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The simulation of quantum dynamics on a digital quantum computer with parameterized circuits has

widespread applications in fundamental and applied physics and chemistry. In this context, using the hybrid

quantum-classical algorithm, combining classical optimizers and quantum computers, is a competitive strategy

for solving specific problems. We put forward its use for optimal quantum control. We simulate the wave-packet

expansion of a trapped quantum particle on a quantum device with a finite number of qubits. We then use circuit

learning based on gradient descent to work out the intrinsic connection between the control phase transition

and the quantum speed limit imposed by unitary dynamics. We further discuss the robustness of our method

against errors and demonstrate the absence of barren plateaus in the circuit. The combination of digital quantum

simulation and hybrid circuit learning opens up new prospects for quantum optimal control.

I. INTRODUCTION

Following the vision by Feynman [1], quantum simula-

tion has acquired a potentially-disruptive role in the devel-

opment of contemporary science and technology, given the

prospects of harnessing the advantage of using a quantum

computer (QC) for specific applications. In recent decades,

quantum simulation has been used to probe the dynamics

of condensed matter systems [2, 3], for quantum chemistry

[4, 5], and as a test-bed for nonequilibrium statistical mechan-

ics, e.g., in studying thermalization and nonequilibrium be-

havior of many-body systems [6, 7]. Quantum simulation is

also expected to impact high-energy physics, given the po-

tential to facilitate the study of lattice gauge theories [8] and

gauge-gravity duality [9, 10], among other examples.

The use of a digital quantum simulator (DQS) based on

the gate model offers a prominent approach in current Noisy

Intermediate-Scale Quantum (NISQ) devices [11] and has

gained relevance with theoretical and experimental progress

[12–14]. In particular, DQS can be used to implement vari-

ational quantum algorithms (VQAs), under development for

quantum optimization [15], quantum machine learning [16],

and quantum control [17]. Their formulation generally ap-

proximates the continuous time evolution by discrete, finite

Trotter steps [18–21] implemented by a sequence of quantum

gates, with controlled accuracy, in principle. However, bal-

ancing the number of Trotter steps and imperfections of quan-

tum circuits in experiments is still a fundamental challenge.

In this sense, various optimization scenarios aim at quantum

error mitigation [22–24] for achieving a good precision of the

quantum simulation with limited quantum resources. Among

those, the machine-learning-enhanced optimization protocol

[25–28] utilizes a feedback loop between the quantum device

and a classical optimizer. This approach is particularly use-

ful in the field of hybrid quantum algorithms [29, 30] with

current quantum hardware. Nonetheless, solving the quantum

optimal control problem by VQAs in a NISQ device is still an

open challenge [17].

In this work, we propose a circuit learning scheme based on

gradient-descent (GD) for time-optimal quantum control. As

a concrete example, we consider a quantum particle trapped

in time-varying parabolic potential. We use a qubit register

and encode the spatial wave function using the basis of n-

qubit states. We then reproduce the exact state evolution on

a designed quantum circuit using a digital algorithm [31, 32].

We optimize the control function to achieve maximum-fidelity

control by using the GD-based circuit learning. We further un-

veil the connection between a control phase transition and the

quantum speed limit, i.e., the minimum time for a quantum

state to evolve into a distinguishable state under a given dy-

namics. We demonstrate that the fidelity-based GD method

avoids a large number of measurements by comparison to the

reinforcement learning protocol [33] and show how it can be

accelerated by choosing different quantum quantities as the

cost function.

In the following two sections, we introduce the quantum

algorithm for the circuit realization of a quadratic Hamilto-

nian and discuss the time-dependent harmonic oscillator as an

example. We then explore a fidelity-based GD method for

maximum-fidelity control in a nonequilibrium expansion pro-

cess and characterize the efficiency through various cost func-

tions. The relation of the quantum speed limit to the control

phase transition is then discussed. Finally, we establish the

fault tolerance of our method against the quantum errors in

experiments and also address the problem of barren plateaus

in the parameterized circuit.

http://arxiv.org/abs/2211.00405v1
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II. PRELIMINARIES AND NOTATION

A. Time-dependent quantum harmonic oscillator

We exemplify our approach by considering the time-

dependent harmonic oscillator (TDHO), described by the

Hamiltonian

H(t) =
p̂2

2m
+

1

2
mω2(t)[x̂ − x0(t)]

2, (1)

where ω(t) and x0(t) are tunable and represent the trap fre-

quency and the location of the trap center, respectively. The

TDHO is an ideal model for benchmarking quantum control

algorithms since its dynamics admits exact closed-form so-

lutions. In particular, we focus on the case with x0(t) = 0
and look for the expansion of the wave packet induced by a

modulation of the trap frequencyω(t) from an initial value ω0

to a final one ωf . This model has many applications, includ-

ing the cooling of a particle in an optical trap [34], mechan-

ical resonators [35], and tunable transmon superconducting

qubits [36]. The ground state of H(0) evolves into the time-

dependent Gaussian state [34]

