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AN INVERSE SOURCE PROBLEM FOR LINEARLY ANISOTROPIC RADIATIVE
SOURCES IN ABSORBING AND SCATTERING MEDIUM

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. We consider in a two dimensional absorbing and scattering medium, an inverse source
problem in the stationary radiative transport, where the source is linearly anisotropic. The medium has
an anisotropic scattering property that is neither negligible nor large enough for the diffusion approxi-
mation to hold. The attenuating and scattering properties of the medium are assumed known. For scat-
tering kernels of finite Fourier content in the angular variable, we show how to recover the anisotropic
radiative sources from boundary measurements. The approach is based on the Cauchy problem for a
Beltrami-like equation associated with A-analytic maps. As an application, we determine necessary
and sufficient conditions for the data coming from two different sources to be mistaken for each other.

1. INTRODUCTION

In this work, we consider an inverse source problem for stationary radiative transfer (transport) [0,
7], in a two-dimensional bounded, strictly convex domain 2 = R?, with boundary I'. The stationary
radiative transport models the linear transport of particles through a medium and includes absorption
and scattering phenomena. In the steady state case, when generated solely by a linearly anisotropic
source f(z,0) = fo(z) + 6 - F(2) inside (2, the density u(z, @) of particles at z traveling in the
direction @ solves the stationary radiative transport boundary value problem

0 -Vu(z,0) +a(z,0)u(z,0) —f k(2,0,0)u(z,0)d0' = f(2,0), (z,0)eQ xS,
Sl

o))

u|F7: Oa

where the function a(z, ) is the medium capability of absorption per unit path-length at z moving
in the direction @ called the attenuation coefficient, function k(z, 0, @) is the scattering coefficient
which accounts for particles from an arbitrary direction 8" which scatter in the direction € at a point
z,and I = {((,0) € I' x S . v(¢) - @ < 0} is the incoming unit tangent sub-bundle of the
boundary, with v(() being the outer unit normal at { € I". The attenuation and scattering coefficients
are assumed known real valued functions. The boundary condition in (I)) indicates that no radiation
is coming from outside the domain. Throughout, the measure d@ on the unit sphere S is normalized
to {5, d = 1.

Under various assumptions, e.g., [9, 8, 2, [17, 4], the (forward) boundary value problem is
known to have a unique solution, with a general result in [27] showing that, for an open and dense
set of coefficients a € C?(2 x S') and k € C%(Q x S' x S!), the boundary value problem (I) has
a unique solution v € L*(2 x S!) for any f € L*(Q2 x S!). In [14], it is shown that for attenuation
merely once differentiable, a € C*(Q x S') and k € C?(Q x S! x S'), the boundary value problem
has a unique solution u € LP(Q x S') for any f € LP(Q2 x S'), p > 1. Moreover, uniqueness result
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of the forward problem are also establish in weighted L? spaces in [11]. In our reconstruction
method here, some of our arguments require solutions u € C*#(Q x S'), I < 1 < 1. We revisit the
arguments in [27, [14]] and show that such a regularity can be achieved for sources f € W3P(Q x S!),
p > 4; see Theorem [2.2] (iii) below.

For a given medium, i.e., a and k both known, we consider the inverse problem of determining the

scalar field fj, and the vector field F' from measurements g, » of exiting radiation on I',
2) ulr, = g

where 'y := {(2,0) e I'xS' : v(z)-0 > 0} is the outgoing unit tangent sub-bundle of the boundary,
with v(() being the outer unit normal at ¢ € I

For anisotropic sources the problem has non-uniqueness [25}28]. One of our main result, Theorem
4.1] shows that from boundary measurement data g, , one can only recover the part of the linear
anisotropic source f = fy + 0 - F; in particular, only the solenoidal part F* of the vector field F
is recovered inside the domain. However, in Theorem [4.2] if one know apriori that the source F is
divergence-free, then from the data g, », one can recover both isotropic field f, and the vector field
F inside the domain. Moreover, instead of apriori information of the divergence-free source F, if
one has the additional data g, , information along with the data ¢, 5, then in Theorem one can
recover both sources f, and F under subcritical assumption of the medium. One of the main crux in
our reconstruction method is the observation that any finite Fourier content in the angular variable of
the scattering kernel splits the problem into an infinite system of non-scattering case and a boundary
value problem for a finite elliptic system. The role of the finite Fourier content has been independently
recognized in [13] and [18].

The inverse source problem above has applications in medical imaging: In a non-scattering (k = 0)
and non-attenuating (¢ = 0) medium the problem is mathematically equivalent to the one occurring
in classical computerized X -ray tomography (e.g., [5,20]). In the absorbing non-scattering medium,
such a problem (with only isotropic source f = fy), appears in Positron/Single Photon Emission
Tomography (PET/SPECT) [20, 21]], and (with fy = O and f = @ - F), appears in Doppler Tomog-
raphy [21, 20, 26]. For applications in scattering media the inverse source problem formulated here
is the two dimensional version of the corresponding three dimensional problem occurring in imaging
techniques such as Bioluminescence tomography and Optical Molecular Imaging, see [29, [15, [16]]
and references therein.

In Section [2) we remark on the existence and regularity of the forward boundary value problem.
The results in Section 2| consider both attenuation coefficient and scattering kernel in general setting.

In this work, except for the results in Section [2 the attenuation coefficient are assumed isotropic
a = a(z), and that the scattering kernel k(z,0,80’) = k(z,0 - 0") depends polynomially on the angle
between the directions. Moreover, the functions a, k and the source f are assumed real valued.

