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We show that a dissipative two-dimensional Raman lattice can be engineered in a two-component
ultracold atomic gas, where the interplay of the two-dimensional spin-orbit coupling and light-
induced atom loss gives rise to a density flow diagonal to the underlying square lattice. The flow is
driven by the non-Hermitian corner skin effect, under which eigenstates localize toward one corner
of the system. We illustrate that the topological edge states of the system can only be accounted
for by the non-Bloch band theory where the deformation of the bulk eigenstates are explicitly
considered. The directional flow can be detected through the dynamic evolution of an initially
localized condensate in the lattice, or by introducing an immobile impurity species that interact
spin-selectively with a condensate in the ground state of the Raman lattice.

I. INTRODUCTION

The recent experimental implementation of Raman lat-
tices in cold atoms enables the simulation of topologi-
cal matter such as topological insulators [1–5] or Weyl
semimetals [6, 7]. While the excellent tunability of Ra-
man lattices provides access to a plethora of dynamic
topological phenomena either in quench processes or
periodically-driven Floquet settings [8–10], a largely un-
explored possibility is the further introduction of dissi-
pation. A dissipative Raman lattice should exhibit even
more exotic properties in the highly non-trivial context
of quantum open systems [11]. This is expected, since
dissipation has been shown to stabilize interesting many-
body phases [12–14] or phase transitions [15–19] under
the framework of quantum master equation. For the past
several years, however, quantum open systems are often
studied from the perspective of non-Hermitian physics:
while the evolution of the density matrix in the quantum
master equation is intrinsically non-Hermitian, state evo-
lution under the condition of post selection (the so-called
conditional dynamics) follows a non-Hermitian effective
Hamiltonian [20–24]. It is within this latter framework
that non-Hermitian models with the parity-time sym-
metry [25, 26] or exotic non-Hermitian topology [27–32]
have been realized in cold atomic gases undergoing light-
induced loss [33–35].

One of the most intriguing and fast-developing fron-
tiers of non-Hermitian physics is the study of non-
Hermitian skin effect (NHSE) [37–48]. Defined as the
exponential localization of eigenstates toward bound-
aries, the NHSE originates from a directional flow in
the bulk that is closely related to the non-Hermitian
model’s spectral topology in the complex plane [42, 43].
In a non-Hermitian lattice model with translational sym-
metry, since all eigenstates are deformed from Bloch
waves, topological edge states can only be accounted
for by the non-Bloch band theory, where the concept
of the generalized Brillouin zone is introduced [37–39].

∗ wyiz@ustc.edu.cn

So far, dynamic signatures of the NHSE and its exotic
implications for the band topology have been observed
in quantum systems such as photons [49, 50] and cold
atoms [35]. These experiments, however, are confined to
one dimension—discrete spatial modes for photons and
distinct momentum states for atoms. While higher-order
NHSEs in higher spatial dimensions have been observed
in acoutics [51] or topoelectrical circuits [52], it is de-
sirable to engineer non-Hermitian topological models in
higher-dimensional quantum systems, where the NHSE
has richer manifestations and impacts.

In this work, we propose a dissipative two-dimensional
(2D) Raman lattice that is readily accessible in current
experiments with ultracold atomic gases. An important
ingredient of the model is the Raman-induced 2D spin-
orbit coupling, under which the band topology of the
lattice can be mapped to that of an anomalous quan-
tum Hall insulator. We show that, by further imposing
an on-site atom loss, the dissipative lattice acquires the
non-Hermitian corner skin effect, where all eigenstates
are exponentially localized toward a corner of the system
under the open boundary condition. As a direct conse-
quence, we confirm that topological invariants responsi-
ble for the topological edge states should be calculated
over the generalized Brillouin zone, following the non-
Bloch band theory.