Ψ(t, x) =
(mω0

π~b2

)1/4

exp

[

− i

2

∫ t

0

~ω0

b2
dt′
]

× exp

[

im

2~

(

ḃ

b
+ i

ω0

b2

)

x2

]

, (2)

where the time-dependent scaling factor b(t) > 0 character-

izes the width of the wave packet and satisfies the auxiliary

equation

b̈+ ω2(t)b =
ω2
0

b3
. (3)

A primary numerical solver of quantum dynamics is the so-

called split-operator method (SOM), also known as the split

time propagation scheme [37]. For the sake of convenience,

one usually sets dimensionless variables based on physical

units of energy ǫ = ~ω0, length bHO =
√

~/mω0, and

time τ = 1/ω0. In a classical computer, one defines a N -

dimensional vector as Ψ(r) for encoding the amplitude of the

wave function on the space grid r = [x0, x1, · · · , xN−1].

Note that the kinetic energy operator T̂ = p̂2/2 and the po-

tential operator V̂ = ω2(t)x̂2/2 do not commute. Thus, the

following approximation stands for small dt with an error

O(dt3)

e−iHdt ≈ e−
i

2
V̂ dte−iT̂ dte−

i

2
V̂ dt, (4)

evolving the wave function in a Trotter step. A common trick

in implementing this method uses forward and inverse Fourier

transforms to change the representation of the quantum state

between the real space r and momentum space k, in which the

kinetic energy operator becomes diagonal in k, simplifying

the numerical calculation.

B. Time-optimal control

The frictionless expansion of quantum particles trapped in

a time-varying harmonic trap can be formulated as a time-

optimal control problem by minimizing the time of the pro-

cess tf [34, 38–41]. It follows from Pontryagin’s maximum

principle that the control Hamiltonian for all t ∈ [0, tf ] takes

the form [38]

Hc[x1, x2, p1, p2] = p1x2 +
p2
x31

− p2x1u(t), (5)

where the state x1 = b, x2 = ḃ/ω0, and the controller

u(t) = ω2(t)/ω2
0 are governed by the Ermakov equation (3).

Here, p1 and p2 are the conjugate momentum of x1 and x2,

respectively. Substituting the control Hamiltonian into the

canonical equation leads to the cost equations

ṗ1 =

(

u+
3

x41

)

p2, (6)

ṗ2 = −p1. (7)

If the controller is bounded as δ1 ≤ u(t) ≤ δ2, the time-

optimal control has a bang-bang form, i.e., it is a piece-wise

function and constant in each interval. For a specific prob-

lem with b(0) = 1 and b(tf ) =
√

ω0/ωf = γ, consider the

feasible three-jump protocol

u(t) =



















1 t = 0

δ1 0 < t ≤ t1
δ2 t1 < t < t1 + t2
1/γ4 t = topt

f = t1 + t2

, (8)

where the switching time t1 and the optimal operation time

topt

f = t1 + t2 can be calculated by integrating the Ermakov

equation (3) by using boundary conditions. This yields the

closed-form exact time-optimal driving protocol u(t) with

t1 =
1√
δ1

sinh−1

√

δ1(γ2 − 1)(γ2δ2 − 1)

(δ1 − δ2)γ2(1− δ1)
,

t2 =
1√
δ2

sin−1

√

δ2(γ2 − 1)(1− γ2δ1)

(δ1 − δ2)(1− γ4δ2)
. (9)

C. Quantum speed limit

Quantum speed limits (QSLs) provide fundamental upper

bounds on the speed of quantum evolution [42]. They have

wide-spread applications ranging from quantum metrology to

optimal control [43–45]. QSLs are formulated by choosing a

notion of distance between quantum states and identifying a

maximum speed of evolution. For isolated systems described

by a time-independent Hamiltonian, two seminal results are

known. The Mandelstam-Tamm QSL determines the max-

imum speed of evolution in terms of the energy dispersion

[46], while the Margolus-Levitin bound uses the mean energy
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FIG. 1. The circuit realization of time-evolution operator for a quadratic Hamiltonian as defined by Eq. (22). The single phase gate and

Pauli-X gate are schematically represented by the symbols R(·), X , and the corresponding control gates are shown by vertical lines with black

circles.

above the ground state instead [47]. The interplay of these

bounds has recently been demonstrated in a trapped system

made of ultracold atoms that are suddenly quenched [48]. For

a generic driven system, only an analog of the Mandelstam-

Tamm bound is known [49–51].

