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Ultrastrong light-matter coupling opens exciting possibilities to generate squeezed quantum states
and entanglement. Here we propose a way to achieve this regime in superconducting hybrid nanos-
tructures with ferromagnetic interlayers. Strong confinement of electromagnetic field between su-
perconducting plates is found to result in the existence of magnon-polariton modes with ultrastrong
magnon-photon coupling, ultra-high cooperativity and very large group velocities. These modes
provide a numerically accurate explanation of recent experiments and have intriguing quantum
properties. The magnon-polariton quantum vacuum consists of the squeezed magnon and photon
states with the degree of squeezing controlled in wide limits by the external magnetic field. The
ground state population of virtual photons and magnons is shown to be very large which can be used
for generating correlated magnon and photon pairs. Excited states of magnon-polaritons contain
bipartite entanglement between magnons and photons. This property can be used for transferring
entanglement between different types of quantum systems.

Cavity-enhanced light-matter interaction has become
one of the most perspective tools to control and study
the properties of quantum materials [1–5]. In the core of
this approach is the formation of hybrid quantum states
consisting of the the matter and electromagnetic field
components. Especially pronounced such hybridization
becomes in the strong-coupling regime when the coupling
strength is larger than decay rates of both the cavity
and the quantum system states [6–10]. In many-body
quantum this regime leads to the formation of hybrid
polaritons [3, 11] combining photons and various collec-
tive modes. Among them are the exciton-polaritons[12],
magnon-polaritons (MP) [13, 14] and hybrid supercon-
ducting modes [15–17] .

Even more exciting is an ultrastrong coupling regime
when the interaction is comparable with the eigen fre-
quencies of interacting modes [2, 18]. Many interesting
effects based on the hybridization between states with
different number of excitations have been predicted to
be observable in this realm. In view of the rapidly devel-
oping quantum cavity magnonics [13, 14] it is very ap-
pealing to realize the ultrastrong-coupling regime in such
systems where ”matter” is represented by the magnons
and the ”light” is represented by the microwave cavity
fields. It has been achieved in specially designed 3D mi-
crowave cavities [19] and in recently discovered on-chip
superconducting nanostructures [20, 21] combining su-
perconducting (S) plates separated by the insulating (I)
[22] and ferromagnetic metal (FM) interlayers typically of
10− 100 nm thickness. The ultrastrong photon-magnon
coupling observed in S/FM/I/S [20] and S/FM/S/I/S
[21, 23] systems is by several orders of magnitude larger
than in S/FM[24, 25] and S/FI bilayers [26], where FI
stands for the ferro- or ferrimagnetic insulator like yt-
trium iron garnet (YIG)[27, 28].

In the present Letter we explain these experiments by
developing the theory of magnon-polariton (MP) states
for both the generic S/FI/S system and the experimen-
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FIG. 1. (a,b) Superconducting heterostructures hosting MP
modes. (a) With ferro- or ferrimagnetic insulator (FI) in-
terlayer. (b) With composite interlayer consisting of metal-
lic ferromagnet (FM) and usual insulator (I). The static ex-
ternal field is H0 = H0x, the precessing magnetization is
M(t) and the wave vector of MP is q = qx. (c)MP spec-
trum in S/FI/S system with dFI = 0.3λ. Upper ΩUP and
lower ΩLP MPs are shown by red and blue lines, respectively.
Dashed line is FMR frequency ΩFMR, dotted line is a Swi-
hart (Sw) mode frequency ΩSw, dashed-dotted is the Kit-
tel frequency ΩK = γ

√
H0B0. Parameters are dF /λ = 0.5,

H0 = 4πM0/10, ΩM = 4πγM0. (d) Coupling parameter g(q)
Eq.(7) for dF /λ = 1; 0.2; 0.05 and H0 = 4πM0/10. Filled
circles show g(qres).

tally studied more complex S/FM/I/S one with in-plane
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stationary magnetization. Hybridization of spin and
Josephson plasma waves has been suggested previously
for S/FM/I/S systems with perpendicularly magnetized
FM films [29]. Our theory is very accurate to explain ex-
periments [20] without using adjusting parameters. Be-
sides that we find several unique properties of MPs in
such systems making them a versatile platform for clas-
sical and quantum magnonics [27, 30, 31].

