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The postulates of the eigenstate thermalization hypothesis (ETH) expresses that the thermaliza-
tion occurs due to the individual eigenstate of the system’s Hamiltonian. But the ETH put no light
on the dynamics that lead toward the thermalization. In this paper, we observe the thermalization
of a Bose-Einstein Condensate (BEC) confined in an optical lattice potential that is embedded
on the harmonic trap. Such optical lattice potential offers local friction to the oscillating BEC.
The spread in the temporal density plot of BEC shows the thermalization of the BEC. Moreover,
we observe that the presence of a PT -symmetric potential greatly influences the BEC dynamics
and the thermalization of the system. The presence of a PT -symmetric potential offers a way to
manipulate the mean position of the BEC to a desire location and for a desired length of time.

I. INTRODUCTION

Confirmation of long-standing diverse ideas of con-
densed matter physics begins with the first realization
of Bose-Einstein condensates (BECs) of dilute atomic
gases [1–4]. Among those ideas included the nature of
superfluidity, the critical velocity for the beginning of
the dissipation [5, 6], quantization of vertices [7–9], the
generation and dynamics of soliton waves [10–13], and
the impact of impurities for different practical applica-
tions [10, 11, 14]. Recently it also leads to probe the
long-standing question of thermalization of an isolated
quantum system both theoretically and experimentally
[15–17]. In these studies, the thermalization observed in
double-well potential confinement under the influence of
Josephson interaction [15], and it was also investigated
experimentally in an optical lattice environment [17].

In this paper, we study the thermalization of BEC in
harmonic trap embeds with optical lattice potential. We
also investigate the impact of a PT -symmetric periodic
potential on the thermalization of the BEC. We initially
trapped BEC in a harmonic trap after achieving the equi-
librium, we shift the harmonic potential minima for time
t > 0. At the same time, we switched on the optical
lattice which is embedded in the harmonic trap. Such a
lattice potential offers friction for the dipole oscillations
of the BEC. The idea of PT -symmetric potential rep-
resents the scenario in which there are alternative gain
and lost regions in an optical lattice, e.g, as explained
for double-well confinement [18]. In an optical lattice,
the transmission between adjacent wells is controlled by
controlling the tunneling between the wells. The periodic
lattice potential here acts as a medium that absorbs the
partial kinetic energy and partial potential energy of the
BEC entropy. That medium helps in bringing the BEC
into thermal equilibrium. Furthermore, we also test the
localization and thermalization of BEC under a periodic
PT -symmetric environment. The idea of non-Hermitian
Hamiltonian obeying PT -symmetry was introduced by
Bender and Boettcher [19] and this appears as an exten-

sion to quantum mechanics from a real to the complex
domain. The PT -symmetric conditions are more physi-
cal than the earlier strict mathematical condition of her-
miticity of the Hamiltonian for real eigenvalues. The op-
erator ”P” and ”T” represent parity reflection and time
reversal, respectively. The operator P acts on position
and momentum operator as P : x→ −x, p→ −p and the
time operator T acts on position and momentum opera-
tor as T : x → x, p → −p, and i → −i. The remaining
part of this paper is organized as follows. In Sec. II, we
describe the working models, like analytical, numerical,
and Ehrenfest methods. Where we discuss all the rele-
vant issues. In Sec. III, we discuss our results, figures
for the BEC dynamics through a periodic potential em-
bedded on a harmonic confining potential. Moreover, we
also discuss the impact of the PT -symmetric system over
the thermalization of the BEC. We observe the impact
of the complex part of the potential in the PT -symmetric
Hamiltonian. Conclusion comes in Sec. IV, with the fu-
ture suggestions for the related research, and we compare
the BEC dynamics with and without the PT -symmetric.