Consider the quantum unitary dynamics generated by a

time-dependent Hamiltonian according to the Schrödinger

equation. The distance between the initial state and the time-

dependent state in projective Hilbert space can be quantified

by the Bures angle

L(ψ0, ψt) = arccos(|〈ψ0|ψt〉|) ∈ [0, π/2]. (10)

The minimum time scale required to sweep a given Bures an-

gle is lower bounded by

τQSL =
1

∆E
L(ψ0, ψt), (11)

where the speed of evolution is set by the time-averaged en-

ergy dispersion

∆E =
1

t

∫ t

0

ds

√

〈ψs|Ĥ(s)2|ψs〉 − 〈ψs|Ĥ(s)|ψs〉2. (12)

The QSL τQSL is thus approached by maximizing the energy

dispersion at all times. In control protocols for wave-packet

expansion, we consider the evolution of the ground state of

the trap with initial trapping frequency ω0 to the ground state

of the trap with final frequency ωf . Provided that the control

protocol, specified by u(t), has unit efficiency in preparing the

target state, the Bures angle is fixed, and the corresponding

QSL reads

τQSL =
~

∆E

√

2γ

1 + γ2
. (13)

We note that τQSL should be distinguished from the minimum

time toptf in the preceding time-optimal control with the trap

frequency bounded.

D. Fidelity susceptibility

Generally, the final state ρf = |Ψf (x)〉〈Ψf (x)| upon com-

pletion of a control protocol at t = tf differs from the target

state ρtar = |Ψtar(x)〉〈Ψtar(x)| one wishes to prepare. Let us

consider the fidelity F between these two states

F (ρtar, ρf ) =

[

Tr(
√√

ρtarρf
√
ρtar)

]2

, (14)

where Tr(·) denotes the trace operation.

The fidelity susceptibility χf quantifies the fidelity response

to a slight change of driving parameter [52–54]. For a func-

tional Hamiltonian H(ft) parameterized by ft, let |Ψ0(ft)〉
be the ground state. We assume ft to be a function of time

and consider a variation on the control function ft → ft+ δf ,

where δf → 0 is small enough to apply perturbation theory.

As a result, the perturbed ground state is |Ψ0(f + δf)〉. The

fidelity susceptibility, without loss of generality, is defined as

χf ≡ −2 ln(Fδf )

δf
, (15)

where the fidelity Fδf = F [ρ0(f), ρ0(f + δf)]. The fidelity

susceptibility quantifies the sensitivity of the fidelity to vari-

ations of the control functions. In other words, the fidelity

susceptibility can be used as a cost function to accelerate the

convergence of the optimization process. For the sake of sim-

plicity, we assume that δf → 0 is a time-independent real

value.

III. QUANTUM CIRCUIT REALIZATION OF QUADRATIC

HAMILTONIAN

Next, we present the algorithm for the circuit realization of

quadratic Hamiltonians using a finite set of elementary quan-

tum gates. We focus on DQS of the continuous-variables sys-

tem and encode a wave packet onto a n-qubit register. Quan-
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tum states of this register can be described in binary notation

|Φ〉 =
2n−1
∑

i=0

ci|i〉, (16)

using the computational basis |i〉 = |qn−1〉⊗ · · ·⊗ |q1〉⊗ |q0〉
with q0, q1, . . . , qn−1 ∈ {0, 1} , and the corresponding ampli-

tudes ci normalized as
∑2n−1

i=0 |ci|2 ≡ 1. To solve the time-

dependent Schrödinger equation on a quantum computer with

a n-qubit register, we discretize the continuous variables as-

sociated with the spatial coordinate x and time t, and subse-

quently map the coordinate space x into the Hilbert space of

n qubits. Specifically, the compact continuous spatial domain

x ∈ [−L,L] is approximated by a lattice of 2n points spaced

by a constant interval dx = L/(2n−1−1). A wave packet can

be encoded in the state of the n-qubit register as

|Φ〉 =
2n−1
∑

i=0

Ψ(xi)|i〉 (17)

= Ψ(x0)|0 · · · 0〉+ · · ·+Ψ(x2n−1)|1 · · · 1〉, (18)

which reproduces the vectorized wave function for the fol-

lowing quantum analog of the SOM in the Hilbert space. As

in numerical discretization methods, this encoding of Ψ(r)
provides, in principle, satisfactory accuracy when the lattice

length dx is much smaller than any characteristic length scale

of the wave packet. The preparation of arbitrary initial qubit

states |Φ〉 based on the initialized wave-packet Ψ(r) can be

approached by the variational quantum eigensolver (VQE)

|Φ̃〉 =
p
∏

i=1

[

n−1
∏

q=0

(

U q,i
)

UENT

]

|+〉⊗n, (19)

where |+〉 = 1√
2
(|0〉+ |1〉) is a single-qubit state, the unitary

U q,i(θ) = Rq,i
z (θq,i1 )Rq,i

x (θq,i2 )Rq,i
z (θq,i3 ) is a universal single-

qubit gate, and UENT represents CNOT gates that entangle the

neighboring qubits with periodic boundary conditions. In this

way, an approximated initial state |Φ̃〉 is prepared by optimiz-

ing 3pn parameters to minimize the cost function.

