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We investigate the thermal entanglement in two superconducting qubits for arbitrary interaction
strength and ground state frequencies. We calculate the concurrence of the system to quantify the
thermal entanglement. We suggest a scheme, where an external tunable coupler qubit sandwich
between two superconducting qubits generates entanglement. The behavior of concurrence is ana-
lyzed for three different cases, in which we consider the effects of the temperature, the qubit-qubit
effective coupling strength, and the qubit frequencies on the thermal entanglement. What deserves
mentioning here is that to achieve maximally entangled states, it is better to use two supercon-
ducting qubits with the same frequencies. We also note that for a given temperature, the thermal
entanglement can be tuned by qubit internal capacitance and inductance.

I. INTRODUCTION

From the first idea of a quantum computer by Feyn-
man in 1982, the race for the transition from classical
computers to the quantum computer has been going on.
The key to achieve this is by replacing the classical bit
with the superconducting qubit. Superconducting qubits
have attracted the attention of scientists not only for
their high speed and efficiency but the versatile nature
of their quantum states that can be engineered and con-
trolled [1–4]. A physical system that is required to pro-
cess quantum information must obey quantum mechani-
cal laws like superposition and entanglement. The states
of the composite system are entangled when they cannot
be defined in the form of the product of states of the indi-
vidual system. The simplest composite system that can
exhibit entanglement consists of two-level systems (with
ground |0〉 and excited |1〉 states). To perform quan-
tum information processing, superconducting qubits are
the most suitable candidates. Therefore, the generation
of superconducting qubits and processing of information
with these qubits are the main questions that need to be
investigated. Additionally, it is also equally important
to explore environmental noises and temperature effects
on the superconducting qubits [5–9]. The coherence of
superconducting qubits is greatly improved by reducing
their sensitivity to the charge noise via shunting a large
capacitance to the Josephson junction. This was first
proposed for capacitively shunted flux qubit in [10] and
later experimentally realized in [11, 12]. Later it was
also proposed for the Transmon qubits in [13] and imple-
mented in [14]. Nowadays, the main focus of scientific
research is to preserve these states from decoherence by
taking advantage of effective coupling, which can be con-
structed between the superconducting qubits by interac-
tion with a common tunable coupler [15].

From the last few years, entanglement has been thor-
oughly investigated [16, 17]. Entanglement has non-
classical nature, therefore it helps to study conceptual
foundations of quantum mechanics. Interpretation of

quantum information processing is not possible without
an understanding of quantum entanglement, and inter-
action of entanglement with the environment becomes
very sensitive to do quantum computing and quantum
information processing. Experimentalists always want to
preserve entanglement for a longer period. However, in
the real world, it is quite tough to protect the system
from the environment, especially from the thermal en-
vironment. Therefore, in this paper, we investigate the
effect of temperature on the entanglement, which we gen-
erated by using two coupled superconducting qubits [18–
20]. Additionally, we also study the effect of interaction
strength and ground state frequencies on the thermal en-
tanglement.

In this work, we introduce the simple and widely appli-
cable method of using a tunable coupler to couple two su-
perconducting qubits to generate entanglement. It con-
sists of generic three-body systems with exchange-type
interaction. The coupler is a central component that not
only helps to exchange interaction between two qubits
but also helps to tune the coupling strength between the
next-nearest neighbor [21].

For a quantum mechanical system in thermal equilib-
rium at temperature T , the density matrix can be com-
posed as ρ = e−βH/Z, where, H describes the Hamil-
tonian of the system, Z = tre−βH defines the parti-
tion function and β = 1/(kBT ) where kB illustrate the
Boltzman constant. The thermal entanglement of two
qubit system can be determined by the concurrence CE
which is given by the Wootter’s formula [22] as CE =

max[0, 2 max[λi]−
∑4
i=1 λi]. Here λi is the square root of

the eigen values of the matrix R = ρ(σy1⊗σ
y
2 )ρ∗(σy1⊗σ

y
2 ),

where ∗ represents the complex conjugate. The concur-
rence CE can be defined for both mixed and pure states,
ranges from 0 to 1. In general, we can define the two
qubit composite system state as

