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Abstract

Deep clustering aims to learn a clustering representation
through deep architectures. Most of the existing methods
usually conduct clustering with the unique goal of maxi-
mizing clustering performance, that ignores the personalized
demand of clustering tasks.However, in real scenarios, ora-
cles may tend to cluster unlabeled data by exploiting dis-
tinct criteria, such as distinct semantics (background, color,
object, etc.), and then put forward personalized clustering
tasks. To achieve task-aware clustering results, in this study,
Oracle-guided Contrastive Clustering(OCC) is then proposed
to cluster by interactively making pairwise “same-cluster”
queries to oracles with distinctive demands. Specifically, in-
spired by active learning, some informative instance pairs are
queried, and evaluated by oracles whether the pairs are in
the same cluster according to their desired orientation. And
then these queried same-cluster pairs extend the set of pos-
itive instance pairs for contrastive learning, guiding OCC to
extract orientation-aware feature representation. Accordingly,
the query results, guided by oracles with distinctive demands,
may drive the OCC’s clustering results in a desired orienta-
tion. Theoretically, the clustering risk in an active learning
manner is given with a tighter upper bound, that guarantees
active queries to oracles do mitigate the clustering risk. Ex-
perimentally, extensive results verify that OCC can cluster ac-
curately along the specific orientation and it substantially out-
performs the SOTA clustering methods as well. To the best of
our knowledge, it is the first deep framework to perform per-
sonalized clustering.

Introduction
Clustering, as one of the most fundamental unsupervised
learning techniques[1], has been successively used in a wide
range of applications, such as image processing[36], gene
analysis[35] and text categories[37]. Recently, by employing
highly non-linear latent representations[7], Deep Clustering
(DC) is widely studied and achieves promising clustering
results[24, 8, 10, 21, 11]. Typically, these existing cluster-
ing and DC techniques share a common and unique goal,
to maximally enhance the clustering performance. However,
the personalized demand of clustering tasks is mostly ig-
nored and dismissed.

In the real applications, there are more than one available
cluster demands. Fig. 1 shows an example of the diversity
of clustering orientations. Some tasks require clustering in
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Figure 1: The diversity of clustering orientation. The two
oracles make different judgments on the task of dividing the
four images into two clusters.

.

terms of objects, so the oracle indicates that duck and fox
belong to the same cluster, categorized as animals. Some
other tasks, however, demand distinguishing backgrounds,
the oracle then indicates duck and sailboat belong to the
same cluster, categorized as river. In such cases with per-
sonalized demands, the existing clustering techniques, clus-
tering with default orientation, may decline or even be un-
workable without the guide of oracles. Accordingly, it is still
a challenging problem to cluster along a desired orientation.

To solve this problem, in this study, we propose an Oracle-
guided Contrastive Clustering(OCC) model to achieve task-
aware clustering results in the guide of oracles with dis-
tinctive demands. As active learning, effectively and inter-
actively engaging human for improving annotating perfor-
mance, benefits us for clustering in the desired orientation,
it is exploited to actively select informative instance pairs
for oracle to provide answers of same-cluster queries in the
forms of yes or no. Thus, the distinctive demand of ora-
cles is embedded in clustering with “queries and answers” in
the loop. To catch orientation-aware feature information in
deep clustering, the queried same-cluster pairs are regarded
as extensions of the positive instance pairs in the process of
contrastive learning, prompting the network to learn shared
features between same-cluster pairs. Consequently, with the
learned orientation-aware features, the clustering solution is
achieved along the personalized demands.

Specifically, OCC first constructs the initial positive in-
stance pairs via random data augmentations. Then some in-
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stance pairs are selected for annotation according to their
similarity and intensity of variation. Subsequently, the same-
cluster sample pairs annotated by the personalized oracle
extend the positive instance pairs in the contrastive loss.
After that, the feature output by the backbone network is
projected into the representation space and the assignment
space, wherein OCC learns shared features between the pos-
itive instance pairs by active contrastive losses. The features
are orientation-aware, and thus personalized clustering is
achieved in the desired orientation. Our major contributions
can be summarized as follows:

• We propose a novel model, named OCC, that exploits
active learning joint with contrastive learning to catch the
desired feature, and to guide the orientation of clustering
according to the personalized demand.

