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To generate arbitrary one- and two-qubit gates, the universal decompositions are usually used in
quantum computing, and the universality of these decompositions has been demonstrated. However,
in realistic experiments, gate errors may affect the universality of the universal decompositions. Here,
we focus on the single-qubit-gate decomposition scheme and study the coherent-error effects on
universality. We prove that, in the parameter space which we studied, some kinds of coherent errors
will not affect the original universality, but some others will destroy it. We provide the definition
and analytical solutions for universality with coherent errors and propose methods to resume the
accuracy of the operations with coherent errors based on our analysis. We also give the analytical
results for three kinds of fidelities, which provide another metric for universality and comprehensively
depict the resilience of the decomposition scheme with various kinds of coherent errors. Our work
introduces a different way of thinking for quantum compilation than existing methods.

Introduction–Universality is an issue of crucial impor-
tance in physical implementations of quantum informa-
tion processing [1, 2]. It is known that quantum com-
putation with one- and two-qubit gates is universal and
arbitrary desired quantum operations can be decomposed
into a sequence of these base gates [3]. The universal
gate libraries [3, 4], minimization of gate counts [5–7]
and optimal universal gate decomposition schemes [7–10]
have been studied extensively. Based on the assumption
that the base gates for quantum-gate decomposition can
be implemented ideally, the theoretical derivations and
proofs of universal decomposition schemes have been pro-
posed [7, 8], and theoretically, these schemes have the
highest expressivity [11–14] for the quantum circuits with
corresponding qubit numbers. However, in realistic exper-
iments, on account of the unavoidable errors, e.g. pulse
distortion [15, 16] and microwave crosstalk [17–19], the
base gates used in the decomposition schemes cannot be
implemented ideally with unit fidelities [20].

In all kinds of experimental errors, the coherent error
is ubiquitous in many quantum systems, and in some
instances, it is more damaging than the incoherent er-
rors, e.g. in the context of quantum error correction
[21]. Coherent error is unitary and will cause, such as,
an unwanted rotation of the single qubit, and limit the
performance of the quantum circuits [22–25]. So that,
there are many schemes which are designed to suppress
the coherent errors [26–29], and hoping to eventually cor-
rect them by quantum error corrections [29–33]. There
are also some proposed error mitigation methods, which
leverage the optimizable parameters in universal one- and
two-qubit-gate decomposition schemes and utilize the op-
timization approach to correct gate errors and improve
the fidelities of the intended operations [34–36]. However,
how the coherent errors affect and when they will disrupt
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the universality of the universal quantum-gate decom-
position schemes have not been systematically studied.
Understanding such mechanisms will be helpful for us to
suppress or even totally corrected the coherent errors and
it can enlighten the thoughts of quantum compilation as
well.

In this work, we focus on one of the frequently used uni-
versal single-qubit-gate decomposition schemes, study the
coherent-error effects on universality, and answer the fol-
lowing questions. 1. Referring to the universality in ideal
conditions as the original universality, which kind of coher-
ent errors will destroy the original universality? 2. How to
express universality with coherent errors quantitatively?
3. Referring to the gate fidelity with coherent errors and
without (with) error mitigation (error mitigation specifi-
cally refers to the optimization of the parameters in the
decomposition scheme) as original (best) fidelity, what
are the analytical expressions for original and best gate
fidelities when using the universal decomposition scheme
and what do they reveal? We show that, depending on
our classification of the coherent errors in the parameter
space, there is one kind of coherent error that will destroy
the original universality, while others will not. We give
the definition of universality, as well as the analytical
expressions of it with various kinds of coherent errors,
which elaborate the relationship between the universality
and coherent errors. Furthermore, the analytical solutions
for the original and best fidelities are given. We show
that there are close relationships between coherent errors,
the best fidelity and universality for the single-qubit-gate
decomposition scheme.
Universal decomposition–The universal single-qubit

gate can be represented by a unitary matrix with three
parameters as [8]

U(θ, φ, λ) =

[
cos(θ/2) −ieiλ sin(θ/2)

−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
, (1)

where the parameter θ has a period of 4π, φ and λ
have periods of 2π. We use the three-dimensional
Cartesian coordinate system to represent the parame-
ter space, as shown in figure 1(a). Because there is
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U(θ + 2π, φ, λ) = eiπU(θ, φ, λ), the matrices with θ and
θ + 2π differ by only one global phase, which are equiv-
alent in quantum operations, then we can narrow the
studied parameter space of θ to a period of 2π. More-
over, there is U(−θ, φ, λ) = U(θ, φ+ π, λ+ π), removing
the symmetries, we can restrict the parameter space to
θ ∈ [0, π], φ ∈ [0, 2π) and λ ∈ [0, 2π). For convenience, in
the following text, we use U to represent U(θ, φ, λ) when
necessary.

For most of the quantum computing systems, the Z
rotations can be realized by adding a phase offset to the
driving field for all subsequent X and Y rotations, which
is known as a virtual Z gate, which is essentially perfect
[8, 37]. By applying the advantage of the virtual Z gate,
arbitrary single qubit operation shown in equation (1)
can be composed by a five-gate sequence [8]:

U = Zφ−π/2Xπ/2Zπ−θXπ/2Zλ−π/2. (2)

If the Z and X rotation gates in equation (2) are ideal
with unit fidelities, this decomposition is universal, and
equations (1) and (2) are equivalent. When we apply
equation (2) in realistic quantum device, the errors with
virtual Z rotations can be neglected, but the Xπ/2 gate is
operated by applying the driving pulse, the errors with
which cannot be neglected. Depending on equation (1),
the Xπ/2 gate can be expressed as UXπ/2 = U(θx, φx, λx),

and the parameters take the values of {θx, φx, λx} =
{π/2, 0, 0} ideally. However, when coherent errors happen,
at least one of the following cases occur, which are θx =
π/2 + δ (δ 6= 0), λx 6= 0 and φx 6= 0. Substituting UXπ/2
into equation (2) and replacing the operations of Xπ/2,
extracting and discarding the global phase, we can get

[38] Ũ =
[
Ũ (11), Ũ (12); Ũ (21), Ũ (22)

]
, with the definition

of a+ ≡ λx + φx, there are

Ũ (11) = eiθ/2 cos2(θx/2) + ei(−θ/2+a+) sin2(θx/2), (3)

Ũ (12) = [ei(−θ/2+λ+λx+a+) − ei(θ/2+λ+λx)]
sin θx

2
, (4)

Ũ (21) = [ei(−θ/2+φ+φx+a+) − ei(θ/2+φ+φx)]
sin θx

2
, (5)

Ũ (22) = ei(θ/2+λ+φ+a+) sin2(θx/2)

+ei(−θ/2+λ+φ+2a+) cos2(θx/2). (6)

Universality–Before talking about universality, we
would like to discuss the coverage of Ũ to U in the pa-
rameter space in different cases. We divide the coherent
errors into three kinds by the parameters on which the
coherent error happen. Next, we will discuss the cases
with different kinds of coherent errors or combinations of
them.

