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Topology and its detection in a dissipative Aharonov-Bohm chain
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In a recent experiment, a dissipative Aharaonov-Bohm (AB) chain was implemented in the mo-
mentum space of a Bose-Einstein condensate. Formed by a series of dissipative AB rings threaded by
synthetic magnetic flux, the chain exhibits the non-Hermitian skin effect, necessitating the non-Bloch
band theory to account for its topology. In this work, we systematically characterize topological fea-
tures of the dissipative AB chain, particularly beyond the experimentally realized parameter regime.
Further, we show that an atom-injection spectroscopy is not only capable of revealing topological
edge states, as has been demonstrated in the experiment, but also the general band structure of
the system. We then discuss alternative dynamic detection schemes for the topological edge states.
Given the generality of the model and the detection schemes, our work is helpful to future study of
topological models with non-Hermitian skin effects across a variety of quantum simulators.

I. INTRODUCTION

The state-of-the-art quantum control in systems such
as photonics [1-3], cold atoms [4-7], or trapped ions [8—
10] offer unprecedented access to the rich dynamics and
exotic phenomena in open quantum systems that un-
dergo particle or energy exchange with their environ-
ment. A non-Hermitian description applies therein, for
instance, by imposing post selection [11-15], or by map-
ping the density-matrix dynamics to an enlarged Hilbert
space [16-19]. The resulting non-Hermitian physics pro-
vides an unconventional perspective of open systems, and
has attracted extensive interest in recent years. Dictated
by a non-Hermitian effective Hamiltonian, exotic spec-
tral or dynamic properties, such as the parity-time sym-
metry [20, 21], enhanced sensing [22-24] and topological
transfer [3, 7], non-Hermitian topology [25-30] and so
on, have been systematically studied and experimentally
confirmed in a wide range of physical systems.

The recent discovery of the non-Hermitian skin effect
has stimulated further research activities [31-42]. Un-
der the non-Hermitian skin effect, eigenstates of a sys-
tem become exponentially localized at boundaries, lead-
ing to dramatic changes in the system’s band and spec-
tral topology [36, 37], dynamics [16, 18, 19, 40-42], and
spectral symmetry [43-45]. Experimentally, the non-
Hermitian skin effect and its consequences have been ob-
served in classical and photonic systems [46-49], as well
as in a Bose-Einstein condensate of ultracold atoms [50].
In the last case, a dissipative Aharonov-Bohm (AB)
chain was implemented in the momentum and hyperfine-
spin space of the condensate atoms. As illustrated in
Fig. 1, the AB chain consists of a series of triangular AB
rings [6], each threaded by a synthetic magnetic flux, re-
alized by engineering the phases of the nearest-neighbor
hopping rates. Dissipation is introduced through on-site
particle loss for each ring, such that dynamics of atoms
that remain in the chain is driven by a non-Hermitian
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FIG. 1. Schematic illustration of a dissipative Aharonov-
Bohm chain. Each unit cell consists of three sublattice sites a,
b, and ¢, forming a triangular loop threaded by a flux ¢. The
green, blue and red bounds denote hopping between adjacent
sites. See main text for definition of variables.

Hamiltonian that features non-trivial band topology. Im-
portantly, the interplay of synthetic flux and dissipa-
tion gives rise to a non-reciprocal flow in the bulk that
lies at the origin of the non-Hermitian skin effect. In
the experiment, the non-Hermitian skin effect was ob-
served through a directional propagation of atoms along
the chain, while the topological edge states were probed
through an inverse spectroscopy, where atoms are in-
jected into an empty dissipative AB chain from a by-
stander state. Despite its experimental implementation,
a systematic study of the topological properties of the
dissipative AB chain is missing in the literature. Fur-
ther, given the intrinsic difficulty of detecting topological
edge states in the presence of non-Hermitian skin effects
(as both are localized at the boundary), more variety of
detection schemes is desirable.

