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The molecular structure of moving contact lines (MCLs) and the emergence of a corresponding
macroscopic dissipation have made the MCL a paradigm of fluid dynamics. Through novel averaging
techniques that remove capillary waves smearing we achieve an unprecedented resolution in molec-
ular dynamics (MD) simulations and find that they match with the continuum description obtained
by finite element method (FEM) down to molecular scales. This allows us to distinguish dissipation
at the liquid-solid interface (Navier-slip) and at the contact line, the latter being negligible for the
rather smooth substrate considered.

Controlling the properties of MCLs is key to many mod-
ern technological applications including printable photo-
voltaics [1], ink-jet printing [2], liquid coating and paint
drying processes [3]. However, modeling the MCL is com-
plicated because continuum descriptions often fail to de-
scribe the fluids microstructure in its proximity. A naive
approach based on the no-slip boundary condition en-
counters a non-integrable stress singularity, raising what
is known as the Huh-Scriven paradox [4]. Several mech-
anisms have been proposed to remove the singularity at
the MCL present in dynamic wetting [5–8]. Among these
mechanisms are, for example, the Cox-Voinov law [9, 10],
the molecular-kinetic theory [11, 12] and the interface for-
mation theory [13, 14]. Notably, all these approaches rely
on the introduction of a microscopic length scale below
which the classical hydrodynamics of a homogeneous, in-
compressible, Newtonian fluid fails. To extend the appli-
cability of hydrodynamics, additional dissipation mecha-
nisms have been suggested, including Navier-slip [15] and
MCL dissipation [16, 17]. In addition, this picture is fur-
ther complicated by the number of physical mechanisms
that can contribute to the dissipation at the liquid/solid
interface [18, 19], including phonons [20, 21], electronic
excitations [22], and charge build-up [23].

Accordingly, a detailed picture is needed to understand
these phenomena at the molecular scale in the MCL re-
gion. MD simulations can deliver a microscopically de-
tailed picture of the MCL [24] and have been successful
on many fronts, for example, in evidencing the break-
down of local hydrodynamics [25], providing support
for the molecular-kinetic theory both with simple [26]
and hydrogen-bonding substrates [27] or investigating the
time scale for the liquid/solid tension relaxation [28]. In
previous MD studies, the fluid flow at the contact line
was affected by evaporation [29] and significant contact
line dissipation emerged from strong hydrogen bonding
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FIG. 1. MD snapshot of a cylindrical droplet with 7,332 water
molecules in a box Lx×Ly×Lz = 198.9 Å×46.8 Å×170 Å and
external acceleration of 5 × 10−3Å/ps2 along the x-direction.
Red: oxygen atoms; Blue: oxygen atoms at the liquid/vapor
interface; Orange: oxygen atoms at the MCL; Gray: carbon
atoms of the substrate. Top: side view; Bottom: top view of
the first water layer

at the liquid-solid interface [30], neither of which plays a
role in our work.

Despite the potential for providing information at
the molecular scale, the presence of thermal capillary
waves [31] is setting a limit to the resolution one can
achieve close to the liquid/vapor interface. Capillary
wave theory [32] predicts that spontaneous surface ex-
citations broaden the width of fluid interfaces with a
logarithmic divergence that depends on the simulation
cell size. For small molecular liquids and typical simula-
tion cells, these fluctuations are larger than the molecular
size [31, 33] at room temperature. Several computational
strategies have been devised to recover the intrinsic struc-
ture of fluid interfaces [33–39]. In some of these, including
the approach reported here, one first identifies molecules
at the phase interface as shown in Fig. 1, then uses them
to define a local coordinate system. In turn, one can use
this coordinate system to compute the profiles of chosen
observables as a function of the local distance from the
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interface. To obtain further insight into the dynamics of
the molecules at the MCL, one has to cope with its fluctu-
ations. In this case, however, two interfaces are involved
(liquid/vapor and liquid/solid), and one-dimensional in-
trinsic profiles are not enough to describe the system.
Here, we extend the approach of intrinsic profiles to the
region around the three-phase contact line by introduc-
ing two-dimensional density maps that are functions of
the position relative to the liquid/vapor and liquid/solid
interfaces, respectively. This procedure allows us to re-
solve the structure and the flow close to the MCL at an
unprecedented resolution.