Next, consider the digital quantum simulation aimed at re-

producing an equivalent SOM. The dynamics of the wave

packet is described by

Φ(t+ dt) ≈ e−iH(t)dtΦ(t), (20)

where e−iHdt is the time-evolution operator for the time step

dt.
We use the quantum Fourier transform (QFT) as the quan-

tum analog of the inverse discrete Fourier transform, which is

key to the efficient implementation of the SOM. Hence, the

wave function |Φ〉 is evolved as

|Φ̃(t+ dt)〉 = V(t)dt/2QFTT (t)dtQFT†V(t)dt/2|Φ̃(t)〉,
(21)

whereV(t) and T (t) are the potential operator and the kinetic-

energy operator in the real space and momentum space, re-

spectively. In other words, they are both quadratic, and their

diagonal elements can be written as

Ajj = exp
{

−idt[h(jdx+ x0)
2 + σ]

}

, (22)

2 3 4 5

p

3

4

5

6

n

(a)

log10(1− F )

−5

−4

−3

−2

−1

−4 −2 0 2 4

x

0.00

0.05

0.10

|Ψ
(x
)|
2
,|
Φ
|2 (b)

FIG. 2. The fidelity of states preparation by VQE as a function

of qubit number n and parameter depth p in (a), and corresponding

probability distribution of qubits |Φ|2 compared with density of wave

function |Ψ(x)|2 in (b), with fidelity F = 0.996 for n = 6 and

p = 4.

where other off-diagonal elements are zero. The preliminary

result in Ref. [31] demonstrates that the quadratic Hamil-

tonian can be exactly decomposed into a quantum circuit.

In Fig. 1, we plot the quantum circuit for implementing a

quadratic Hamiltonian in the computational basis for DQS.

The decomposition is verified by the DQS of nonadiabatic

processes in molecular systems [32].

IV. FIDELITY-BASED GRADIENT DESCENT

A. Initial state preparation

The first step is to encode the information of the wave

packet into the state of the qubit register. The accuracy of

the preparation of a target state of qubits by VQE depends on

the qubit number n and the parameter depth p, see Eq. (19).

As we know, the depth p and qubit number n exponentially

increase the complexity of VQE. In Fig. 2, we compare the

fidelity of state preparation in the coefficient grid n, p in (a).

In (b), without loss of accuracy, we choose n = 6, p = 4,

and present the resulting n-qubits states for the corresponding

density (2) with ω0 = 1. In what follows, the numerical re-

sults are produced by the quantum simulator statevector

simulator on the qiskit platform, which admits no er-

rors, decoherence, and imperfections at all. We will consider

the noise of an actual quantum device in the discussion.

B. The maximum-fidelity control

A parametric optimization problem is usually mapped into

the minimization of a given cost function to find its local mini-

mum with the Gradient Descent (GD) algorithm. The optimal

solution M = {m0,m1, ...,mi} is obtained by minimizing

the cost-value c = J(M), and can be expressed as

M opt = min
c
J(M). (23)

In our case, the control function is the trap frequency f(t) =
ω2(t) that is piece-wise on the discrete time t ∈ [0, tf ] in-
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FIG. 3. (a) The infidelity 1−F as a function of the training iteration

using three different loss functions: fidelity susceptibility (FS) with

δf = 0.01, infidelity (IF), and Bures angle (BA). (b) The infidelity as

a function of the iteration step for different δf is compared when the

fidelity susceptibility (FS) is taken as a loss function. Parameters:

Nt = 50, ωf = 0.1, n = 6, p = 4, δ1 = 10−6, δ2 = 1, and

tf = 3.152.

volving Nt-intervals. Accordingly, the control tuple f(t) =
{f(0), f(dt), ..., f(tf)} is constrained by δ1 ≤ |f(t)| ≤ δ2,

|f(t+dt)−f(t)| ≤ ∆f and the boundary conditions f(0) = 1
and f(tf ) = 0.01 are considered for trap expansion with

ωf/ω0 = 1/10. Then, we optimize ω-dependent parameters

M = {θ3(ω)}t in the circuit shown in Fig. 1 by minimizing

the loss value which can be generated by the measurements

on the qubits at t = tf . Here, we exploit three different cost

functions: the infidelity (IF) (1 − F ), the fidelity susceptibil-

ity (FS) χf , and the Bures angle (BA) L(ψt, ψtar). For sim-

plicity, we initialize the controller f(t) with a linear depen-

dence of the form f(t) = (ω2
f − ω2

0)(t/tf ) + ω2
0 . This yields

a parametric constrained minimization problem in this case.