In this work, we carry out a systematic study of the
dissipative AB chain, focusing on its topology and detec-
tion. We identify an additional topological phase transi-
tion beyond the experimentally demonstrated parameter
regime, and derive analytical expressions for the topo-
logical transition points using the non-Bloch band the-
ory. Invoking the theoretical framework of Feshbach pro-
jection [11, 52], we derive the transfer rates of the ex-
perimentally implemented atom-injection spectroscopy,
which are in good agreement with numerical simulations.
In the experiment, atoms were injected to an open edge
of the AB chain, to detect the topological edge states.
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FIG. 2. Eigenspectra of a dissipative AB chain under the open
boundary condition. We take N = 100 unit cells, Js/Jp = 2,
¢ = w/2, AJJ, = =2, and v/J, = 1 for numerical cal-
culations. (a)(b) The real (Re(E)) and imaginary (Im(E))
components of eigenenergies as functions of J;. The red
and blue lines in (a)(b) denote topological edge states, each
two-fold degenerate. The two topological transition points
are Jic1/Jp, = 1.56 (associated with edge states in red) and
Jt,c2/Jp = 3.41 (associated with those in blue), respectively.

Here we show that by injecting atoms into a bulk site
far away from the boundary, spectral information under
the periodic boundary condition can be obtained from
the transfer rate. We then propose a dynamic detection
scheme for the topological edge states.

The paper is organized as follows. In Sec. II, we re-
view the model Hamiltonian for the dissipative AB chain,
and show that it has the non-Hermitian skin effect. In
Sec. III, we characterize its topological properties using
the non-Bloch band theory. We then provide a theo-
retical characterization of the injection spectroscopy in
Sec. IV. In Sec. V, we discuss the dynamic detection of
topological edge states. We summarize in Sec. VI.

II. MODEL

The non-Hermitian Hamiltonian of the dissipative AB
chain illustrated in Fig. 1 is given by [6, 50]

N
H = [Jpblan + Jochbn + Jee'alc, + H.c]
n=1
N1 N (1)
+ Z [Jtajlﬂbn + H.c]+ Z(A —iy)ct en.
n=1 n=1

Here a,(al), b, (bl) and ¢, (c,) are respectively the anni-
hilation (creation) operators for the a, b and ¢ sublattice
sites of the nth unit cell; J,, Js and J; are the nearest-
neighbour hopping rates; A and v are respectively the
on-site potential and the loss rate on site ¢; the phase
¢ € [0,27) corresponds to a synthetic magnetic flux.
Hamiltonian (1) hosts topological edge states under the
open boundary condition. For finite v and ¢ ¢ {0, 7},
all eigenstates accumulate to the boundaries under the
non-Hermitian skin effect. As demonstrated in Ref. [6],
this can be understood in the limit A,y > J,, Jp, Ji,
when Hamiltonian (1) can be perturbatively reduced to
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FIG. 3. Spacial distribution of the eigenstates for an AB chain
with N = 100. We take J:/J, = 5, while other parameters
are the same as those in Fig. 2. Gray: periodic boundary
condition. Black: bulk eigenstates under the open boundary
condition. Red and blue: degenerate topological edge states
with eigenenergies E.; and E.a, respectively.

a non-Hermitian Su-Schrieffer-Heeger model with asym-
metric hopping. Physically, this is because the interplay
of the synthetic flux and on-site loss gives rise to a non-
reciprocal flow along the chain. Beyond such a limit,
the dissipative AB chain is qualitatively different from a
non-Hermitian Su-Schrieffer-Heeger model, particularly
for the lack of chiral symmetry. Nevertheless, both the
non-Hermitian skin effect and band topology persist as
salient features of the dissipative AB chain.