In Section 3] we recall some basic properties of A-analytic theory, and in Section 4] we provide
the reconstruction method for the full (part) of the linearly anisotropic source. Our approach is based
on the Cauchy problem for a Beltrami-like equation associated with A-analytic maps in the sense
of Bukhgeim [5]. The A-analytic approach developed in [3] treats the non-attenuating case, and the
absorbing but non-scattering case is treated in [3]]. The original idea of Bukhgeim from the absorbing
non-scattering media [, 3] to the absorbing and scattering media has been extended in [13} 14]. In
here we extend the results in [[13}14] to linear anisotropic sources.

In Section[3] the method used will explain when the data coming from two different linear anisotropic
field sources can be mistaken for each other.
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2. SOME REMARKS ON THE EXISTENCE AND REGULARITY OF THE FORWARD PROBLEM

In this section, we revisit the arguments in [27,14]], and remark on the well posedness in LP(£2x St)
of the boundary value problem (I)). Adopting the notation in [27, [14], we consider the operators

0 0
[T 9)(=,0) = J e 1100 g (1 1 50,6)ds, and [Kg](w,0) = f k(x,6,0')g(x,6)d6",
—0 S1

where the intervening functions are extended by 0 outside 2.
Using the above operators, the problem (I)) can be rewritten as

3) (I-T7'K)u=1T7"f,  ulr_=0.

If the operator I — T, 'K is invertible, then the problem (3) is uniquely solvable, and has the form
uw= (I —T; 'K)~'T ' f. By using the formal expansion

4) w=T'f+ T KT f+ TV (KT K[ =T K],

the well posed-ness in LP(§2 x S!) of the (forward) boundary value problem () is reduced to showing

that the operator / — 7, ' K is invertible in LP(Q2 x S1).
We recall some results in [14].

Proposition 2.1. [14, Proposition 2.1] Let a € C*(Q x S') and k € C*(Q x S' x S'). Then the
operator

6) KT 'K - LP(Q x SY) — WHP(Q x S') is bounded, 1 < p < 0.
The following simple result is useful.

Lemma 2.1. [14] Lemma 2.2] Let X be a Banach space and A : X — X be bounded. Then I + A
have bounded inverses in X, if and only if I — A? has a bounded inverse in X.

For A\ € C, we note that (T, '(AK))? = N7, (KT 'K). By Proposition the operator
(T, (AK))? is compact for any A € C. By Lemma[2.1] if the operator I — (T *(A\K))? is invertible
in LP(€) x S'), then the operator I — T} *(\K) is invertible in LP(Q2 x S!). Since I — (17 1(AK))? is
invertible for A in a neighborhood of 0, an application of the analytic Fredholm alternative in Banach
spaces, e.g., [10, Theorem VII.4.5], yields the following result.

Theorem 2.1. [14, Theorem 2.1] Let p > 1, a € C*(Q x SY), and k € C*(Q x S' x S'). At least one
of the following statements is true.

(i) I — T 'K is invertible in LP(Q x S').

(ii) there exists € > 0 such that I — T '(\K) is invertible in LP(Q) x SY), forany 0 < |\ — 1] < e.

The regularity of the solution u of (Il) increases with the regularity of f as follows.

Theorem 2.2. Consider the boundary value problem with a € C3(Q x SY). Forp > 1, let
ke C3(2 x S! x SY) be such that [ — Ty 'K is invertible in LP() x S'), and let u € LP(2 x S!) in
®) be the solution of (D).
(i) If f € W'P(Q x SYY, then u e W(Q x SY).
(ii) If f € W2P(Q x SY), then u € W2(Q x S1).
(iii) If f € W3P(Q x S1), then u € W3P(Q x St).

Proof. (i) We consider the regularity of the solution u of () term by term as in (4)):
w=T ' f+ T KT f + T KT K (- T K) M
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It is easy to see that the operator 77 ' preserve the space W'?(Q x S'), and also the operator K
preserve the space W'P(Q x S!), so that the first two terms, 7} ' f and T; * KT, ' f, both belong to
WP(Q x S'). Moreover, (I — T, ' K)~'T ' f € LP(Q x S'), and now, by using Proposition 2.1}, the
last term is also belong in W1P(Q x S1).

(i) We define the following operators

1 0 ok / / /
Ty u(z,0) = J u(z + 10, 0)dt, Keu(x,0):= | —(z,0,0)u(x,0)d6’,

—00 7 Sl 66‘7
%k

st ONi0g;

(6)

0
Ty u(x,8) == J u(z +16,0)dt, K,eu(z,0):= (x,60,0 ) u(x,0)do’,
—©

where 1; = {z;,6,} and &; = {x;,0,} fori,j = 1,2.

~

It is easy to see that Ty ', 15 |, K¢, and K¢, preserve W'P(Q x S*).

By evaluating the radiative transport equation in (I)) at = + t@ and integrating in ¢ from —oo to 0,
the boundary value problem (I)) with zero incoming fluxes is equivalent to the integral equation:

(7) u+ Ty Hau) — Ty ' Ku =T, ' f.

According to part (i), for f € W'P(QxS'), the solutionu € W?(Q2xS'), and so u,, € LP(2xS).
In particular u,; solves the integral equation:

(8) Uy, + Ty Haug,) — Ty Kug, = =Ty ag,uw) + Ty ' Kyyu + Ty fa,-

Moreover, since a € C?(Q2 x S), k e C?(Q x S' x S!), and f € W?P(Q2 x S'), the right-hand-side
of @) lies in WP(Q x S'). By applying part (i) above, we get that the unique solution to (8)

9) Uy, € WHP(Q x 8Y), j=1,2.