|φ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 , (1)

here, |φ〉 ∈ HA ⊗HB , the two systems are separable if
and only if ad = bc. Therefore, we can define concur-
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FIG. 1: Schematic diagram of implementing superconducting
qubits, consisting of qubit modes (1, 2) and coupler mode c.
Here, Cλ is the dominant mode capacitance, Cjc describes
the coupling capacitance between qubit j and coupler, C12

illustrates the direct coupling capacitance between the qubits
and φλ represents the reduced node flux. Here, EJλ,L(R)

is

the defined as a Josephson energy of the left (right) junction
mode λ = (1, 2, c). In Fig. (b) we plot a block diagram of
two qubits coupled with tunable coupler ωc, where qubit have
frequencies ω1 and ω2

rence as CE(ψ) = 2|ad − bc|. In this respect, we orga-
nize this paper as follows. We discuss the modeling of
the qubit and coupled qubits in Sec. II. We introduce a
method in Sec. III, through which interaction between
the superconducting qubits can be engineered to imple-
ment two coupled qubit entangling operations. We also
discuss how temperature, effective qubit-qubit coupling
strength, and qubit frequencies affect thermal entangle-
ment. The conclusion is given in Sec. IV.

II. THEORETICAL MODEL

A. Modeling of a Qubit

A superconducting circuit needs some non-linear ele-
ment to function as a qubit and this non-linearity is pro-
vided by the Josephson Junction, which forms the back-
bone of superconducting circuits. Josephson junction is
based on two superconductors separated by a very thin
layer of an insulator to allow tunneling of discrete charges
across the junction [23], the superconducting qubit cir-
cuit consists of a capacitor and Josephson junction as
shown in Fig. 1(a). The energy of the circuit elements is
defined as

E(t) =

ˆ t

−∝
V (t′)I(t′)dt′. (2)

where V (t′) and I(t′) represent the voltage and current of
the capacitor or non-linear inductor. According to Fara-
day’s law, flux can be defined as Φ(t) =

´ t
−∝ V (t′)dt′. By

using relation for the current flowing through the capac-
itor I = C dV

dt , we derive the kinetic energy stored in the
capacitor with capacitance C in terms of node flux as

T = 1
2

(
~
2e

)2
Cφ̇2, where φ = 2πΦ/Φ0 is the reduced flux

and Φ0 = h/2e is the superconducting magnetic flux.
The potential energy of the Josephson junction can be
derived by using Eq. (2) as U = EJ(1 − cos Φ), where
EJ = ~Ic/2e is the Josephson energy which depends on
the barrier transparency and superconducting gap [24].
The Hamiltonian of the single qubit can be written as

Ĥ = 4EC n̂
2 − EJ(1− cos φ̂), (3)

where n̂ = q/2e is the number of Cooper pairs and
EC = e2/2C defines the charging energy of the capac-

itor. Since φ̂ is very small, by expanding the potential
term of the Eq. (3) into power series, we get approximate
Hamiltonian as

Ĥ = 4EC n̂
2 +

1

2!
EJ φ̂

2 − 1

4!
EJ φ̂

4. (4)

By introducing the creation (b̂†) and annihilation (b̂)
above Hamiltonian can be rewritten as

H =
√

8EJEC

(
b̂†b̂+

1

2

)
− EC

12
|b̂† + b̂|4, (5)

where n̂ and φ̂ are defined as ι̇
2

4
√

EJ
2EC

(b̂† − b̂) and

4
√

2EC
EJ

(b̂† + b̂), respectively. Here, annihilation and cre-

ation operators follow commutation relation as [b̂, b̂†] = 1.
Neglecting the constant term and fast-oscillating terms,
the Hamiltonian of the system resembles the Duffing os-
cillator (~ = 1), which is a harmonic oscillator plus an
additional quartic term

H = ωb̂†b̂+
α

2
b̂†b̂†b̂b̂. (6)

where ω =
√

8EJEC − EC defines the transition fre-
quency and α = −EC describes the anharmonicity in the
system. If the anharmonicity is sufficiently large then
excitation to higher states is suppressed and the lowest
two levels can be treated as a two-level qubit system.
And the quantum two-level simplified Hamiltonian can
be represented as

H = ω
σz
2
, (7)

where σz is the Pauli z-operator. It is necessary to keep
in mind that higher states exist, however, their influence
on the system dynamics is quite small.