II. THEORETICAL MODELS

To accurately model an elongated BEC, we use a di-
mensionless quasi-1D Gross-Pitaevskii equation (GPE)
[20]. The dimensionless equation can be achieved by tak-
ing time t in ω−1x , and scale length L=

√
~/mωx in terms

of harmonic oscillator length along x-axis and energy is
scaled by ~ωx,

ι
∂ψ(x, t)

∂t
=

[
−1

2

∂2

∂x2
+ U(x) + gs|ψ|2

]
ψ(x, t), (1)

where ψ(x, t) as a dimensionless macroscopic wavefunc-
tion of the BEC, t and x stands for time and 1D-space
space coordinate, respectively. Here, we use normalized
wavefunction such as,

´
|ψ(x, t)|2dx = 1. The 1D inter-

action strength is given as gs = 2Nωras/(ωxL), where as
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FIG. 1: (Color online) Comparison of numerical results (left
column) and analytical results (right column) of BEC tempo-
ral density. The others dimensionless parameters are, interac-
tion strength gs = 3, initial mean-position of the BEC defines
as x0 = 35. Here, in upper row the optical periodic potential
is V0 = 5 and in the lower row it consider as V0 = 50.

describes the s-wave scattering length [11], the number
of atoms in BEC is represented by N , ωr stands for the
radial frequency component of the harmonic trap [10].
To study the thermalization and dipole oscillation for an
isolated BEC, we purpose the trapping potential U(x),

U(x) = V (x) + ιW (x), (2)

where the real part of the potential defines as V (x) =
x2/2 + V0 cos2(x), here the first term represents the
dimensionless harmonic potential confinement, second
term models the periodic lattice potential of the sys-
tem, which serves as an optical lattice of strength V0 and
offers friction to the BEC during its dipole oscillation.
The complex part, W (x) = W0 sin(x) compensate the
gain and loss of the BEC atoms, such potentials makes
our system a non-Hermitian system. However, this spe-
cial potential follows the PT -symmetric condition. Here
W (x) < 0 represents the loss of atoms and W (x) > 0
describes the gain of the BEC atoms.

A. Analytical method

The solution of time dependent GPE by a variational
approach [21–24] can help to extract the qualitative and
quantitative information about the system. The varia-
tional approach relies on the initial choice of the trial

FIG. 2: (Color online) The dimensionless mean position of
the BEC versus the dimensionless time for different periodic
potentials V0. Other dimensionless parameters are W0 = 0,
gs = 3 and the initial mean position of the BEC is X0 = 35.

wave function. In our case, we use Gaussian shape wave-
function with time dependent variables. This approach
helps us to find second order ordinary differential equa-
tions for the time dependent variables. Which in turn
characterize the dynamics of the BEC. Here, we let the
initial ansatz as

ψ(x, t) =
1√

a(t)
√
π
e
− (x−x0(t))2

2a(t)2
+ixα(t)+ix2β(t)

, (3)

above ansatz is a Gaussian distribution centered at x0(t).
Here, x is defined as the dimensionless space coordinate,
x0(t) describes the dimensionless mean position of the
BEC, a(t) tells us about the dimensionless width of the
BEC, α(t) and β(t) are the variational parameters. To
find all the unknown variational parameters, we let the
Lagrangian density of our system as,

L = i
2

(
ψ ∂ψ

∗

∂t − ψ
∗ ∂ψ
∂t

)
− 1

2 |
∂ψ
∂x |

2 + U(x)|ψ|2

+ gs
2 |ψ|

4. (4)

Using the above Lagrangian density and the trial wave-
function, we find the effective Lagrangian L =

´
Ldx

of the quantum mechanical system. We begin by writing
the total Lagrangian of the system as a sum of two terms,
i.e., L = Lc + Lnc, where Lc represents the conservative
term and Lnc defines the non-conservative term. The
conservative part of the Lagrangian means that we only
consider the real part of the external potential. While the
non-conservative term describes the complex part of the
external potential. By using the Lagrangian L, we deter-
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(a) (b) (c)

FIG. 3: (Color online) The dimensionless mean position of the BEC is plotted against the dimensionless time t for different
initial mean position of the BEC x0 = 25 (a), x0 = 35 (b), and x0 = 50 (c). The mean position is calculated by numerical
(blue box), analytical (red circle), and Ehrenfest (black line) methods. Other dimensionless parameters are, W0 = 0, gs = 3,
and the strength of the periodic potential is V0 = 30.