We performed MD simulations of a cylindrical water
droplet moving on a rigid substrate under the influence
of a constant acceleration parallel to the solid surface.
Water is modeled using the SPC/E potential[40] and
the substrate as a rigid, graphite-like structure with de-
fects [41], obtained by removing 35% of randomly se-
lected surface atoms. The presence of defects serves
rather well the purpose of providing a friction coefficient
thanks to the lateral modulation of the water-surface in-
teraction potential. All molecular dynamics simulations
are performed with an in-house modified version of the
GROMACS simulation package, release 2019.4[42], that
uses a Nosé-Hoover [43, 44] thermostat coupled only to
the direction orthogonal to both the surface normal and
the external force[25], keeping in mind that this intro-
duces a bias in the surface energies [45]. Further de-
tails are reported in the Supplemental Material[46]. In-
put files and GROMACS source code patch are provided
in a dataset available on Zenodo[53].

The first step in computing intrinsic maps of the
droplet’s hydrodynamic fields is identifying the sur-
face molecules at the liquid/vapor interface, cf. Fig. 1.
Here, as detailed in the Supplemental Material[46],
we use the GITIM algorithm [39] as implemented
in the Pytim package[50]. The surface molecules
are used to provide the location of the (contin-
uum) liquid/vapor ζV (r) and liquid/solid ζS(r) inter-
faces by using a linear interpolation between neigh-
boring triplets of surface molecules. We compute
the intrinsic map of a generic local observable A as
A(ξ) = 〈

∑
iAi

∏
α δ (ξα −min |ri − ζα|)〉 /N(ξ). Here,

α = {V, S} labels the liquid/vapor and liquid/solid in-
terfaces and ξ = (ξV , ξS) are the distances of a point
in space from the two surfaces. The angular brackets
indicate a statistical average over time, and the index i
labels particles. The normalization factor N(ξ) is cal-
culated from the intrinsic density map of uniformly dis-
tributed random points within the liquid phase. The
two-dimensional intrinsic map A(ξ) is best interpreted if
remapped back from the generalized coordinates (ξV , ξS)
to the Cartesian ones using the average location of the
interfaces as the origin of the local frame. This approach
provides precise information close to the liquid/vapor in-
terface but loses accuracy far away from the interface.
However, this region is not of concern for the current
investigation, which focuses on the neighborhood of the

FIG. 2. Intrinsic map of the density (color) and velocity field
in the co-moving reference frame (arrows). The molecules be-
longing to the liquid/vapor interface have zero inherent dis-
tance ξV and are represented here using the result of an el-
liptic fit through their average position (small open circles).
The density field has resolution 0.22 Å× 0.2 Å and is normal-
ized with respect to the bulk density. The velocity field has
resolution 1.7 Å × 1.6 Å and is scaled such that an arrow of
length 1 Å on the plot corresponds to a velocity of 0.01 Å/ps.

MCL.
The intrinsic density field reported in Fig. 2 reveals the

oscillations associated to molecular layering at both the
liquid/solid and liquid/vapor interfaces. In particular,
a pronounced gap region due to hard-core repulsion ap-
pears next to both interfaces. As shown in Fig. 2, the res-
olution of the velocity field matches the molecular scale,
with bins of size 1.7 Å× 1.6 Å, while the density bins are
of size 0.22 Å× 0.2 Å. We do not observe any trace of an
influence of positional correlations on the velocity field,
which is a much smoother function of the position than
the density. It is often remarked that continuum hydro-
dynamics breaks down in simple liquids below scales of
few molecular diameters [54, 55]. However, this is true
for processes like sound propagation that, at that scale,
happen during extremely short times on the order of a pi-
cosecond. In contrast, we compute the stationary fields
of the hydrodynamic quantities by averaging over time
intervals so large that no memory effect can survive.

The density map is in fact a correlation function and
the oscillations can be interpreted as in a pair correlation
function. The local density, computed as the (reciprocal)
average volume available for each atom, is constant over
the whole liquid phase and the droplet is incompress-
ible (see plot of ∇ · v in Fig. A8 of the Supplemen-
tal Material[46]) down to and below the molecular scale.
Therefore, the stationary velocity field that we compute
from MD data can be modeled as that of a homogeneous
incompressible fluid in the FEM simulations.

