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Abstract 
 
Edge states forming at the boundaries of topologically non-trivial phases of matter are promising candidates 
for future device applications because of their stability against local perturbations. Magnetically ordered spin 
chains proximitized by an s-wave superconductor are predicted to enter a topologically non-trivial mini-
gapped phase with zero-energy Majorana modes (MMs) localized at their ends. However, the presence of non-
topological end states mimicking MM properties can spoil their unambiguous observation. Here, we report on 
a method to experimentally decide on the MM nature of end states observed for the first time in 
antiferromagnetic spin chains. Using scanning tunneling spectroscopy, we find end states at either finite or 
near-zero energy in Mn chains on Nb(110) or Ta(110), respectively, within a large minigap. By introducing a 
locally perturbing defect on one end of the chain, the end state on this side splits off from zero-energy while 
the one on the other side doesn’t – ruling out their MM origin.  A minimal model shows that, while wide trivial 
minigaps hosting such conventional end states are easily achieved in antiferromagnetic spin chains, 
unrealistically large spin-orbit couplings are required to drive the system into the topologically nontrivial 
phase with MMs. The methodology of perturbing chains by local defects is a powerful tool to probe the 
stability of future candidate topological edge modes against local disorder. 
 

Main 
Hybrid systems of magnetic and superconducting materials in reduced dimensions have been of great interest 
in recent years, owing to the exciting emergent physics such as unconventional superconductivity and topological 
edge modes expected in these platforms1–6. In particular, there has recently been a focus on the interplay of 
antiferromagnetic materials proximity coupled to s-wave superconductors7–11. Since antiferromagnets possess 
no net magnetic moment in their magnetic unit cell, they do not have considerable stray fields which would 
destroy superconducting order. A coexistence of antiferromagnetism and superconductivity in, e.g., thin films on 
s-wave superconductors8 or the Fe-based superconductors12,13 was previously explained by the large size of 
Cooper pairs compared to the magnetic unit cell of the materials or by an unconventional s± type pairing 
symmetry14. The absence of the net magnetic moment also gives rise to an effective time-reversal symmetry 
(ETRS) in an antiferromagnet, consisting of physical time reversal inverting the spin directions and a spatial 
symmetry exchanging the antiferromagnetic sublattices. 
 
In the limit of a single magnetic adatom or molecule on a superconducting surface, the interaction of its spin 
with the host material induces local quasiparticle states inside the superconducting gap known as Yu-Shiba-
Rusinov (YSR) states15–17. When multiple of these impurities are close to each other, their YSR states split in 
energy as they start to couple18,19. Without spin-orbit coupling (SOC), such a splitting would be prohibited by the 
ETRS for a strictly antiferromagnetic alignment of the spins in adatom pairs. However, it has been shown recently 
that the splitting is allowed in the presence of SOC on a surface19,20. In larger arrays of magnetic impurities, the 
coupled YSR states form YSR sub-gap bands, which can potentially have non-trivial topology3–6,21,22 and lead to 
the emergence of topologically protected Majorana modes (MMs) at the edges of the array23–27. In one 
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dimension, a chain of magnetic impurities with topologically non-trivial YSR bands is expected to host zero-
energy MMs at both ends for sufficient chain length. The Majorana number in spin chains can be interpreted as 
the parity of the number of spin-polarized bands crossing the Fermi level in the absence of superconducting 
pairing terms (c.f. Methods, Eq. (8)). Without SOC, the ETRS in antiferromagnetic chains leads to doubly 
degenerate excitations in the magnetic Brillouin zone. Thus, there is necessarily an even number of band 
crossings and a topologically trivial Majorana number. However, finite SOC breaks this symmetry and the 
degeneracies can be lifted. Thus, SOC or certain spatial symmetries theoretically open up possibilities for 
topologically non-trivial phases hosting MMs also in antiferromagnetic chains9,10. Experimental investigations of 
the low-energy electronic structure with a focus on such modes so far largely concentrated on ferromagnetic 
chains24,26,28–33 and a few on spin-spirals23,34, but studies of the antiferromagnetic case are sparse33.  
 