B. Modeling of Coupled Qubits

In this subsection, we discuss the coupling of super-
conducting qubits with a tunable coupler, as shown in
Fig. 1(a). Each qubit is treated as a weakly anharmonic
oscillator consisting of capacitor Cλ and Josephson junc-
tion, where the subscript defines as λ = {1, 2, c}. For
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FIG. 2: The two-dimensional concurrence is plotted versus
temperature T and qubit-qubit effective coupling strength g̃
for two coupled superconducting qubits. The left panel cor-
responds to ω̃1 = ω̃2 = 1 case and right panel corresponds to
ω̃1 = 5 and ω̃2 = 1 case. T is plotted in units of Boltzmann’s
constant kB = 1 and we work in units where g̃ and ω̃j are
dimensionless.

simplicity, the junction capacitance is merged into Cλ.
The kinetic and potential energies of these coupled qubit
systems are given as

T =
1

2

[
C1Φ̇1

2
+ CcΦ̇c

2
+ C2Φ̇2

2
+ C1c(Φ̇1 − Φ̇c)

2

+ C2c(Φ̇2 − Φ̇c)
2 + C12(Φ̇1 − Φ̇2)2

]
,

(8)

U =EJ1

[
1− cos

( 2π

Φ0
Φ1

)]
+ EJc

[
1− cos

( 2π

Φ0
Φc

)]
+ EJ2

[
1− cos

( 2π

Φ0
Φ2

)]
,

(9)

where T labels the kinetic energy and U specifies the
potential energy. Here, Josephson Energy of individ-
ual qubits is defined as a combination of left and right
Josephson junction individual energies,

EJλ = EJλ,T

√
cos2

(πΦe,λ
Φ0

)
+ d2λ sin2

(πΦe,λ
Φ0

)
, (10)

where Φ0 = h/2e is described as a superconducting
quantum flux, here EJλ,T = EJλ,L +EJλ,R is represented

as a sum of the Josephson energies, and dλ =
(
EJλ,L −

EJλ,R
)
/
(
EJλ,L + EJλ,R

)
is the junction asymmetry [13].

In compact form, the kinetic energy of the coupled two-

qubit system can be defined as T = 1
2
~̇ΦTC~̇Φ, here C

describes a 3×3 capacitance matrix [25],

C =


C112 + C1c −C1c −C12

−C1c Cc2c + C1c −C2c

−C12 −C2c C212 + C2c

 , (11)

where, C112 = C1 + C12, Cc2c = Cc + C2c and C212 =
C2+C12. The Hamiltonian of the system can be depicted
as

H =
∑
λ

qλΦ̇λ − L =
1

2
~qT [C−1]~q + U, (12)

here, C−1 describes the inverse of the capacitance ma-
trix and Cooper-pair number operator is defined as n̂λ =
q̂λ/2e. The total Hamiltonian of this coupled system can
be disclosed as

Ĥ = 4EC1
n̂21 − EJ1 cos φ̂1 + 4ECc n̂

2
c − EJc cos φ̂c + 4EC2

n̂22 − EJ2 cos φ̂2

+8
C1c√
C1Cc

√
EC1

ECc(n̂1n̂c) + 8
C2c√
C2Cc

√
EC2

ECc(n̂2n̂c) + 8(1 + η)
C12√
C1C2

√
EC1

EC2
(n̂1n̂2), (13)

where η define as (C1cC2c)/(C12Cc). We assumed that
the qubit-coupler capacitance is smaller than single-mode
capacitance but larger than qubit-qubit coupling capac-
itance C12 � Cjc � Cλ. In the transmon regime,
EJλ/ECλ � 1, the system Hamiltonian can be expressed
as