Dynamically, the NHSE is reflected in a directional
bulk density flow which vanishes in the absence of dissi-
pation. The persist current forms the basis for previous
experimental detection of the NHSE [35, 49], as well as
its interplay with disorder [53, 54]. Here we propose two
schemes to detect the bulk flow. For concreteness, we
consider a two-component Bose-Einstein condensate in
the Raman lattice. In the first scheme, the condensate
is initialized in a quasi-local Gaussian wave packet over
several sites deep in the bulk. The directional flow is vis-
ible in the subsequent time-evolved density distribution
of the condensate. In the second scheme, we consider a
condensate initialized in the ground state of the Raman
lattice. While the spatial homogeneity of the initial den-
sity distribution makes the directional flow invisible in
the density evolution, we further introduce a third minor-
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FIG. 1. (a) Laser configuration for generating the Raman lat-
tice. The black arrows indicate the laser polarizations. The
standing-wave lasers E1,2 form a 2D optical lattice, and gen-
erate Raman couplings along the two spatial directions, to-
gether with the plane-wave lasers E′1,2. The plane-wave lasers
Er,E

′
r induce on-site Raman couplings. (b) Level scheme:

three sets of Raman lasers couple the states |↑〉 and |↓〉. (c)
Schematic illustration of the dissipative 2D Raman lattice.
See main text for the definition of the variables γ, tso, ts and
Ω.

ity species (dubbed impurity) interacting spin-selectively
with the condensate. Through interactions, the impurity
introduces spatially inhomogeneous density excitations
in the background condensate, and the directional flow
becomes visible from the dynamics of these excitations.
We confirm the picture above through the coupled mean-
field calculations, and demonstrate how the spin-selective
interaction between the impurity and the condensate im-
pacts the directional bulk flow.

The paper is organized as follows. In Sec. II, we present
the setup of the dissipative Raman lattice and derive
the tight-binding Hamiltonian. We confirm the non-
Hermitian corner skin effect and the non-Bloch topology
of the system in Sec. III. In Sec. IV, we discuss in detail
the two detection schemes. We summarize in Sec. V.

II. MODEL

As illustrated in Fig. 1, we consider a two-component
(|↑〉 and |↓〉) atomic gas in a 2D optical lattice, described
by the following Hamiltonian [2, 3]

H(x, y) =
p2

2m
+ V (r) + Γz(|↑〉 〈↑| − |↓〉 〈↓|)− iγ |↓〉 〈↓|

+ {[Mx(x) + iMy(y) +Mr(x)] |↑〉 〈↓|+ H.c.} ,
(1)

where Γz is the effective Zeeman field, γ is the laser-
induced loss rate of state |↓〉. Similar to the practice in

Refs. [33, 35, 36], the non-Hermitian term is introduced
by coupling atoms in |↓〉 to an electronically excited state
which undergoes rapid spontaneous decay into the en-
vironment. The atoms that remain (within the lattice
potential and in states |↓〉 and |↑〉) necessarily do not
undergo the laser-induced decay process, and their dy-
namics is driven by the non-Hermitian effective Hamil-
tonian in (1). For detailed derivations starting from the
Lindblad master equation, see Refs. [47, 55].

The Raman lattice potential V (r) =
−V0

[
cos2(k0x) + cos2(k0y)

]
, and the Raman cou-

pling terms Mx(x) = M0 sin(k0x), My(y) = M0 sin(k0y),

and Mr(x) = Mre
i(k0x−π/4). Here the Raman lattice

potential V (r) is generated by the standing-wave lasers
propagating along the x and y directions, with the elec-
tric fields E1 = ezE1 sin(k0x) and E2 = ezE2 sin(k0y),
respectively. To introduce Raman couplings along the
two spatial directions, we consider two plane-wave
lasers (given by electric fields E′1 and E′2) with σ+

polarization, propagating along the z axis. The laser
pairs (E1,E

′
1) and (E2,E

′
2) separately induce the terms

Mx(x) and My(y) in Eq. (1). We further introduce
the Raman coupling term Mr(x) term in Eq. (1), by
the plane-wave lasers Er and E′r propagating along the
x axis, with electric fields Er = eyEre

ik0x/2−π/4 and

E′r = ezE
′
re
−ik0x/2, respectively.