A general problem with the interpretation of such experimental data is the fact that near-zero-energy states can 
always appear as artifacts - e.g., induced by local defects or by a different electronic structure at the chain 
termination - in local tunneling spectroscopy measurements32–34. Therefore, a good understanding of the 
sample’s underlying YSR band structure and its direct correlation with the observation of end states is clearly 
desired to pin down the nature of these end states. In this work, we additionally pursue a new strategy to test 
the MM nature of end states residing in a comparably large bulk minigap which we observed for scanning-tunnel-
microscope-(STM)-tip-constructed35 antiferromagnetic Mn chains on the atomically clean surfaces of Nb(110) 
and Ta(110): We intentionally locally perturb one end of the chain with a local defect. While MMs residing in a 
topological minigap which is wider in energy than the perturbation’s energy scale are expected to remain either 
completely unaffected or will merely laterally shift, trivial end states will split in energy only on the perturbed 
side of the chain (see Supplementary Note 1). We compare the experimental findings to an effective single-
particle model for an antiferromagnetic spin chain coupled to an s-wave superconductor. 
 
 

Antiferromagnetic Mn chains on Nb(110) 
Single Mn atoms on clean Nb(110) and Ta(110) surfaces have been studied  both experimentally19,26,28,31,36,37 and 
theoretically38–41, and offer a suitable platform for studying well-defined YSR arrays. In particular, it has been 
shown that the magnetic interaction between neighboring adatoms can be tuned from ferromagnetic to 
antiferromagnetic when varying the inter-atomic distance and the crystallographic direction connecting the 
atoms on the surface19,36. Spin-polarized measurements have revealed that densely packed linear chains of Mn 
atoms constructed along the [11̅1] direction of the (110) surfaces (Fig. 1a) of Nb36 and Ta (Supplementary Fig. 2) 
feature an out-of-plane antiferromagnetic ground state, in agreement with ab-initio calculations40. 
 
We start by presenting the results on antiferromagnetic Mn chains on Nb(110): Fig. 1b shows the topography of 
a Mn40 chain together with examples of deconvoluted dI/dV maps obtained at sub-gap energies (∆Nb = 1.51 meV, 
see Methods, Supplementary Note 3 and Supplementary Figure 3). A dI/dV line profile along the same chain is 
presented in Fig. 1d. Additionally, the evolution of the sub-gap local density of states (LDOS) for MnN chains on 
Nb(110) with increasing number of sites N is shown in Fig. 1c, separately for the chain’s left end (left panel), for 
the chain’s bulk (central panel) and for the right end (right panel). There is a continuum of states visible in the 
energy range of 0.7 meV < |𝐸| < 1.5 meV, exhibiting standing wave patterns (c.f. Fig. 1d and the map at -1.04 
meV in Fig. 1b) due to quasiparticle interference (QPI). This indicates the formation of dispersive YSR bands26,31 
which we analyze later on. In contrast to this, no bulk states are observed within a gapped region of ±∆b = ±0.7 
meV for chain lengths exceeding N = 6 sites. This is a surprising result since the maximal gaps previously found 
in ferromagnetic spin chains on superconducting surfaces were on the order of 50-180 µeV23,26,29,31,42.  
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Figure 1 | Geometry and low-energy electronic structure of antiferromagnetic Mn chains on Nb(110). a, Sketch of Mn 

adatoms (red) positioned on neighboring hollow sites of the Nb(110) or Ta(110) lattice (beige) along the [11̅1] direction. b, 
Constant-current STM image (topography, top panel) of a Mn40 chain and simultaneously acquired deconvoluted dI/dV maps 
(bottom panels) at selected energies as indicated. The white scale bar corresponds to 2 nm. The apparent extent of the chain 
from the top panel is marked by white dashed boundaries. c, Sequence of deconvoluted dI/dV spectra measured on the left 
end, in the center and on the right end of MnN chains with increasing number of sites N. The emergence of the chain’s bulk 
minigap 𝛥b and of finite-energy end states 𝜀+/− are indicated. Note that single atoms are added only to the right chain end 

during this measurement. d, Deconvoluted dI/dV line-profile measured along the longitudinal axis through the center of the 
Mn40 chain. The lateral position of the spectra is aligned with the topography in panel b. Parameters: Vstab = -6 mV, Istab = 1 
nA, Vmod = 20 µV. 

 
Inside the minigap ∆b, we find clearly localized end states at energies 𝜀+/− = ±0.51 meV (Fig. 1b). In addition to 

the end-state nature of these features, a small oscillatory component of their wave function is found to decay 
into the chain’s bulk (see Figs. 1b,d). As it can be seen in Fig. 1c, these energetically isolated states form at 
energies 𝜀+/− already for N > 5 and their energy is only faintly oscillating in energy for longer systems. This fast 

convergence of the end-state energy with increasing chain length agrees with the good localization of the 
features, i.e., interactions between the ends already vanish for short chains. Notably, the end states in the regime 
8 < N < 14 are energetically split into four eigenstates for odd N while there are only two eigenstates for even N 
(see Fig. 1c).  

