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Permutation entropy of indexed ensembles: Quantifying thermalization dynamics
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We introduce ‘PI-Entropy’ Π(ρ̃) (the Permutation entropy of an Indexed ensemble) to quantify
mixing due to complex dynamics for an ensemble ρ of different initial states evolving under identical
dynamics. We find that Π(ρ̃) acts as an excellent proxy for the thermodynamic entropy S(ρ)
but is much more computationally efficient. We study 1-D and 2-D iterative maps and find that
Π(ρ̃) dynamics distinguish a variety of system time scales and track global loss of information as the
ensemble relaxes to equilibrium. There is a universal S-shaped relaxation to equilibrium for generally
chaotic systems, and this relaxation is characterized by a shuffling timescale that correlates with
the system’s Lyapunov exponent. For the Chirikov Standard Map, a system with a mixed phase
space where the chaos grows with nonlinear kick strength K, we find that for high K, Π(ρ̃) behaves
like the uniformly hyperbolic 2-D Cat Map. For low K we see periodic behavior with a relaxation
envelope resembling those of the chaotic regime, but with frequencies that depend on the size and
location of the initial ensemble in the mixed phase space as well as K. We discuss how Π(ρ̃) adapts
to experimental work and its general utility in quantifying how complex systems change from a low
entropy to a high entropy state.

Far-from-equilibrium ensembles or probability densi-
ties ρ(t) describe a variety of phenomena involving mat-
ter, energy, or information transport in fundamental
physical, chemical and biophysical systems. The entropy
dynamics of ρ(t) fully characterizes the approach to equi-
librium, the type of the equilibrium (meta-stable, unsta-
ble, steady-state), and the variety of solutions possible
in any given system, but are intractably difficult to an-
alyze far from equilibrium. The alternate program to
characterize entropy dynamics via formal ρ dynamics[1–
3] arising from interest in the quantum limit, or via an en-
semble ρ constructed from individual trajectories[4–8] es-
tablished a connection between thermodynamic entropy
growth and the dynamical loss of information about tra-
jectories. Recent discussions use ensemble dynamics to
help understand systems with parameter drift as well as
to as snapshot techniques to capture the shape of invari-
ant distributions[9, 10]. However, progress is hampered
since calculating ρ dynamics, either using many indi-
vidual trajectories OR by propagating partial differen-
tial equations, prove computationally challenging. Ironi-
cally, accurate ρ dynamics require very fine grained cal-
culations but for Hamiltonian evolution coarse-graining
(smoothing over fine scales) is necessary for a time-
dependent entropy.

Inspired by Permutation Entropy [11, 12] (PE) used
for time-series, we propose ‘PI-Entropy’ (the Permuta-
tion entropy of an Indexed ensemble) Π(ρ̃) which quan-
tifies the shuffling of neighboring ensemble elements as a
measure that connects thermodynamic entropy with the
mixing and folding due to complex trajectories for ensem-
ble members. The use of indexed ensembles ρ̃ and the
focus on ‘digitised’ shuffling proves to be extremely com-
putationally efficient relative to calculating ρ itself. We
are able to use minimal computational effort to explore

the approach to equilibrium for the Logistic and other
1-D maps, as well as the 2-D Cat and Chirikov Standard
Maps, in the latter case accessing previously unexplored
mixed phase space regimes. In particular, just as the PE
is strongly correlated with the Lyapunov exponent λ [13–
17], Π-Entropy acts as an excellent proxy for the change

in the coarse-grained thermodynamic entropy. We find
that Π dynamics are intuitive and reproduce previous
results, as well as provide new insights.

Specifically: (1) For ‘elementary’ chaotic systems in 1-
D or 2-D, which have little initial condition dependence,
Π relaxes to equilibrium with a smooth and universal
S-shape which allows us to define a time scale 1/α for
relaxation to equilibrium. We find that α varies mono-
tonically with ensemble-averaged versions of λ and PE.
(2) The mixed (and hence highly initial condition de-
pendent) phase space of the Standard Map yields more
complex dynamics: For sufficiently large nonlinearity K
where the phase space is almost entirely chaotic, the Π-
Entropy evolves as for the Cat Map. For lower K we
have mixed phase spaces and Π oscillates with an overall
envelope that resembles chaotic systems. The oscillation
frequencies depend on K as well as on the details of the
initial support of the ensemble, and we identify differ-
ent internal time scales for the mixed-phase space and
integrable regime. Given this ease of use including in
experiments, Π(ρ̃) is a promising approach to quantify
complex non-equilibrium ensemble dynamics.

