentioned in Section IV-C, the unitary represen-
tations of the CR-based gates were used in the sampling of
the CP PQCs.

Fig. 6 shows the expressibility of the the three PQC con-
figurations with varying numbers of qubits and layers. As
mentioned in the background, a lower value means better
expressibility for the circuit using the KL divergence measure.
For PQCs with a number of layer (L > 1), we see that the
base configuration is more expressive than CP. The inset of
Fig. 6 shows the average increase in expressibility of base
over CP as a function of L. base observe a higher average
increase in expressibility with shallow numbers of layers, with
a maximum of 24% over CP PQCS at L = 3. The difference
in expressibility gradually decreases as we add more layers
and expressibility values saturate.

This reduction in the CP PQCs’ expressibility is not exactly
harmful to the performance. As we mentioned in Section II-D,
findings from Holmes et al. [53] indicated that the more
expressive the PQC, the smaller the variance in cost gradients
and hence, the harder it is to train. Their results also suggest
that ansatze need not be highly expressive; instead, it is more
important that they are trainable and contain a solution to
the problem. With that, the CP configuration proves to be
more trainable (Section IV-F). Our algorithm performance
results (Section IV-G) further confirm that this reduction in
expressibility does not harm the algorithm performance and
can, in fact, optimize it.

E. Entanglement

Fig. 7 shows the trend of entanglement entropy for the
three PQC configurations with increasing circuit depth. The
results are obtained for 9-qubit PQCs with a 4-5 partition,
as shown in the figure. We see from the trend lines that base
always creates more entanglement compared to CP PQCs. The
base configuration has an entropy that is, on average, 2.58×
higher than CP’s across all circuit depths. Such reduction in
entanglement is expected due to the short durations of the
CR tones used in CP compared to CNOT. We also see that
the entropy difference drops as we increase the circuit depth
before the values reach saturation.

In regards to capturing the PQCs entanglement more accu-
rately, this can be further improved by accounting for spectator
entanglements as well. As mentioned in Section III-A, the CR
interaction on transmons can also generate coherent terms due
to coupling with the target’s nearest-neighbors or spectators.
As we also mentioned, the target rotaries in the echoed CR
sequence ECR are proven to suppress this type of entangle-
ments [69]. Thus, our CR(π4 ) pulse can possibly have more
spectator entanglements, which can lead to entirely different
entanglement dynamics. Accounting for spectator interactions,
however, requires additional experimentation. This can be
done by using generic quantum tomography techniques or,
more favorably, the Hamiltonian Error Amplifying Tomogra-
phy (HEAT) technique proposed by Sundaresan et al. [69].

Fig. 8: (a) The change in variance of the partial cost function
derivative for base and CP ang vs. PQC size. Shallow PQCs
use a number of layers L = log2(N) where N is the number
of PQC qubits, while Deep PQCs use a polynomial number
(L = 10 ∗ N ). The local cost functions shown here are for
NC = 1. (b) The variance vs. circuit size for shallow PQCs
and different values of NC . The shaded regions highlight the
difference between CP dur, CP ang, and base configurations.

Fig. 9: VQE performance of the three PQC configurations
for two Hamiltonian mappings: (a) Bravyi-Kitaev (BK) and
(b) Jordan-Wigner (JW). All runs used the Simultaneous
Perturbation Stochastic Approximation (SPSA) [77] gradient-
based optimizer.



Fig. 10: VQE results for (a) H2, (b) LiH, and (c) BeH2 molecules for each PQC configuration. The Hamiltonian settings for
each molecule is shown in Table IV. Note that #iterations here corresponds to the total number of objective function evaluations
and not the number of SPSA opimization iterations.