In Fig. 2, we show typical eigenspectra of the model
under the open boundary condition. Two gap-closing
points can be identified, particularly visible in Re(E),
where topological edge states emerge. The topological
transitions are robust under variations of ¢ and ~, their
locations however, sensitively depend on these param-
eters. In the following, we denote the location of the
topological phase transitions as J; .1 and J; 2, which are
associated with the edge states in red and blue, respec-
tively, in Fig. 2. We further denote the corresponding
eigenenergies of the topological edge states as E.; and
E.2, respectively. Note that the transition at J; . was
experimentally probed in Ref. [50], but not the one at
Jt,c2-

In Fig. 3, we show the spatial probability distribution
of eigen wavefunctions under different boundary condi-
tions. We choose the parameter J;/J, = 5, such that
two pairs of topological edge states (indicated by red and
blue) exist under the open boundary condition. For fi-
nite v and ¢ ¢ {0, 7}, all eigenstates are localized toward
the boundaries, indicating the presence of non-Hermitian
skin effect. It follows that topological edge states in Fig. 2
can only be accounted for by a non-Bloch topological in-
variants under the non-Bloch band theory.



III. TOPOLOGY UNDER THE NON-BLOCH
BAND THEORY

Topological edge states of the dissipative AB chain are
characterized by the non-Bloch band theory [31, 33]. The
idea is to take into account the deformation of the bulk
eigenstates under the non-Hermitian skin effect, replac-
ing the phase factor e’* of the Bloch waves (under the
periodic boundary condition) with a spatial mode factor
B(k) = |B(k)|e’*. Here the quasimomentum k € [0, 27),
and the trajectory of 5(k) on the complex plane is known
as the generalized Brillouin zone (GBZ), which can be
calculated from the Schrodinger’s equation as shown be-
low.

In the spirit of the non-Bloch band theory, we write
the non-Bloch Hamiltonian as

0 Jp+ S J,e'®
HpB)=| Jp+ Jtﬁ 0 Js . (2
J,e "1 Js A — iy

The Schrodinger’s equation in the GBZ is then [H(S3) —
E)lf(B)) = 0, where E is the eigenenergy, [¢(3)) is
the right eigenstate, and j is the band index. Sending
the determinant of the eigen equation to zero, we have
e 10 J?

|:Jt/8+Jp+ m

—{E—mfﬂ-
(3)

The spatial mode functions (k) can be solved by re-
quiring the two roots of Eq. (3) to have the same magni-
tude, with |B1| = |B2|. We then have [50]

i¢J2
] [Jt51+Jp+ € s

Ty g0
p T B
1B(k)| = H#pﬂy : (4)
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It is then straightforward to solve for E and |5(k)| from
Egs. (3) and (4) for each k. The resulting eigenenergy E
gives the eigenspectrum under an open boundary condi-
tion.

In Fig. 4(a)(b)(c), we show the eigenspectra for dif-
ferent parameters, under both the periodic (dots) and
the open boundary conditions (solid curves). Under the
periodic boundary condition, the eigenenergies of each
band form a closed spectra loop, consistent with the well-
known spectral topology of the non-Hermitian skin ef-
fect. By contrast, under the open boundary condition,
the eigenenergies collapse to open arcs within the closed
loops. In Fig. 4(b)(c), the discrete red and blue dots out-
side the spectra loops correspond to the topological edge
states in Fig. 2.

In Fig. 4(d)(e)(f), we plot the GBZs of the three bands
under the parameters of Fig. 4(a)(b)(c), respectively. For
all cases, the calculated |5(k)| < 1, and the GBZs are
within the unit circle. This indicates that under the open

E—(A—i)

boundary condition, all eigenstates accumulate to the left
boundary (toward small unit-cell index n).

We are now in a position to calculate the non-Bloch
winding number, which can restore the bulk-boundary
correspondence and predict the existence and number of
topological edge states. Unlike the non-Hermitian Su-
Schrieffer-Heeger model, the dissipative AB chain fea-
tures three bands. The non-Bloch winding number v is
defined through the global Berry phase, which is the sum
of the Berry phases of all three bands, with

y:%Zej. (5)

J

Here the Berry phase of the jth band is given by

0, =i yf a4 (o4 (8) 051 7(B)) . (6)
GBZ;

where the right and left eigenstates of H(j3) are de-
fined as H(B)|¢f (8)) = Ejle7'(8)) and HT(8)|¢} (8)) =
EJ*|QDJL(5)>, respectively. The integration in Eq. (6) is
over the GBZ of the jth band. When § is replaced by e'*
in Eq. (6), the non-Bloch winding number is reduced to
the Bloch winding number which characterizes the band
topology of the system under the periodic boundary con-
dition.