In the following, we introduce Π in the context of
the Logistic Map, before moving to other 1-D maps.
We demonstrate universality in the relaxation to equilib-
rium for these dynamics via a Π, Π̇ Entropy Phase Space
(EPS), before moving to the Hamiltonian 2-D uniformly
hyperbolic Cat Map and finally the Standard Map. We
conclude with a short discussion, including the prospects
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FIG. 1. Evolution of an ensemble for the logistic map with r = 3.95 given 1000 members equally spaced across position space
(δx1 = x1,n+1 − x1,n = 10−4, ∀n) and initially localized to 0.45 ≤ xn

1 ≤ 0.55. (a)-(g) Position space probability distribution
function for the ensemble. The ensemble starts in a narrow region and spreads out with time. (h) The first few iterations for a
chosen set of ensemble members using dark blue for elements initially closer to x = 0.45 ranging to light blue for those initially
closer to x = 0.55. Lines indicate elements x1

1 = 0.45 and x400
1 = 0.49. The initial ensemble expands and the trajectories of the

elements entangle. (i) Landscape of the temporal evolution of the ensemble. Color code indicates the position of each element
in space (blue for xi,n = 0 to yellow for xi,n = 1). Elements of the ensemble are distributed in the horizontal axis, and time
in the vertical axis, from top to bottom. Regular structure is manifest for initial iterations that are washed out as the system
evolves. (j) Π-Entropy, Π, of the ensemble as a function of time. PI-entropy captures the internal structure among the elements
of the ensemble. The ensemble starts ordered, Π = 0, but as the system evolves the elements intertwine and entropy increases.
Words of D = 3 are used to compute Π.

for using this experimentally viable technique elsewhere.
Consider an ensemble of N trajectories each evolving ac-
cording to the logistic map

xn
i+1 = rxn

i (1− xn
i ) , (1)

where r is a parameter controlling the system dynam-
ics, n = 1, 2, 3, ..., N labels ensemble elements, and
i = 1, 2, 3, ... denotes discretized time. This ensemble
ρ occupies a phase space neighborhood, and each xn

1 is
understood to be sampled from a ρ(x) itself governed
by the corresponding Frobenious-Perron operator. We
aim to quantify the stretching and folding that ρ un-
dergoes during complex dynamics, leading to the loss of

correlation between trajectories of initially close ensem-
ble members. This loss of information is quantified at
the trajectory level by the Lyapunov exponents or the
Kolmogorov-Sinai entropy for chaotic systems.

Figure 1 shows such evolution for an ensemble with
details as given in the caption. The evolution of ρ
over the first seven iterations are seen in Figs. 1(a-g).
The ensemble initially remains compact while moving
through phase space. Then follows a stage where ρ
spreads out and relaxes to an invariant distribution
covering the entire phase space (while individual ele-
ments continue to evolve). This intuitive visualization
of ρ does not show how the elements move relative to



3

each other, i.e. how correlations evolve. In Figure 1(h)
we shift attention to the indexed ensemble ρ̃. Here we
see (from top to bottom) a few of the tracked indexed
trajectories, demonstrating how they braid across each
other in position space. This loss of dynamical corre-
lation between initially neighboring points is reflected
in the growth of fine-grained phase space structure at
a rate given by generalized Lyapunov exponents[18].
Figure 1(i) presents the evolution of the corresponding
indexed ensemble ρ̃ where time i = 0 − 25 is along the
vertical axis, the ensemble indices n = 1 − 1000 are on
the horizontal axis, and the position x is shown as a
color (blue = 0 < xn

i < 1 = yellow). Reading down
vertically, the initial (i = 1) narrowly localized ensemble
is all green. As shown for ρ in Figs. 1(a-g), ρ̃ moves
to the right (yellow), and then to the left (blue) while
remaining localized. ρ̃ then spreads and, as it spans the
dynamical inflection point at x = 0.5, the trajectory
histories start folding over and braiding together, as is
apparent in the growing range of colors at each iteration.
The initial uniform ρ̃ evolves to transient intermedi-
ate states with structure at increasingly finer scales
structures until it reaches a different near-uniformity, of
being too fine grained to be discernible. As expected for
chaos, the initially ordered ρ̃ has become featureless, and
correlations with neighbors have disappeared, taking
the system from an ordered state to a highly disordered
state. Notably, these dynamics for ρ̃ are visible to finer
length scales and hence on a far longer time scale than
are visible in Figs. 1(a-g) for ρ itself.