Case 1. {θx, φx, λx} = {π/2 + δ, 0, 0} (δ 6= 0),
the coherent error happens on θx. Substituting the
values of {θx, φx, λx} into Ũ , we can get ŨCase1 =

eiγ1
[
Ũ

(11)
Case1, Ũ

(12)
Case1; Ũ

(21)
Case1, Ũ

(22)
Case1

]
[38], where tan γ1 =

FIG. 1: (a) The parameter space for {θ, φ, λ} in
three-dimensional Cartesian coordinate system. In the
main text, removing the symmetries, we restrict the
parameter space which we studied to θ ∈ [0, π],
φ ∈ [0, 2π) and λ ∈ [0, 2π). (b) Cross sections for the θλ
and θφ planes. The blue areas for (a) and (b) represent
the parameter space which cannot be covered by the
decomposition scheme with coherent errors.

tan(θ/2) cos θx,

Ũ
(11)
Case1 =

√
1− sin2(θ/2) sin2 θx, (7)

Ũ
(12)
Case1 = −ieiλc1 sin(θ/2) sin θx, (8)

Ũ
(21)
Case1 = −ieiφc1 sin(θ/2) sin θx, (9)

Ũ
(22)
Case1 = ei(λc1+φc1)Ũ

(11)
Case1, (10)

and λc1 ≡ λ−γ1, φc1 ≡ φ−γ1. Removing the symmetries,
we can restrict the parameter space to θx ∈ [0, π/2) ∪
(π/2, π].

Compared with equation (1), the unitary matrix of

ŨCase1 also satisfies the following conditions, |Ũ (11)
Case1| =

|Ũ (22)
Case1|, |Ũ

(12)
Case1| = |Ũ

(21)
Case1| and |Ũ (11)

Case1|2 + |Ũ (12)
Case1|2 =

1. For the item of Ũ
(11)
Case1, the value range is [| sin δ|, 1]. If

we define a new parameter θ̃, which satisfies cos(θ̃/2) =√
1− sin2(θ/2) sin2 θx (θx = π/2 + δ), then within the

range of [0, π], the value range of θ̃ is [0, π−2|δ|]. Because
we have assumed that δ 6= 0, then in the parameter space,
the value range of θ ∈ (π − 2|δ|, π] cannot be covered.
In figure 1(a) and (b), we depict the schematic drawing

of the area which cannot be covered by Ũ (Here the
subscript Case1 is omitted, because this colored area
can also represent the similar space for other cases, e.g.
the Case3.) in blue and ∆θ represents the width of
the uncovered area along the θ axis. For Case 1, there is
∆θCase1 = 2|δ|. While for the other two parameters, there
are λc1 ∈ [−γ1,−γ1 +2π) and φc1 ∈ [−γ1,−γ1 +2π) with
the periods of 2π, then through the translations, they can
cover the whole value ranges of [0, 2π).
Case 2. θx = π/2, φx 6= 0 and λx 6= 0. In

this case, there are coherent errors on both φx and
λx. The operation UXπ/2 can be written as U case2Xπ/2

=

Zφx−π/2Xπ/2Zπ/2Xπ/2Zλx−π/2. Note that, in the realis-
tic experiment, the operation of UXπ/2 is implemented
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as a whole and does not be decomposed into several
rotations and accomplished separately. But here, we
are studying on the coverage of Ũ to U , and can as-
sume that, UXπ/2 is decomposed according to equation

(2). Then, substituting U case2Xπ/2
into equation (2), we can

get ŨCase2 = Zφ−π/2U
case2
Xπ/2

Zπ−θU
case2
Xπ/2

Zλ−π/2. The er-

rors with U case2Xπ/2
happen on λx and φx, the correspond-

ing operations of which are located at both ends, so
that, it’s easy to correct the errors by Zφ−π/2, Zπ−θ and

Zλ−π/2 operations in ŨCase2. Just define φc2 ≡ φ + φx,

θc2 ≡ θ − λx − φx, λc2 ≡ λ+ λx, then we have ŨCase2 =
Zφc2−π/2Xπ/2Zπ−θc2Xπ/2Zλc2−π/2. Through the trans-
lation operations, the value range of {θc2, φc2, λc2} can

cover which in equation (1), then ŨCase2 maintains the
original universality. In the Supplementary material [38],
we provide another proof based on the matrix representa-
tion.
Case 3. θx = π/2 + δ (δ 6= 0), φx 6= 0 and

λx 6= 0. In this case, there are coherent errors on
all the parameters of {θx, φx, λx}. There is ŨCase3 =

eiγ3
[
Ũ

(11)
Case3, Ũ

(12)
Case3; Ũ

(21)
Case3, Ũ

(22)
Case3

]
[38], with the defini-

tion of a+ ≡ λx + φx, there are

Ũ
(11)
Case3 =

√
1− sin2 θx sin2(

θ − a+

2
), (11)

Ũ
(12)
Case3 = −ieiλc3 sin θx sin |θ − a+

2
|, (12)

Ũ
(21)
Case3 = −ieiφc3 sin θx sin |θ − a+

2
|, (13)

Ũ
(22)
Case3 = ei(λc3+φc3)Ũ

(11)
Case3. (14)

The specific expressions for γ3, λc3 and φc3 can be
found in the Supplementary material [38]. Removing
the symmetries, we can restrict the parameter space to
θx ∈ [0, π/2)∪ (π/2, π], φx ∈ (0, 2π) and λx ∈ (0, 2π). λc3
and φc3 can cover the whole value ranges of λ and φ in
equation (1) through the coordinate translation opera-

tions. We can see that the unitary matrix ŨCase3 satisfies

the conditions |Ũ (11)
Case3| = |Ũ (22)

Case3|, |Ũ
(12)
Case3| = |Ũ (21)

Case3|
and |Ũ (11)

Case3|2 + |Ũ (12)
Case3|2 = 1. The value range of Ũ

(11)
Case3

is also [| sin δ|, 1], which is the same as Case 1, but there
is a translation of a+ for the specific value. In the param-
eter space, the value range of θ ∈ (π − 2|δ|, π] cannot be
covered, which is shown in figure 1(b) with blue color and
there is ∆θCase3 = 2|δ|.