Ĥ = Ĥ1 + Ĥc + Ĥ2 + Ĥ1c + Ĥ2c + Ĥ12, (14)

Ĥ = ωλb̂
†
λb̂λ +

αλ
2
b̂†λb̂
†
λb̂λb̂λ, λ ∈ {1, c, 2}, (15)

Ĥjc = gj(b̂
†
j b̂c + b̂j b̂

†
c − b̂

†
j b̂
†
c − b̂j b̂c), j = 1, 2, (16)

Ĥ12 = g12(b̂†1b̂2 + b̂1b̂
†
2 − b̂

†
1b̂
†
2 − b̂1b̂2), (17)

where b̂†λ and b̂λ are the creation and annihilation
operators corresponding to each mode. And ωλ =



4√
8EJλECλ − EJλ defines the oscillator frequency, gj =

1
2

Cjc√
CjCc

√
ωjωc and g12 = 1

2 (1+η) C12√
C1C2

√
ω1ω2 expresses

qubit-coupler and qubit-qubit coupling strength respec-
tively. In the dispersive regime, where, the coupler fre-
quency is higher than the qubit frequency, the contribu-
tions from the double excitation and de-excitation will
be significant that’s why in Eq. (16) we keep usual

Jaynes-Cummings interaction term (b̂†j b̂c + b̂j b̂
†
c) as well

as counter-rotating term (b̂†j b̂
†
c + b̂j b̂c).

III. MODELING AND SCHRIEFFER-WOLFF
TRANSFORMATION

We consider a chain of three modes with exchange cou-
pling between nearest neighbor (NN) and next-nearest

neighbors (NNN), as shown in Fig. 1(b). The two qubits
(ω1 and ω2) coupled to each other with coupling strength
g12, as well as each qubit couple to a tunable coupler (ωc)
with coupling strength gi (i=1,2). Someone can achieve
the two level effective Hamiltonian of our our proposed
system by changing bosonic operators with Pauli oper-
ators as b† → σ+(b → σ−) and b†b → (|0〉 〈0| − σz).
Generally, NN coupling is stronger than NNN coupling,
i.e., gi > g12 > 0. The Hamiltonian for this two-level
system is written as:

Ĥ =
∑
j=1,2

1

2
ωjσ

z
j +

1

2
ωcσ

z
c +

∑
j=1,2

gj(σ
+
j σ
−
c + σ−j σ

+
c ) + g12(σ+

1 σ
−
2 + σ−1 σ

+
2 ), (18)

where σzλ, σ+
λ and σ−λ (λ = 1, 2, c) are Z, raising and

lowering Pauli operators, respectively. Here, ω1 and
ω2 define the frequencies of qubit 1 and 2. These fre-
quencies can be tuned by using energies of capacitors
ECλ and non-linear inductors EJλ . We define the de-
tuning of two system as ∆j ≡ ωj − ωc < 0, here
ωc represents the coupling circuit frequency. In Eq.
(18), gj characterize the coupling strength of qubit with
coupler, and g12 describes the coupling strength be-
tween the qubits. In our proposed model, we use di-
rect coupling and indirect coupling. The indirect cou-
pling is modeled by using qubit, in literature it is called
virtual-exchange interaction [26], that can be approx-
imated by the Schrieffer-Wolff transformation (SWT)
U = exp[

∑
j=1,2(gj/∆j)(σ

+
j σ
−
c −σ−j σ+

c )] [27]. The SWT
decouples the coupler from the system, resulting in effec-
tive two-qubit Hamiltonian for each mode,