We quantify the loss of correlations using techniques
inspired by Permutation Entropy (PE) [11]. The PE
technique discretely samples a dynamical time series and
uses the relative populations of ordinal patterns con-
structed from a symbolic alphabet, generated by the dis-
cretization, to quantify the complexity of the dynamics.
We adapt this as follows: We compare the positions of D
consecutive ensemble elements, assigning to each set of D
consecutive elements an ordinal pattern, also known as a
word, depending on relative positions of consecutive ele-
ments. Specifically, for dimension D = 2 there are only
two words, i.e., 01 for xn < xn+1, and 10 for xn+1 < xn.
For dimension D = 3 there are six possible words, i.e.,
012 for xn < xn+1 < xn+2, 021 for xn < xn+2 < xn+1,
etc. We then compute a normalized (Shannon) entropy
from the probabilities of each word (pj)

Π = −
1

log(D!)

D!
∑

j=1

pj log(pj) (2)

where pj is the probability of the j-th ordinal pattern, D
the word length or dimension so that D! is the number of
possible words of dimension D. This quantifies the loss
of spatial correlation at any given time relative to the
initial indexed ensemble. In our construction the initial
ensemble has the order (xn

1 < xn+1
1 , ∀n) and therefore

yields only one word at i = 1, whence the entropy is iden-

tically zero by construction, independent of the details of
the initial ρ. However, as we iterate each element, the en-
tropy changes as a function of time. For a chaotic system,
for example, we expect an increase up to the limit where
all words are equally probable, Π = 1, which defines the
range of values for Π.
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FIG. 2. (a) Π(i) for initially equally-spaced ensembles of N el-
ements for the logistic map at r = 4.0. At i = 1 the first three
ensembles (see legend) cover all of position space (∆x1 = 1.0),
but have different N (and density). The last four ensembles
have 2000 elements each, but are initially smaller in position
space (∆x1 = 0.2, 0.05, 10−2, 10−5). In all cases Π follows
an S-shaped curve going from low to high. (b) This behavior

mapped in Entropy Phase Space, [Π, Π̇]. The initially fully

ordered ensembles start at [Π, Π̇] = [0, 0] and evolve to the
right (increasing Π), and all show a universal transition as
the trajectories of the elements braid. Finally the ensembles
are fully shuffled with a steady state of maximum entropy,
[Π, Π̇] = [1, 0]. The initial ensemble is indicated (i = 1), as
well as the position after the first iteration (i = 2) for ensem-
bles that initially occupy the whole space (∆x1 = 1).

In Fig. 1(j) we see that after an initial transition pe-
riod Π(ρ̃) follows an S-shaped curve until it reaches the
maximum entropy, Π = 1, precisely as expected for a
candidate for thermodynamic entropy [4, 5, 19, 20]. This
occurs across initial ensembles (Fig. 2(a)) where after an
initial-ρ-dependent ‘pre-thermalization’ transient stage
there is universal behavior. The time scale for the onset
of the second stage increases when the sampling density
increases, as is intuitive. The universality of these dy-
namics including the characteristic relaxation timescales
is readily visible in the parametric (Πi, Π̇i) plot in Fig. 2b
for all the ensembles from Fig. 2a. In this Entropy Phase

Space (EPS) each ensemble evolves along a different pre-
thermalization trajectory, and they all converge for the
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final linear transition to a high-entropy steady state. We
fit this linear trajectory for (Π̇i,Πi) as Πi = Π0e

αi,
where i indicates the iteration. The exponent α measures
the growth rate of Π, using folding in phase space as a
measure. Despite not being explicitly constructed using
stretching rates, the loss of information due to folding
should arguably relate to the information loss rate for
the dynamics, i.e. to λ or the PE itself.