For f € WhP(Q2 x S'), also according to part (i), ug, € LP(2 x S*). In particular uy, is the unique
solution of the integral equation
(10)

ug, + To_l(augj) = —Tofll(auxj) — To_l(agju) — Tofll(axju) + To_lngu + Toflleju + To_lfgj,

which is of the type (7) with K = 0. Moreover, since f € W*P(Q2 x S'), and, according to (@),
u,, € WHP(Q x 8'), j = 1,2, the right-hand-side of (I0) lies in W'?(Q x S'). Again, by applying
part (i), we get
ug, e WHP(Q x SY), j=1,2.
Thus, u € W*P(Q x St).
(i) For f € W2?(Q x S'), according to part (i), u,,, ug, € W'?(Q x S'), and u,,,, € LP(2 x S*).
In particular u,,; is the unique solution of the integral equation

(11)
Ui, + T(;l(aumiwj> - T(;I(Kuwz%) = T(;lfwiwj - T(;l(amjumi> - T(;l(amimju) + T(;I(Krgu%)

+ TO*I(K%%U) — Tofl(axiuxj) — Tofl(Kxiuxj).

Moreover, since a € C3(Q2 x S'), ke C3(Q x S' x S!), and f € W3P(Q x S'), the right-hand-side
of lies in W1P(Q x S'). By applying part (i) above, we get that the unique solution to

(12) Ugye; € WHP(Q % SY), 4,5 =1,2.
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For f e W*P(€2x S'), also according to part (ii), u,,, ug, € W' (Q x S'), and ug,9, € LP(Q2 x S*).
In particular ug,p, is the unique solution of the integral equation

uo; + Ty (ato,) = Ty (fon,) = Tog (awytin;) = T (anyue,) — Toill( ag, Ug;, )

0
-1y ! a(%u@]) TO 2 (a:vj u:vz) TO 1 (a:vj u€z> (ar :vju)
— Ty (aw,0,u) — Ty (ag,us,) — Ty (ag,us,) — Ty, 1(% 0,1)
(13) - f&ll(nguxi) - TO (Keieju) - T0,2 (KUILSL‘J> - TO,I (Kgiuxj)7

which is of the type () with K = 0.
Moreover, since f € W*?(Q x S'), and, according to (I2), uy,,; € W'P(Q x S'), j = 1,2, the
right-hand-side of (I3) lies in W?(Q x S'). Again, by applying part (i), we get

(14) g0, € WHP(Q x SY), 4, j = 1,2.

For f € W*P(Q x S'), also according to part (ii), uy,ug, € LP(Q x S'). In particular u,q, is the
unique solution of the integral equation

uxiej + TO_l(a’ul‘z‘ej> - TO_l(Kuxjei) - (ij ) 0 1 (a'l‘zul‘]) TO_l(a'eiul‘j)
- TO (a'l‘jeiu> - TO,ll (axjul‘z‘) - TO_l(ueia'SL‘j>
(15) + To (Ko, + Ty (Ko tta) + Ty (Koyp,0),

which is of the type (7). Moreover, since a € C3(Qx S'), k e C3(Q1xS'xS'), and f € W3P(Qx S1),
the right-hand-side of (13)) lies in WP(Q) x S'). Again, by applying part (i), we get

(16) Uz, € WHP(Q x 8Y), 4,5 = 1,2,

From (12)), (I4)), and (18)), we get u € W3P(Q2 x S').
U

We remark that for Theorem 2.2 part (i) we only need a € C*(Q x S') and k € C?(Q x S' x S'),
and we only require a € C*(Q2 x S') and k € C?*(Q2 x S! x S!') for Theorem 2.2] part (ii). We
also refer to [14, Theorem 2.2] for part (i) and (i) of Theorem 2.2l Moreover, in a similar fashion,

one can show that under sufficiently increased regularity of a and k, the solution u of (1) belong to
uwe Wm™P(Q x St for Z 5m > 1, provided f € W™P(Q x S').

3. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later, and introduce
notation. We recall some of the existing results and concepts used in our reconstruction method.
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For 0 < pu <1, p = 1,2, we consider the Banach spaces:

2(T) = {g = {90, 9-1,9-2, ) * |8lr(r) = = sup Z<J>plg | < OO}

18(&) — gl
CH(I 1) = =G0, G-1,G—2,...) : SU + su L <w
(17) (I h) g = (90, 91,92, ---) feII?Hg(f)”l1 géne% € — gl
#1

V() := < g:gel(I') and sup Z<~7>|g &) —9-i()l <o
ngpj 0 |£ ’]’]|N

where, for brevity, we use the notation (j) = (1 + |j|?)%/2. Similarly, we consider C*(Q;[;), and

CH(Q; ).
For z = x1 + 125, we consider the Cauchy-Riemann operators
(18) 0= (04, +104,) /2, 0= (0, —104,) /2.

A sequence valued map Q 3 z — v(2) := (vg(2),v_1(2),v_2(2),...0 in C(Q; 1) N CH(Q; 1) is
called L?-analytic (in the sense of Bukhgeim), if
(19) ov(z) + L?0v(z) =0, ze€q,
where L is the left shift operator L{vg,v_1,v_o, ) ={v_1,v_9,+-y,and L? = Lo L.
Bukhgeim’s original theory [5] shows that solutions of (I9)), satisfy a Cauchy-like integral formula,
(20) v(z) = Bivlrl(2), e,

where B is the Bukhgeim-Cauchy operator acting on v|,. We use the formula in [12], where B is
defined component-wise for n > 0 by
2D

1 [0, (0) d¢ dc -2\
(BY)n(2) = 5 ) c—zd<+2mL{< }Zv_n 55(¢ (C_Z) ,ze .