Comparing the cases from Case 1 to Case 3, we con-
clude that, the coherent errors on φx and λx will not
affect the original universality regardless of what value
θx takes, while the coherent error on θx will definitively
affect the original universality. The coverage of Ũ to U
in the parameter space depends on the value of |δ|. Then
according to the above analysis, we give the definition of
universality for the universal decomposition with coherent
errors. The universality can be defined as

UN =
V

Vall
, (15)

where Vall is the volume which can be covered by the ideal
decomposition in the parameter space of {θ, φ, λ}, and V
is the volume which can be covered by the decomposition
with coherent errors. For the value ranges of θ ∈ [0, π],
φ ∈ [0, 2π) and λ ∈ [0, 2π), there is Vall = 4π3. For both
Case 1 and Case 3, the covered volume is 4π3−4π2×2|δ|,
the universality is UNcase1(case3) = 1− 2|δ|

π . For Case 2,
the universality is UNcase2 = 1.
Fidelities–The fidelity of quantum operations can be

calculated as F =
Tr(U†

impUimp)+|Tr(U†
tarUimp)|2

d(d+1) [39], Uimp
is the matrix representation for the implemented opera-
tion and Utar is which for the target operation, d is the
dimension of the matrix, which equals 2 for single-qubit
gate. When we consider an arbitrary single-qubit gate
Utar with the decomposition of equation (2), if there are
coherent errors with Xπ/2 (other kinds of errors, such as
the incoherent errors, are not considered in this work),
there will be a displacement between Uimp and Utar in
the parameter space, as well as a reduction with the
implemented fidelity. Then the first kind of fidelities
that we want to study is the original fidelity, which is
the implemented fidelity with coherent errors and with-
out any error mitigations. We denote it as Fori. For
this fidelity, the values of the parameters {θ, φ, λ} for
the target single-qubit gate are the same as those for
the implemented ones denoted as {θimp, φimp, λimp}, i.e.,
{θ, φ, λ} = {θimp, φimp, λimp}. For simplicity, we unify
both notations with {θ, φ, λ}.

Consider a general case, if there are errors with all three
parameters, which means θx = π/2 + δ (δ 6= 0), φx 6= 0
and λx 6= 0, the original fidelity can be represented as

Fori = 1+2|fx|2
3 [38], where

fx = cos(θ/2) cos(θ/2− a+/2) cos(a+/2)

+ cos(θ/2) sin(θ/2− a+/2) sin(a+/2) cos θx

+ sin(θ/2) sin(θ/2− a+/2) cos(a−/2) sin θx,(16)

with a+ ≡ λx + φx and a− ≡ λx − φx. We give some
simple solutions for specific cases.

Fori = 1

for {θx, φx, λx} = {π/2, 0, 0}, (17)

Fori =
1 + 2 cos4(λx/2)

3
for {θx, φx} = {π/2, 0} andλx 6= 0, (18)

Fori =
1 + 2 cos4(φx/2)

3
for {θx, λx} = {π/2, 0} andφx 6= 0, (19)

Fori =
1 + 2|fy|2

3
for θx = π/2, φx 6= 0, λx 6= 0, (20)

Fori =
1 + 2[1− 2 sin2(δ/2) sin2(θ/2)]2

3
for {θx, φx, λx} = {π/2 + δ, 0, 0}, (21)
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with

fy = cos
λx + φx

2
cos

λx
2

cos
φx
2

− cos(θ − λx + φx
2

) sin
λx
2

sin
φx
2
. (22)

For equation (21), when δ → 0, Fori reaches the maximum
of unit, when sin(θ/2) = 1√

2 sin(δ/2)
, Fori reaches the

minimum value of 1
3 .

The second kind of fidelity is the optimized fidelity,
which means we can tune the implemented parameters
of {θimp, φimp, λimp} to correct the coherent errors, we
name it as best fidelity and denote it by Fbest. To obtain
the best fidelity for a target single-qubit gate with the
parameters of {θ, φ, λ}, we can optimize the implemented
parameters, and operate the gate with the optimized
results of {θimp, φimp, λimp} to enhance the implemented
fidelity. In equation (2), the parameters {θ, φ, λ} are only
related to the virtual Z gates, so that, the optimizations for
these parameters are easy to accomplish in the experiment
[8]. If the intended single-qubit gate resides in the area
where the decomposition scheme with coherent errors
can cover, i.e., the orange area shown in figure 1, such
as point (θ1, φ1, λ1), we can still get a unit fidelity after
the optimization for the implemented parameters, i.e.,
Fbest = 1. For example, for ŨCase3, we can tune the
values of {θimp, φimp, λimp} to make φc3 = φ, λc3 = λ,

and Ũ
(11)
Case3 = cos(θ/2), to correct the coherent errors

and recover the implemented fidelity to the unit. If the
intended single-qubit gate resides out of the orange area
in figure 1, such as point (θ2, φ2, λ2) in the blue area, the
fidelity cannot be recovered to the unit. However, we still
can find the nearest point in the orange area to the target
one to obtain the highest fidelity. The best fidelity can

be represented as Fbest = 1+2 sin2(θ/2+|δ|)
3 [38]. Note that,

this formula is for θ ∈ [0, π], for θ ∈ [−π, 0), there should
be a minus sign before θ in Fbest. The above theoretical
solutions are verified by the numerical simulations [38].

In figure 2, we show the information which the fidelities
reveal. First, as long as there are coherent errors on any
one of the parameters {θx, φx, λx}, the best fidelity will
always be larger than the original one. Although the error
on θx will affect the universality and Fbest cannot be the
unit for some target operations, the optimization of the
parameters can still correct part of the errors. The other
two kinds of coherent errors, i.e., errors on φx and λx, can
be corrected thoroughly. Second, comparing with (a) and
(b), the difference between them is the target operation,
they show that, when the target operation is closer to
θ = 0, the resilience of the best fidelities to the coherent
errors will become stronger. Third, the asymmetry of the
original fidelity with the axis of δ = 0 is induced by φx
and λx (see the comparison between the solid blue lines
and dashed orange lines).