Under the single-band approximation, the tight-
binding model corresponding to Eq. (1) can be derived

with the lowest-band Wannier functions φ
jx,jy
σ (x, y),

where σ =↑, ↓. Here jx and jy are the lattice-site labels
in the x and y directions, both with a lattice spacing
a = π/k0. We only consider the on-site and nearest-
neighbour hopping terms. Following a gauge transfor-
mation c~j↓ → ei(jx+jy)c~j↓, the tight-binding Hamiltonian

is given by

H =− ts
∑
<~i,~j>

(
c†~i↑c~j↑ − c

†
~i↓
c~j↓

)
+
∑
~i

Γz

(
n~i↑ − n~i↓

)

+

∑
~i

tso

(
c†~i↑c~i+~ex↓ − c

†
~i↑
c~i−~ex↓

)
+ H.c.


+

∑
~i

itso

(
c†~i↑c~i+~ey↓ − c

†
~i↑
c~i−~ey↓

)
+ H.c.


+
∑
~i

(
(Ω− iΩ)c†~i↑

c~i↓ + H.c.
)
−
∑
~i

iγn~i↓.

(2)

Here c†~iσ creates a particle at position ~i = (ix, iy) with

spin σ, and n~iσ = c†~iσc~iσ. The unit vectors ~ex = (1, 0)

and ~ey = (0, 1). The nearest-neighbour hopping rate

is given by ts =
∫
d2rφ0,0↑ (x, y) p2

2m + V (r)φ0,0↑ (x − a, y).
The nearest-neighbour and on-site spin-flip rates are
tso = M0

∫
d2rφ0,0↑ (x, y) sin(k0x)φ0,0↓ (x − a, y), Ω =

√
2
2 Mr

∫
d2rφ0,0↑ (x, y)eik0xφ0,0↓ (x, y). Note that in the
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FIG. 2. (a)(b)(c) Eigenspectra of Hamiltonian (2) on the complex plane. (d)(e)(f) Average spatial distribution of all eigenstates
of Hamiltonian (2). In (a)(d), the lattice is under the periodic boundary condition along both directions. In (b)(e), the lattice is
under the periodic boundary condition along the x direction, but open boundary condition along the y direction. In (c)(f), the
lattice is under the open boundary condition along both directions. For all figures, we take tso/ts = 1, Γz/ts = 1, Ω/ts = 0.5,
γ/ts = 2, and a lattice with 20× 20 sites.

Hermitian limit with γ = 0, our model differs from that
in Ref. [3] by an additional on-site spin-flip term (char-
acterized by Ω), which is crucial for inducing the corner
skin effect in the presence of loss.

Hamiltonian (2) has non-Hermitian skin effect in both
the x and y directions under finite γ and Ω. In Fig. 2,
we show typical eigenspectra and spatial distribution of
eigenstates under different boundary conditions. When
the lattice has the periodic boundary condition along
both spatial directions, the eigenstates distribute uni-
formly across the 2D lattice [see Fig. 2(d)]. When the
lattice has periodic boundary condition only along the
x direction, but has open boundary along the y direc-
tion, the eigenstates are localized toward an open bound-
ary[see Fig. 2(e)]. When both directions are under the
open boundary condition, the eigenstates are localized
toward a corner [see Fig. 2(f)]. This is a signature of
the non-Hermitian corner skin effect in 2D systems. Fur-
ther, from the eigenspectra on the complex plane, in-gap
(line gap) topological edge states are clearly visible in
Fig. 2(b)(c), when open boundaries are present. In the
following, we characterize these topological edge states
through the non-Bloch band theory.

III. TOPOLOGY UNDER THE NON-BLOCH
BAND THEORY

Under the NHSE, eigenstates deviate from extended
Bloch waves. Taking such deformation into account, we
replace the phase factors eikx and eiky with the spa-

tial mode factors βx(kx) = |βx(kx)|eikx and βy(ky) =
|βy(ky)|eiky [37, 38]. Here the quasimomenta kx, ky ∈
[0, 2π), and the surface spanned by βx(kx) and βy(ky)
is known as generalized Brillouin zone (GBZ) which can
be calculated from the Schrödinger’s equation as shown
below.