Let us consider the generic S/FI/S and S/FM/I/S sys-
tems shown in Fig.1a,b hosting both photonic modes
and magnons. The former is represented by highly con-
fined electromagnetic field solutions found by Swihart
[22]. This Swihart mode is localized within the layer
of the thickness dF + 2λ and dI + dF + 2λ in S/FI/S and
S/FM/I/S systems, respectively, where λ is the London
penetration length. For typical superconducting mate-
rial Nb[20, 23] and nanostructure parameters dF , dI ∼ λ
the field is localized within the layer much thinner than
the photon wavelength which is ∼ 1− 10 mm for typical
microwave frequencies ω ∼ 10 − 100 GHz. This strong
confinement leads to the unusual polarization structure
with electric field E almost ‖ q as shown in Figs.1a,b
by blue arrows. Simultanoesly it leads to the strongly
enhances magnon-photon interaction as compared to the
3D cavities[13, 14]. Dispersion of the Swihart mode is

in S/FI/S : ΩSw(q) = cq
√
dF /ε(dF + 2λ) (1)

in S/FM/I/S : ΩSw(q) = cq
√
dI/ε(dI + dF + 2λ) (2)

where c is light velocity and ε ∼ 10 is the dielectric con-
stant in YIG or usual insulators Al2O3, Si.

Magnons in S/FI/S and S/FM/I/S systems are exci-
tations of the magnetization direction M(t) in the mag-
netic layer. In thin films with[20, 32] dF ∼ 100 nm the
scale of magnon frequency dispersion [33–35] ∼ d−1

F is
much larger than the wavenumbers of microwave pho-
tons q ∼ 0.1 − 1 mm−1. Therefore magnon frequency
can be assumed constant coinciding with the fundamen-
tal ferromagnetic resonance (FMR) mode ΩFMR. In this
regime magnons play the role analogous to the electronic
atomic [36] or intersubband transition in cavity electro-
dynamics [37]. The cavity is represented by the Swihart
mode Eq.(1,2). The resonance when ΩSw(qres) = ΩFMR

corresponds to the wavelengths q−1
res ∼ 1 − 10 mm. The

anticrossing between magnon and Swihart modes shown
in Fig.1c results in two magnon-polariton (MP) modes.
Detailed calculations yielding Fig.1c are presented below.

Our starting equations for the frequency components
of magnetization Mω, magnetic field Hω and induction
Bω = Hω + 4πMω read

iωMω = γ(B0 ×Mω + Bω ×M0) (3)

∇× (ε̃−1∇×Hω)− q2
vBω = 0 (4)

Here Eq.(3) is Landau-Lifshitz-Gilbert (LLG) one, B0 =
H0+4πM0 is the stationary magnetic field. The gradient
terms are neglected since length scales are much larger
than the exchange length. Maxwell equations result in

Eq.(4) where qv = ω/c is the wave number in vacuum. In
the insulator, either FI or I we have ε̃ = ε is the dielectric
constant while in metal ε̃ = −4πiσ/ω. The conductivity
σ in FM is σF = const while in S σS(ω) = c2/(4πiλ2ω),
where λ is the London penetration length.

First consider S/FI/S and S/FM/I/S systems shown
in Figs.1a,b with Lx =∞ so that all fields perturbations
∝ eiqx with arbitrary q. Time-dependent magnetization
components are Mω = (0,My,Mz). Due to the presence
of metallic S layers we can simplify the problem in the
long-wavelength limit[38] qλ � 1. In this case Eq.(4)
yields Bz = 0 and Hx = 0 in metallic S. Due to the con-
tinuity of Bz and Hx they are small also in the attached
I and FI layers. Then we are left with equations only for
the Hy component in each layer. Boundary conditions at
interfaces follow directly from Maxwell equations yield-
ing the continuity of tangential components Hy and Ex,
where Ex = (i/ε̃qv)∇zHy .