F. Trainability

To analyze the PQC configurations’ trainability, we follow a
cost-function-based analysis similar to that in [8] and [9]. We
used a simple ground state preparation problem, which can be
defined by the global cost function

CG = 1− p|0〉⊗N (8)

where N is the total number of qubits, and p|0〉⊗N is the
probability of measuring the |00...0〉N state. For the local cost
function, we only consider the probability of a subset of qubits

CL = 1− p|0〉⊗NC (9)

where NC is the number of cost-function qubits. It is interest-
ing to point out that for (NC = 1), CL has a cost landscape
similar to that of a local cost function acting on each qubit
separately [78].

Fig. 8(a) shows the results for different cost function and
PQC settings. The bottom two lines (Deep, CG) follow the
conclusions from [8] that this cost function, and others like
it, exhibit barren plateaus. The figure also proves that local
cost functions like CL will exhibit barren plateaus for deep
numbers of layers. We see that base observes better variance
for small numbers of qubits, but both curves are exponentially
decreasing due to barren plateaus. More interestingly, we
see that CP ang has better local cost function trainability
with shallow layers. This observation is further expanded in
Fig. 8(b) for the three PQC configurations, which confirms it
for different values of NC (up to a certain limit). The results
also suggest that the performance gap (indicated by the shaded
regions) shrinks with increasing NC . This better overall local
cost function trainability can be attributed to the CP PQC’s
reduced expressibility, entanglement, and duration; as each of
these parameters is proven to negatively affect training [9],
[28], [53].

To further explore the advantages of local cost function
training, we compare the VQE optimization performance of
two different 4-qubit Hamiltonians for the H2 molecule. The
Hamiltonians (HJW, HBK) were obtained using two of the

most commonly used techniques to map fermionic to spin
operators: Jordan-Wigner (JW) [33] and Bravyi-Kitaev (BK)
[79]. As discussed in [8], [80], BK mapping often leads to
more local Pauli terms and hence to more trainable cost
functions.

Fig. 9 shows the results from the experiment ran on
ibmq montreal. Contrary to our expectations based on the
local cost function analysis, CP dur performs poorly with the
BK mapping compared to other PQC configurations and its
JW performance. This is an important finding as it reveals
that other factors (yet to be determined) besides the locality
of the cost function affect CP performance. On the other
hand, we see a larger performance gap between CP ang and
base for BK compared to JW mapping (the shaded areas
in the figure), indicating that the performance was affected
by the locality of the Hamiltonian. Although this somewhat
confirms the results from Fig. 8 showing that CP has better
local cost function trainability than base, the two Hamiltonian
mappings had similar performances for each PQC config-
uration. Additionally, both mappings fall short in terms of
performance compared to an H2 mapping that uses 2-qubits
(Section IV-G). Overall, we believe that utilizing efficient local
cost function implementations can lead to better performance
(as proven in [80]) using pulse-optimized gates, and we leave
this exploration for future work.

G. Algorithm Performance

We compare the performance of the three PQC configura-
tions with two sets of VQE applications from chemistry and
optimization. In chemistry, we use VQE to find the ground
state energy of the H2, LiH, and BeH2 molecules, which
corresponds to finding the minimum eigenvalue of Hermitian
matrices characterizing these molecules. For optimization, we
solve three MaxCut problems (shown in Fig. 11). We ran
all our benchmarks on ibmq montreal accessed through IBM
Cloud and configured our experiment as follows. We used the
Simultaneous Perturbation Stochastic Approximation (SPSA)
[77] as our optimization routine, with the maximum number
of iterations set to 100. We use an (RYRZ) rotation (instead



Fig. 11: The 3-, 5-, and 9-node graphs used for MaxCut are shown in (a), (b), and (c), respectively, with their classically
calculated MaxCut values.

TABLE IV: Hamiltonian configurations for chemistry
molecules

Molecule Mapping Interatomic Distance
(Angstrom) # of Qubits

H2 Parity 0.72 2
LiH Parity 2.5 4

BeH2 Jordan-Wigner 1.5 6

of the RY shown in Fig. 5) for chemistry benchmarks. The
number of layers was set to 5 for both CP and base across all
applications.