We exemplify the optimization process of finding maximum-

fidelity policy for different cost functions in Fig. 3 by using

the optimizer SLSQP [55] based on the scipy [56] platform.

To this end, we assign the total time tf = t
opt

f calculated in

(9), and use the GD method to minimize the cost function

for obtaining the maximum-fidelity control function. In Fig.

3, we present infidelities versus the GD iteration when using

each cost function. The control with maximum fidelity is ob-

tained with their convergence. One can see that the learning

rate of FS outperforms the others with the same optimizer in

(a), and we compare the FS-based GD with various coeffi-

cients: δf = [10−4, 10−3, 10−2, 10−1, 100] in (b). Because

the greatest convergent rate of the optimization process arises

when δf ≤ 10−3, we employ the FS χf as the cost func-

tion with the coefficient δf = 10−3 to design the maximum

fidelity policy in the GD algorithm. It is worth emphasizing

that reducing the training iteration is equivalent to decreasing

the accumulation of operation errors. As a result, we can im-

prove the accuracy of DQS with the same quantum volume.

By considering the trade-off between the complexity and

accuracy of digitized circuits, we analyze the fidelity achieved

by the maximum-fidelity policy for different numbers of Trot-

ter steps Nt and the constraints on control step ∆f . Trotter

steps Nt and the constraints on control step ∆f determine

the depth of the circuit and the continuity of the control func-

tion, respectively. In Fig. 4, we present the fidelity density

as a function of Nt and ∆f in (a) and show the maximum-

0.1 0.5 1.0

∆f

10

30

50

70

N
t

(a)

log10(1− F )

-3

-2

−4

−3

−2

−1

0.0 0.5 1.0

t/tf

0.0

0.5

1.0

f
(t
)

(b)(b)(b)(b)Nt = 20,∆f = 0.1

Nt = 50,∆f = 0.1

Nt = 20,∆f = 1

Nt = 50,∆f = 1

FIG. 4. (a) Fidelity as function of ∆f and Nt with total time tf =
3.152. The two dashed contour curves refer to F = 0.99, 0.999 and

are labeled by −2,−3, respectively. In (b), we present the trained

fidelity-optimal controls compared to the bang-bang control (solid

gray line). The fidelity takes values F = 0.84, 0.98, 0.998, 0.9998
in the four cases illustrated in the legend from top to bottom. Other

parameters are chosen as in Fig. 3

.

fidelity control protocols for various Nt and ∆f , where the

counter curves corresponding to the fidelity F = 0.999, 0.99
are marked. In addition, in Fig. 4(b), the results from cir-

cuit learning are compared with the the optimal-time protocol

tf = t
opt

f produced by bang-bang control (8). The higher ac-

curacy of DQS requires the larger Trotter step Nt and higher

computation complexity. On the other hand, the control func-

tion becomes smoother when ∆f → 0, with increasing the

Trotter step and circuit complexity. In this context, we choose

Nt = 50 and ∆f = 1 in the following calculations.

C. Control phase transition at quantum speed limit

In the previous section, we described an efficient GD-based

hybrid algorithm to find the maximum-fidelity control in a

quantum device by considering the loss function J , Trotter

step Nt, and step length ∆f . Next, we shall prove the control

phase transition (CPT) appears at the critical point due to the

QSL. The use of optimal control to reach the QSL in quan-

tum state manipulation has been discussed in [43]. However,

the authors in [43] intended to find maximum fidelity con-

trol by reducing infidelity, which is a highly time-consuming

task. This can be improved by introducing the fidelity suscep-

tibility χ, as we have shown in the previous section. In the

space of protocols, the control phase transition is associated

with abrupt changes in an optimal control function, satisfying

given constraints as the duration of the process is varied [33].

In particular, the maximum-fidelity control function is unique

when t ≤ topt. It is expected that the QSL can be reached at

the point of CPT.