First we consider S/FI/S system shown in Fig.1a. Solv-
ing equations for Hy in S and FI layers and matching
them with the help of above boundary conditions [39] we
get the equation for MP dispersion relation

(ω2 − Ω2
Sw)(ω2 − Ω2

FMR) = 4g2ΩFMRΩSw (5)

Here ΩSw(q) is the Swihart mode frequency Eq.(1),
ΩFMR is the FMR frequency in S/FI/S system given by

ΩFMR = γ

√
H0B0 +

4πM0B0dF
dF + 2λ

(6)

where the first term in r.h.s. ΩK = γ
√
H0B0 is the FMR

frequency in isolated ferromagnetic film derived by Kittel
[40]. The coupling parameter equivalent to the vacuum
Rabi splitting [1, 36, 37, 41] is given by

g =
1

2

√
ΩSw

ΩFMR

√
Ω2
FMR − Ω2

K (7)

Now let us consider the S/FM/I/S system Fig.1b stud-
ied in recent experiment [20]. This system also hosts MPs
[39] determined by Eq.(5) with Swihart mode Eq.(2) and
FMR frequency

ΩFMR = γ

√
H0B0 +

4πM0B0dF
dI + dF + 2λ

(8)

The coupling parameter g is given again by Eq.(7).
Solution of Eq.(5) consists of upper and lower magnon-

polariton modes with frequencies ΩUP (q) and ΩLP (q),
respectively, where ΩUP > ΩLP . The example of dis-
persion curves for S/FI/S system with dF = 0.5λ are
shown in Fig.1c. The coupling parameter Eq.(7) is de-

termined by the detuning g ∝
√

Ω2
FMR − Ω2

K which
strongly depends on thickness dF and external param-
eters such as H0 and temperature T through the Lon-
don length λ(T ). Shown in Fig.1b are the dependencies
g(q) for S/FI/S for dF /λ = 1; 0.2; 0.05. As one can see
it is possible to achieve an ultrastrong photon-magnon
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coupling g ∼ ΩFMR. To demonstrate explicitly this con-
sider a resonant point[37] qres where ΩSw(qres) = ΩFMR.
The coupling parameter at resonance in S/FI/S system is

g(qres) = γ
√
πdFB0M0/(dF + 2λ). In the limit H0 = 0

it can reach the maximal value of g(qres) = ΩFMR/2
corresponding to the ultra-strong coupling regime[2, 37].
Since there is an upper boundary on coupling g(qres) <
ΩFMR/2 it is not possible to enter the deep-strong-
coupling[42–44] regime and the super-radiant transition.
Similar result is valid for the S/FM/I/S system.

The dispersion relation Eq.(5) can be written in the
form introduced to fit experimental data [20], which fol-
lows from the Hopfield Hamiltonian[2, 43, 45, 46]

ω4 − ω2(Ω2
Sw + Ω2

K + 4g̃2) + ΩSwΩK = 0 (9)

with the renormalized coupling g̃ =
√

Ω2
FMR − Ω2

K . It
can be written as

in S/FI/S : g̃ = γ
√
πM0B0dF /(dF + 2λ) (10)

in S/FM/I/S : g̃ = γ
√
πM0B0dF /(dF + dI + 2λ) (11)

Note that for small external fields H0 � 4πM0 the cou-
pling coefficient is almost constant at g̃(H0) ≈ const. As
shown in Ref.[20] this allows obtaining accurate fits of
experimental data using Eq.(9) with g̃ as a phenomeno-
logical adjusting parameter. The present theory explains
experiment quantitatively without using any adjusting
parameters.

Both S/FI/S and S/FM/I/S systems provide ultra-
high cooperativity for MP states. The cooperativity is
C = g(qres)/(αphαmag), where the photon and magnon
decay rates are αph and αmag, respectively. For S/FI/S
system with YIG we assume [26] αph = 3 MHz, αmag =
50 MHz and ΩM ≈ 6 GHz. Then for the parameters cor-
responding to Fig.1c we get from Eqs.(6,7) C = 1.3 104.

Similar estimation can be made for S/FM/I/S system
with Py ferromagnet and parameters corresponding to
experiment [20] dI = dF = 0.3λ. Taking the decay rates
[25] αph = 0.7 MHz, αmag = 200 MHz, ΩM = 31.3 GHz
and H0 = 4πM0/10, from Eqs.(7,8) we get much larger
cooperativity C = 3.7 105. This value is comparable with
the ultra-high mangon-photon cooperativity obtained in
specially designed 3D cavities with with focused magnetic
fields [47].