The theorems below comprise some results in [22, [23]]. For the proof of the theorem below we
refer to [23, Proposition 2.3].

Theorem 3.1. Let 0 < p < 1, and let B be the Bukhgeim-Cauchy operator in -
Ifg ={90,9-1,9-2, ...y € Y, (I") for . > 1/2, then v := Bg € CY"(Q;11) n C*(2;11) n C*(Q; 1)
is L*-analytic in ().

Similar to the analytic maps, the traces of L?-analytic maps on the boundary must satisfy some
constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in
[22]]. More precisely, the Bukhgeim-Hilbert transform # acting on g,

(22) I's z— (Hg)(2) = {(H)o(2), (Hg)-1(2), (Hg)2(2), --.)

is defined component-wise for n > 0 by

@ (g -+ [ Lac L[ [ B S, () e

7j=1

and we refer to [22] for its mapping properties.
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The following result recalls the necessary and sufficient conditions for a sufficiently regular map
to be the boundary value of an L?-analytic function.

Theorem 3.2. Let 0 < i < 1, and B be the Bukhgeim-Cauchy operator in 21).
Let g = {go,9-1,9-2,...) € Y, (I") for p > 1/2 be defined on the boundary I, and let H be the
Bukhgeim-Hilbert transform acting on g as in (23)).

(i) If g is the boundary value of an L*-analytic function, then Hg € C*(I'; l,) and satisfies

(24) (I +1H)g =

(ii) If g satisfies 24), then there exists an L*-analytic function v := Bg € CY*(Q;11) n CH(Q;11) N
C?*(; 1), such that

(25) vir=g.

For the proof of Theorem [3.2l we refer to [22, Theorem 3.2, Corollary 4.1, and Proposition 4.2] and
[23, Proposition 2.3].

Another ingredient, in addition to L?-analytic maps, consists in the one-to-one relation between
solutions u := (ug, u_1,u_s, ...y satisfying

(26) ou+ L?*0u+ alLu = 0,

and the L?-analytic map v = {vg,v_1,v_o,...» satisfying (I9), via a special function h, see [24]
Lemma 4.2] for details. The function A is defined as

(27) h(z,0) := Da(z,0) — % (I —1H) Ra(z - 6*+,67%),

0

where 0" is the counter-clockwise rotation of 8 by 7/2, Ra(s,0F) = a (349L +t0) dt is the

—00
0

Radon transform in R? of the attenuation a, Da(z,0) = f a(z + t@)dt is the divergent beam

1 (* h(t
transform of the attenuation a, and Hh(s) = — J L)tdt is the classical Hilbert transform [[19]],
T) S

taken in the first variable and evaluated at s = z- 8. The function h appeared first in [20] and enjoys
the crucial property of having vanishing negative Fourier modes yielding the expansions

(28) Z e Z Br(z)e*®,  (2,0) € Q x S

Using the Fourier coefficients of e*", define the operators e*“u component-wise for each n < 0, by

29) (e “u), = (axu), = Z pln_g, and (e“u), = (B*u), = Z Bitn_r, Where
k=0

Q320 a2) = {ap(z),a1(2),....), 23z B(2):=B(2), Bi(2), ..., ).

We refer [24, Lemma 4.1] for the properties of h, and we restate the following result [22, Proposition
5.2] to incorporate the operators e*“ notation used in here.

Proposition 3.1. [22, Proposition 5.2] Let a € C'*(Q), 1 > 1/2. Then o, dcx, 8,0 € 15" (Q), and
the operators maps

(i) eF9 : O* (1) — CH(Q1y); (i) e CH( 1) — CH(Q1y); (i) ¢ 2 Y, () — Y, (1),
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Lemma 3.1. [23, Lemma 4.2] Let a € C**(Q), u > 1/2, and e*“ be operators as defined in 29).
(i) Ifu e C*(Q,1,) solves du+L*0utalu = 0, thenv = e “u e C'(Q,1,) solves dv+L*0v = 0.
(ii) Conversely, if v e C*(Q,1) solves 0v + L*0v = 0, then u = e“v € C'(Q,1;) solves

ou+ L*0u+alu=0.

4. RECONSTRUCTION OF A SUFFICIENTLY SMOOTH LINEARLY ANISOTROPIC SOURCE

For an isotropic real valued vector field F = (F}, F»), and real map fo, recall the boundary value

problem (T):
(30)

0. Vu(z0) + a(2)u(=, 0) —f k(2,0 - 0)u(z,0)d0 — fo(2) + 0-F(2), (2,0) € Q x S,

st s ~ g
f(z.,0)

ulp_=0,
with an isotropic attenuation a = a(z), and with the scattering kernel k(z,0,0") = k(z,0 - 6")
depending polynomially on the angle between the directions,
31) k(z,cos0) = ko(z) + 2 Z k_,(2) cos(nd),

for some fixed integer M > 1. Note that, since k(z, cosf) is both real valued and even in 0, the
coefficient k_,, is the (—n)™ Fourier coefficient of k(z,cos(-)). Moreover k_,, is real valued, and
kn(2) = k_n(2) = 5= §7_k(z, cos B)e™do.

For the real vector field F = (F, Fy), the real map fy, and @ = (cos0,sin ) € S!, a calculation
shows that the linear anisotropic source

(32)  f(2,0) = fo(2) + 0 -F(2) = fo(2) + f1(2)e? + fi(z)e™™,  where f; = (F| +1F) /2.