In Fig. 5, we show the Bloch (gray) and non-Bloch
(black) winding numbers. The non-Bloch winding num-
ber is quantized to integers, and changes its value at
topological transitions that are consistent with the gap-
closing points in Fig. 2. By contrast, the Bloch wind-
ing number can take half-integer values, and it does
not indicate the topological transitions of the system
under the open boundary condition. Note that half-
integer winding numbers have previously been reported
in the non-Hermitian, asymmetric Su-Schrieffer-Heeger
model [38, 51], where explicit geometric interpretations
can be found based on its chiral symmetry. While chiral
symmetry is absent in our model, the origin of these half-
integer winding numbers, and their general relation to the
non-Hermitian skin effect, are interesting open questions.

The topological transition points can be analytically
determined from the gap-closing condition. At the gap-
closing pint, GBZs of two different bands intersect on
the complex plane at the same eigenenergies. It follows
that Eq. (3) features a double root at the topological
transition. This is satisfied for

€1 J2 e~ J2
Jt,cj \/‘(Jp + m) . (Jp + m)
(7)

with j = 1,2. And the roots are given by

A —iv)+ /(A = iy)? + 4J2
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FIG. 4. (a)(b)(c) Eigenspectra of Hamiltonian Eq. (1) with N = 100 unit cells on the complex plane. Black: eigenspectra
under PBC. Orange, green, and purple: eigenspectra for three different bands under the open boundary condition. Red and
blue triangle denote the topological edge states with eigenenergies E.1 and Ecz, respectively. (d)(e)(f) GBZs on the complex
plane. Orange, green, and purple: GBZs for the three different bands in (a)(b)(c). Black dashed line is the unit circle, which
corresponds to the conventional Brillouin zone. For (a)(d), J:/Jp = 0.5; for (b)(e), J¢/Jp = 2.5; for (c)(f), Ji/Jp = 5. Other

parameters are the same as those in Fig. 2.
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FIG. 5. Bloch (gray) and non-Bloch (black) winding numbers.
The vertical dashed lines in red and blue denote Ji .1 and
Jt,c2, respectively. All parameters are the same as those in
Fig. 2.

which correspond to the energies of the topological edge
states emerging at the two transition points in Fig. 1.
Both J;.; and E.; calculated from Eqgs. (7)(8)(9) are
in excellent agreement with the numerically calculated

eigenspectra in Fig. 2. Note that we take the positive
branch for the square roots in Egs. (8)(9).

To close this section, we discuss the symmetry of
Hamiltonian (2). While it does not have chiral sym-
metry, Hamiltonian (2) is symmetric under the follow-
ing transformation: THT(B)I'~! = H(B), where I' =

01 0

10 0

00 e
symmetry is reduced to THT (k)I'~! = H(k), where k is
then the quasi-momentum in the conventional Brillouin
zone. We have checked that such a symmetry protects
the two-fold degeneracy of the topological edge states
emerging from either phase transitions. Note that, while
the Berry phases ©; are quantized to multiples of 7 in
the presence of such a symmetry, they are no longer so
when the symmetry is broken. By contrast, the non-
Bloch winding number is always quantized, since the
global Berry phase, when integrated over the GBZ, is
always integer multiples of 27.

In the real lattice space, the symmetry operation can
be further decomposed into I' = PC, where P : a,, —
AN —n, bn — ben, Cn — CN—n; C+ LAy — bena bn —
AN—p, Cp — e‘i¢cN,n.