In practice, we consider the expansion process: from initial

state ψ0 (ω0 = 1) to target states ψtar (ωf = 0.1) with con-

strain δ1 = 10−6, δ2 = 1 by assuming ω2(t) > 0, and subse-

quently generate the maximum-fidelity control sequence f(t)
for tf ∈ [2, 5], where other parameters are same as those in

Fig. 3. Consequently, we present the control phase diagram in

Fig. 5(a) and illustrate several control functions of selected tf
compared with the optimal bang-bang control (8). The con-
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FIG. 5. (a) The control phase diagram, with the fidelity-optimal

control sequence f(t) = ω2(t) as a function of t/tf for different

tf ∈ [2, 5]. (b) Logarithm of the infidelity log10(1−F ) as a function

of tf , Nt. The solid line is included as a reference in (a) and (b) and

corresponds to the optimal bang-bang control with toptf = 3.152. (c)

The trained fidelity-optimal controls for different values of the total

time tf are compared with the optimal bang-bang control, (thick gray

line). (d) The corresponding time-averaged energy dispersion ∆E
for maximum-fidelity control. Parameters agree with those in Fig. 3.

trol function is suddenly converted to a non-bang-bang-typed

phase at the transition point tf ≈ topt

f , i.e., the control phase

transition point. In addition, we note that there exists only

one solution of the maximum-fidelity control function when

tf ≤ topt

f for fulfilling the requirement of time-energy bound

(11). Here, we confirm the minimum time tmin
f when the

maximum-fidelity is larger than 0.999, and compare the re-

sult for different Nt in (b) of Fig. 5. It is evident in Fig. 5(c)

that the accuracy of optimal time produced by circuit learning

essentially depends on the Nt, and we set Nt = 50 for the

criteria of log10(1 − F ) ∼ −4 in the following calculations.

We emphasize that the time-optimal driving obtained here

differs from the QSL but is closely related to it. Specifically,

the time-optimal driving is bounded in terms of the trap fre-

quency by contrast to the QSL, which is bounded in terms of

the time-averaged standard deviation of the energy, see Eq.

(13). The former is a weaker and more conservative bound,

as the energy fluctuations can be upper-bounded in terms of

the frequency. In Fig. 5(d), we display the energy disper-

sion of maximum-fidelity control and compare it with the cor-

responding time-optimal driving. The energy dispersion be-

comes consistently unique when tf ≤ toptf before the point

of CPT. Moreover, the energy dispersion for the maximum fi-

delity control is slightly smaller than in the time-optimal bang-

bang control with bounded trap frequency. In this sense, one

can approach the QSL in time-optimal driving when an addi-

tional energy cost is allowed by relaxing the trap frequency

bound.

V. DISCUSSION

A significant source of discussion is the robustness of

VQAs in an environment with stochastic perturbations. In

a real quantum computer with NISQ hardware, imperfec-

tions are unavoidably induced as a result of a finite number

of measurements and a noisy environment. As emphasized,

the previous results are produced by the quantum simula-

tor statevector simulator in the qiskit platform,

with no errors, decoherence, and imperfections at all. In this

section, we implement our method in a noise-associated quan-

tum device simulated by qasm simulator with Nm mea-

surement shots. The performance of the GD algorithm de-

pends on the tolerance of the optimizer to errors. Thus, we

shall balance the GD induced by noise and the parameter vari-

ance in a training landscape. Let us recall the definition of

noise in the framework of quantum information processing. In

general, the n-qubits register is coupled with an environment

ε, leading to the nonunitary evolution of the system. Initially,

we assume the density operators of the register ρ(t0) = ρ0 and

the environment to be decoupled so that the composite state is

given by the tensor product ρ ⊗ ε. For any global unitary op-

erator U describing the dynamics of the composite state, the

reduced evolution of the register reads

ρ(t) = Tr[U(ρ(t0)⊗ ε)U †] ≡ ξ(ρ0). (24)

This superoperator ξ(·) can be implemented for simulating a

noise model in a quantum circuit. The noisy quantum channel

describes the nonunitary evolution of the time-varying density

state in the Kraus representation

ρ(t) =
∑

k

Ekρ(t0)E
†
k, (25)

where Ek satisfy the trace-preserving condition
∑

k EkE
†
k =

1. Since we perform the measurement on the qubits register

only at t = tf , imperfections induced by any kind of noise re-

sult in fluctuations of the measurement accuracy. In this sense,

we shall primarily consider the bit-flip error of measurements

in a real quantum computer. Assume the system’s noise flips

|0〉 and |1〉 with probability β. The superoperator for this bit

flip noise can be expressed as

ξBF (ρ) = (1− β)ρ+ βXρX, (26)

where the corresponding Kraus operators are

{√1− βI,
√
βX}, in terms of the identity I and the

Pauli operatorX .

Next, we discuss whether the barren plateau [57] phe-

nomenon occurs here. The barren plateau refers to the fact

that the gradient of an observable vanishes exponentially as a

function of qubits number in a training landscape of VQAs.