 
Comparison to antiferromagnetic Mn chains on Ta(110) 
In order to further investigate experimentally whether the appearance of such low-energy end states is a 
consequence of the antiferromagnetic spin alignment in the chain and thus not limited to only one experimental 
platform, we study structurally similar Mn chains on a clean Ta(110) surface (∆Ta = 0.64 meV). It has been shown 
previously that Mn atoms on a Ta(110) surface exhibit surprising similarities to Mn/Nb(110)28,37 due to the 
identical number of valence electrons and the same crystal structure of the substrates, however, with a strongly 
enhanced SOC in Ta compared to Nb. Most notably, densely packed Mn chains along the [11̅1] direction are also 
found to be antiferromagnetically ordered (see Supplementary Fig. 2). Measurements of the low-energy 
electronic structure in these chains are presented in Fig. 2. The dI/dV maps in Fig. 2a measured around a Mn22 
chain reveal the presence of well-localized end states with near-zero energy and a similar spatial appearance as 
the end states found in Mn chains on Nb(110), while higher-energy excitations are mostly localized in the chain’s 
bulk. Furthermore, a weak oscillatory pattern can be seen in the map obtained at -0.28 meV, indicating the 
presence of QPI in the bulk states of this platform as well. The dI/dV line-profile shown in Fig. 2b suggests that 
the bulk of the chain is electronically gapped by a minigap ±∆b = ±0.2 meV. Fig. 2c shows the length dependence 
of the LDOS features for chains with 10 < N < 22. Here, it is also visible that end states of almost constant energy 
are present on both chain ends while the bulk remains gapped. On the left, unperturbed end, a damped even-
odd oscillation in the end-state energies is observed again, as for the Nb case. The overall appearance of the low-
energy electronic structure is very similar to Mn/Nb(110). It is therefore natural to conjecture that the end states 
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in the Mn/Ta(110) platform have a similar origin as in the Mn/Nb(110) case. However, since the end states in 
Mn/Ta(110) are very close to or at zero energy, the question arises whether or not this system realizes a 
topological superconductor with the accompanying near-zero energy MMs at its ends. 
 

 
 

 
Figure 2 | Sub-gap electronic structure of antiferromagnetic Mn chains on Ta(110). a, Constant-current STM image 
(topography, top panel) of a Mn22 chain and simultaneously acquired deconvoluted dI/dV maps (bottom panels) at selected 
energies as indicated. The white scale bar corresponds to 2 nm. The apparent extent of the chain from the top panel is marked 
by white dashed boundaries. b, Deconvoluted dI/dV line-profile measured along the longitudinal axis through the center of 
the Mn22 chain. The lateral position of the spectra is aligned with the topography in panel a. The arrow indicates the chain’s 
bulk minigap. c, Sequence of deconvoluted dI/dV spectra measured at the left end, in the center and at the right end of MnN 
chains with increasing number of sites N. The emergence of a bulk minigap 𝛥b (marked) and of end states with energies close 
to the Fermi energy EF can be observed. Parameters: Vstab = -2.5 mV, Istab = 1 nA, Vmod = 20 µV. 

 
 