• To the best of our knowledge, it is the first work that con-
cerns the diversity of clustering orientation in deep clus-
tering. Unlike the existing clustering methods, the pro-
posed OCC is bi-objective, that is, to maximize the clus-
tering performance and to accurately cluster in a specific
orientation.

• By strict theoretical analysis, a tighter upper bound, that
can be mitigated by active query with a specific orienta-
tion, is given for the clustering risk in an active learning
manner. Simultaneously, extensive experiments demon-
strate that OCC can learn clustering features in a targeted
manner.

Related Work
Deep Active learing
Active learning[12] aims to query the optimal samples in
the unlabeled dataset to reduce the cost of labeling as much
as possible while still maintaining performance. The most
common query strategies are uncertainty-based approaches,
which select samples with high information content to de-
crease labeling costs. For example, ENS-VarR[13] uses
Monte-Carlo dropout and deep ensembles to obtain well-
behaved uncertainty estimates from deep neural networks.
Ranganathan et al. [14] make efforts to integrate an active
learning based criterion in the loss function used to train
a deep belief network. Density-based approaches have also
been applied to CNNs. Core-Set[17] chooses several scat-
tered center points to minimize the max distance between a
data point and its nearest center. TOD[18] is a task-agnostic
approach based on the observation that the samples with
higher loss are usually more informative to the model than
that with lower loss. The method propose an effective loss
estimator Temporal Output Discrepancy to query samples
with higher loss.

Active Clustering
Active learning is also widely used in the field of
clustering[38]. Dasgupta and Hsu[39] first proposed the idea
of guided sampling by querying samples based on the re-
sults of hierarchical clustering. ALEC[40] select representa-
tive samples drawn on the structure of the data.

Although a number of active methods query the label
of a single sample, studies of active clustering prefer pair-
wise queries[42]. Xiong et al.[41] proposed an active spec-
tral clustering algorithm with k-nearest neighbor graphs, se-
lecting pairwise constraints based on node uncertainty. Ash-
tiani et al. [19] introduce a semi-supervised active cluster-
ing (SSAC) framework asking whether two given instances
belong to the same cluster or not and demonstrate that ac-
cess to simple query answers can turn an otherwise NP-hard
clustering problem into a feasible one. Dasgupta and Ng[20]
poses the problem that clustering algorithms only group doc-
uments along the most prominent dimension without know-
ing the user’s intention, which is similar to our problem of
diversity of image clustering criteria. It proposes an active
spectral clustering algorithm, which makes it easy for a user
to specify the dimension along which she wants to cluster
the data points is sentiment.

Deep Clustering
Deep neural networks are explored to improve clustering
performance due to their ability to learn representations on
complex high-dimensional datasets[22, 23]. Recent works
focus on end-to-end methods to transform the data into
clustering-oriented representations. For example, DEC[24]
optimizes the cluster centers and embedded features simul-
taneously by minimizing the KL-divergence for features in
the latent subspace. DCN[9] scatter samples in the low-
dimensional space around their corresponding cluster cen-
troids to learn a K-means friendly representation. IDFD[31]
is a spectral clustering friendly representation learning by
reducing correlations within features.

Self-augmentation based methods also achieve good per-
formance. IIC[25] maximizes the mutual information be-
tween positive instance pairs to discover clusters. PICA[26]
clusters by minimizing the cosine similarity between the
cluster-wise assignment vectors to learn the most seman-
tically plausible clustering solution. DCCM[27] introduces
the augmentation and utilizes the correlations among repre-
sentations. Inspired by the above ideas, CC[10] proposes a
dual contrastive learning framework. This method is based
on the observation of “label as representation”, conducting
contrastive learning at not only the instance-level but also
the cluster-level to learn clustering-favorite representations.
GCC[21] selects the positive pairs and negative pairs by the
KNN graph constructed on the instance representation.

These methods have achieved excellent results on large
datasets in default orientation but cannot cluster personal-
ized. Our approach introduces active learning into deep clus-
tering, where oracles guide the network to learn cluster-
oriented features.