Based on the above analysis for fidelity, the third kind
of fidelity we want to study is the average fidelity, which is
also another metric to evaluate universality. The average
fidelity can be defined as

/2 /4 0 /4 /2
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0.6

0.8

1.0

F 

(a)

F(1)
ori

F(1)
best

F(2)
ori

F(2)
best

/2 /4 0 /4 /2
 

0.88

0.92

0.96

1.0

(b)

F(3)
ori

F(3)
best

F(4)
ori

F(4)
best

FIG. 2: The original fidelity and best fidelity as the
value of δ changes. The parameter values for each
example are (a) {θ, φ, λ} = {0.8π, 1.1π, 1.6π}. (b)
{θ, φ, λ} = {0.1π, 1.1π, 1.6π}. The value of θ in (a) is
near π, while which in (b) is near 0, the results show
that, as the value of θx aproaches 0, the decomposition
scheme owns greater resilience with coherent errors. For

F
(1)
j in (a) and F

(3)
j in (b), there are

{φx, λx} = {0.1π, 0.09π}, and for F
(2)
j in (a) and F

(4)
j in

(b), there are {φx, λx} = {0, 0}, j can be ori or best.
The results show that, the best fidelity depends only on
the value of θx. The asymmetry of the original fidelity
with the axis of δ = 0 is induced by φx and λx.

F avej =
1

Vk

∫
Vk

Fj(θ, φ, λ)dθdφdλ, (23)

where Vk is the volume we choose to calculate the average
fidelity in the parameter space, and j can be chosen as ori
or best. Then we take Vk = Vall and give two examples.
The first one is for the averaged original fidelity, when
θx = π/2 + δ, φx = 0, λx = 0, the average fidelity is

F aveori = 1 − 4 sin2(δ/2)−3 sin4(δ/2)
3 . The second one is for

the average best fidelity, we can prove that, for any case,

there is F avebest = 1− 2|δ|−sin(2|δ|)
3π . In all cases, there should

be F avebest ≥ F aveori . The average fidelity is another metric
for the decompositions, or we can treat it as a supplement
for the definition of universality. When F avebest = 1, the
universality is not destroyed. If there are two cases with
different types of coherent errors, both shapes of the
volume that cannot be covered by the decompositions are
regular and continuous in one period for every direction,
the universality and average fidelity will give the same
information for the comparison of these two cases, just
as the results shown in this paper. If the shape of the
uncovered volume is irregular or not continuous in one
period, the universality and average fidelity may give
different results for the comparison of the two cases, but
it will not appear for the case as we discussed in this work,
it may appear in systems that are more complicated.

Conclusion–We study the universality of the universal
single-qubit gate decomposition scheme with coherent
errors. We divide the coherent errors into three types de-
pending on the parameters in the decomposition scheme.
The original universality will be destroyed by one kind
of coherent error, while it will stay unaffected with other
kinds of coherent errors. We give a definition and analyti-
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cal solutions for the universality with coherent errors, and
we also provide the analytical solutions for three kinds
of fidelities, i.e., original, best and average fidelity, and
discuss their differences and significance. Depending on
our analysis, when applying the universal decomposition
scheme to generate an arbitrary single-qubit gate, this
work gives a prediction for the original and optimized
fidelities, and it also gives the method to mitigate the co-
herent errors and improve the gate fidelity. The research
method used in this work can extend to the two-qubit
gate decomposition schemes. Furthermore, it will bring
different thoughts for the study of expressivity and quan-

tum compilation theory in multi-qubit quantum systems
to enhance the realistic fidelities for quantum computing.
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A. The matrix representations for universal single-qubit gates

Depending on the discussions in the main text, the value ranges for this material are θ ∈ [0, π], φ ∈ [0, 2π), λ ∈ [0, 2π).

1. Ideal case

When the X and Z rotations can be implemented ideally, the matrix representation of the universal decomposition
for the arbitrary single-qubit gate is

U(θ, φ, λ) = Zφ−π/2Xπ/2Zπ−θXπ/2Zλ−π/2 (S1)

= ei(−λ/2−φ/2)

[
cos(θ/2) −ieiλ sin(θ/2)

−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
, (S2)

where ei(−λ/2−φ/2) is a global phase and can be discarded when considering a single-qubit gate, then there is

U(θ, φ, λ) =

[
cos(θ/2) −ieiλ sin(θ/2)

−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
. (S3)

2. The case with coherent errors

When there are coherent errors on Xπ/2 gate, we can replace Xπ/2 gate by a unitary gate UXπ/2 , where UXπ/2 =[
cos(θx/2) −ieiλx sin(θx/2)

−ieiφx sin(θx/2) ei(λx+φx) cos(θx/2)

]
, and substituting it into equation S1 and replacing the operations of Xπ/2,

we can get

Ũ = Zφ−π/2UXπ/2Zπ−θUXπ/2Zλ−π/2

= Zφ−π/2UXπ/2Zπ−θ

[
cos(θx/2) −ieiλx sin(θx/2)

−ieiφx sin(θx/2) ei(λx+φx) cos(θx/2)

] [
e−i(λ/2−π/4) 0

0 ei(λ/2−π/4)

]
= Zφ−π/2UXπ/2

[
e−i(π/2−θ/2) 0

0 ei(π/2−θ/2)

] [
e−i(λ/2−π/4) cos(θx/2) −iei(λx+λ/2−π/4) sin(θx/2)
−iei(φx−λ/2+π/4) sin(θx/2) ei(λx+φx+λ/2−π/4) cos(θx/2)

]
= ei(−λ/2−φ/2)

[
eiθ/2 cos2(θx/2) + e−iθ/2ei(λx+φx) sin2(θx/2)[
ei(−θ/2+φ+λx+2φx) − ei(θ/2+φ+φx)

]
sin θx

2[
ei(−θ/2+λ+2λx+φx) − ei(θ/2+λ+λx)

]
sin θx

2

ei(θ/2+λ+φ+λx+φx) sin2(θx/2) + ei(−θ/2+λ+φ+2λx+2φx) cos2(θx/2)

]
(S4)

Without loss of generality, we discard the global phase and take Ũ =
[
Ũ (11), Ũ (12); Ũ (21), Ũ (22)

]
,

Ũ (11) = eiθ/2 cos2(θx/2) + ei(−θ/2+λx+φx) sin2(θx/2) (S5)

Ũ (12) =
[
ei(−θ/2+λ+2λx+φx) − ei(θ/2+λ+λx)

] sin θx
2

(S6)

Ũ (21) =
[
ei(−θ/2+φ+λx+2φx) − ei(θ/2+φ+φx)

] sin θx
2

(S7)

Ũ (22) = ei(θ/2+λ+φ+λx+φx) sin2(θx/2) + ei(−θ/2+λ+φ+2λx+2φx) cos2(θx/2) (S8)

B. The analysis for coherent errors

This section is for the formula derivations of the cases with different kinds or the combinations of coherent errors.
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1. Coherent error on θx

In this case, there are θx = π/2 + δ, λx = 0 and φx = 0, then there is

ŨCase1 =

[
eiθ/2 cos2(θx/2) + e−iθ/2 sin2(θx/2) sin θx

2 [ei(−θ/2+λ) − ei(θ/2+λ)]
sin θx

2 [ei(−θ/2+φ) − ei(θ/2+φ)] ei(θ/2+λ+φ) sin2(θx/2) + ei(−θ/2+λ+φ) cos2(θx/2)

]
=

[
cos(θ/2) + i sin(θ/2) cos θx −ieiλ sin(θ/2) sin θx
−ieiφ sin(θ/2) sin θx ei(λ+φ)[cos(θ/2)− i sin(θ/2) cos θx]

]

= eiγ1

 √1− sin2(θ/2) sin2 θx −ieiλc1 sin(θ/2) sin θx

−ieiφc1 sin(θ/2) sin θx ei(λc1+φc1)
√

1− sin2(θ/2) sin2 θx

 (S1)

where tan γ1 = tan(θ/2) cos θx, λc1 = λ− γ1 and φc1 = φ− γ1.