1) Chemistry Benchmarks: Fig. 10 shows VQE results
for three chemistry molecules: H2, LiH, and BeH2. The
Hamiltonians were obtained through Qiskit’s integration with
the PySCF library [81]. We favor reducing the number of
qubits guided by a quick analysis of trainability for H2,
which revealed that H2’s 2-qubit mapping has a variance
in partial gradients var[ ∂C∂θo ] that is 3× higher than that
for the 4-qubit mapping. Therefore, we chose Jordan-Wigner
and Parity [79] mappings to map our molecules’ fermionic
operators to spin operators. The Parity mapping was chosen
for the H2 and LiH, as it allowed for reducing the number of
qubits by utilizing Z2 symmetries. Table IV summarizes the
experiments’ configurations for each molecule.

Fig. 10(a) shows the results for the H2 molecule. Both
base and CP ang PQCs fail to find the lowest energies, but
their results are fairly and equally close to the exact solution
while CP dur performs slightly worse, which indicates a
lower quality for this PQC with small configuration. For
the LiH molecule shown in Fig. 10(b), both base and CP
PQCs results are fairly close to the exact solution, with
CP dur being slightly closest to the exact solution. For the
6-qubit BeH2 problem shown in Fig. 10(c), CP PQCs clearly
outperform base, with the lowest energy obtained through
CP ang reaching chemical accuracy (defined to be within
0.0016 Hartree of the exact result). This result indicates that
the CP configurations may have better potential with larger
and more complex problem structures.

TABLE V: # of correct MaxCut solutions and ROCA for the
top-5 probabilities

# of Correct Solutions ROCA
MaxCut Problem base CP ang CP dur base CP ang CP dur

3-nodes 4/5 5/5 5/5 1 1 1
5-nodes 2/5 2/5 2/5 1 1 1
9-nodes 0/5 1/5 0/5 0 2 0

2) MaxCut: For MaxCut benchmarks, the optimized set
of parameters obtained by VQE was first used to prepare a
quantum state through the PQC. This state was then sampled
to construct an eigenstate, from which the highest probabilities
correspond to MaxCut solutions (graph partitionings). The
solutions can then be evaluated by calculating their cut values
and comparing them to a classically calculated MaxCut refer-
ence. Table V shows the number of correct Maxcut solutions
out of the top−5 solutions for each PQC configuration. The
table also shows results using the Rank of Correct Answer
(ROCA) metric proposed by Tannu et al. [82], which, as its
name suggests, accounts for the order of appearance of the
correct answer(s).

We see that CP ang generally performs better than base
and CP dur, specifically for the 3- and 9-node problems. This
is evident for the 9-node case, where CP ang configuration
was capable of finding the correct solution with a ROCA
of 2 compared to 0 correct solutions for the two other
configurations.

In conclusion, we see that the CP configurations have,
on average, a better algorithmic performance compared to
base, specifically for larger problem instances (6-qubit BeH2

molecule and 9-node MaxCut). The CP’s reduction of ex-
pressibility, entanglement, and duration prove beneficial to the
algorithm’s performance and trainability. We also observe that
CP ang performs better than CP dur in general, which shows
the sensitivity of the algorithm’s performance to tuning the CR
pulse. We argue that optimizing pulse parameters, alongside
utilization of efficient local cost-functions can lead to further
improvements.



V. RELATED WORK

The majority of work done to optimize PQCs focused on
the higher levels of the algorithm, such as analyzing and
improving their trainability of PQCs [7]–[10], [28], [53],
parameter initialization methods [12], [13], and developing
optimizers and optimization strategies that are tailored for
VQAs [11], [14]–[18], [24], [27], [83].