Method
Proposed model: OCC
We propose a novel model, named OCC, by exploiting active
learning to guide the network to cluster in a given orientation
and to improve clustering performance as well. One active
cycle of OCC is illustrated in Fig. 2. Fig. 2 depicts that active
queries to oracles are embedded in the loop of OCC. In terms
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Figure 2: One active cycle of Oracle-guided Contrastive Clustering. A shared deep neural network generates representations
from two random augmentations of the data, projected into representation space and assignment space. We explore a scoring
function to measure the informativeness of each sample pair and select the largest one to submit a query to the oracle. The
obtained same-cluster pairs are leveraged to extend the positive instance pairs in the contrastive loss.

of the designed scoring function on the embedding features,
some instance pairs are actively selected for annotation, and
they are judged whether belonging to the same cluster in
the forms of yes or no. Simultaneously, to learn cluster-
friendly features and to compact cluster assignments, re-
spectively, OCC projects the embedding features into repre-
sentation and assignment spaces. Finally, these two spaces,
augmented with annotated instance pairs, are optimized with
bi-objectives: better clustering performance along a given
orientation by leveraging active contrastive loss.

In OCC, the contrastive loss is recontructed by extending
the positive instance pairs with pairwise annotations given
by the oracle. For example, given a data xi, we first se-
lect two stochastic data transformations T a, T b from the
same family of augmentations T and apply them to the data.
Therefore, the augmented samples xai = T a(xi) and xbi =
T b(xi) constitute the initial positive sample pair (xai , x

b
i ). At

this time, the oracle informs that the samples of xi and xj
belong to the same cluster, then the positive instances related
to xai include xbi , x

a
j , and xbj .

In the followed two subsections, we describe the construc-
tion of our contrastive loss and query strategy in detail.

Active Contrastive Loss
Given a mini-batch size of N , let X denotes the feature ma-
trix of 2N augmented samples {xa1 , ..., xaN , xb1, ..., xbN} in
the space. The same-cluster sample pairs given by the oracle
is represented by a matrix CN∗N and

Ci,j =

{
λ, yi = yj

0, others
(1)

where λ is a variable weight parameter that controls the
weight between the initial positive pair and the queried pos-
itive pair. Ci,j indicates if the oracle annotations xi and xj
belong to the same cluster. We leverage cosine similarity to

measure the similarity between xi and xj , i.e.

sim(xi, xj) =
(xi)(xj)

>

‖xi‖‖xj‖
(2)

Let s(xi, xj) = exp(sim(xi, xj)/τ), where τ denotes a
temperature parameter. For an augmented sample xai , the
relevant positive instances are xbi and xaj , xbj if Ci,j > 0.
To narrow the distance between positive instances pairs and
learn their similar features, we set the objective function to
be the ratio of the similarity between positive pairs to the
similarity between negative pairs. The active contrastive loss
of xai is defined as

lai =
s(xai , x

b
i ) +

∑N
j=1 Ci,j [s(x

a
i , x

a
j ) + s(xai , x

b
j)]∑N

j=1(Ci,j + 1)
∑N
j=1[s(x

a
i , x

a
j ) + s(xai , x

b
j)]

(3)

where
∑N
j=0(Ci,j + 1) is a method of data normalization to

control the range of the loss. In the denominator, we lever-
age all of the samples instead of the negative instances for
the same reason. Although it seems to affect the similarity
to all instances, including itself, it only reduces the distance
between negative instances due to the increased distance be-
tween positive instances in the molecule.

The loss in the sample space X is the sum of all sample
losses, i.e.

L(X,C) = 1

2N

N∑
i=1

(−log(lai )− log(lbi )) (4)

The network extracts featuresZ from the augmented sam-
ples and projects the features into the representation space
Ẑ ∈ R2N∗M and assignment space Ŷ ∈ R2N∗K , where
M is a preset feature dimension and K is the number of
clusters. Ẑi is the M -dimensional feature of the augmented
sample xi and Ŷi is the assignment probability vector of the



Algorithm 1: Oracle-guided Contrastive Clustering
Input: Training dataset X ; Cluster number K; Training
epochs E; Batch size N .
Parameter: Query times Q; Temperature parameter τ ;
Hyper-parameters λ.
Output: The clustering result C.