In Fig. 3 we report the horizontal velocity profile for
molecules in the slab z < 6Å, computed in the droplet
co-moving frame using both the global and intrinsic co-
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FIG. 3. Top panel: horizontal velocity profiles (squares:
global coordinate system, circles: intrinsic profiles) sampled
along x at z = 3 ± 3 Å. The dot-dashed curve is a fit to a
power law c+ a(x− x1)−1 + a(x2 − x)−1. The dashed line is
the convolution of the best-fit power law with a Gaussian as
described in the text (a = −0.435 Å2/ps, c = −0.0495 Å/ps,
x1 = 66.42 Å, x2 = −66.33 Å). The green curve is the FEM
solution evaluated at the interface z = 0. Bottom panel:
double logarithmic scale, same data as in the top panel but
symmetrized along the vertical axis and shifted so that the
fitting constants c and x1 are zero (a = 0.335 Å2/ps).

ordinate systems. The velocity sampled in the global co-
ordinate system extends further than the intrinsic one
because of the fluctuations. Both profiles coincide in
the region |x| < 50Å, showing a steep increase when
departing from the droplet center. However, close to
the MCL, the velocity profile computed in the global
coordinate system flattens out. In contrast, the intrin-
sic one is compatible over its entire extension with a
power-law slip profile. The profile in the global coor-
dinate system can be very well described in the spirit

of the capillary wave theory by using quantities Ã(x) =∫ Lx

0
G(x−x′)A(x′)dx′ convoluted with the Gaussian dis-

tribution G(x) ∼ exp[−x2/(2σ2)] of the interface fluc-
tuations, so that vx = p̃x/ρ̃. Here, A(x) is the profile of
observable A averaged over the whole range in y direction
and over the first molecular layer in z direction.

In the top panel of Fig. 3 we report as a dashed-line
the velocity profile obtained by applying this convolu-
tion procedure to the best fit intrinsic velocity profile
vx ∼ (x−x1)−1+(x2−x)−1 and a step-like density profile,
using the interfacial layer width σ = 2.5Å. The resulting
profile reproduces very well the flattening in the region
close to the MCL. These features are more evident in the
double logarithmic scale, reported in the right panel of

Fig. 3, where we have symmetrized the profile around its
minimum and shifted it vertically and horizontally by the
fitting constants x1 and c. Our results show that after
removing the capillary fluctuations via the intrinsic map
method, the power-law behavior extends over the entire
range down to the molecular length scale, and the previ-
ously reported departure from the power-law[56] is due to
the smearing introduced by capillary waves rather than
a breakdown of hydrodynamics at short length scales.

The present computational approach allows us to dis-
cuss some of the proposed corrections to continuum mod-
els. We compare our MD simulation results with a full
hydrodynamic continuum model for the MCL, where
we solve a Stokes problem for an incompressible vis-
cous Newtonian fluid (Re=0) featuring a free interface
subject to capillary forces, which is driven by a con-
stant acceleration g. Dissipative processes are included
by the combination of Navier-slip, i.e., βux = µ∂zux,
and dynamic contact line dissipation [57], i.e., νx · ux =
γ/δ(cos θe−cos θ). The slip parameter β enhances the in-
homogeneity in the flow by increasing ∂zux. In contrast,
the contact line friction δ enhances the asymmetry of the
droplet shape through advancing and receding contact
angle, e.g., cf. Fig. A5 of the Supplemental Material[46].
Note that we use constant slip length and contact line dis-
sipation, as space-dependent coefficients would yield an
overdetermined improved fit but not lead to new physical
insights. We discretize the system of partial differential
equations using the isoparametric P2−P1 Taylor-Hood fi-
nite elements combined with an ALE mesh motion strat-
egy, for details cf. the Supplemental Material[46] and
Refs. [58, 59].

For a given acceleration g and droplet size L, we
compare the velocity of traveling-wave solutions from
the Stokes problem u(t, r) = u0(x − v0t, z) with the
corresponding velocity from the MD problem by com-
puting the root mean square deviation (rmsd) ∆, rel-
ative to the MD accuracy, with ∆2 =