H̃ =
∑
j=1,2

1

2
ω̃jσ

z
j +

[g1g2
∆

+ g12

]
(σ+

1 σ
−
2 + σ−1 σ

+
2 ), (19)

where, ω̃j = ωj + gj
2/∆j defines the Lamb-shifted qubit

frequency and the detuning expresses as 1/∆ = (1/∆1 +
1/∆2) < 0. Also, we have considered that the coupler
qubit stays in its ground state at all times. In Eq. (19),
the combined term inside the square brackets represents
the total qubit-qubit effective coupling strength g̃, that
can be controlled by the coupler frequency through ∆,
as well as by using g1 and g2, both of which implicitly
dependent on ωc. In general, g̃ is the function of the
coupler and qubit frequencies. In the standard two-qubit

basis |00〉 , |01〉 , |10〉 , |11〉, the Hamiltonian of the system
can be expressed as

H̃ =


α
2 0 0 0
0 ω̃

2 g̃ 0
0 g̃ − ω̃2 0
0 0 0 −α2

 . (20)

The eigenvectors of Hamiltonian in Eq. (20) are given
as:

|φ1〉 = |0, 0〉 , |φ2〉 = |1, 1〉 ,

|φ3〉 =
1√

1 + ξ2

4g̃2

( ξ
2g̃
|1, 0〉+ |0, 1〉

)
,

|φ4〉 =
1√

1 + ζ2

4g̃2

( ζ
2g̃
|1, 0〉+ |0, 1〉

)
, (21)

with corresponding eigen energies: E1 = −α2 , E2 = α
2 ,

E3 = −γ2 , and E4 = γ
2 , where α = ω̃1 + ω̃2, ω̃ = ω̃1− ω̃2,

γ =
√

4g̃2 + ω̃2, ξ = −ω̃ + γ and ζ = −(ω̃ + γ). Note
that when ω̃ → 0 and g̃ > 0, the two states go to the
maximally entangled states as |φ3〉 = 1√

2
(|01〉 + |10〉)

and |φ4〉 = 1√
2
(|01〉 − |10〉). For g̃ < 0, both states

are converted to |φ3〉 = 1√
2
(|01〉 − |10〉) and |φ4〉 =

1√
2
(|01〉 + |10〉). Moreover, we can find that the eigen
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FIG. 3: The two-dimensional concurrence in two coupled qubit system is plotted versus dimensionless frequencies ω̃1 and ω̃2

for (a,d) g̃ = T = 0.4, (b,e) g̃ = T = 0.2 and (c,f) g̃ = 0.2 & T = 0.4. T is plotted in units of Boltzmann’s constant where
kB = 1.

FIG. 4: The two-dimensional concurrence in two coupled
qubit system is plotted versus g̃ and ω̃ for different values of
dimensionless temperature (a,c) T = 0.1 and for (b,d) T = 2.

energies are even function of the effective qubit-qubit
coupling g̃. Therefore, the ground-state entanglement
exists for both positive direct coupling and negative in-
direct coupling and it should be symmetric with respect
to the effective qubit-qubit coupling g̃. The ground state
entanglement depends on the effective qubit-qubit cou-
pling constant g̃, α and γ, as predicted in Eq. (21).

A. Thermal Entanglement

In this subsection, we highlight how quantum entan-
glement depends on external temperature by making use
of the concurrence. The thermal density matrix ρ(T ) for
this system in terms of standard basis can be written as

ρ(T ) =
e−βH

Z
=

1

Z

4∑
i=1

e−βEm |ψi〉 〈ψi| , (22)

ρ(T ) =
1

Z


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

 , (23)

where β = 1/(kBT ), ρ11 = e−α/2T , ρ22 = ρ33 =
γ2 cosh

(
γ
2T

)
+γω̃ sinh

(
γ
2T

)
γ2 , ρ23 = ρ32 =

2g̃ sinh
(
γ
2T

)
γ and

ρ44 = eα/2T . For convenience, we choose kB = 1
throughout these calculations. However, someone can get
SI units of temperature by using this relation T ′ = ~ω

kBT
,

here ω ∼ 4 GHz and T ′ is defined in mK. The partition
function Z is calculated as

Z = 2
[

cosh
( α

2T

)
+ cosh

( γ

2T

)]
. (24)

The concurrence 0 corresponds to separable or unentan-
gled states and 1 defines maximally entangled states and
is expressed as [28],

CE = max
[
0, λ1 − λ2 − λ3 − λ4

]
, (25)
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where, λi’s are the square root of the eigenvalues of the
matrix R, which we can calculate with the help of Eq.
(23). To observe the effect of coupling strength, temper-
ature, and qubit frequencies on the quantum entangle-
ment, we divide our discussion into three special cases.