In the region of strong magnon-photon mixing q ≈ qres
in Fig.1c the group velocities of MP branches vj =
∂Ωj/∂q are of the order vj ∼ c/20 ≈ 1.5 104 km/s.
This velocity is 103 times larger than that of the fastest
known magnons [48]. In complement to magnon gating
by narrow S stripes[49] and magnon-condensate coupling
[50] the present S/FI/S and S/FM/I/S systems are ex-
tremely efficient in transmitting magnetic signals which
is promising for the ultra-fast and energy-efficient data
processing [30].

In several limiting cases MPs feature interesting be-
haviour. (i) For H0 = 0 Eq.(7) yields g =

√
ΩSwΩFMR/2

so that ΩLP (H0 = 0) = 0 and ΩUP (H0 = 0) =

√
Ω2
Sw + Ω2

FMR. The asymptotic behaviour for small

fields H0 � M0 is ΩLP = ΩKΩSw/
√

Ω2
Sw + Ω2

FMR.
As shown below, this behaviour is crucial for realizing
highly squeezed vacuum magnon and photon states. (ii)
For large wave numbers q � ΩM/c the asymptotic is
ΩUP (q → ∞) = ΩSw and ΩLP (q → ∞) = ΩK as can
be seen in Fig.1c. This behaviour explains earlier theo-
retical result [51] and experiments[52] featuring no shift
of measured FMR frequency from ΩK in S/FM/I/S sys-
tems much shorter than the wavelength Lx � c/ΩM .
In such systems it is not the genuine FMR frequency
ΩFMR Eq.(8) which is measured but the that of lower
MP modes having ΩLP (qn) ≈ ΩK for all standing waves
with quantized wavenumbers qn = πn/Lx for integer n.
(iii) For dI → 0 the Swihart mode velocity in S/FM/I/S
system becomes very small so that according to Fig.1c
the lower MP mode disappears ΩLP (q) → 0. At the
same time the upper MP mode becomes dispersion-less
ΩUP (q) ≈ ΩFMR given by Eq.(8) with dI = 0. This
result coincides with previous calculations[51] and shows
that experiments [52–54] in S/FM/S systems have mea-
sured in fact the upper MP modes having ΩUP (qn) ≈
ΩFMR for all integer n.

The quantization of MP states has been observed
in recent experiments [20, 23]. To explain them note
that in general structures of finite length Lx shown in
Fig.1a,b host standing waves of MPs with discrete mo-
menta qn = πn/Lx with integer n corresponding to the
quantized MP states. Their discrete frequencies ΩLP,n
and ΩUP,n are given directly by Eq.(5) with q = qn,
that is Ωj,n = Ωj(qn) where j = {LP,UP}. Let us
consider S/FM/I/S structure shown in Fig.1b with pa-
rameters precisely those used in experiment [20] λ = 80
nm, dF = 25 nm, dI = 13 nm, Lx = 1.1 mm, ε = 10,
M0 = 1.06 T so that ΩM = 31.3 GHz. In Fig.2a,b the
blue and red lines show ΩLP,n(H0) and ΩUP,n(H0), re-
spectively for n = 1, 2, 3. As shown in Fig.2 the sequence
of modes ΩLP,n(H0) is bounded from above by the Kittel
frequency since as discussed above ΩLP (q → ∞) = ΩK .
The other sequence ΩUP,n(H0) grows unbounded with
n. To compare with experiment [20] in Fig.2b we zoom
in the domain which is marked by the green rectangle
in Fig.2a. There is a very accurate agreement between
experimental data [20] shown by open circles and the-
ory curves shown by solid lines. Note that we use no
adjusting parameters. Qualitatively similar results are
expected for S/FI/S system in Fig.1b.

The hybridization of magnon and photon modes given
by the dispersion relation (5) is equivalent to that given
by the Dicke model Hamiltonian [37, 55–58].