1: for epoch = 1 to E do
2: for a sampled mini-batch {xi}Ni=1 do
3: Generating augmentations for the sampled images;

4: Utilize the network to extract feature matrix Z;
5: Select the sample pair with the highest score ac-

cording to Eq. 6;
6: The oracle indicates the sample pair and records it

with Eq. 1;
7: Project Z onto the representation space to get Ẑ;
8: Project Z onto the assignment space to get Ŷ ;
9: Calculate the active contrastive loss L through Eq.

2–5;
10: Update the network by minimizing L;
11: end for
12: end for
13: Calculate C = argmax(Ŷ )
14: return C

clusters of xi. In general, contrastive methods learn the sim-
ilar features of positive instance pairs in the representation
space and narrow the intra-cluster distance while expand-
ing the inter-cluster distance in the assignment space. Here
we also implement contrastive learning of instances in the
assignment space though these two spaces are related to a
certain extent. It will encourage the positive pairs to be allo-
cated in the same cluster and achieve better performance in
practice. The overall objective function is defined as

L = L(Ẑ, C) + L(Ŷ , C) + L(Ŷ >, O)−H(Ŷ ) (5)

where C is the query matrix defined in Eq. 1 so that
L(Ẑ, C)+L(Ŷ , C) denotes the contrastive loss for instances
on representation space and assignment space. Matrix O is
a zero matrix and L(Ŷ >, O) denotes the contrastive loss
for clusters on assignment space. According to Eq. 3, the
active loss function degenerates into the initial contrastive
loss if C = O. Positive pairs at the clustering level con-
sist only of the same column of the cluster assignment ma-
trix of the augmented samples, so the contrastive loss is not
expanded. H(Ŷ ) =

∑K
i=1 P (ŷi)logP (ŷi) where P (ŷi) =∑2N

j=1 Ŷj,i/||Ŷ ||1, which is leveraged to balance the number
of samples in each cluster.

Pairwise Query Strategy
In the pairwise query strategy, oracles judge whether the
sample pairs belong to the same cluster to get pairwise con-
straints. Thus the network clusters along to the desired orien-
tation and achieves better clustering performance. The scor-
ing function Cyclic Similarity Discrepancy(CSD) of a sam-

ple pair (xi, xj) is defined as

score(xi, xj) = sc(xi, xj)|sc(xi, xj)− sc−1(xi, xj)| (6)

where sc(xi, xj) = sim(xi, xj |c) denotes the similarity of
sample pair (xi, xj) in the c−th iteration. The method is in-
spired by TOD[18], which argues that samples with the most
significant change in features also have the highest true loss.
We tend to select sample pairs that are likely to be similar
and have a significant discrepancy in the similarity during
the iterative process. Such samples have been shown to have
large losses in TOD. In the following section, we will prove
that selecting these samples helps to receive a tighter bound
of clustering risk.

Generalization bound
Clustering aims to divide the samples into several clusters
such that samples lying in the same cluster have more simi-
larities than those in others. We formally define the problem
of clustering as minimizing the following criterion:

Ez∼Z [l (z;h)] = Ez∼Z [1− s(zi, zj ;h)] (7)

where Z is the population of same-cluster pairs, s is a func-
tion measures the similarity of two samples in sample pair
z. This criterion is expected clustering risk proposed by Liu
et al.[33].

The optimization objective we define in Eq. 7 is not di-
rectly computable since we do not have access to all the in-
formation of sample pairs. In order to design an active learn-
ing strategy which is effective in pairwise query setting, we
consider the following decomposition of expected cluster-
ing risk. This is a probabilistic sampling procedure inspired
from Pydi et al.[34].

Ez∼Z [l (z;hS)] ≤ | Ez∼Z [l (z, hS))]−
1

|T |
∑
z∈T

l (z, hS) |︸ ︷︷ ︸
(A) excess clustering risk

+
1

|T |
∑
z∈T

Qz
pz
l (z, hS)︸ ︷︷ ︸

(B) extended clustering risk

+ | 1
|T |

∑
z∈T

l (z, hS)−
1

|T |
∑
z∈T

Qz
pz
l (z, hS) |︸ ︷︷ ︸

(C) active clustering risk

(8)
where T denotes the same-cluster pairs in our samples de-
fined as target sample pairs, pz denotes the probabilities of
sample pairs z being queried, Qz denotes a set of Bernoulli
random variables such that P (Qz = 1) = pz . Sample pairs
z will be queried when Qz = 1.