We assume that the coefficients a, ko, k_1, ..., k_y; € C3(£2) are such that the forward problem (30)
has a unique solution u € LP(Q) x S') for any f € LP(2 x S'), p > 1, see Theorem 2.1l Moreover,
we assume also an unknown source of a priori regularity f € W3?({;R), p > 4, and by Theorem
2.2 part (iii), the solution u € W3P(£2 x S) p > 4. Furthermore, the functions a, k and source f are
assumed real valued, so that the solution « is also real valued.

Let u(z,0) = Y. u,(2)e™ be the formal Fourier series representation of the solution of (30)
in the angular variable @ = (cos#,sin#). Since u is real valued, the Fourier modes {u,} occurs in
complex-conjugate pairs u_,, = u,, and the angular dependence is completely determined by the
sequence of its nonpositive Fourier modes

(33) N3z u(z):= (up(2),u_1(2),u_s(2),...).

For the derivatives 0, 0 in the spatial variable as in (I8)), the advection operator 8-V in (30) becomes
0 -V = e %0 + 0. By identifying the Fourier coefficients of the same order, the equation (30)
reduces to the system:

(34) Quy(2) + du_y(2) + [a(2) — ko(2)]uo(2) = fo(2),

(35) Qug(2) + Qus(2) + [a(2) — k-1(2)]us(2) = fi(2),

(36) gu,()—l—@ung() +la(z) —k_p1(2)]u_n1(2) =0, 1<n<M-—1,
(37) n(2) + 0u_pa(2) + a(z)u_n_1(2) =0, n= M,
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where f; as in (32).

By Hodge decomposition [23]], any vector field F = (F}, Fy) € H'(2; R?) decomposes into a
gradient field and a divergence-free (solenoidal) field :
(38) F=Vo+F, ylog=0,divF =0,
where ¢ € H5 (€ R) and F° = (F}, F5) € Hy, (4 R?) := {F* € H'(Q;R?) : divF* = 0}.

Note that for f; = (F} +1F3) /2, we have 40f; = divF +1curl F, and using 800 f; = 2Af; =
AF, +1AF5, we have

(39) AF) = 0, divF — 0, curl F, and AFy = 0,, divF + 0., curl F.
Moreover, for f7 = (F} + 1F5) /2, the Hodge decomposition (38) can be rewritten as
(40) fl = égp + ff) ()0|8Q = 07 Re(@ff) = 0.

Theorem 4.1. Let Q = R? be a strictly convex bounded domain, and T be its boundary. Consider
the boundary value problem (3Q) for some known real valued a, ko, k_1, ..., k_y € C3(Q) such that
BQ) is well-posed. If scalar and vector field sources fo and F are real valued, W3?(Q);R) and
W32 (Q; R?)-regular, respectively, with p > 4, then u|r, uniquely determine the solenoidal part F*
in Q) and u — uq in ), where uyg is the zeroth Fourier mode of u in the angular variable.

Proof. Let u be the solution of the boundary value problem (30) and let u = {ug, u_1,u_s, ...) be the
sequence valued map of its non-positive Fourier modes. Since the scalar field fy € W3?(;R), p >
4, and isotropic vector field F € W3P(Q;R?), p > 4, then the anisotropic source f = fo + 0 - F
belong to W3P(Q x S') for p > 4. By applying Theorem2.21 (iii), we have u € W3?(2 x S1), p > 4.
Moreover, by the Sobolev embedding [T], W*#(Q x S') ¢ C*#(Q x S') with pp =1 — 2 > 3, we
have u € C**(Q2 x S'), and thus, by [22] Proposition 4.1 (ii)], the sequence valued map u € Y,,(I").

Since F € W3P(Q; R?), p > 4, then by compact imbedding of Sobolev spaces [1l], F € H'(Q; R?).
By Hodge decomposition (38)), field F = V¢ + F* with ¢|r = 0, and div F* = 0.

We note from (37) that the shifted sequence valued map L™ u = (u_ys, u_ps—1,U_p1—2, ...) solves

(41) oLMu(z) + L*0LMu(2) + a(2) LM Mu(z) =0, zeQ.

Let v := e “LMu, then by Lemma[3.1] and the fact that the operators et commute with the left

translation, [e*¢, L] = 0, the sequence v = L™ e~ solves ov + L?0v = 0, i.e v is L? analytic.
By @), the data ulr, = g determines L*u on I". By Proposition 29 (iii), and the convolution
formula, traces L u|r determines the traces v € Y,,(I") on I".
Since v|re Y,(I') is the boundary value of an L*-analytic function in €2, then Theorem [3.2] (i)
yields

(42) [[ +1H]v|r= 0,

where H is the Bukhgeim-Hilbert transform in (23).

From v on I, we use the Bukhgeim-Cauchy Integral formula (2I)) to construct the sequence
valued map v inside €). By Theorem [3.1] and Theorem [3.2] (ii), the constructed sequence valued
v e CY(Q; 1) n CH(Q; 1) n C*(Q;ly) is L2-analytic in .

We use again the convolution formula LMu = ¢%v, and determine modes u_,, now inside €2, for
n = M. In particular, we recover modes u_j;_1,u_yr € C%(9).