Ĥ = ΩSwâ
†â+ ΩFMRb̂

†b̂+ g(â+ â†)(b̂† + b̂) (12)

where â and b̂ are the annihilation operators for the pho-
ton and magnon mode with quantum number n . The
photon frequency and coupling are given by (5) with
ΩSw = ΩSw(qn) and g = g(qn). The last term in Eq.(12)
is the quantized Zeeman interaction energy[39] dFHyMy.
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FIG. 2. (a) Quantized MP modes in S/FM/I/S system with
parameters as in experiment [20], see text for details. Up-
per (red lines) ΩUP,n(H0) and lower (blue lines) ΩLP,n(H0)
modes with n = 1 (solid lines), n = 2 (dashedlines), n = 3
(dotted lines). The black dash-dotted line is the Kittel fre-
quency ΩK(H0). (b) The zoomed-in region marked by green
rectangle in panel (a) plotted in real units. Open circles show
experimental data [20].

(a) (b)

FIG. 3. (a) Magnon rm and photon rp squeeze parameters
for the vacuum state of lower MP mode with n = 1 in in
S/FM/I/S system. (b) von Neumann entropy measuring the
photon-magnon entanglement in the excited states of lower
MP mode with n = 1; 2; 3 in S/FM/I/S system. Parameters
are the same as in Fig.2.

The Hamiltonian Eq.(12) is diagonalized in terms of
the MP operators

d̂†j = pj â
† +mj b̂

† + p̃j â+ m̃j b̂ (13)

where j = {UP,LP}. Coefficients of mixing fractions can
be chosen real and satisfy the normalization condition
p2
j +m2

j− p̃2
j−m̃2

j = 1. Their behaviour is shown as func-
tion of H0 in Fig.3a for the lower MP branch with n = 1.
The most exotic feature of MPs (13) are squeezed vacuum
states [59, 60] |0〉sq different separately for every quan-

tized mode (13) as d̂j |0〉sq = 0. Let us consider in more
detail the vacuum states of the lower MP modes. An-
nihilation operators for each n can be written as d̂LP =

ŜmŜp(αâ+βb̂) using magnon Ŝm = exp[rm(b̂b̂− b̂†b̂†)/2]

and photon Ŝp = exp[rp(ââ − â†â†)/2] squeezing oper-
ators [39, 59, 60]. Here the squeezing parameters are

rp = atanh(p̃LP /pLP ) and rm = atanh(m̃LP /mLP ).
The vacuum state is obtained by squeezing both pho-
tons and magnons |0〉sq = ŜpŜm|0, 0〉 where |0, 0〉 is the
usual vacuum state. As shown in Fig.3a squeeze pa-
rameters strongly depend on H0. For H0 � M0 we
get rp = ΩUP /2ΩK and rm = (ΩFMR/ΩSw)ΩUP /2ΩK ,

that is divergence rm,p ∼
√
M0/H0. Hence in the

limit H0 → 0 such squeezing can become quite large
compared to the highest known photon squeezing with
[61, 62] rp = 1.7 and even sublattice magnon squeez-
ing rm ∼ 3 in antiferromagnets [63]. It can be used
for quantum sensing applications [64], generation of non-
classical photon[61] and magnon states [65, 66] as well as
of the previously unknown mutual photon-magnon en-
tanglement.

Squeezed vacuum states are characterized by the non-
zero density of virtual excitations[2, 37, 67], which in
our case are magnons and photons. The populations
of virtual photons and magnons are np = 〈0|â†â|0〉sq =

sinh(2rp) and nm = 〈0|b̂†b̂|0〉sq = sinh(2rm), respectively.
Our S/FI/S and S/FM/I/S system host very large pop-
ulations of virtual magnons and photons especially at
H0 � 4πM0 where populations diverge exponentially as
shown in Fig.3a. Such large populations of virtual bosons
make our system very promising for the generation of en-
tangled photon and magnon pairs through the analogue
of dynamical Casimir effect [2, 37, 67–75]. Note that
one can easily achive abrupt the time-dependent vacuum
state populations needed for the efficient generation pho-
ton and magnon pairs [37] by varying H0 or λ faster than
the MP frequencies ΩLP,n .