We identify P and C; as the inversion and the non-
Hermitian variant of the time-reversal operators, respec-

. In the Hermitian limit with v = 0, the
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FIG. 6. Transfer rate for the inverse spectroscopy, for |f) located at an open boundary. (a)(b)(c) The probe Hamiltonian couples
the bystander state to the b sublattice site of the Nth unit cell (the right-most unit cell on the edge), with (a) J:/J, = 0.5, (b)
Ji/Jp = 2.5, and (c) 6pp/Jp = Re(Ec1). Here E.; is the energy of the topological edge state. The dashed vertical lines in (a)(b)
correspond to Re(E.1), and the dashed line in (c) corresponds to Jyc1. (d)(e)(f) The probe Hamiltonian couples the bystander
state to the c¢ sublattice site of the Nth unit cell (the right-most unit cell on the edge), with (d) J:/Jp, = 2.5, (e) Ji/Jp = 5,
and (f) 0pp/Jp = Re(Ec2). The dashed vertical lines in (d)(e) correspond to Re(Ecz), and the dashed line in (f) corresponds to
Jt,c2. For all subplots, the black solid lines and the magenta dashed lines are respectively the theoretically predicted transfer
rate using Eq. (14), and the numerically simulated transfer rates from Eq. (16). For all figures, Jpp/Jp, = 0.01, 7J, = 407.

Other parameters are the same as those in Fig. 2.

tively. In particular, C; can be identified with the TRS'
symmetry in Ref. [26]. Physically, the combined inver-
sion and time-reversal symmetry is understood from the
observation that the dissipative AB chain remains invari-
ant by simultaneously reversing the flux and the lattice,
but not either alone.

IV. DETECTING TOPOLOGICAL EDGE
STATES AND BAND STRUCTURE

In the experiment [50], a momentum-resolved Bragg
spectroscopy was applied to detect the topological edge
states, where atoms are injected into an edge site of the
AB chain. In this section, we provide a theoretical de-
scription for the atom-injection spectroscopy, and show
that a similar detection scheme can be applied to probe
the band structure. We then propose an alternative dy-
namic detection scheme for the topological edge states.

A. Injection spectroscopy

We consider coupling atoms in a bystander state |d)
to a local site |f) of the dissipative AB chain. Site |f)
can be any one of the sublattice sites |a), |b) or |c). It
can be on the edge, as is the case in the experiment, or
in the bulk, far away from any boundaries. The chain is

originally empty, such that the scheme is similar in spirit
to the inverse radio-frequency spectroscopy. The probe
Hamiltonian reads

Hpy = Jppd' f + Jpp fTd + Sppdid. (10)

Here, d (d'), f (f7) respectively denote the annihilation
(creation) operators for state |d) and |f). Jp is the
coupling rate between |d) and |f), dpp is the detuning
of the coupling frequency with respect to the transition
|d) — |f). Here the overall dynamics is governed by the
Hamiltonian H' = H + Hpy.

Following the practice of Feshbach projection [52-54],
we define the projection operators P = |d){d| and Q =
I — P. The effective Hamiltonian in the subspace of the
bystander state |d) is then

1
Heg(E) :H;DP_FH;DQWH{QPv (11)
QQ
where
Hpp = dpd'd, Hpg = Jyd'f, (12)
HGop = Jwfld, Hpo = H.
It can be shown straightforwardly that
J2 R L*
Hor(B) = [ 6+ 52 000 Y00 ) g 1)

E—E,



(a) (b)
coosl | Jmosl 10 I
g | i E Hi
ol LU S TR
coo b E e el
=~ - &~ i sWJ\j\}i WLl
0.00—L Il M 0.00 0 ) | MR
Y6420 2 4 6 Y6420 2 4 6
5pb/Jp 5pb/Jp
(c) (d) 0.02
003 an N ﬁ
N F‘ﬂ] = \ & il
g \ g i Al
5 A [See) BN M
© N © A ik i
= [ = /R e | |
& ) V] \ = y, \J '\\
0.00 ;67472 02 46 "W o0 2 16
67}1)/ Jp 6I?b/ ‘]P