We start from the non-Bloch Hamiltonian, formally
derived by replacing eikx ( eiky ) with βx(kx) (βy(ky)) in
the dispersion relation of Hamiltonian (2) in the quasi-
momentum space (hence under the periodic boundary
condition). The non-Bloch Hamiltonian is

H(βx, βy) =[
Ω + tso(βy − β−1y )

]
σx +

[
Ω + tso(βx − β−1x )

]
σy

+
[
Γz + i

γ

2
− ts(βx + β−1x + βy + β−1y )

]
σz − i

γ

2
I, (3)

where σx, σy and σz are the Pauli matrices, and I is the
2 × 2 identity matrix. The corresponding Schrödinger’s
equation is then [H(βx, βy)−Em]|ϕRm(βx, βy)〉 = 0, where
Ej is the complex eigenenergy, |ϕRm(βx, βy)〉 is the right
eigenstate of H(βx, βy) (m = 1, 2 being the band index).
Sending the determinant of coefficients to zero, we have

(E + i
γ

2
)2 −

[
Ω + tso(βy − β−1y )

]2 − [Ω + tso(βx − β−1x )
]2

−
[
Γz + i

γ

2
− ts(βx + β−1x + βy + β−1y )

]2
= 0. (4)

Equation (4) is a quartic equation for both βx and βy.
Following the standard practice, we sort the four roots
of Eq. (4) in ascending order {β1, β2, β3, β4}, and require
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FIG. 3. (a)(b) Cross sections of the generalized Brillouin
zone on the complex plane, each with a fixed kx or ky.
Red solid, blue dashed, green dashdot, and purple dot-
ted loops indicate fixed kx = 0, π/2, π, 3π/2 in (a) and
ky = π/4, 3π/4, 5π/4, 7π/4 in (b). Black densely dashed
loop indicates the unit circle. (c)(d) Topological phase dia-
grams of the lower band on the tso–Γz plane with (c) γ = 0,
and (d) γ/ts = 2. The red dashed lines in (d) denote the gap-
less region. In (a)(b), we take Γz/ts = 0.5 and tso/ts = 1.5,
while for all figures, Ω/ts = 0.5.

β2 = β3. For each set (kx, ky), we solve for the cor-
responding |βx(kx)|, |βy(ky)| and E. While E gives the
eigenspectrum under the open boundary condition (along
both directions), |βx(kx)| and |βy(ky)| determine the gen-
eralized Brillouin zone.

We are now in a position to calculate the non-Bloch
Chern number, which can correctly predict the existence
and number of the topological edge states. The non-
Bloch Chern number is defined as the surface integral of
the Berry curvature over the generalized Brillouin zone

C = − 1

2π

∫ 2π

0

dkx

∫ 2π

0

dkyB(kx, ky), (5)

where

B(kx, ky) = −Im
〈ϕL1 |∇H|ϕR2 〉 × 〈ϕL2 |∇H|ϕR1 〉

(E1 − E2)2
. (6)

Here the left eigenstate is defined as
H†(βx, βy)|ϕLm(βx, βy)〉 = E∗|ϕLm(βx, βy)〉. Note
that for the Hermitian case γ = 0, βx (βy) is reduced
to eikx (eiky ), and the non-Bloch Chern number to the
conventional Bloch Chern number.

In Fig. 3(a)(b), we show the different cross sections of
the generalized Brillouin zone by fixing kx or ky. All of
the loops have |βx,y| > 1, indicating that under the open

boundary condition along both directions, all eignstates
accumulate to the corner with large jx and jy indices.