2. Coherent errors on φx and λx

If there are coherent errors on φx and λx, there is

ŨCase2 =

[
1
2 [cos(θ/2) + cos(−θ/2 + λx + φx) + i sin(θ/2) + i sin(−θ/2 + λx + φx)]

1
2e
i(φ+φx)[− cos(θ/2) + cos(−θ/2 + λx + φx)− i sin(θ/2) + i sin(−θ/2 + λx + φx)]

1
2e
i(λ+λx)[− cos(θ/2) + cos(−θ/2 + λx + φx)− i sin(θ/2) + i sin(−θ/2 + λx + φx)]

1
2e
i(λ+λx+φ+φx)[cos(θ/2) + cos(−θ/2 + λx + φx) + i sin(θ/2) + i sin(−θ/2 + λx + φx)]

]

= eiγ2

 √
1
2 + 1

2 cos(θ − λx − φx) ei(λ+λx+γ′
2−γ2)

√
1
2 −

1
2 cos(θ − λx − φx)

ei(φ+φx+γ′
2−γ2)

√
1
2 −

1
2 cos(θ − λx − φx) ei(λ+λx+φ+φx)

√
1
2 + 1

2 cos(θ − λx − φx)

 , (S2)

with tan γ2 = tan λx+φx
2 , tan γ′2 = − 1

tan(λx+φx
2 )

. From the formulas of tan γ2 and tan γ′2, we can get γ′2 − γ2 = nπ − π
2

(n is an arbitrary integer), taking n = 0, we can get

ŨCase2 = eiγ2

 √
1
2 + 1

2 cos(θ − λx − φx) −iei(λ+λx)
√

1
2 −

1
2 cos(θ − λx − φx)

−iei(φ+φx)
√

1
2 −

1
2 cos(θ − λx − φx) ei(λ+λx+φ+φx)

√
1
2 + 1

2 cos(θ − λx − φx)

 . (S3)

Defining θc2 ≡ θ − λx − φx, φc2 ≡ φ+ φx and λc2 ≡ λ+ λx, and by applying the coordinate translations to make
θc2 ∈ [0, π], φc2 ∈ [0, 2π) and λc2 ∈ [0, 2π), there is

ŨCase2 = eiγ2

 √
1
2 + 1

2 cos θc2 −ieiλc2
√

1
2 −

1
2 cos θc2

−ieiφc2
√

1
2 −

1
2 cos θc2 ei(λc2+φc2)

√
1
2 + 1

2 cos θbar


= eiγ2

[
cos(θc2/2) −ieiλc2 sin(θc2/2)

−ieiφc2 sin(θc2/2) ei(λc2+φc2) cos(θc2/2)

]
, (S4)

which is equivalent to the equation (S3).

3. Coherent errors on θx, φx and λx

If there are errors on θx, φx and λx, there is ŨCase3 =
[
Ũ

(11)
Case3, Ũ

(12)
Case3; Ũ

(21)
Case3, Ũ

(22)
Case3

]
, where

Ũ
(11)
Case3 = eiθ/2 cos2(θx/2) + e−iθ/2ei(λx+φx) sin2(θx/2) (S5)

Ũ
(12)
Case3 =

sin θx
2

[ei(−θ/2+λ+2λx+φx) − ei(θ/2+λ+λx)] (S6)

Ũ
(21)
Case3 =

sin θx
2

[ei(−θ/2+φ+λx+2φx) − ei(θ/2+φ+φx)] (S7)

Ũ
(22)
Case3 = ei(θ/2+λ+φ+λx+φx) sin2(θx/2) + ei(−θ/2+λ+φ+2λx+2φx) cos2(θx/2) (S8)
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For Ũ
(11)
Case3, there is

Ũ
(11)
Case3 = eiθ/2 cos2(θx/2) + ei(−θ/2+λx+φx) sin2(θx/2)

= cos(θ/2) cos2(θx/2) + cos(−θ/2 + λx + φx) sin2(θx/2)

+i sin(θ/2) cos2(θx/2) + i sin(−θ/2 + λx + φx) sin2(θx/2)

= eiγ3

√
1− sin2 θx sin2(

θ − λx − φx
2

), (S9)

with tan γ3 = sin(θ/2) cos2(θx/2)+sin(−θ/2+φx+λx) sin2(θx/2)
cos(θ/2) cos2(θx/2)+cos(−θ/2+φx+λx) sin2(θx/2)

.

For Ũ
(12)
Case3, there is

Ũ
(12)
Case3 =

sin θx
2

[ei(−θ/2+λ+2λx+φx) − ei(θ/2+λ+λx)]

= − sin θx
2

ei(λ+λx)[cos(θ/2)− cos(−θ/2 + λx + φx) + i sin(θ/2)− i sin(−θ/2 + λx + φx)]

= −ei(λ+λx+γ4) sin θx sin |θ − λx − φx
2

|, (S10)

with tan γ4 = sin(θ/2)−sin(−θ/2+λx+φx)
cos(θ/2)−cos(−θ/2+λx+φx) .