Hardware-efficient PQCs have been first proposed by Kan-
dala et al. [6]. Their work used fixed-duration entanglers to
simulate the performance of VQE for small molecules and
quantum magnets. In this work, we extend their usage of
Hamiltonian tomography by utilizing its data to analyze our
PQCs for expressibility, trainability, and entanglement. Recent
studies have explored hardware-oriented VQAs’ analysis and
optimization. Ravi et al. [22] proposed a VQA error-mitigation
approach that tunes single qubit gate scheduling and dynam-
ical decoupling sequences in a variational approach. Other
works have also explored the effects of noise on VQAs and
hardware-efficient PQCs [19], [84], [85]. The work by [85]
determines optimal PQC depth at different noise levels and
investigates the circuit resiliency to noise with the inclusion
of redundant parameterized gates. Zeng et al. [84] simulates
specific hardware-efficient PQCs’ performance with different
noise models and noise levels. Their results showed that VQE’s
performance degrades as the noise probability or the circuit
depth increase. A more recent study by Saib et al. [19]
discussed the effect of noise on chemistry applications and
profiled various PQCs for expressibility. Their results suggest
that expressibility is weakly correlated to VQE performance.
We note that the original expressibility and entanglement paper
by [32] states that it has not yet discovered an accurate
correlation between these measures and VQE applications. Our
work aims to uncover ways to merge PQC descriptors, such
as trainability, expressibility, and entanglement, to hardware-
specific parameters in PQC design.

More recently, VQA optimization through Quantum Op-
timal Control (QOC) has gained more attraction [20], [21],
[25], [86]. For hardware-efficient gate-based PQCs, Liang
et al. [23] proposed a pulse optimization framework that
manipulates the PQC gate amplitudes as part of the VQA
optimization routine. In contrast to their approach, we choose
to preconfigure our CR pulse parameters and not attach them
to the VQA optimization procedure, as it was proven in
[6] through numerical simulations that accurate optimizations
can be obtained for fixed-phase two-qubit gates. Additionally,
as over-parameterization of pulses can lead to difficulties in
optimization [25], our approach leads to a lower number of
parameters and, ultimately, a faster VQA implementation as
the circuit size grows. A more recent work by the same
group [87] proposes a progressive pulse-ansatz construction
and learning approach utilizing non-gradient optimizers to
generate more scalable and efficient anstaze.

Utilizing pulse access for faster two-qubit gate implemen-
tation has been explored by [64], [74], [88], [89]. Jurcevic
et al. [74] experimented with a direct CNOT approach that

uses compensation mechanisms different than the echoed CR
implementation to achieve a higher quantum volume of 64
on IBM machines. Gokhale et al. [64] utilized OpenPulse
and knowledge of the CR gate to implement a more efficient
RZZ rotation, which is a core operation for quantum chemistry
and optimization algorithms. Their optimized implementation
experienced both error rate and execution time reductions
and has been adopted by Qiskit’s transpiler, as shown in
Table II. More recently, Stenger et al. [89] proposed a pulse-
scaling method that scales the area of the CR and rotary
pulses to create RZX(θ) rotations. Their method improves
the gate fidelity with no additional calibrations. Their work
has been further extended in [88] to arbitrary gates and
to develop a pulse-efficient circuit transpilation framework,
which decomposes two-qubit gates into the hardware-native
RZX rather than the CNOT-based transpilation.

VI. CONCLUSIONS

In this work, we utilize pulse-level access to quantum
machines to alter the standard design of two-qubit gates.
Additionally, we identify a suitable combination of hardware
and algorithmic parameters that can be efficiently embedded
in the design and are proven to impact performance. Our
analysis results prove that our customized pulse implementa-
tions maintains similar expressibility to a standard PQC and is
more trainable for local cost functions, all while reducing the
circuit duration to half. Therefore, this implementation is more
suitable for VQAs. Our algorithm performance results show
that in at least three cases, our customized pulse PQC con-
figuration outperforms the base implementation. As previous
literature closely ties PQC parameters such as entanglement,
noise, and expressibility to barren plateaus, we believe that
pulse optimization, which directly impacts said parameters, is
a very promising approach to enhance trainability. We leave
this as our main future goal. Other next steps include designing
a comprehensive entanglement model of the PQC by including
spectator entanglements and further testing with a more diverse
set of PQC architectures.
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