Term (A) corresponds to the excess clustering risk of the
algorithm hS . It denotes the difference between expected
clustering risk and empirical clustering risk. (B) corresponds
to active clustering risk for hS over the sample pairs queried.
This term could be minimized directly during the training
process. (C) corresponds to active clustering risk. It is the
absolute difference between the average clustering risk over



all target sample pairs and the active clustering risk of the
queried sample pairs.

According to Liu et al.[33], the excess clustering risk
bounds in Eq. 8 are mostly of order O(

√
K/
√
n) provided

that the underlying distribution has bounded support. In a
large data set, n is much more large than K, term (A) could
be small. Moreover, it is widely observed that the deep neu-
ral networks are highly expressive leading to very low train-
ing risk on selected sample pairs. Empirically, the active
clustering risk is small. Hence, the critical part for active
clustering are active clustering risk. The following theorem
is presented to analyze its upper bound.

Theorem 1. Define Dp :=
∑
z∈T

l(z,hS)
pz

. Let cδ > 0 be
a constant that depends on δ. Active clustering risk can be
bounded as follows, with probability at least 1− δ

| 1
|T |

∑
z∈T

l (z, hS)−
1

|T |
∑
z∈T

Qz
pz
l (z, hS) | ≤ cδ

Dp

|T | (9)

Proof of Theorem 1. Define Hz = l(z, hS) − Qz

pz
l (z, hS),

M =
∑
z∈T E[H2

z ], we get the following bound on M

M =
∑
z∈T

V ar[H2
z ]

=
∑
z∈T

l(z, hS)
2(

1

pz
− 1)

≤
∑
z∈T

l(z, hS)
2

p2z
= Dp

(10)

We further use the Bernstein’s inequality and conclude
that with probability at least 1− δ

| 1
|T |

∑
z∈T

l (z, hS)−
1

|T |
∑
z∈T

Qz
pz
l (z, hS) |

=
1

|T |
∑
z∈T

Hz

≤ Dp

3|T |
log

1

δ

(
1 +

√
1 +

18

log 1
δ

) (11)

Unlike the one proposed by Pydi et al. [34], our bound is
tighter because we choose true loss instead of pseudo-loss.
It is clear from Eq. 9 that choosing p so as to minimize Dp

will result in the tightest bound for the expected clustering
loss. In the next theorem, we present the optimal sampling
probability distribution p∗ that minimizes Dp.

Theorem 2. The optimal distribution p∗ for minimizing
Dp :=

∑
z∈T

l(z,hS)
pz

is given by

p∗z =
l(z, hS)

1/2∑
z∈T l(z, hS)

1/2

Proof of Theorem 2 is the same with proof of Theorem 6.3
in Pydi et al.[34].

Dataset Samples Classes Target Clusters
CIFAR-10 60,000 10 2

CIFAR-100 60,000 100 4
ImageNet-10 13,000 10 2

ImageNet-Dogs 19,500 15 2

Table 1: A summary of the datasets.

This theorem suggests that to minimize the clustering risk,
it is workable to design a query strategy by selecting in-
stance pairs with higher true loss. As the true losses of the
instance pairs are distinct under various clustering criteria,
the instance pairs with high cluster loss indicate that they
are key instances that signify clustering tasks. Our pairwise
query strategy is a CSD-based data sampling strategy, theo-
retically, instance pairs with large clustering risk can be ob-
tained in the unlabeled pool, so as to minimize the expected
clustering risk by active learning.

Experiments
Experimental Settings
Datasets To evaluate the effectiveness of the proposed
method, we conduct experiments on four widely-used image
datasets, including CIFAR-10, CIFAR-100[30], ImageNet-
10 and ImageNet-Dogs[32]. We use the training and test
sets of CIFAR-10 and CIFAR-100, and only make use of
the training set of ImageNet-10 and ImageNet-Dogs.