In Fig. 3(c)(d), we plot the topological phase diagrams
of the lower band for the Bloch and non-Bloch cases,
respectively. In the Hermitian case [Fig. 3(c)], there
are three distinct regions, respectively with C = 0 and
C = ±1. In the non-Hermitian case [Fig. 3(d)], the topo-
logical non-trivial phase regions with C = ±1 become
smaller, and a gapless region appear (bounded by red
dashed lines) between the trivial and non-trivial phases.
The non-Bloch Chern number cannot be defined in the
gapless region.

IV. DETECTING SKIN EFFECT THROUGH
DYNAMICS

The NHSE generally leads to a directional flow in the
system dynamics. This is visible by considering the dy-
namics of an initially quasi-localized condensate in the
lattice space.

Specifically, we consider a condensate of spin-up atoms,
loaded in a two-dimensional lattice with M ×M sites.
The initial condensate wave function is written as

|ψ(τ = 0)〉 =
√
N
∑
~j

φ~jc
†
~j,↑
|0〉, (7)

where φ2~j = exp(−|~j − ~j0|2/w2)/πw2, with ~j0 =

(M/2,M/2) and w = M/10, and τ is the evolution time.
The initial atom number is N = 5×105. The time evolu-
tion is then given by |ψ(τ)〉 = e−iHτ |ψ(τ = 0)〉. Since we
focus on the bulk dynamics, we consider only the short-
time dynamics such that the condensate wavefunction
has not yet evolved to the boundaries of the lattice. We
define the local density n~j,σ = |〈~j, σ|ψ(τ)〉|2, and then

show the time-evolved density distribution in Fig. 4(a-
d). Apparently, both spin species exhibit a directional
flow along the diagonal of the lattice, indicating the non-
Hermitian corner skin effect.

In typical experiments, it is more natural to load atoms
into the ground state of the Raman lattice, which under
most parameters occurs at kx = ky = 0. In the real
space, this corresponds to an evenly distributed conden-
sate wavefunction. Because of its homogeneity, as well as
the lattice-translational symmetry, the directional bulk
flow is not reflected in the time evolution of the density
profiles. We therefore consider an alternative scheme
where an impurity species is introduced, which inter-
acts spin-selectively with atoms in the Raman lattice.
For convenience, we consider the impurity atoms to be
trapped by a deep optical lattice potential with the same
lattice constant as that of the Raman lattice, such that
inter-sites hoppings are negligible (a finite hopping rate
does not qualitatively change our discussion below). The
Hamiltonian concerning the impurity atoms then reads

Himp = timp

∑
<~i,~j>

b̂†~i b̂~j + u
∑
~i

b̂†~i b̂~iĉ
†
~i↑
ĉ~i↑, (8)
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FIG. 4. Directional dynamics of condensates in the Raman lattice. (a)(b)(e)(f)(i)(j) Contours of the density distribution for
|↑〉 and |↓〉 states at τts = 2. (c)(d)(g)(h)(k)(l) Contours of the density distribution for |↑〉 and |↓〉 states at τts = 10. The
initial state is the Gaussian wave packet state for (a)-(d), and the uniform state for (e)-(l). White dashed lines indicate the
initial wave packet center for the lattice in (a)-(d), and for the impurity in (e)-(l). The interaction strengths are u = −0.01 for
(e)-(h), and u = 0.01 for (i)-(l), respectively. For all figures, lattice size M = 60, tso/ts = 1, Γz/ts = 1, Ω/ts = 2, and γ/ts = 2.

where b†~i (b~i) is the creation (annihilation) operator for

the impurity atom at position ~i, timp is the nearest-
neighbour hopping rate for the impurity, and u is the
spin-selective interaction strength.