For Ũ
(21)
Case3, there is

Ũ
(21)
Case3 =

sin θx
2

[ei(−θ/2+φ+λx+2φx) − ei(θ/2+φ+φx)]

= − sin θx
2

ei(φ+φx)[cos(θ/2)− cos(−θ/2 + λx + φx) + i sin(θ/2)− i sin(−θ/2 + λx + φx)]

= −ei(φ+φx+γ4) sin θx sin |θ − λx − φx
2

|. (S11)

For Ũ
(22)
Case3, there is

Ũ
(22)
Case3 = ei(θ/2+λ+φ+λx+φx) sin2(θx/2) + ei(−θ/2+λ+φ+2λx+2φx) cos2(θx/2)

= ei(λ+φ+λx+φx)[eiθ/2 sin2(θx/2) + ei(−θ/2+λx+φx) cos2(θx/2)]

= ei(λ+φ+λx+φx+γ5)

√
1− sin2 θx sin2(

θ − λx − φx
2

), (S12)

with tan γ5 = sin(θ/2) sin2(θx/2)+sin(−θ/2+λx+φx) cos2(θx/2)
cos(θ/2) sin2(θx/2)+cos(−θ/2+λx+φx) cos2(θx/2)

,

The ŨCase3 matrix can be written as

ŨCase3 =

 eiγ3
√

1− sin2 θx sin2( θ−λx−φx2 ) −iei(λ+λx+γ4−π2 ) sin θx sin | θ−λx−φx2 |

−iei(φ+φx+γ4−π2 ) sin θx sin | θ−λx−φx2 | ei(λ+φ+φx+λx+γ5)
√

1− sin2 θx sin2( θ−λx−φx2 )


= eiγ3

 √
1− sin2 θx sin2( θ−λx−φx2 ) −iei(λ+λx+γ4−π2−γ3) sin θx sin | θ−λx−φx2 |

−iei(φ+φx+γ4−π2−γ3) sin θx sin | θ−λx−φx2 | ei(λ+φ+λx+φx+γ5−γ3)
√

1− sin2 θx sin2( θ−λx−φx2 )

 .(S13)

Defining λc3 ≡ λ+λx + γ4− π
2 − γ3, φc3 ≡ φ+φx + γ4− π

2 − γ3, there is λc3 +φc3 = λ+φ+λx +φx + 2γ4− 2γ3−π.
We can calculate the relationship between 2γ4 − 2γ3 − π and γ5 − γ3, i.e., the relationship between γ4 − γ3 and
γ5 − γ4 + π.

tan(γ4 − γ3) =
tan γ4 − tan γ3

1 + tan γ4 tan γ3

=
sin(θ − φx − λx)

cos θx − cos(θ − λx − φx) cos θx
, (S14)
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tan(γ5 − γ4 + π) = tan(γ5 − γ4)

=
tan γ5 − tan γ4

1 + tan γ5 tan γ4

=
sin(θ − λx − φx)

cos θx − cos(−θ + λx + φx) cos θx
, (S15)

there is tan(γ4 − γ3) = tan(γ5 − γ4 + π), let 2γ4 − 2γ3 − π = γ5 − γ3. The ŨCase3 matrix can be written as

ŨCase3 = eiγ3

 √1− sin2 θx sin2( θ−λx−φx2 ) −ieiλc3 sin θx sin | θ−λx−φx2 |

−ieiφc3 sin θx sin | θ−λx−φx2 | ei(λc3+φc3)
√

1− sin2 θx sin2( θ−λx−φx2 )

 . (S16)

From the above calculations, we know that

|Ũ (12)
Case3| = |Ũ

(21)
Case3|,

|Ũ (11)
Case3| = |Ũ

(22)
Case3|,

|Ũ (11)
Case3|

2 + |Ũ (12)
Case3|

2 = 1.

Next is the discussion about the value range of Ũ
(11)
Case3.

|Ũ (11)
Case3| =

√
1− sin2 θx sin2(

θ − λx − φx
2

) (S17)

The value range is [| cos θx|, 1], i.e., [| sin δ|, 1], when θx = π/2, i.e., δ = 0, the value range of |ŨCase3| is [0, 1].

C. Fidelities

Depending on the discussions of Case 1 to Case 3 in the main text, the value ranges for the coherent errors in this
material are restricted to δ ∈ [−π/2, 0) ∪ (0, π/2] with θx = π/2 + δ, φx ∈ (0, 2π) and λx ∈ (0, 2π). This section gives
the formula derivations of three kinds of fidelities.

1. Original fidelity

The original fidelity means that, we operate an single-qubit gate with the non-ideal Xπ/2 gate. We denote it as Fori.
Then there is

Fori =
Tr(U†impUimp) + |Tr(U†tarUimp)|2

d(d+ 1)

=
2 + |Tr(U†tarUimp)|2

6
(S1)
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|Tr(U†tarUimp)|2 =

∣∣∣∣Tr([ cos(θ/2) ie−iφ sin(θ/2)
ie−iλ sin(θ/2) e−i(λ+φ) cos(θ/2)

]
[
eiθ/2 cos2(θx/2) + ei(−θ/2+λx+φx) sin2(θx/2)

sin θx
2 [ei(−θ/2+φ+λx+2φx) − ei(θ/2+φ+φx)]

sin θx
2 [ei(−θ/2+λ+2λx+φx) − ei(θ/2+λ+λx)]

ei(θ/2+λ+φ+λx+φx) sin2(θx/2) + ei(−θ/2+λ+φ+2λx+2φx) cos2(θx/2)

]
)

∣∣∣∣2
= |eiθ/2 cos(θ/2) cos2(θx/2) + ei(−θ/2+λx+φx) cos(θ/2) sin2(θx/2)

+i sin(θ/2)
sin θx

2
[ei(−θ/2+λx+2φx) − ei(θ/2+φx)]

+i sin(θ/2)
sin θx

2
[ei(−θ/2+2λx+φx) − ei(θ/2+λx)]

+ cos(θ/2)[ei(θ/2+λx+φx) sin2(θx/2) + ei(−θ/2+2λx+2φx) cos2(θx/2)]|2

= |2 cos(θ/2) cos2(θx/2) cos(θ/2− λx − φx)ei(λx+φx)

+2 sin(θ/2) sin θx sin(θ/2− φx/2− λx/2) cos(φx/2− λx/2)ei(λx+φx)

+2 cos(θ/2) sin2(θx/2) cos(θ/2)ei(λx+φx)|2

= 4| cos(θ/2)
1

2
[cos(θ/2− λx − φx) + cos(θ/2)]

+ cos(θ/2) cos θx
1

2
[cos(θ/2− λx − φx)− cos(θ/2)]

+ sin(θ/2) sin θx sin(θ/2− φx/2− λx/2) cos(φx/2− λx/2)|2

= 4| cos(θ/2) cos(θ/2− λx/2− φx/2) cos(λx/2 + φx/2)

+ cos(θ/2) sin(θ/2− λx/2− φx/2) sin(λx/2 + φx/2) cos θx

+ sin(θ/2) sin(θ/2− λx/2− φx/2) cos(φx/2− λx/2) sin θx|2 (S2)

Analysis:

(1) When θx = π/2, φx = 0, λx = 0, there is |Tr(U†tarUimp)|2 = 4 and Fori = 1,

(2) When θx = π/2, φx = 0, λx 6= 0, there is |Tr(U†tarUimp)|2 = 4 cos4(λx/2),

Fori =
1 + 2 cos4(λx/2)