Recall that the modes u_1,u_o, -+ ,u_p;, u_ps_q satisfy

(43a) Ou_nrrj = —Ou_nrrj — [(@ — kopgjo)uoprj1], 1<j<M-—1,

(43b) U_M4jl0 = 9-my-
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By applying 40 to (43a), the mode u_ ;1 (for j = 1) is then the solution to the Dirichlet problem
for the Poisson equation

(44a) Au_pp1 = —40%u_p—1 —40[(a — k_p)u—_nr],
(44b) U_m1lr = g-M+1s

where the right hand side of is known.
We solve repeatedly for j = 2,..., M — 1 in (3)), to recover

(45) U-M+1, U—M425 """ 5 U1, in €2

From LMu and @3), Lu = (u_j,u_»,...) is determined in 2. Thus u — w is determined in €.
Since ug, u_1,u_o € C*(2), we can take 40 on both sides of the equation (33)) to get

(46) Aug + 40%u_y + 40([a — k_1Ju_) = 40f, = divF + 1curl F.

Moreover, since u is real valued and divF = Ay, by equating the real part in (46) we get the
boundary value problem:
(47a) Alug— ) = —4Re[®u_s+ d([a—k_1]u_1)],
(47b) (vo—@)lr = go,
where the right hand side of is known.
Thus, real valued (ug — ¢) is recovered in €2, by solving the Dirichlet problem for the above Poisson
equation (47). )
From (33) and using f{ = f; — dp from (@0), we get

(48) fi = 0(uo(2) — ¢(2)) + Gua(2) + [a(2) — kor(2)]ua(2), z€Q
with f7 satisfying Re(df7) = 0.
Thus, the solenoidal part F* = (2Re f7, 2Im f}), of the vector field F is recovered in ). O

If we know apriori that the vector field F is incompressible (i.e divergenceless), then we can re-
construct both scalar field source f, and vector field source F' in €.

Theorem 4.2. Let )  R? be a strictly convex bounded domain, and T be its boundary. Consider the
boundary value problem (3Q) for some known real valued a, ko, k_1, ..., k_y € C3(Q) such that (30)
is well-posed. If the unknown scalar field source fy and divergenceless vector field sources ¥ are real
valued, W3P(; R) and W3P(§); R?)-regular, respectively, with p > 4, then the data g, . defined in
@) uniquely determine both fy and F in ).

Proof. Let u be the solution of the boundary value problem (30) and let u = {(ug,u_1,u_,...) be
the sequence valued map of its non-positive Fourier modes, Since the isotropic scalar and vector
field fo € W3P(;R), and F € W3P(Q;R?) respectively for p > 4, then the anistropic source
f=fo+60 -FeW3(Q x S') and by applying Theorem 2.2 (iii), we have u € W3P(Q x S!).
By the Sobolev embedding [1l], W*?(Q x S') < C*#(Q x S') with p = 1 — 2 > 7, we have

55
u e C**(Q x S1), and thus, by [22} Proposition 4.1 (ii)], u € Y, (I).

Since F € W3P(; R?), p > 4, then by compact imbedding of Sobolev spaces [1]], F € H!(Q;R?).
By Hodge decomposition (38)), field F = V¢ + F* with ¢|r = 0, and div F* = 0.

If we know apriori that the vector field F is incompressible (i.e divergenceless V - F = (). Then
Ap =divF = 0 and ¢|sq = 0 implies ¢ = 0 inside ). Thus, vector field F = F* inside (.

By Theorem the data u|r, = g, uniquely determine the solenoidal field F* = F in Q by
equation (48) with ¢ = 0, and the sequence valued map Lu = {u_1,u_s, ...y in {2. Moreover, the
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real valued mode wy is also then recovered (with ¢ = 0 ) in {2, by solving the Dirichlet problem for
the Poisson equation (7).
Thus, from modes u_; and uy, the scalar field f is recovered in €2 by

(49) fo :=2Re[du_1] + [a — ko]up.

O

In the radiative transport literature, the attenuation coefficient a« = o, + o5, where o, represents

pure loss due to absorption and o4(z) = & S(Z)W k(z,0)d0 = ko(z) is the isotropic part of scattering

X
kernel. We consider the subcritical region:

(50) 0q:=a—kyg>=0>0, forsome positive constant .

Remark 4.1. In addition to the hypothesis to Theoremd_ 1} if we assume that coefficients a, kg satisfies
@GQ), then in the region {z € Q : fo(z) = 0}, one can recover explicitly the entire vector field
F = (2Re f1,21Im f1). Indeed, the equation (34) gives uy = —2Re(0u_1)/0, and, following (33),
the vector field ¥' can be recovered by the formula

(51) fl = é’u_g + [CL - k:_l]u_l — 25 <M) .

Oq

Next, we show that one can also determine both scalar field f, and vector field F, if one has the
additional data g,,, (or g,;) information, instead of F being incompressible as in Theorem 4.2

Theorem 4.3. Let Q = R? be a strictly convex bounded domain, and T be its boundary. Consider
the boundary value problem (3Q) for some known real valued a, ko, k_1, ..., k_y € C3(Q) such that
BQ) is well-posed. If the unknown scalar field source f, and vector field source F are real valued,
W3P(Q; R) and W3P(Q; R?)-regular, respectively, with p > 4, and coefficients a, ko satisfying (30),
then the data g, and g,,, defined in @) uniquely determine both fy and F in ).

Proof. Let u be the solution of the boundary value problem (30) and let u = {ug, u_1,u_s, ...) be the
sequence valued map of its non-positive Fourier modes. Since the scalar field fy € W3?(;R), p >
4, and isotropic vector field F € W3?(Q;R?), p > 4, then the anisotropic source f = fo + 6 - F
belong to W3P(Q x S') for p > 4. By applying Theorem2.2] (iii), we have u € W3?(2 x S1), p > 4.
Moreover, by the Sobolev embedding, W*#(Q x S') < C*#(Q x S') with = 1 — 2 > 3, we have
u e C*#(Q x S1), and thus, by [22} Proposition 4.1 (ii)], the sequence valued map u € Y, (I).