It has been widely studied in various ansatze of deep circuits

[58]. In general, the gradient of an objective function is calcu-

lated by mean of the parameter-shift rule [59, 60], expressed

as ∂θkJ = 1
2 [J(θk+

π
2 )−J(θk− π

2 )] for an arbitrary trainable

parameter θk in the circuit. In this sense, we define the aver-
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FIG. 6. (a) The average gradient |∂θkJ | as a function of the qubit

number n and number of layers given by the polynomial function

Nt = 5 × n. (b) Infidelities as a function of the training iteration

for values of the noise strength β = 0, 0.02, 0.04, 0.06 based on the

SPSA optimizer. Other parameters are equal to those in Fig. 3.

age of the absolute gradient over Nr random initializations

|∂θkJ | =
Nr
∑

i=1

1

2Nr

∣

∣

∣
Ji(θk +

π

2
)− Ji(θk −

π

2
)
∣

∣

∣
. (27)

Since these three objective functions we proposed in the

previous section are all involve the fidelity, we here provide

numerical analysis of the average gradients of the fidelity F .

Essentially, the probability distribution of qubit states obeys

a statistical precision of order 1/
√
Nm, and the fidelity de-

fined in Eq. (14) meets the same criteria. The derivative of

an observable with respect to an arbitrary trainable θk in the

circuit is a linear function of the gradient with respect to the

corresponding control parameter fk = f(k) at k-th Trotter

step: ∂fkJ = 2c · ∂θkJ , with c being a real number. Thus,

the gradient of the objective function with respect to the con-

trol parameter f(t) shares the analytic expression in Eq. (27),

see also the detail in Appendix A. Also, we calculate the av-

erage gradient Eq. (27) over Nr = 50 random initialization

of f(t) for various qubit number n, while the Trotter step is

taken as a polynomial function as Nt = ploy(n). In Fig.

6(a), we demonstrate that the barren plateau is avoided for

the average gradient of a correlating parameter θk. The main

reason for the absence of barren plateau is the reduction of

ansatz’s expressibility, due to the strong correlation of pa-

rameter θk depending on the controller f(t) in our method,

a common feature with the recent work in Ref. [61]. In this

regard, we set measurement shots Nm = 8192 for statisti-

cal accuracy and energy saving by considering the gradient

magnitudes, as shown in Fig. 6(a). Moreover, we apply the

optimizer of simultaneous perturbation stochastic approxima-

tion (SPSA), which is widely used for solving an optimiza-

tion problem with statistical noise [62, 63]. In Fig. 6(b),

we present the infidelity as a function of the training iteration

for β = 0, 0.02, 0.04, 0.06, where the infidelity for noise-free

case (β = 0) convergent to ∼ 10−2 which obeys the criteria of

∼ 1/
√
Nm. Moreover, the performance of SPSA is compared

with various optimizers in Appendix B.

Let us discuss the circuit complexity in terms of the qubits

number n and the number of Trotter steps Nt. The whole cir-

cuit consists of Nt circuit units that simulate each unitary op-

eration Û(dt) = e−iHdt, as depicted in Fig. 1. In the absence

of θ1 and θ2, the gate number of each circuit unit, including

the potential operator V(dt) and the kinetic-energy operator

T (dt) in real space and momentum space, is Nunit ∼ 2n2.

In addition, the operation of QFT and iQFT requires ∼ n2/2
control-phase gates. Consequently, the total number of gates

for our ansatz is proportional to a quadratic function of n,

yielding 5Ntn
2/2. To find the minimal-time control on the

QC with reasonable precision, one can increase the qubit num-

ber n and Trotter step Nt, with exponentially enlarged Hilbert

space. But this leads to the quadratic size increase in cir-

cuit complexity. Recently, alternative methods inspired by the

Grover-Rudolph algorithm [64] are worked out for the quan-

tum state preparation, which are expected to reduce its com-

plexity in this direction.

Finally, we discuss the control problem beyond the

quadratic Hamiltonian on which we have focused. For our

case study, one can introduce perturbations of the trap, e.g.,

a time-independent anharmonicity involving an operator x4,

which is no longer quadratic. Although its exact decom-

position into quantum circuits does not exist, one can still

approximate the evolution block with arbitrary precision by

the Solovay-Kitaev algorithm [65], placing it in the block of

Vdt/2 before or after the evolution of the quadratic Hamilto-

nian since it commutes with the harmonic potential operator.