We consider the case where a dissipative Bose-Einstein
condensate is loaded into the Raman lattice. This en-
ables a mean-field treatment of the coupled dynamics.
Specifically, we derive the equations of motion for the
field operators {c~j,σ, b~j} through

i~
d

dt
c~j,σ = (H +Himp)c~j,σ − c~j,σ(H† +Himp), (9)

i~
d

dt
b~j = (H +Himp)b~j − b~j(H† +Himp). (10)

We then take the mean-field approximation, defining
the on-site condensate wavefunctions ψ~j,σ = 〈c~j,σ〉 and

ψ~j,imp = 〈b~j〉. This allows us to numerically evolve the

wave functions. For the initial state, we take ψ~j,σ =√
N0ξσ and ψ~j,imp =

√
Nimp

∑
~j φ~jb

†
~j
|0〉, where ξσ is the

ground state of Hamiltonian (2) under γ = 0, and φ~j has

the same form as in (7). The initial atom number of the
condensate N0 and the impurity species Nimp are set to
5× 105 and 103, respectively.

We show the results of the density evolution in Fig. 4(e-
l). With an attractive interaction u < 0, the impurity

induces density peaks near ~j0 for both spin species. The
density peak in either spin species is accompanied by a
dip in the other. Because of these density excitations,
the homogeneity of the initial state is broken Driven by
the directional flow, both density peaks propagate along
the diagonal of the lattice, as shown in Fig. 4(g)(h). The
overall picture is similar under the repulsive interaction
u > 0, only the density peak (dip) under the attractive
interaction is replaced with dip (peak), see Fig. 4(i-l).
Importantly, the propagation direction is independent of
either spin species or the sign of the interaction, but re-
lated to the direction of the non-Hermitian corner skin
effect.

To investigate the effect of the interaction on the prop-
agation of the wave packet, we define the mean peak ve-
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FIG. 5. Mean peak velocity of spin-up atoms at τts = 10. Red
(middling) solid line: velocity corresponding to the cases of
Fig. 4(a-c). Green (lower) solid line: velocity corresponding
to the cases of Fig. 4(e-h). Blue (upper) solid line: velocity
corresponding to the cases of Fig. 4(i-l). Black dashed line is

the group velocity vg at ~k = ~0.

locity of spin-up atoms as

v̄↑(τ) =

∑
~j l(
~j)(|ψ~j,↑|2 − nbg,↑)θ(|ψ~j,↑|2 − nbg,↑)

τts
∑
~j(|ψ~j,↑|2 − nbg,↑)θ(|ψ~j,↑|2 − nbg,↑)

. (11)

Here l(~j) = (jx + jy −M)/
√

2 denotes the displacement
in the diagonal direction. The background density nbg,↑
is defined as nbg,↑ = |ψ(1,1),↑|2, as the excitations never
reach the boundary during the evolution.

We plot the mean peak velocities for different cases
in Fig. 5. For the first scheme, (11) is reduced to

v̄↑(τ) =
∑
~j l(
~j)n~j,↑/τts

∑
~j n~j,↑, and the mean peak ve-

locity of the condensate (red) is very close to the group

velocity vg at ~k = ~0 (black dashed) [48]. Here the group

velocity has the form vg =
∣∣∣dRe(E−)

d~k

∣∣∣, where E− is the

lower-band dispersion of the Raman lattice. However,
with interactions, the mean peak velocity shows a large
deviation from the group velocity. The attractive (repul-
sive) interaction makes the evolution of the peak slower
(faster), which is intuitive under the mean-field approxi-
mation.

V. CONCLUSION

We have shown that a two-dimensional dissipative Ra-
man lattice features non-Hermitian corner skin effect and
band topology, and is amenable to current cold-atom
experiments. Two dynamic detection schemes for the
NHSE are then proposed, based on a two-component
Bose-Einstein condensate in the Raman lattice. In par-
ticular, we show that, by introducing an impurity species
that interacts spin-selectively with a lattice condensate
in the ground state, the directional flow, characteristic
of the NHSE, is imposed upon the interaction-induced
density excitations in the condensate. The interplay of
interaction and NHSE can then be studied through the
dynamics of the density excitations. For future stud-
ies, it would be desirable to engineer more exotic higher-
order NHSE based on the dissipative Raman lattice. The
impurity-induced density excitations can also be studied
in the context of polarons in a dissipative condensate,
where the interplay of interaction and NHSE can be un-
derstood in the context of quasiparticle excitations.
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