We consider the boundary value problems

(52) 0-Vv+av— Kv=f, subjectto  v|[p_=0, v|p,= g,, and
(53) 0 -Vw+aw—Kw=86-F, subjectto wlr.=0, wlr,=7:=Ggnr— Gro-

Then u = v + w satisfy the boundary value problem 30).

We consider first the boundary value problem (52)), and will reconstruct the scalar field f; from the
given boundary data g, ,.

If Z v, (2)e™ is the Fourier series expansion in the angular variable € of a solution v of boundary

neZ

value problem (32)), then, by identifying the Fourier modes of the same order, the equation in (32)
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reduces to the system:

(54 v=1(2) + v (2) + [a(2) — ko(2)]vo(2) = fo(2),
(55) 0v_p(2) + 0v_po(2) + [a(2) — k1 (2)]v_n1(2) =0, 0<n<M-1,
(56) Ov_n(2) + 0v_p_o(2) + a(2)v_,_1(2) = 0, n= M,

and let v = (vg,v_1,v_o, ...) be the sequence valued map of its non-positive Fourier modes.

By Theorem from data g, ,, the sequence Lv = (v_1,v_o, ... is determined in (2. Moreover,
as (33) holds also for n = 0 (f; = 0 in this case), the mode vy is also determined in €2 by solving the
Dirichlet problem for the Poisson equation

(573.) AUO = —4@21)_2 — 40 [(CL — k’_l)’U_l] s
(57b) volr = 9o,

where the right hand side of (57)) is known.
Thus, using modes v, and v_1, the isotropic scalar source f is recovered in {2 by

(58) fo(2) = 2Re (0v_1(2)) + (a(z) — ko(2)) vo(z), 2z€ €.
Next, we consider the boundary value problem (33), and will reconstruct the vector field F from
the given boundary data § = g, — G,..-

If Z wy,(2)e™ is the Fourier series expansion in the angular variable 8 of a solution w of the

nez
boundary value problem (33), then, by identifying the Fourier modes of the same order, the equation

in (33) reduces to the system:

(59) ow—(z) + ow_y(2) + [a(z) ko(2)]wo(z) = 0,

(60) Owg(2) + Ow_o(2) + [a(2) — k_1(2)|w_1(2) = (Fi(2) +1F(2)) /2,
(61) Ow_n(2) + Ow_p_o(2) + [a(2) — k_p_ 1( Nw_n-1(z) =0, 1<n<M-1,
(62) Ow_p(2) + 0w_p_o(2) + a(2)w_,_1(2) = 0, n=M,

and let w = (wg, w_1,w_s, ...) be the sequence valued map of its non-positive Fourier modes.
By Theorem 4.1} from data g, the sequence Lw = {w_1, w_o, ...y is determined in €.
Using the subcriticality condition (3Q): 0,(z) = a(z) — ko(2) > 0, and equation (39), we define

2Reow_41(z) 2Reow_41(z)

“ e T RN
The real valued vector field F = (2Re f;,21Im f;) is recovered in (2 by
(64) fi(2) = dwo(2) + dw_o(2) + [a(2) — k_1(2)]w_1(2), z€Q.

U
5. WHEN CAN THE DATA COMING FROM TWO SOURCES BE MISTAKEN FOR EACH OTHER ?

In this section we will address when the data coming from two different linear anisotropic field
sources can be mistaken.
In the theorem below the data are assuming the same attenuation a and scattering coefficient k.

Theorem 5.1. (i) Let a € C3(Q), k € C3(Q x S') be real valued, with 0, = a — ky > 0, and

fo, [ € W32(Q), p > 4 be real valued with (fo — [)/0a € Co(Q). Then F := F + V (fo — f) isa

Oa
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real valued vector field such that the data gs, ¥ coming from the linear anisotropic source fy + 0 - F,
is the same as data g 7 | coming from a different linear anisotropic source f + 60 - F :

Iydow (1t T 9P

(ii) Let a, ko, k_1, ..., k_pr € C3(Q) be real valued with 0, = a — ko > 0. Assume that there are
real valued linear anisotropic sources fo+ 0 - F and f + 0 - F, with isotropic fields fo, f € W3P(Q),
p > 4, and vector fields F, F € W3?(Q; R?), p > 4. If the data gy, ¥ of the linear anisotropic source

Oq

fo+0-F equals the data 9i & of the linear anisotropic source f—l— 0-F. ThenF =F+V (fo — f) )

Proof. (i) Assume g P is the data of some real valued anisotropic source f +6-F, ie., itis the trace
on I" x S! of solutions w to the stationary transport boundary value problem:

H-Vw—l—aw—szf—l—H-f‘,

(65)
W|rxst = g5

where the operator [Kw](z, 0) := J k(2,0 -0 )w(z,0")d0', for z € Qand 0 € S*.