When the degree of chaos is changed using r, as shown
in Fig. 3(a) we find that α changes monotonically as r
changes from r = 3.7 to r = 4.0 in the fully chaotic
regime for this system. All of these behaviors prove to
be generic, and not unique to the logistic map. Fig-
ure 3b shows that the same results (S-shaped thermaliza-
tion transition, a universal linear stage in the EPS, and
an increase of α with λ) are obtained in various other
chaotic 1-D iterative maps for control parameters with a
range of dynamics and Lyapunov exponents.
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FIG. 3. Entropy Phase Space (EPS) for (a) the logistic map
with varying degrees of chaos (r = 3.7, 3.8, 3.9, 3.95, 4.0). The
initial ensemble ρ (and ρ̃) is the same for each case (N=1000,
∆xi

1 = 10−3). All show the universal S-shaped transition
where the higher r (and Lyapunov exponent λ) correspond to
a larger exponent α. (b) EPS for the Logistic map (r=4,
λ = 0.69), Cubic map (xi+1,n = rxi,n(1 − x2

i,n), r=3.0,

λ = 1.1), Sine map (xi+1,n = r sin(πxi,n), r=1, λ = 0.69),
Ricker’s map (xi+1,n = rxi,ne

−xi,n , r=40, λ = 0.39), and

Cusp map (xi+1,n = 1 − r
√

|xi,n|, r=2, λ = 0.5). (c) EPS
for the Cat map for different initial ρ, showing the same uni-
versality found in 1-D. Each curve corresponds to one of the
initial spatial distributions of ρ shown in the inset. (d) α
versus λ.

These useful properties of Π generalize and scale well
in computational difficulty to 2-D systems where we
consider in particular those drawn from time-dependent
Hamiltonian dynamics. We start with the area-
preserving uniformly hyperbolic two-dimensional stretch-
ing and folding dynamics of the Arnold’s Cat Map

{

xi+1 = xi + yi ; mod (1)

yi+1 = xi + 2yi ; mod (1).
(3)

Figure 3(c) shows the EPS for the Cat map using separa-
tions in x (equivalent results are found using y). The var-
ious ρ are initialized as different lines in phase space (see
inset) with Π = 0. All show the same S-shaped evolu-
tion (see Supplementary Information) as for 1-D chaotic
maps, and the EPS in Fig. 3(c) shows trajectories con-
verging to a final linear stage with α = 0.63. In Fig. 3(d)
we see that α in fact is monotonically though nonlinearly
correlated with λ across all these dynamical systems.
The Chirikov Standard Map is the 2-D area-preserving

Map

{

pi+1 = pi +K sin(θi) ; mod(2π)

θi+1 = θi + pi+1 ; mod(2π)
(4)

with dynamics constrained to 0 ≤ [θ, p] ≤ 2π, and where
K is the nonlinear kick strength. For K = 0 the system
is linear and the dynamics periodic; as K > 0 increases,
the dynamics can be chaotic or regular depending on ini-
tial conditions, unlike the uniformly hyperbolic Cat Map.
In general both the chaotic fraction of phase space and
λ increase with K. The Standard Map’s ‘mixed’ phase
space, which is expected for generic Hamiltonians, leads
to a challenging complexity of behavior [8] fundamental
to understanding non-equilibrium thermodynamic phe-
nomena such as non-equilibrium steady-states.
Recent work [8] has shown that for large enough K the

system relaxes to equilibrium with dynamics like a uni-
formly hyperbolic system. For small K they see similar
relaxation to equilibrium along with (limited) evidence of
entropy oscillations for initially sharply localized states.
Their computations are not computationally atypical, us-
ing 105-106 trajectories and some novel measures (SALI)
for characterizing thermalization which unfortunately do
not generalize as a function of K. We find that using Π
entropy allows us to push beyond these limits. Figure 4
shows Π-Entropy dynamics for sharply localized initial
ensembles (Fig. 4(g)) for the range 0.1 ≤ K ≤ 10. We
see that the evolution and ‘final’ (on the scales of our
study) state depend on K (Fig. 4(h)) in clearly distin-
guishable and informative ways.
Specifically, for large K, where chaos dominates and