Finally, let us demonstrate the bipartite entanglement
between photons and magnons in the excited MP states.
Such type of entanglement has been not discussed be-
fore. Acting with the lower MP creation operator on
the corresponding vacuum state we get the excited state

given by |1〉 = d̂†LP |0〉sq. This state consists [39] of non-
separable magnon and photon parts. Their entangle-
ment is determined by the von Neumann entropy [59, 76]
Smp = −Tr(ρ̂p ln ρ̂p). Here the reduced density ma-
trix is calculated taking the trace over magnon states
ρ̂p = Trm〈ψm|ρ̂|ψm〉 from the full density matrix cor-
responding to the pure excited MP state is ρ̂ = |1〉〈1|.
The resulting dependencies of Smp(H0) for the lower MP
modes with n = 1; 2; 3 is shown in Fig.3b for the
S/FM/I/S system with parameters same as in Fig.2 and
experiment[20]. Such a high von Neumann entropy has
been measured only in cold atomic systems[77]. Poten-
tially it can have many practical applications in trans-
ferring entanglement between different types of quantum
systems.

To summarize, we have found theoretically the mech-
anism of the ultrastrong magnon-photon coupling in
superconducting nanostructures consisting of supercon-
ducting, ferromagnetic and insulating layers. This cou-
pling leads to the highly squeezed vacuum states with
large number of virtual photons and magnons at mi-
crowave frequencies. Our theory yields magnon-polariton
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modes with ultra-high cooperativity propagating with
the velocity of about 104 km/s. The calculated magnon-
polariton frequency spectrum explains recent experi-
ments very accurately. Excited magnon-polariton states
are shown to consists of entangled magnon and photon
states with large bipartite von Neumann entropy. These
wonderful properties of magnon-polariton states put for-
ward the suggested S/FI/S and S/FM/I/S systems as
promising platforms for various magnonics applications.

Many stimulating discussions with Igor Golovchanskiy,
Vladmir Krasnov and Alexander Mel’nikov were very
useful for this work .

Appendix A: Derivation of dispersion relation
Eqs.(1,5,6) for S/FI/S structure

Here we derive the dispersion relations for MP modes
in S/FI/S systems shown in Fig.1a. First, let us consider
the Maxwell equation

∇× (ε̃−1∇×Hω)− q2
vBω = 0 (A1)

where qv = ω/c and ε̃ = ε − 4πiσ/ω. In components it
yields

iq∇zHz −∇2
zHx = ε̃q2

vHx (A2)

iq∇zHx + q2Hz = ε̃q2
vBz (A3)

q2Hy −∇2
zHy = ε̃q2

vBy (A4)

In addition, from Landau-Lifshiz-Gilbert (LLG) equation
we have the relation between the components of By,z and
Hy,z which in general yields(

By
Bz

)
=

(
γH0 −iω
iω γH0

)−1(
γB0 −iω
iω γB0

)(
Hy

Hz

)
(A5)

In general all three equation in system (A2,A3,A4) are
coupled to each other. However in the presence of metal-
lic layers it is significantly simplified because with good
accuracy Bz = 0. Indeed, in S we have ε̃q2

v = −iλ−2 and
Eq.(A3) Bz ∼ (qλ)2Hx,z. Hence, in the long-wave limit
qλ� 1 we have Bz � Hx,z and with good accuracy can
set Bz = 0. In this case the LLG equation reduces to the
scalar relation

By = Hy(Ω2
B − ω2)/(Ω2

K − ω2) (A6)

where ΩB = γB0 and ΩK = γ
√
H0B0. Therefore Eq.A4

for Hy decouples from others and becomes

in S : ∇2
zHy − λ−2Hy = 0 (A7)

in FI : ∇2
zHy −

(
q2 − εq2

v

ω2 − Ω2
B

ω2 − Ω2
K

)
Hy = 0 (A8)

Boundary conditions at interfaces follow directly from
Maxwell equations yielding the continuity of tangential
components Hy and Ex fields

[Hy] = 0; [Ex] = 0 (A9)

where [...] denotes the jump across the interface. The
electric field is determined by the Faraday law iqv ε̃E =
∇×H. It yields Ex = (i/ε̃qv)∇zHy which is valid both
in metallic and insulating layers.

Equation for Hy is supplemented by the boundary con-
ditions at the S/FI interface. They are the continuity of
Hy and Ex components. The latter is given by

in S : Ex = −iqvλ2∇zHy (A10)

in FI : Ex = (i/εqv)∇zHy (A11)

To get this relations we used that c/4πσF = iqvl
2
sk and

c/4πσS = iqvλ
2.