FIG. 7. Transfer rate for the inverse spectroscopy, as the
probe Hamiltonian is coupled to the b sublattice site of the
51st unit cell, which is deep in the bulk. (a)(b) Hermitian
case with v = 0. (c)(d) Non-Hermitian case with v/J, =
1. We also take J;/J, = 0.5 in (a)(c), and J;/Jp, = 2.5
in (b)(d), while other parameters are the same as those in
Fig. 6. For all subplots, 7J, = 40w, the black solid lines and
the magenta dashed lines are respectively the theoretically
predicted transfer rate using Eq. (14), and the numerically
simulated transfer rates from Eq. (16). The shaded regions
in gray indicate the real components of the spectra under the

periodic boundary condition.
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FIG. 8. Boundary dynamics for the detection of topological
edge states. (a)(b) Color contour for the normalized occupa-
tion distribution as a function of time. (b)(d) The normal-
ized occupation distribution at the time 7.J, = 6. We take
Ji/Jp = 1in (a)(c), and J;/Jp, =5 in (b)(d). Other parame-
ters are the same as those in Fig. 2.

where ¢ff, = (fl¢ff) and ¢%5 = (¢F|f), and the
right and left eigenstates of H are defined as H |@ZJJR> =
Ej|1/JR>,HT|ij> = EJ*|’(/JJL> The effctive Hamiltonian
Eq. 513) is dissipative, where the dissipation is due to
the atom transfer from state |d) to the AB chain. We
define the transfer rate

T(1) =1—exp[—2R(p)T], (14)

which describes the probability for an atom to be trans-
ferred from |d) to the chain within the evolution time 7.
Here

Lx*
R(6p5) = —Im ((d|Hegr(E)|d)) = —Im Z ﬁ_
P
(15)

The term 0" in the denominator ensures that Eq. (15)
recovers the familiar form of the Fermi’s golden rule in
the Hermitian case. Note that the same Eq. (15) can be
derived using the linear response theory (see Appendix).

The transfer rate can also be evaluated through nu-
merical simulation of the system dynamics. Initialized in
the state |d) at the initial time ¢ = 0, the time evolved
state at time 7 is then |[1(7)) = e=*#'7|d). Note that the
non-normalized nature of |¢(7)) corresponds to loss of
atoms from the dissipative AB chain. The transfer rate
can be expressed as

Tovo(T) =1 — [{d]e™'7|d)|2. (16)

Due to the perturbative nature of Eq. (14), we expect
that the transfer rates calculated from Eq. (14) and
Eq. (16) are very close to each other, provided that
o Jov/Jp < 1and J%7 < 1 < Jp7. This is indeed the
case as we show below.

For the detection of the topological edge states, we
follow the practice of Ref. [50], and consider |f) to be
on the edge of the AB chain. The calculated transfer
rates are plotted in Fig. 6. While results from Eq. (14)
and Eq. (16) agree well with one another, signals of the
edge states are visible near the appropriate detuning dp;.
Specifically, in Fig. 6(a)(b), we aim to detect the edge
state with energy FE.;. The state has a large support
on sublattice site b, we therefore set |f) on site b of the
right-most unit cell on the edge. When J; < Jy 1, T(T)
exhibits a valley at d,, = Re(E.1) [Fig. 6(a)], indicat-
ing the presence of a band gap. When J; > J; .1, a peak
emerges at d,, = Re(E1) [Fig. 6(b)], suggesting the pres-
ence of an in-gap edge state. In Fig. 6(c), we show the
transfer rate at d,, = Re(E.1) as a function of J;, which
clearly indicates a phase transition near Ji ci.

Similarly, in Fig. 6(d)(e), we aim to probe the edge
state with energy E.s. Since the edge states now have
a large support on sublattice site ¢, we set |f) on site ¢
of the right-most unit cell. We find that a peak appears
near d,, = Re(E.2) in the transfer rate when J; > J co
[Fig. 6(d)(e)], consistent with the emergence of the topo-
logical edge states. Likewise, the topological phase tran-
sition is clearly visible near J; = Jy o2 in Fig. 6(f).