mine the complex Ginzburg-Landau equation (CGLE) as
[18, 25, 26]

d

dt

(
∂Lc
∂ṡ

)
− ∂Lc

∂s
= 2Re

[ ∞̂

−∞

iW (x)ψ∗
∂ψ

∂s
dx

]
, (5)

where s describe the set of dimensionless variational pa-
rameters such as, x0(t), α(t), a(t), and β(t). By us-
ing equation (4) and equation (5), we determine time-
dependent equation for the dimensionless mean position
of the BEC,

x′′0(t) + x0(t) = V0 sin(2x0(t))e−a
2(t), (6)

here, we let W (x) = 0. While the dynamics of the width
of the BEC analytically is given by

a′′(t)+a(t) =
1

a3(t)
+

gs√
2πa2(t)

+2a(t)V0 cos(2x0(t))e−a
2(t).

(7)
For above equations (6) and (7) we deliberately avoid
to write the complex part of the potential, i.e., we have
only consider the conservative Lc part of the Lagrangian
while the ”non-conservative” part makes our equations
cumbersome, therefore, we avoid to present those lengthy
equation here.

B. Ehrenfest method

The classical approximation of a quantum system can
be realized by the Ehrenfest method [27],

¨〈x〉 = −〈V ′(x)〉 , (8)

Where V (x) defines the trapping potential for the BEC
wave packet and the Ehrenfest theorem leads to the di-
mensionless mean position of the BEC equation as

< ẍ >= − < x > +2V0 cos (< x >) sin (< x >), (9)

the mean position of the wave-packet is strongly depends
on the optical lattice potential V0.

C. Numerical method

To solve numerically the quasi-1D GPE, we use the
time-splitting spectral method [28] We choose time step
as 4t = 0.0001, and a space step as 4x = 0.0177, to
discretize the dimensionless quasi-1D GPE Eq. (1). To
give a momentum kick to the BEC wave packet, initially
we trap the BEC at potential V (x) = (x−x0)2/2, where
x0 defines the initial mean position of the BEC. Later,
we switched off the trapping potential and switch the
potential minimum to the new potential V (x) = x2/2 +
V0 cos2(x). In this way, BEC experience a kick and starts
dipole oscillations in the left over potential.

III. BEC DYNAMICS

To study the dynamics of a BEC in this closed envi-
ronment, we compare the analytical, Ehrenfest, and nu-
merical methods discussed previously in Sec. II (A-C).
First of all, the qualitative comparison of analytical and
numerical results are presented in Fig. 1 in the form of
a temporal density plot of the BEC in the absence of
PT -symmetric potential. BEC dynamics applied under
a PT -symmetric potential environment is presented in
Fig. 5. We discuss both cases separately in the following
two subsections.
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FIG. 4: (Color online) Energy evolution of a Bose-Einstein
Condensate. Total energy is conserved in the whole process
and kinetic energy and potential energy associated with har-
monic trapping are evenly distributed at equilibrium. The
parameters used are (a)V0 = 0, (b)V0 = 30, and (c)V0 = 40.

A. Without PT -symmetric Potential

In this subsection, we compare and discuss the detailed
result of the BEC dynamics without PT -symmetric po-
tential, i.e., W0 = 0, using analytical, Ehrenfest, and
numerical methods.

1. Density dynamics of the BEC

The temporal density graph for the BEC is obtained
numerically and analytically as shown in Fig. 1. For small
values of the periodic potential strength, V0 = 5, both an-
alytical and numerical results are in agreement with each
other as shown in Fig. 1(a-b). However, we observe that
for higher values of the periodic potential strength, e.g.,
V0 = 50, as presented in Fig. 1(c-d) both plots differ from
each other. We note that the results obtained by the an-
alytical method, Fig. 1(d), fails to reflect the physics of
the dynamics of the BEC. Particularly, it shows no im-

pact of scattering of the BEC due to the friction offered
by the lattice potential. While the results obtained by
the numerical method, Fig. 1(c), reveal the impact of the
scattering from the peaks of the lattice potential and the
dissipation. It reveals that quasi-particles are generated
at the top of the BEC, which leads to thermalization of
the BEC. So from now, for this section, we discuss only
numerical results, because they present the real picture
of the dynamics of the BEC.