the system is essentially uniformly hyperbolic, Π indeed
follows an S-shaped curve (Fig. 4(a,d)) in agreement with
the previous results [8]. At lower K (Fig. 4(b,e)) we find
that Π reveals the richness of thermalization dynamics in
the mixed phase of the dynamics, visible in the rapid os-
cillations overlaid with complex envelopes. These struc-
tures arise from the way that initial ensembles include
trajectories from different dynamical regimes, but we see
in all cases a final similar saturation (Fig. 4c). In EPS
these mixed phase space trajectories evolve as spirals that
drift increasingly more prominently with K to the right
and end with a final linear steady state (Fig. 4(f,i)).
We unpack how initial ρ localization affects the ther-

malization in Fig. 5 where we use K = 1.0, a parame-
ter where there exist a substantial fraction of both pe-
riodic and chaotic regions (Fig. 5(g)). All results shown
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consider ρ centered at (π, 0) (a fixed point of the dy-
namics), with sizes ranging from the entire phase space
(area 1, blue ensemble), to a microscopic initial state
(area = 10−12, green ensemble), and show results from
the first 150 iterations. The most localized ρ contain pe-
riodic trajectories only and this periodicity is visible in
both the Π dynamics and the EPS. As the number of
chaotic trajectories within a sample increases, Π dynam-
ics gets increasingly complex, showing multi-frequency
oscillatory growth.
In EPS, we see that the different entropy trajectories

do not overlap (the changing weight of the periodic frac-
tion changes the thermalization strongly) but have sim-
ilar envelopes. Fourier analysis of Π dynamics (Fig. 6)
shows how K strongly affects dominant frequencies. For
K = 0.5, there is a rich frequency spectrum with clear
peaks (Fig. 6(b)), while K = 4.0 shows a flatter and more
typically chaotic spectrum (Fig. 6(f)). To capture the lin-
ear regime in the EPS along with this complex behavior
across all these dynamics, we model the dynamics using
Π = (1 − exp(−αt))[A + B cos(ωt) exp(−αt)], where α
is the relaxation exponent, ω a characteristic oscillation
frequency, and A and B estimate the relative support of
the initial distribution in the chaotic regime and regular
regime respectively.
All of these results suggest that Π(ρ̃) is indeed able

to distinguish a variety of macroscropic time scales that
depend on the system’s microscopic dynamics, in par-
ticular for the global relaxation of an ensemble to equi-
librium across a variety of situations. We believe that
the PI-entropy can be implemented advantageously in
experimental situations since it requires tracking a com-
paratively small number (100 − 1000) of individual tra-
jectories in an ensemble, well within the reach of exper-
iments using tracer particles[21–23]. Further, while the
details of this technique are here presented in the con-
text of non-interacting ensembles for dynamical maps,
the method is general and can be extended to a vari-
ety of complex dynamical systems where ensembles are
transitioning from a low entropy to a high entropy state.
We remark that this method captures both small-scale
and large-scale correlations and structure and has built-
in coarse graining. It seems thus to discard non-essential
aspects of the ensemble dynamics as an alternative to
constructs such as the Boltzmann-Gibbs Entropy. We
envision this to prove a powerful tool in understanding
the evolution and loss of correlations in complex systems
as varied as the mobility of individuals, fluid dynamics,
solitons, many-body localization, etc; in short, for any
multi-element dynamical system that evolves from an or-
dered distribution state to a disordered one.
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FIG. 5. (a) Evolution of Π-entropy for the Standard map for
K = 1.0. Each ensemble ρ is computed with 4096 elements
and corresponds to a different initial area in phase space. (b)
Same as (a) but for ρ occupying smaller areas in phase space.
(c) Corresponding EPS for (a). (d) Corresponding EPS for
(b). ρ corresponding to an area A = 2−10 overlaps the ρ of
initial area 10−12. Although the behavior in phase space is
oscillatory, the envelope of the evolution of each ρ shows the
same slope corresponding to the relaxation. (e) Initial region
occupied by each ρ, all centered at (θ = π, p = 0). (f) Region
explored by each ρ in their evolution. (g) Phase space of the
standard map for K=1.0.
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FIG. 6. (a) Evolution of Π-entropy for the Standard map
for 1000 iterations for several K values. Inset highlights the
oscillatory behaviour shown within the overall growth of Π.
(b-f) Fast Fourier Transform of the temporal evolution of Π
for K = 0.5, 1.0, 2.0, 3.0, 4.0. Inset on (b) indicates the initial
ensemble. Different frequencies are manifest for different K
values. For K = 4 there are no dominant frequencies.