S
For 0, = a — kg with o, > 0, and isotropic real valued functions ¢) and o,, we note:

lKﬂ} (2,0) — J k(2,00 lﬂ} (2,000
Oa St Oa
(©0 e e
= N2 f k(2,0 -0)d0 = Lo (2),
04(2) Jg1 04(2)
where second equality use the fact that both ¢) and o, are angularly independent functions.
Letu:=w+ (fo — f)/o,and F := F + ¥ o=/ . Then
o
0 -Vu+au—Ku=6-V <w+ fo—f) —|—a<w+ fo—f> —K<w+ fo—f)
Oq Oq Oq

0wk ()70 () 7 (£) 0 () wvov ()
Oq Ogq Oq Oa o,
= (1—i+@>f+ (a_ko)fo+0- (f‘+v<f°_f)> — fo+60-F,

Oa Oa Oa Oq

where the second equality uses the linearty of K and (66), the last equality uses (63)), and the defini-
tion of F. Moreover, since fy — f/o, vanishes on I', we get

fo—f

a

= W|pxg1= 97 ¥
r

GfoF = Ulpxsi= W|rxs1+

(ii) Let fo + 6 - F, be the real valued linear anisotropic source with isotropic field fy € W3?(Q),
p > 4, and vector field F € W*P(Q;R?), p > 4. If the data g, p of the linear anisotropic source
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fo + 0 - F equals data 95 # of some real valued f Fe W3P(Q),p > 4, i.e.
975 =9 = 9fF

Then by Theorem 2.2 (iii), there exist u, w € W3P(2 x S') solutions to the corresponding transport
equations

(67) 0 -Vu+au—Ku=fy+0-F, and 0-Vw+aw—Kw=f—|—0-f‘
respectively, subject to
U|F><Slz 9= w‘Fxsl-

Moreover, by the Sobolev embedding, u, w € C*#(QxS") with yy = 1—2 > 7, and the corresponding
sequences of non-positive Fourier modes {u_,,},>0 of u satisfy

(68) 0u=1(2) + du-1(2) + [a(2) — ko(2)]uo(2) = fo(2),

(69) Oug(2) + Ou_y(2) + [a(z) — k_1(2)]u_1(2) = (Fi(2) +iFy(2)) /2,
(70) Ou_p(2) + Ou_p_o(2) +[a(2) —k_p1(2)]u_p1(2) =0, 1<n<M-—1,
(71) Ou_p(2) + Ou_p_o(2) + a(2)u_p_1(2) = 0, n= M,
whereas the non-positive Fourier modes {w_,, },>¢ of w satisfy

(72) 0w=1(2) + Ow-1(2) + [a(Z) — ko(2)]wo(2) = f(2),

(73) Buo(2) + 0w (2) + [a(2) — ka(2)wa () = (Fi(2) + iF5(2)) /2.
(74) Ow_p(2) + Ow_p_o(2) + [a(2) = k_p1(2)]w_pn_1(2) =0, 1<n<M-—1,
(75) Ow_p,(2) + Ow_p_o(2) + a(z)w_,_1(2) = 0, n = M.

Furthermore, by [22, Proposition 4.1 (ii)], the corresponding sequence valued u = {ug,u_1,- -+ ) €
Y, ("), and w = {wo, w_1,w_o,- -+ ) € Y, (I") with pu > 3.
Since the boundary data g is the same u|r. g1 = w|rys1, we also have

(76) ll|p= g = W|p.
We claim that the systems and (Z3)) subject to the identity (Z6), yield
(77) Mu(z) = IMw(z), zeQ.

The shifted sequence valued maps LMu = (u_p,u_ps—q,...), and LMw = (w_p,w_ps_1, ...), re-
spectively, solves systems (ZI), and (Z3). Then the sequence valued map LMv := (v_y, v_pr_ 1, ...,
and LMp = {p_ps, p_rr—1, ...y are defined by

(78) LMv =e“B(LMe “g), LMp=e“B(LMe ),
where B is the Bukhgeim-Cauchy operator in (2I)), and e*“ are the operators in (29).

In particular, LMv and L™ p are L?-analytic, and coincide at the boundary I". By uniqueness of
L?-analytic functions with a given trace, they coincide inside:

(79) IMv(z) = LMp(2), forze Q.
Using the operator e~¢ in (29)), we conclude that

IMu(z) = e “LMv(2), LMw(2) =e “LMp(z), zeQ.
Thus holds.
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Subjecting (70) and to the boundary conditions (7€), we claim that

(80) U_p(2) =w_p(2), 2€Q, forall 1<n<M-—1.
Define
(81) Y_ji=u_j—w_;, forj=1,
and note that by (77), we have
(82) $h_; =0, forj= M.
By subtracting from (ZQ), and using (81)), and (Z6)), we have
(83a) O_nvj = —00_nrija — [(@ = koprijo)V-nija], 1<j<M-—1,
(33b) Y_p4jlr = 0.

For the mode v_j;,1 (when j = 1), the right hand side of contains modes _y;_1 and ¢_j;
which are both zero by (82). Thus, the mode ¢_j;,1 = 0 is the unique solution to the Cauchy
problem for the J-equation,

(84a) =0, inQ,
(84b) U =0, onl.
We then solve repeatedly (83)) starting for j = 2, ..., M — 1, where the right hand side of (83a) in each

step is zero, yielding the Cauchy problem (84) for each subsequent modes, and thus, resulting in the
recovering of the modes ¥_ ;41 = Y_pr40 = - -9_o = 9_1 = 0 in €. Therefore, establishing (80).

By subtracting from (68)), we obtain (a — ko) (ug — wo) = fo — f, and thus vy — wy = Jo= f.
T4

Moreover, by subtracting (Z3)) from and using (77) and 8Q), yields 20(ug — wy) = (F} — ﬁ) +
1(Fy — ). Since both ug and wy are real valued we see that F — F = V(uy — wy), and we have

F=F+V<f°_f>.
04

Remark 5.1. Note that in Theorem [5.1(i), the assumption on scattering kernels of finite Fourier
content in the angular variable is not assumed, and the result holds for a general scattering kernels
which depends polynomially on the angle between the directions.

O
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