3
, (S3)

(3) When θx = π/2, φx 6= 0, λx = 0, there is |Tr(U†tarUimp)|2 = 4 cos4(φx/2),

Fori =
1 + 2 cos4(φx/2)

3
, (S4)

(4) When θx = π/2, φx 6= 0, λx 6= 0, there is |Tr(U†tarUimp)|2 = 4| cos(λx2 + φx
2 ) cos λx2 cos φx2 − cos(θ − λx

2 −
φx
2 ) sin λx

2 sin φx
2 |

2,

Fori =
1 + 2| cos(λx2 + φx

2 ) cos λx2 cos φx2 − cos(θ − λx
2 −

φx
2 ) sin λx

2 sin φx
2 |

2

3
, (S5)

(5) When θx = π/2 + δ, φx = 0, λx = 0, there is |Tr(U†tarUimp)|2 = 4| cos2(θ/2) + sin2(θ/2) cos δ|2,

Fori =
1 + 2[1− 2 sin2(δ/2) sin2(θ/2)]2

3
. (S6)

2. Best fidelity

The second kind of fidelity is the optimized one, which is named best fidelity and denoted as Fbest.

The intended single qubit gate is

[
cos(θ/2) −ieiλ sin(θ/2)

−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
, the implemented single qubit gate is ŨCase3,

according to the above analysis, we can take λc3 = λ, φc3 = φ, and get the corrected single qubit gate:
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Ucor = eiγ3

 √1− sin2 θx sin2(
θimp−λx−φx

2 ) −ieiλ sin θx sin | θimp−λx−φx2 |

−ieiφ sin θx sin | θimp−λx−φx2 | ei(λ+φ)
√

1− sin2 θx sin2(
θimp−λx−φx

2 )

 (S7)

There is:

|Tr(U†Ucor)|2 = |
[

cos(θ/2) ie−iφ sin(θ/2)
ie−iλ sin(θ/2) e−i(λ+φ) cos(θ/2)

]
 √1− sin2 θx sin2(

θimp−λx−φx
2 ) −ieiλ sin θx sin | θimp−λx−φx2 |

−ieiφ sin θx sin | θimp−λx−φx2 | ei(λ+φ)
√

1− sin2 θx sin2(
θimp−λx−φx

2 )

 |2
= 4| cos(θ/2)

√
1− sin2 θx sin2(

θimp − λx − φx
2

) + sin(θ/2) sin θx

√
sin2 θimp − λx − φx

2
|2 (S8)

Defining f(a) = cos(θ/2)
√

1− sin2 θxa+ sin(θ/2) sin θx
√
a, where a = sin2(

θimp−φx−λx
2 ) and a ∈ [0, 1], there is

∂f(a)/∂a = cos(θ/2)
− sin2 θx

2
√

1− sin2 θxa
+ sin(θ/2) sin θx

1

2
√
a

(S9)

Let ∂f(a)/∂a|a=a0 = 0, we can get,

cos(θ/2)
sin2 θx

2
√

1− sin2 θxa0

= sin(θ/2) sin θx
1

2
√
a0

cos(θ/2) sin2 θx
sin(θ/2) sin θx

=

√
1− sin2 θxa0√

a0

a0 cos2(θ/2) sin2 θx = sin2(θ/2)− a0 sin2(θ/2) sin2 θx

a0 =
sin2(θ/2)

sin2 θx
(S10)

The value of ∂2f(a)/∂a2 at the a0 point and with θ ∈ [0, π] is,

∂2f(a)/∂a2|a=a0 =
− cos(θ/2) sin4 θx

4(1− sin2 θxa)
√

1− sin2 θxa
|a=a0 −

1

4
sin(θ/2) sin θx

1

a
√
a
|a=a0

= −1

4

sin4 θx
cos2(θ/2)

− 1

4

sin4 θx

sin2(θ/2)

= − sin4 θx

4 cos2(θ/2) sin2(θ/2)
< 0 (S11)

Since there is f(a) > 0, f(a) has the maximum value when a takes the value of a0, and from a = 0 to a = a0, the
value of f(a) increases. If a0 ≤ 1, a can be equal to a0, and the best fidelity is at a = a0, the best fidelity is

Fbest =
2 + 4| cos2(θ/2) + sin2(θ/2)|2

6
= 1 (S12)

If a0 > 1, i.e., sin2(θ/2) > sin2 θx, the best fidelity is achieved at a = 1, if cos θx > 0, there is θx = π
2 + δ, δ ∈ [−π2 , 0)

and

Fbest =
2 + 4| cos(θ/2) cos θx + sin(θ/2) sin θx|2

6

=
1 + 2 cos2(θ/2− θx)

3

=
1 + 2 sin2(θ/2 + |δ|)

3
(S13)
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As there is sin2(θ/2) > sin2 θx, if θ/2 − θx = nπ (n is an interge), there is sin2(θ/2) = sin2 θx, it conflicts with

sin2(θ/2) > sin2 θx, then cos2(θ/2− θx) 6= 1 and Fbest = 1+2 sin2(θ/2+|δ|)
3 < 1.

If cos θx < 0, there is θx = π
2 + δ, δ ∈ (0, π2 ] and

Fbest =
2 + 4| − cos(θ/2) cos θx + sin(θ/2) sin θx|2

6

=
1 + 2 cos2(θ/2 + θx)

3

=
1 + 2 sin2(θ/2 + |δ|)

3
(S14)

As there is sin2(θ/2) > sin2 θx, if θ/2 + θx = nπ (n is an interge), there is sin2(θ/2) = sin2 θx, it conflicts with

sin2(θ/2) > sin2 θx, so that cos2(θ/2 + θx) 6= 1 and Fbest = 1+2 sin2(θ/2+|δ|)
3 < 1.

Note that, this formula of Fbest is for θ ∈ [0, π], and from the derivation process, we know that, for θ ∈ [−π, 0), there
should be a minus sign before θ in Fbest.

3. Average fidelity

The average fidelity can be defined as

F avej =
1

Vk

∫
Vk

Fj(θ, φ, λ)dθdφdλ (S15)

The volume Vk is the volume we choose to calculate the fidelity, and j can be chosen as ori or best.