VI. CONCLUSION

To sum up, we propose the GD-based circuit learning to

find the time-optimal control problem, the driving of a quan-

tum particle trapped in a time-varying harmonic potential,

and figure out its quantum speed limit in relation to the con-

trol phase transition. First, we have constructed the digitized

quantum circuit of a time-dependent harmonic oscillator using

a finite n-qubit register. Second, we have demonstrated that

the learning rate of circuit optimization can be accelerated by

considering various physical quantities, such as the infidelity,

Bures angle, and fidelity susceptibility, as cost functions, thus

reducing training iteration. Third, we have established the

relation between control phase transition and quantum speed

limit. Finally, we have established the error tolerance of our

method by considering the presence of measurement errors in

a quantum computer. The absence of a barren plateau is fur-

ther justified in our ansatz, enabling the application of VQAs

for a class of tasks that is not affected by the fundamental lim-

itations of NISQ devices. As a heuristic example, we have

demonstrated that quantum control can be efficiently simu-

lated and optimized using a NISQ device by combining dig-

ital quantum simulation and hybrid circuit learning. Numeri-

cal experiments prove that barren plateaus are avoided in the

framework.
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Appendix A: The parameter-shift rule

One recipe to find the partial derivative of an objective func-

tion J(Θ) in parametric quantum circuits (PQCs) is known

as the parameter-shift rule [59, 60]. In general, the expecta-

tion value of an observable B̂ as a function of a single pa-

rameter θk in a circuit is expressed as J(θk) = 〈B̂(θk)〉.
We assume a sequence of unitary operations represented as

U(θk) = ULUk(θk)UR, for which we have

J(θk) = 〈0|U †
RU

†
k(θk)U

†
LB̂ULUk(θk)UR|0〉

= 〈z|M(B̂, θk)|z〉, (A1)

where M(B̂, θk) = U †
k(θk)U

†
LB̂ULUk(θk) and the basis

reads |z〉 = UR|0〉. Consider a unitary operatorUk(θk) gener-

ated by a Pauli matrix σk as Uk(θk) = exp(−iθkσk/2). The

gradient of the objective function is defined as

∂θkJ(z; θk) = 〈z|∂θkM(B̂, θk)|z〉
= c [〈z|M(θk + s)|z〉 − 〈z|M(θk − s)|z〉] ,(A2)

where coefficient c and shift s are independent

of θk. The gradient ∂θkUk(θk) = − i
2Uk(θk)σk ,

and inserting it to (A1), we have [57] ∂θkJ =

− i
2 〈z|U

†
k(θk)[σk, B̂]Uk(θk)|z〉. The commutation rela-

tion, [σk, B̂] = i
(

U †
k(

π
2 )B̂Uk(

π
2 )− U †

k(−π
2 )B̂Uk(−π

2 )
)

,

enables us derive the analytical gradient as [59, 60]:

∂θkJ =
1

2
〈z|
[

Uk(θ
+
k )B̂Uk(θ

+
k )− U †

k(θ
−
k )B̂Uk(θ

−
k )
]

|z〉

=
1

2

[

〈z|M(θ+k )|z〉 − 〈z|M(θ−k )|z〉
]

,

with θ±k = θk ± π/2. The above expression provides an an-

alytical evaluation of the gradient of an objective function in-

volving Pauli operators.

In Fig. 7, we schematically illustrate the deep circuit of

our method, which is composed of Nt dashed blocks (refers

to Nt Trotter steps). In each unitary operator Uk(fk), all ro-

tating parameters (θ1, θ2, θ3) are fk-correlated, as detailed in

Fig. 1. Let us now select an arbitrary single-qubit gateR(θk),
with a gradient obeying the parameter shift rule in Eq. (A3).

According to the algorithm in Fig. 1, the rotation θk is cor-

related with fk as a liner form: θk = c1 · fk, where c1 is

a real number. Starting with Eq. (A2), we have ∂fkJ =
c[J(fk + s)− J(fk − s)] = c[J(θ′k + s)− J(θ′k − s)], where

the gradient is independent of the initial angle θ′k = θk/c1.

Consequently, we find ∂fkJ = 2c · ∂θkJ , while the shift fk is

s = π/2. Furthermore, we introduce the notation

|c| =
Nr
∑

i=1

1

2Nr

∣

∣

∣

∣

∂fkJ

∂θkJ

∣

∣

∣

∣

, (A3)

where the absolute average value |c| over Nr random initial-

ization. In Fig. 8(a), we calculate the average value |c| with

Nr = 50, which is irrelevant to n.

Appendix B: Comparisons of optimizers

In Appendix (B), we compare the performance of several

classical optimizers for the same optimization task with statis-

tical errors from a finite number of measurements. We choose

widely used optimizers, namely, SLSQP, COBYLA ,SPSA , BFQS

based on the library of qiskit. In Fig. 8(b), we present the

infidelity as a function of the training iteration by using var-

ious optimizers. The SPSA stands out for its performance in

an optimization task in the presence of bit-flip noise.
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FIG. 8. (a) The coefficient |c| as a function of qubit number n. (b)

Various training processes for using different optimizers are illus-

trated. All calculations are proceeded with the parameters β = 0,

Nm = 8192, and others in Fig. 3.
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