Compared to the Bragg spectroscopy implemented in
Ref. [50], for the numerical simulations here, we consider
a weaker probe (Jpp ~ h x 12 Hz, h being the planck
constant), and a longer probe time (7 ~ 16 ms). Such
optimization leads to a more faithful detection with a
better resolution.

Alternatively, we can couple the bystander state to a
sublattice site in the bulk to reveal the global spectral
features under the periodic boundary condition. The re-
sults are plotted in Fig. 7. In the Hermitian case with
~v = 0 [Fig. 7(a)(b)], the transfer rate shows sharp edges
at the band edge, revealing both the band continuum and
the band gaps. For the dissipative AB chain with finite
[Fig. 7(c)(d)], the transfer-rate profiles are broadened due
to the imaginary components of the eigenspectra. Nev-
ertheless, the band gaps are still visible as valleys in the
profile. In relation to the experiment in Ref. [50], inject-
ing atoms into the bulk offers a complementary detection
scheme for the topological phase transition, by observing
the closing of the band gaps.

B. Dynamic detection of edge states

Topological edge states can also be detected through
dynamics close to the boundary. Under the non-
Hermitian skin effect, eigenstates of the AB chain ac-
cumulate to one of the edges. The idea is to initial-
ize the state near the opposite edge, and observe the
time-dependent population along the chain. While the
non-Hermitian skin effect would drive the population to-
ward the other edge, topological edge states should re-
main near the initial site. To quantitatively characterize
the phenomena, we define the normalized occupation

T o
Wrml= 2 Gower O

Jj=ab,c

which indicates the spatial distribution of the state at
the time 7.

In Fig. 8, we show the time evolution of the probability
in the topological trivial [Fig. 8(a)(c)] and non-trivial re-
gions [Fig. 8(b)(d)]. In the topological trivial region, the
time-evolved state diffuses into the bulk without much
occupation at the boundary. By contrast, in the topo-
logical non-trivial region, the time-evolved state still ex-
hibits a peak at the boundary, together with the diffu-
sive dynamics into the bulk. Note that the normalized
occupation at the boundary decreases with time because
there are bulk eigenstates that decay slower than the edge
states. The detection scheme therefore should only work
at intermediate times. Nevertheless, such a dynamic de-
tection is readily accessible in experiments, and provides
a direct signal of the non-Hermitian skin effect.

V. CONCLUSION

In conclusion, we have characterized the topological
features of a dissipative AB chain in detail, and provided

a theoretical description for the recently implemented
atom-injection spectroscopy. We show that the injec-
tion spectroscopy can be applied to the bulk sites and
resolve the band structure of the system under a peri-
odical boundary condition. We further propose an alter-
native detection scheme for the topological edge states.
Our studies are helpful for future experimental study of
the dissipative AB chain in relevant quantum simulation
systems.
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APPENDIX

In this Appendix, we show that the expression in
Eq. (15) can also be derived from the linear response
theory [55, 56]. Given the probe Hamiltonian Eq. (10),

we consider the correlation function
Dt ) = —ib(t — ) ([fT()d(t), d"

() FE)]). (A1)

In the frequency space, the correlation function becomes

Zépb 5 Z Z Gq(iwy, — pb)Gf( iwn), (A2)

where Gg4(iw,) = 1/iw, is the Green’s function for state
|d), and G is the Green’s functions for state |f), with

<0|fle><w]\f*|0> LN
— E o iwn — Ej ’

Gy(Ej,iwy) = (A3)

Here w,, are the bosonic Matsubara frequencies, E; and
|1;) are respectively the eigenenergy and eigenstate of
the bulk Hamiltonian Eq. (1). The initial state |0) cor-
responds to an empty lattice, particularly with no occu-
pation on site f. After analytic continuation, we derive
the response function R(J,) as

R(6pp) = —J 2, Im D (mpb — 5,,b +i0T)

=—Im A4
Z(S,,(,-E -‘1-20"" (A4)

We thus reproduces Eq. (15) by applying the linear re-
sponse theory to our non-Hermitian system.
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