Artificially, we divide the initial classes of the dataset into
several target-clusters according to two distinct demands to
simulate the diversity of clustering orientation. As depicted
in Fig. 1, two distinct oracle demands cluster the images
along distinct orientations. It is worth noting that not every
demand matches the semantics of reality. Tab. 1 illustrates
the details of the adopted datasets.

Implementation Details For fairness, ResNet34 is
adopted as the backbone network without any modification.
The parameters related to deep contrastive clustering are set
following previous methods[10, 21]. Adam with an initial
learning rate of 0.0003 is adopted to optimize the network
and the batch size is set as 256. In addition, We resize all
images uniformly to the size of 224 × 224. The feature
dimensionality M of the instances in representation space
is set to 128.

Similar to the decay mechanism, the parameter λ in Eq.
1 is set to (1000 − e) ∗ 0.05 where e is the current epoch
num. Thus, the proportion of each positive pair gradually de-
creases as the number of queries increases. We query about
25% of the instance pairs for each dataset and twice per
batch. Moreover, after a number of iterations, we extend an-
notation by pseudo labeling the instances similar to anno-
tated ones with a high confidence.

All comparative experiments are implemented with three
NVIDIA TU102 RTX 2080 Ti GPUs on PyTorch platform.

Compared Methods We compared the proposed method
with both traditional and deep learning based meth-



CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-dogs

Default NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means 0.034 0.063 0.629 0.043 0.038 0.356 0.007 0.008 0.544 0.000 -0.002 0.518
PICA 0.550 0.629 0.897 0.15 0.157 0.439 0.887 0.939 0.985 0.207 0.234 0.742
GCC 0.675 0.763 0.937 0.269 0.259 0.544 0.897 0.947 0.986 0.233 0.313 0.78
CC 0.602 0.646 0.902 0.369 0.385 0.701 0.924 0.963 0.991 0.179 0.221 0.735

IDFD 0.879 0.937 0.984 0.329 0.221 0.511 0.923 0.962 0.99 0.338 0.391 0.815
OCC 0.884 0.939 0.985 0.479 0.512 0.782 0.918 0.959 0.990 0.512 0.602 0.888

Personalized NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means 0.002 0.003 0.503 0.046 0.049 0.362 0.003 0.004 0.533 0.000 -0.000 0.506
PICA 0.000 0.001 0.517 0.250 0.253 0.587 0.025 0.034 0.593 0.032 0.041 0.601
GCC 0.037 0.036 0.616 0.283 0.267 0.582 0.023 0.031 0.588 0.063 0.089 0.649
CC 0.006 0.009 0.546 0.214 0.202 0.485 0.025 0.035 0.594 0.035 0.047 0.609

IDFD 0.021 0.038 0.599 0.175 0.095 0.469 0.025 0.035 0.593 0.280 0.266 0.758
OCC 0.690 0.791 0.945 0.538 0.569 0.801 0.732 0.810 0.950 0.702 0.801 0.948

Table 2: The clustering performance under two clustering orientations, default and personalized, on four object image bench-
marks. ‘default’ perform clustering along the default orientation, while ‘personalized’ along a given and personalized orienta-
tion. The best results are shown in boldface.

ods, including K-means[2], PICA[26], GCC[21], CC[10],
IDFD[31]. We set the target number of clusters to the num-
ber of target clusters for all methods and run them in a uni-
fied environment. Moreover, two known active query strate-
gies are compared with our adopted strategy in our designed
deep framework.

Evaluation Metrics We adopted three standard cluster-
ing metrics to evaluate our method including Normalized
Mutual Information (NMI), Accuracy (ACC), and Adjusted
Rand Index (ARI). These metrics reflect the performance of
clustering from different aspects, and higher values indicate
better performance.

Experimental Results
Clustering Performance We presented the clustering per-
formance of OCC and the compared methods on four
datasets with two distinct cluster orientations in Tab. 2. From
Table 2, we observe the following facts. i) In the default clus-
tering orientation,, the clustering performance of our OCC
is obviously better than the comparison deep clustering al-
gorithms in most. It is observed that on ImageNet-10, only
IDFD slightly performs better than OCC. than . These shows
that, without personalized clustering demands, our OCC can
outperform the compared SOTA clustering methods. ii) In
the personalized clustering orientation, the performance of
the SOTA clustering methods is relatively low. This shows
that the existing SOTA clustering methods are unworkable
and not applicable for the clustering tasks with personalized
demands. iii) In the personalized clustering orientation, the
performance of OCC is high and extremely better than the
compared SOTA clustering methods. This shows that unlike
the existing methods, OCC is apt to clustering with personal-
ized demands. it also shows that the active query is workable
to guide clustering along a given orientation.
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Figure 3: The accuracy of three query strategies available on
CIFAR-10.