We consider the S/FI/S system with S layers much
thicker than λ. Solution is symmetric with respect to
the middle of F layer at z = 0:

in FI : Hy = hFI cosh(qzz); (A12)

Ex = i(qz/εqv)hFI sinh(qzz) (A13)

in S : Hy = hSe
−z/λ; (A14)

Ex = iqvλhSe
−z/λ (A15)

From the boundary conditions at FI/S interface z =
dF /2 we get equation

tanh(qzdF /2) = ελq2
v/qz (A16)

In the long-wave limit qdF � 1 we use expansion

(qz/qv)
2dF /2ελ = 1 (A17)

where q2
z = q2− εq2

v
ω2−Ω2

B

ω2−Ω2
K

. This equation can be rewrit-

ten as

ω4 − ω2(Ω2
Sw + Ω2

FMR) + Ω2
KΩ2

Sw = 0 (A18)

and finally

(ω2 − Ω2
Sw)(ω2 − Ω2

FMR) = (Ω2
FMR − Ω2

K)Ω2
Sw (A19)

where

ΩSw(q) = cq
√
dF /ε(dF + 2λ) (A20)

ΩFMR =

√
Ω2
K +

dFΩBΩM
dF + 2λ

(A21)

These Eqs.(A19,A20,A21) are the MP dispersion in
S/FI/S system used in the main text.

Appendix B: Derivation of dispersion relation
Eqs.(2,5,7) for S/FM/I/S structures

Here we derive the dispersion relations for MP modes
in S/FM/I/S system shown in Fig.1b. First, we write
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Maxwell equation for Hy Therefore Eq.A4 for Hy decou-
ples from others and becomes

in S : ∇2
zHy − λ−2Hy = 0 (B1)

in FM : ∇2
zHy − l−2

F Hy = 0 (B2)

in I : ∇2
zHy −

(
q2 − εq2

v

)
Hy = 0 (B3)

where lF = lsk
√

(Ω2
K − ω2)/(Ω2

B − ω2) and the skin

length is lsk =
√
c2/4πiωσF .

Then, we note that Maxwell equation yields the fol-
lowing relations between electric and magnetic field

in FM : Ex = −iqvl2sk∇zHy (B4)

in S : Ex = −iqvλ2∇zHy (B5)

in I and FI : Ex = (i/εqv)∇zHy (B6)

To get this relations we used that c/4πσF = iqvl
2
sk and

c/4πσS = iqvλ
2, where lsk is the screening length in FM.

Let us write solution in different layers

in outer S : Hy = e∓z̃/λ; (B7)

Ex = ±(iqvλ)e∓z̃/λ

in FM : Hy = h1F e
z̃/lF + h2F e

−z̃/lF (B8)

Ex = − iqvl
2
sk

lF
(h1F e

z̃/lF − h2F e
−z̃/lF ) (B9)

in I : Hy = h1Ie
qz z̃ + h2Ie

−qz z̃ (B10)

Ex =
iqz
εqv

(h1Ie
qz z̃ − h2Ie

−qz z̃)

where qz =
√
q2 − εq2

v . Comparing the ratios Ex/Hy

across all the four boundaries we get from the boundary
conditions at different interfaces

I/S outer :
h1I − h2I

h1I + h2I
= −α (B11)

FM/I :
h1Ie

qzdI − h2Ie
−qzdI

h1IeqzdI + h2Ie−qzdI
= −α l

2
sk

λlF

h1F − h2F

h1F + h2F

(B12)

S outer/FM :
h1F e

dF /lF − h2F e
−dF /lF

h1F edF /lF + h2F e−dF /lF
= −λlF

l2sk
(B13)

where α = εq2
vλ/qz. We start from Eq.B13 and expand-

ing by small parameter dF /lF we get

h1F − h2F

h1F + h2F
= − λ

lF

(
dF
λ

+
l2F
l2sk

)
Substituting this into remaining equations yields

h1Ie
2qzdI − h1I

h1Ie2qzdI + h1I
= α(1 + β) (B14)

where β = (dF /λ)(lsk/lF )2. Solving this system and
expanding by small parameter qzdI we get

1 +
dF
2λ

l2sk
l2F

=
q2
z

q2
v

dI
2λ

(B15)

Substituting expression for qz and collecting terms we get
dispersion relation

(ω2 − Ω2
Sw)(ω2 − Ω2

FMR) = (Ω2
FMR − Ω2

K)Ω2
Sw (B16)

where

ΩSw(q) = cq
√
dI/ε(dI + dF + 2λ) (B17)

ΩFMR =

√
Ω2
K +

dFΩBΩM
dI + dF + 2λ

(B18)

These Eqs.(B16,B17,B18) are the MP dispersion in
S/FM/I/S system used in the main text.