For further investigation, we plot the mean position of
the BEC, by using the numerical method as shown in
Fig. 2. We observe that for periodic potential strength
V0 = 0 the BEC starts dipole oscillation without any
dissipation in the closed environment as shown in Fig. 2.
We note that for V0 = 30, in Fig. 2, the numerical re-
sults shows that the mean position of the BEC starts
localizing at the global minima of the harmonic potential
trap as presented in Fig. 2. For such a lattice potential
the mean position dipole oscillation has a smaller ampli-
tude. For a larger value of the periodic potential,
V0 = 100 small BEC dipole oscillation can be seen
as depicted in Fig. 2. Initially, BEC starts moving
towards the global minima of the external potential but
on the way, it loses its energy and turns back, even with-
out reaching the global minima of the potential and after
some time it gets localized at local minima as shown in
Fig. 2. This localization other than the global minima of
the harmonic potential is due to the loss of the energy
of the BEC by the periodic potential embedded on the
harmonic potential. It is also quite surprising that the
tunneling of the BEC is also suppressed in this special
scenario, however, eventually, the BEC will localize to
global minima but after a long time.

2. The mean position vs initial energy of the BEC

The qualitative comparison of the dimensionless mean
position of the BEC is plotted in Fig. 3, for three different
methods, numerical (N), analytical (A), and Ehrenfest
(Eh). We compare the impact of the initial potential en-
ergy (PE) of the BEC on its dipole oscillations without
any PT -symmetric environment. Under such condition,
it is evident from the Fig. 3 that the initial potential en-
ergy of the BEC depends upon the choice of the initial
mean position of the BEC, “x′′0 . We know that the di-
mensionless potential energy is given by, PE ∝ x20. The
initial energy of the BEC shows a considerable influence
on the dipole oscillations as plotted in Fig. 3. In Fig. 3,
we see the influence of initial energy on the dipole mo-
tion of the BEC for x0 = 25, the numerical study shows
that the dissipation of the BEC results in an earlier lo-
calization of the mean position of the BEC. On the
other hand, for higher values of the magnitude of PE,
say x0 = 50, the BEC just experience the global har-
monic potential and hence a to-and-fro motion results.
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While the initial high PE compensates the periodic fric-
tional potential. We note that for low initial potential
energy, the BEC localized earlier as presented in Fig. 3.
We also observe that the Ehrenfest and analytical meth-
ods could not capture the physics of the dimensionless
mean-position of the BEC. As we do not find the de-
pendence of the mean-position on the initial PE of the
system, which is not physical. However, from the numer-
ical calculation, we conclude that the initial high PE of
the BEC results in a delay in the localization of the mean
position of the BEC. We observe that the BEC with
high PE maintains longer dipole oscillation for a longer
time. Therefore, it is appropriate for experimentalists to
consider this point while localizing the BEC. i.e., they
must not put the BEC far away from the global minima,
as it could lead to decoherence in the experiment, which
could destroy the BEC. In a classical harmonic system,
the total energy of the system is dissipative, due to the
environment interaction, however, in our special case the
system is isolated therefore the total energy is conserved
as shown in Fig. 4. It means that periodic potential does
not store energy during the thermalization process, how-
ever, periodic-potential distribute the energy, few other
writers have also studied this phenomenon in disorder
potentials [29]. As someone can see from Fig. 4 that for
higher values of V0 the kinetic energy (KE) and poten-
tial energy (PE) are oscillating, however, as time passes
oscillation becomes smaller and smaller which leads to
equilibrium. As a matter of fact, this energy distribution
indicates another kind of non-equilibrium to an equilib-
rium state.

Since our system is in an isolated environment. So the
localization is quite surprising in such a system. How-
ever, someone can answer this localization is due to the
thermalization of the BEC. As the BEC is started to
move from its initial position, it experiences friction in
the system due to periodic potential. That periodic re-
sistance generated quasi-particles at the top of the BEC,
which can be seen in Fig. 1(c). This is not new as many
studies already pointed out such quasi-particles due to
the collision of the BEC wave-packet with external po-
tentials [30].