The average original fidelity can be calculated as,

F aveori =
1

Vall

∫
Vall

Fori(θ, φ, λ)dθdφdλ (S16)

For the special cases, we have,

(1) When θx = π/2, φx = 0, λx = 0, there is |Tr(U†tarUimp)|2 = 4 and Fori = 1 for all the (θ, φ, λ), then there is
F aveori = 1;

(2) When θx = π/2, φx = 0, λx 6= 0, there is |Tr(U†tarUimp)|2 = 4 cos4(λx/2), Fori = 2+4 cos4(λx/2)
6 , which only

depends on the value of λx, then there is F aveori = 1+2 cos4(λx/2)
3 ;

(3) When θx = π/2, φx 6= 0, λx = 0, there is |Tr(U†tarUimp)|2 = 4 cos4(φx/2), Fori = 2+4 cos4(φx/2)
6 , which only

depends on the value of φx, then there is F aveori = 1+2 cos4(φx/2)
3 ;

(4) When θx = π/2, φx 6= 0, λx 6= 0, there is |Tr(U†tarUimp)|2 = 4| cos(λx2 + φx
2 ) cos λx2 cos φx2 − cos(θ − λx

2 −
φx
2 ) sin λx

2 sin φx
2 |

2, then there is

F aveori =
1

π

∫ π

0

2 + 4| cos(λx+φx
2 ) cos λx2 cos φx2 − cos(θ − λx+φx

2 ) sin λx
2 sin φx

2 |
2

6
dθ

=
1

3
+

2 cos2(λx+φx
2 ) cos2 λx

2 cos2 φx
2

3

+
sin2 λx

2 sin2 φx
2

3

− sinλx sinφx sin(λx + φx)

3π
(S17)

(5) When θx = π/2 + δ, φx = 0, λx = 0, there is Fori = 1+2[1−2 sin2(δ/2) sin2(θ/2)]2

3 . We can calculate the average
fidelity as,
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F aveori =
4π2

4π3

∫ π

0

1 + 2[1− 2 sin2(δ/2) sin2(θ/2)]2

3
dθ

= 1 +
1

π

∫ π

0

−4 sin2(δ/2) + 3 sin4(δ/2)

3
dθ

= 1− 4 sin2(δ/2)− 3 sin4(δ/2)

3
(S18)

For the averaged best fidelity of any case, there is

F avebest =
4π2

4π3

∫ π

0

Fbest(θ)dθ

=
1

π
[

∫ π

π−2|δ|

1 + 2 sin2(θ/2 + |δ|)
3

dθ +

∫ π−2|δ|

0

1dθ]

= 1− 2|δ| − sin(2|δ|)
3π

(S19)

D. Another view

There is an alternative perspective, which is that we can represent a single-qubit gate by a rotation in a spherical
coordinate system. We define a vector ~n = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) to represent a unit direction in a spherical
coordinate with Θ being the polar angle and Φ being the azimuthal angle, ω is the length of the radius, as shown
in figure S1. We can write the SU(2) matrix in the spherical coordinate as Us(n̂, ω) = I cos(ω/2)− i(~σ · n̂) sin(ω/2),
where ~σ = Σ3

l=1~elσl, σl are three pauli matrices, el is the unit vector in the lth direction. Us(n̂, ω) can represent the

rotation of angle ω along the n̂ direction. The matrix representation is Us(n̂, ω) = e−iΓ
[
U

(11)
s , U

(12)
s ;U

(21)
s , U

(22)
s

]
,

where tan Γ = tan(ω/2) cos Θ and

U (11)
s =

√
1− sin2(ω/2) sin2 Θ, (S1)

U (12)
s = −iei(−Φ+Γ) sin(ω/2) sin Θ, (S2)

U (21)
s = −iei(Φ+Γ) sin(ω/2) sin Θ, (S3)

U (22)
s = e2iΓU (11)

s . (S4)

FIG. S1: The diagram of the spherical coordinate, which can represent arbitrary coherent single-qubit operation. The
vector in the spherical coordinate represents the rotation axis, and the length of the radius represents the rotation
angle. The blue areas represent the parameter space, which cannot be covered by the single-qubit gate decomposition
scheme with coherent errors.

Compared with ŨCase3, we can see that, if |U (11)
s | ∈ [| sin δ|, 1] and δ 6= 0, the operations which satisfy |U (11)

s | ∈
[0, | sin δ|) cannot be realized. Let |U (11)

s | = 0, we can get ω = π and Θ = π/2, this operation represents the rotation of
angle π along the axis in the σxσy plan, we denote the set including such operations as Oxyπ , which is shown in figure
S1 with the blue circle. When δ 6= 0, the operations of Oxyπ and other operations near Oxyπ cannot be covered by the
decomposition scheme, which means that, the blue circle in figure S1 has a volume, and the size of the volume depends
on the value of |δ|, and the operations reside in this volume cannot be implemented with unit fidelity even after the
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parameter optimizations. If |δ| is small, e.g. |δ| � π, |U (11)
s | =

√
1− 1

2 sin2 Θ can be realized with arbitrary value of

Θ, we can combine two rotations with ω = π/2 to one rotation with ω = π. However, it will increase the circuit length,
whether or not to taking this way depends on the tradeoff between coherent and incoherent errors.

E. Numerical verification

To verify the theoretical results which we have got in the manuscript, we do some numerical simulations as shown in
figure S2. Figures S2(a)-(e) are the demonstrations for the original fidelity, where F1 is calculated by substituting the
values of parameters into the matrix Utar (equation S3) and Uimp (the original decomposition of S4) directly and then
obtaining the fidelity, and F2 is got from the simplified theoretical formula, for example, the results of F2 in (a) is got
by using the result of S2, and which in (b)-(e) are got by using the results of S3, S4, S5 and S6. Figures S2(f)-(j) are
the demonstrations for the best fidelity, where F1 is the optimized results, which means that, for getting these results,
we optimized the implemented parameters of {θimp, φimp, λimp} to find the optimized fidelity, and F2 is the theoretical

results, which is got by using the formula of S14 for (f)-(i), and for (j), we set θ ∈ [−π, 0], and Fbest = 1+2 sin2(−θ/2+|δ|)
3 ,

and then get the results of F2. The theoretical results agree well with the numerical results.
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FIG. S2: Numerical demonstrations for the theoretical results. The values of the parameters for the target single-qubit
gates are chosen as θ/π = x, φ/2π = x and λ/2π = x for (a)-(i). For (j), we set θ/π = −x, φ/1π = x and λ/2π = x.
The values of the parameters for coherent errors are chosen as (a) θx/π = 1/2 + 0.2, φx/π = 0.3, λx/π = 0.2. (b)
θx/π = 1/2, φx = 0, λx/π = 0.1. (c) θx/π = 1/2, φx/π = 0.3, λx = 0. (d) θx/π = 1/2, φx/π = 0.3, λx/π = 0.4. (e)
θx/π = 1/2 + 0.2, φx = 0, λx = 0, and the values for the parameters {θx, φx, λx} of (f)-(j) are the same with (a)-(e)
respectively.
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