∫
Ω0
ρ|u0 −

v|2/δv2 dxdz
/ ∫

Ω
ρ dx dz, in the comoving frame Ω0 =

Ω−(v0, 0)t, where δv(x, z) is the space-dependent MD av-
eraging error of v. In Fig. 4 we show the excellent agree-
ment of the horizontal components of MD and Stokes
velocity for a droplet with optimized β and δ. Corre-
spondingly, in Fig. 5 we show the rmsd ∆ for different
pairs of δ and β, where the optimal parameters suggest a
vanishing or small contact line dissipation 0 < δ < 0.05
and β = 1.38, corresponding to a slip-length b = 40 Å.
Because ∆ is a relative measure of inaccuracy with re-
spect to that of MD, we expect ∆ ∼ O(1) for a good
fit, similarly to a reduced χ2 test. For given δ, the local
minima in Fig. 5 suggest that also other parameters with
larger δ and smaller β are feasible. However, those pa-
rameters are not optimal for the prescribed bulk viscosity
µ = 0.7 mPa s but could possibly be improved by fitting
the entire triple (µ, β, δ), considering spatially inhomoge-
neous parameters or a compressibility of the fluid.

The water molecules are subjected to a friction force
that, in steady-state conditions, balances g and is de-
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FIG. 4. (Left: averaged MD velocity profile v = (vx, vz) (shown for ρ > 0.66ρ̄); Right: optimal Stokes velocity profile
u0 = (u0x, u0z) for β = 1.38 (slip-length b = 40Å) and δ = 0, Bo = 0.2414 and ϑe = 97.2◦ in a comoving frame (vectors) and
absolute horizontal velocity (shading).
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FIG. 5. Rmsd ∆ between FEM and MD flow fields for dif-
ferent dissipation parameters β (Navier-slip) and δ (contact
line) in the hydrodynamic Stokes model.

fined as the horizontal component of the force density
fΓ,x(x, z) acting from the substrate on water molecules.
Even though long-range corrections for dispersion forces
are in place, the friction force becomes negligible at larger
elevations z ' 10 Å and is acting almost exclusively
on the first layer of water molecules at the substrate.
Therefore, we can define a friction force per unit area
as FΓ(x) =

∫∞
0
fΓ,x(x, z)dz. This force is the counter-

part of the surface friction that in sharp interface models
like the present FEM can be calculated from the stress
t · σν ≡ −µΓt · u at the solid-liquid interface, where t
and ν are the corresponding tangential and normal vec-
tors. Fig. 6 shows the friction surface density FΓ obtained
from the MD trajectories and compared to the FEM re-
sults. Far from the droplet edges, both force profiles are
in excellent agreement. However, close to the advancing
and receding MCL, the friction force behaves qualita-
tively differently. This mismatch contrasts the overall
good match of the slip velocity profile Fig. 3. Therefore,
even though the Navier-slip boundary condition is an ex-
cellent effective model in reproducing the slip velocity,
the same is not true concerning the friction force near
the MCL.

This difference implies that the underlying dynamics

FIG. 6. Profile of the friction surface density computed from
the MD data in the global (squares) and intrinsic (circles)
coordinate systems. The green curve is the FEM solution
evaluated at the interface z = 0.

is more complex than that encoded into the Navier-slip
boundary condition. Remarkably, even in the present
case, where the substrate is particularly smooth and the
optimal FEM solution is compatible with zero contact
line dissipation, we observe a significant deviation of the
friction force from the one emerging from the Navier-slip
boundary condition. Note that, upon integration of the
force density in Fig. 6, this contribution is compatible
with a contact line friction δ / 0.05. Larger defects or
soft substrates will enhance this effect.

In this work, we compared microscopic MD simulations
and hydrodynamic FEM simulations of sliding droplets
with respect to their densities, flow and force fields at in-
terfaces and MCLs. Using a novel averaging method, we
showed that assumptions of continuum hydrodynamics
are valid near the MCL. However, despite an effectively
vanishing contact line friction, corrections to the force
balance are clearly visible. In the future, larger droplets
or elastic substrates with stronger roughness should be
investigated to further enhance contact line friction and
suppress density oscillations. Additionally, one should
consider thermodynamics, compressibility, and evapora-
tion of the liquid phase to better match continuum hydro-
dynamics with the microscopic interacting-particle sys-
tem.

The datasets available on Zenodo[53] provide MD in-
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put files, the GROMACS source code patch for the ther-
mostat, averaged data from MD simulations (Cartesian
mesh with mass density and velocity field) as well as
FEM simulation solutions (triangular 2D droplet mesh
with velocity field) in ASCII format, and MATLAB func-
tions for the data import and plot generation. The
MATLAB code is available at https://github.com/
dpeschka/stokes-free-boundary/.
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