Appendix C: Derivation of vacuum state

Our goal is to find the vacuum state of the lower MP

d̂LP = pLP â+ m̃LP b̂
† +mLP b̂+ p̃LP â

† (C1)

This operator can written using squeezing operators

d̂LP = ŜpŜm(αâ+ βb̂)Ŝ†pS
†
m (C2)

where the squeeze operators are

Ŝp = exp[rp(ââ− â†â†)/2] (C3)

Ŝp = exp[rm(b̂b̂− b̂†b̂†)/2] (C4)

Action of these operators

ŜpŜm(αâ+ βb̂)Ŝ†mŜ
†
p = (C5)

α(upâ+ vpâ
†) + β(umb̂+ vmb̂

†) (C6)

where um,p = cosh rm,p, vm,p = sinh rm,p. Hence the
coefficients are

pLP = α cosh rp (C7)

p̃LP = α sinh rp (C8)

mLP = β cosh rm (C9)

m̃LP = β sinh rm (C10)

so that the squeeze parameters are rp = atanh(p̃LP /pLP )
and rm = atanh(m̃LP /mLP ).

The vacuum state d̂LP |0〉sq is then related to the usual

one â(b̂)|0〉ab = 0 as

|0〉sq = ŜpŜm|0〉ab (C11)
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The explicit form of vacuum state wave function consist-
ing of the separable photon and magnon states is given
by

|0〉sq = ψp0ψm0 (C12)

ψp0 =

∞∑
n=0

Pn|2n〉; Pn =
(tanh rp/2)n√

cosh rp

√
(2n)!

n!
(C13)

ψm0 =

∞∑
n=0

Mn|2n〉; Mn =
(tanh rm/2)n√

cosh rm

√
(2n)!

n!

(C14)

The excited state of MP is given by |1〉 = d̂†LP |0〉sq

|1〉 = (ψp1ψm0 + ψp0ψm1)/(Np +Nm) (C15)

ψp1 =

∞∑
n=0

(
√

2n+ 1Pnp+
√

2n+ 2Pn+1p̃)|2n+ 1〉

(C16)

ψm1 =

∞∑
n=0

(
√

2n+ 1Mnm+
√

2n+ 2Mn+1m̃)|2n+ 1〉

(C17)

with the normalization coefficients

Np =

√√√√ ∞∑
n=0

(
√

2n+ 1Pnp+
√

2n+ 2Pn+1p̃)2 (C18)

Nm =

√√√√ ∞∑
n=0

(
√

2n+ 1Mnm+
√

2n+ 2Mn+1m̃)2 (C19)

The density matrix corresponding to the pure excited
MP state is ρ̂ = |1〉〈1|. The reduced density ma-
trix is calculated taking the trace over magnon states
ρ̂p = Trm〈ψm|ρ̂|ψm〉. The trace is calculated using the
orthogonality 〈ψm1ψm0〉=0

ρ̂p =
1

Np +Nm
|ψp1〉〈ψp1|+

Nm
Np +Nm

|ψp0〉〈ψp0| (C20)

Then the von Neumann entropy characterizing magnon-
photon entanglement is calculated using the standard
definition Smp = −Tr(ρ̂p ln ρ̂p)

Smp = − Np
Np +Nm

ln(
Np

Np +Nm
)− Nm

Np +Nm
ln(

Nm
Np +Nm

)

(C21)
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mann, A. Adeyeye, J. Åkerman, F. Aliev, A. Anane,
A. Awad, et al., IEEE Transactions on Quantum En-
gineering (2021).

[31] A. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann,
A. Adeyeye, J. Åkerman, F. Aliev, A. Anane, A. Awad,
et al., IEEE Transactions on Magnetics (2022).

[32] M. Schneider, D. Breitbach, R. O. Serha, Q. Wang,
A. A. Serga, A. N. Slavin, V. S. Tiberkevich, B. Heinz,
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