Case 1: In the first scenario, we would like to discuss
the dependence of quantum entanglement on the cou-
pling strength g̃ and on the temperature T as shown in
Fig. 2. In this special case, we let the qubit frequencies
are constant. We let ω̃1 = ω̃2 = 1, we notice that the
two qubits are maximally entangled for g̃ = 5 and for
T → 0. However, as the temperature started to increase
the concurrence is started to become zero. It means that
the two qubits are less entangled for high temperature,
as shown in Fig. 2(a). On the other hand, if ω̃1 6= ω̃2, the
entanglement gets vanishes for low temperature too, even
though the coupling strength is quite high as shown in
Fig. 2(b). Additionally, for higher coupling strength, the
entanglement strength is quite weak as compared to the
first scenario, when qubit frequencies are equal. There-
fore, our results suggest that for strong entanglement it
is better to have superconducting qubits with the same
frequencies.

Case 2: To see the effect of superconducting qubit fre-
quency on the quantum entanglement for constant tem-
perature and coupling strength, we plot Fig. 3. The val-
ues of the frequencies can be tuned by using EJ and EC .
We can achieve the negative regime of the frequency by
letting EJ

EC
< 1

8 . We notice that the quantum entangle-
ment vanishes when both frequencies become zero, which
is indeed true as there is no qubit left for the entangle-
ment. We also observe that for small values of equal
frequencies, the chances of qubits entanglement are high
as compare to high frequencies. On the other hand, if
the two-qubit frequencies are different from each other,
then there are very less chances that qubits get entangle-
ment. If one qubit frequency is negative and the other
is positive then we find high chances to get quantum en-
tanglement as shown in Fig. 3(b), for g̃ = T = 0.2. For
coupling strength g̃ = 0.2 and temperature T = 0.4, we
notice that the entanglement is only possible for high-
frequency superconducting qubits. In another way, we
can say that it is less probable that the two qubits get
entangled for lower frequencies, high temperature, and
low coupling strength.

Case 3: In this special case, we calculate quantum
entanglement dependence on the coupling strength and
frequencies of the qubits, for a constant temperature. We
note that for T = 0.1, the concurrence is 1 for small val-
ues of coupling strength and for high values of frequen-
cies as shown in Fig. 4(a) and 4(c). However, as we
increase the frequency the concurrence goes to zero for
low coupling strength, as shown in 4(c). However, as we
increase the temperature T = 2, the transition from en-
tangle states to unentangle states happen near ω̃ ≤ 2.
This graph shows that the entangled states are possible

for higher frequencies and low coupling strength.

IV. CONCLUSION

In conclusion, by using the concept of concurrence we
have investigated the thermal entanglement in two cou-
pled superconducting qubits under the influence of ar-
bitrary coupling strength. Our proposed model is quite
realistic, therefore, it can be experimentally implemented
and all the parameters are tunable. We have found that
the thermal entanglement can be efficiently controlled
through the effective qubit-qubit coupling strength, qubit
frequencies, and temperature. The effects of affective
qubit-qubit coupling strength and temperature on entan-
glement are studied for different values of qubit frequen-
cies. We find that entanglement exists and it can be
enhanced by using the coupled qubits with the same fre-
quencies. Our results imply that the two coupled qubits
can go to maximally entangled states at low temperature
and for equal and high values of qubit frequencies. Our
proposed model can further be enhanced for gates, where,
someone can study the effect of temperature on the fi-
delity of quantum gates. This model can also be bene-
ficial for study thermal entanglement for many (n > 2)
qubit states. Our findings identify the real potential to
study thermal entanglement, especially for superconduct-
ing qubits.
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