B. With PT -Symmetric Environment

In this sub-section, we compare analytical and nu-
merical BEC dynamics by observing the temporal den-
sity and the mean position of the BEC under a PT -
symmetric environment. The amount of PT -symmetry
or the imaginary part of the potential controlled by the
parameter, W0.

(a) (b)

(c) (d)

FIG. 5: (Color online) Comparison of numerical (left column)
and analytical (right column) results of the BEC temporal
density with a PT -symmetric potential. The dimensionless
parameters defines as the interaction strength gs = 3, initial
mean position of the BEC x0 = 35. The periodic potential
strength for upper row is V0 = 5 and the strength of the imag-
inary part of potential is W0 = 0.2, while for the lower row
the periodic potential strength is V0 = 30 and the strength of
the imaginary part of the potential is W0 = 0.2.

1. The temporal density graph

The temporal density graph in Fig. 5 is obtained by
analytical (right column) and numerical simulation (left
column). Here, we note that for a small amount of PT -
symmetry, W0 = 0.2 and for a small amount of the
strength of the external periodic potential, V0 = 5, the
analytically and numerically obtained results for the dy-
namics of the BEC are in good agreement. While there
is disagreement in the results for higher values of the pe-
riodic potential strength, like V0 = 30. For larger values
of V0 once again, we observe that the numerical results
are in agreement with the physics of the dissipative dy-
namics and analytical methods are no longer valid.

2. Temporal mean position

In this subsection, we discuss the dynamics of the di-
mensionless mean position of the BEC, which is calcu-
lated by numerical method.

We observe that for small PT -symmetric potential the
BEC shows the famous dipole oscillation, with a grad-
ual decrease in dipole oscillation’s amplitude as shown
in Fig. 6. Which describes the localization of the BEC
as already discussed in Sec. II. As we increase, the PT -
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FIG. 6: (Color online) The impact of the amount of PT -
symmetric potential on mean position of the BEC. The BEC
initially located at x0 = 35. Other dimensionless parameters
are, gs = 3, V0 = 30.

symmetric potential ”W0 = 2” we observe that the mean
of the BEC starts dipole oscillation but around ”t = 15”
we note that the dipole oscillation rapidly seized and the
BEC localized at some local minima. However, as time
passes the BEC mean position jumps to the global min-
ima as predicted in Fig. 6. We realize that this jump
is quite natural as in BEC particles are continuously
ejected from the adjacent wells simultaneously. Addi-
tionally, there is a continuous compulsion for the BEC
to move towards the global minima. As we raise the
strength of the PT -symmetric to ”W0 = 5” we inspect
that the mean point of the BEC is localized around
”x = 30, in a relatively short time as shown in Fig. 6.
And it stays in this local minima for a relatively long
time. Later, the mean position of the BEC switches
towards the global minima. It is quite strange that we
could not see the localization of the BEC in between the
”x = 30” and ”x = 0”. This is quite interesting as it
leads to a kind of digital switching. So with this, we con-
clude that our proposed model can be used to study the
localization of the BEC, additionally, it can also be used
for discrete switching.

IV. CONCLUSION

In this paper, we compare the analytical, numerical,
and Ehrenfest methods to study the BEC dynamics in a
dissipative environment. Along with this, we also study
the impact of the presence of the PT -symmetric on the
dissipative dynamics of the BEC. The dissipative envi-
ronment is created by adding a periodic potential over a
harmonic potential. The dissipation is controlled by the
strength of the periodic potential height. We conclude
that the analytical and Ehrenfest methods have limita-

tions for larger values of the periodic potential strength,
V0 . For larger values of the periodic potential strength,
the numerical methods remain valid. The presence of a
periodic PT -symmetric environment influences the dy-
namics of the BEC in such a way that it can control
the localization of the BEC at the desire location. By
controlling the amount of PT -symmertric strength and
the strength of the periodic potential parameter we can
localize the BEC to a desirable location for a desirable
time. As a future prospective, someone can ex-
tend this work for spin-orbit coupled BEC’s [31]
and for dipolar condensate [32, 33].
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