.

Query efficiency To verify the effectiveness of the query
strategy, we compare our adopted query strategy with two
known ones, including entropy-based query and random
query, in our designed deep clustering framework. The ran-
dom query strategy is to select instance pairs randomly. The
entropy-based query strategy selects the instance with the
maximum entropy and paired it with another medium sim-
ilar one. The results of the comparison on CIFAR-10 are
shown in Fig. 3. The percentage of queried ones to the total
instance pairs (about 200,000 for CIFAR-10) is seen as the
query cost. And it is headed as ‘% of labeled pairs’ as the
title of the vertical axis in Fig. 3 . Note that the results of un-
supervised(0%) and full-supervised(100%) learning are in-
dependent from query strategy.
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Figure 4: The evolution of features across the training pro-
cess under two clustering orientations: (a) Initial distribu-
tion of instances, (b) Instance distribution after clustering
along the default orientation and (c) Instance distribution
after clustering along a given personalized orientation. The
colors of the dots denote the 10 class labels of CIFAR-10.

We have the following observations from Fig. 3. i) it is ob-
served that the red trendline is always higher than the blue
and green ones. This indicates that our adopted query strat-
egy outperforms these two known active query ones. ii) At
25% of the query cost, our query strategy almost reaches the
highest accuracy. This shows that OCC saves a lot of anno-
tation cost.

Visualization
To vividly display the personalized clustering results, we vi-
sualize the distribution of instances in CIFAR-10 after clus-
tering. In Fig. 4, we have the following observations. i) Sub-
figure (a) shows that the instance points before clustering is
chaos. ii) Subfigure (b) shows that the yellow and orange in-
stance points cluster together, while in subfigure (c) the dark
blue and dark orange dots are clustered together. This shows
that OCC realizes personalized clusters.

Ablation Studies
Effect of contrastive learning We perform ablation anal-
ysis by removing the contrastive part of each one of the rep-
resentation and assignment spaces. Along both default and
personalized clustering orientation of CIFAR-10, the results
are shown in Tab. 3. We observe that the clustering perfor-
mance with contrastive learning in both spaces always ob-
tains the highest values. This shows it is necessary to con-
duct contrastive learning in both spaces and it is effective in
accurately catching the desired features by contrastive learn-
ing.

Effect of label extension We perform ablation analysis by
removing the operation of label extension. Along both de-
fault and personalized clustering orientation of CIFAR-10,
the results are shown in Tab. 4. It is observed that it can
obtain a substantially higher performance with label exten-
sion. This shows that label extension benefits clustering per-
formance improvement by increasing the annotated instance
pairs.

Conclusion
We have presented a model, named Oracle-guided Con-
trastive Clustering(OCC), for task-aware clustering that in-

Orientation Contrastive space NMI ARI ACC

Default
R+A 0.884 0.939 0.985

R only 0.631 0.683 0.913
A only 0.589 0.628 0.896

Personalized
R+A 0.690 0.791 0.945

R only 0.005 0.006 0.539
A only 0.492 0.499 0.853

Table 3: Effect of contrastive learning in representation(R)
and assignment(A) space on CIFAR-10.

Orientation Label Extension NMI ARI ACC

Default YES 0.884 0.939 0.985
NO 0.631 0.683 0.913

Personalized YES 0.690 0.791 0.945
NO 0.524 0.542 0.868

Table 4: Effect of label extension on CIFAR-10.

corporate active query to oracles with personalized demand.
Moreover, contrastive learning is joint with active learning
to catch orientation-aware features and achieve desired clus-
tering solutions. This is first deep framework for personal-
ized image clustering. In the near future, we would like to
extend this framework to any clustering domain in general.
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