Perturbation of the end states by local defects 
For testing the topologically non-trivial or trivial nature of the end states, the influence of local defects on the 
end states in Mn/Nb(110) and Mn/Ta(110) chains is studied. These defects can be either of magnetic or of non-
magnetic origin. It has been shown previously that the energy of individual YSR states is very sensitive to 
variations in adsorption geometries43,44, defects like local oxygen impurities45, or local charge density46. Also 
hydrogenation of adatoms has been shown to drastically alter their magnetic properties and, importantly, their 
exchange coupling to the substrate47. Since the exchange coupling strength is one of the main factors 
determining the YSR state energies of magnetic impurities17, hydrogenated Mn atoms at the end of the chain are 
expected to have clearly shifted YSR state energies compared to unperturbed Mn atoms. Fig. 3a shows an 
example of a Mn20 chain on Nb(110) with a dark spot visible on the left side of the chain, which is presumably 
adsorbed hydrogen or another weakly bound surface adsorbate trapped at an oxygen defect of the Nb(110) 
surface. When measuring dI/dV maps at sub-gap energies on this Mn chain, the left and the right end state have 
slightly different energies (±0.45 meV and ±0.39 meV, respectively). When removing the defect next to the chain 
by local voltage pulses (Fig. 3b), both end states appear at the same energy (±0.35 meV) again. A similar effect 
can actually be seen in the data of Fig. 1c already where the end state on the right end is found to oscillate in 
energy for 15 < N < 20 while the state on the left end remains at fixed energy. This unambiguously proves the 
local nature of these states, in clear contrast to non-local, spatially correlated states like MMs or their 
precursors26 (see Supplementary Note 1 for the effect of potential disorder within a minimal model for 
antiferromagnetic YSR chains).  
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Figure 3 | Response of the end state energies to local defects. a, Constant-current image of a Mn20 chain on Nb(110) (left 
panel) with adjusted contrast to highlight the defect on the left side of the image which is marked by the gray dashed circle. 
The white bar corresponds to 1 nm. Deconvoluted dI/dV maps at selected energies (right panels) reveal that the two end 
states have different energies. The apparent extent of the chain from the left panel is marked by white dashed boundaries. 
b, Constant-current image of the same Mn20 chain after applying bias voltage pulses to remove the local defect. A 
deconvoluted dI/dV map at a selected energy (right) shows that the end states now have equal energy. Parameters: Vstab = -
6 mV, Istab = 1 nA, Vmod = 20 µV. c, Constant-current STM images of a Mn22 chain on Ta(110) and a single Mn atom which is 
subsequently moved to positions with different distances from the right chain end. The bottommost panel shows the 
unperturbed chain. The white bar corresponds to 2 nm. Parameters: Vstab = -20 mV, Istab = 0.2 nA. d, Deconvoluted dI/dV 
spectra measured on the left chain end, e, on the right chain end and f, on the single Mn atom for the different adatom 
distances depicted in panel c. The spectra are vertically offset for clarity. Their color indicates which panel in c they belong 
to. Parameters: Vstab = -2.5 mV, Istab = 1 nA, Vmod = 20 µV.  

 
We performed a similar experiment for Mn chains on Ta(110) using a single Mn atom as the local defect. Fig. 3c 
shows topographies of a Mn22 chain with an additional Mn atom, whose distance to the right chain end is varied. 
dI/dV spectroscopy on the left and right chain end as well as on the single atom reveals the coupling between 
both structures (Fig. 3d-f): as the single atom approaches the chain, its sub-gap spectral character is altered. The 
same holds for the right chain end, which directly interacts with the single atom because of their close proximity, 
i.e. the peak position of the end state slightly shifts. In contrast, the left chain end is not altered, proving that the 
end states are entirely local instead of collective properties of the chain. This is not expected for MMs or their 
precursors, where moving a magnetic atom close to one chain end merely laterally shifts the spatial location of 
the zero-energy end state on that side, or shifts the energy of the lowest-lying state simultaneously at both ends 
of the chain26. The observed energetical splitting of the two end states with respect to each other indicates that 
in the undisturbed chains, two states are localized, one at each end, which are degenerate due to the 
antiferromagnetic spin structure, in contrast to MMs or their precursors that form a single fermionic state with 
enhanced intensities at both ends. 
 

Minimal model for antiferromagnetic YSR chains 
To understand the nature of these trivial end states, we construct a minimal theoretical model for 
antiferromagnetic YSR chains. A single-particle model following Refs.3,4,6,21,22 successfully describes the sub-gap 
electronic bands in ferromagnetic YSR chains, especially when extended with local potential scattering26,31. We 
extend these models by studying an antiferromagnetic chain on a superconducting substrate including Rashba 
SOC and arrive at the following minimal next-nearest-neighbor model Hamiltonian (see Methods for details): 
 

ℋ = −𝐸0 ∑ 𝑐𝑖
†𝑐𝑖

𝑁

𝑖 = 1

− 𝑡1 ∑(𝑐𝑖
†𝑐𝑖+1 + h. c. )

𝑁−1

𝑖 = 1

− 𝑡2 ∑(𝑐𝑖
†𝑐𝑖+2 + h. c. )

𝑁−2

𝑖 = 1

−𝛥1 ∑(𝑐𝑖
†𝑐𝑖+1

† + h. c. )

𝑁−1

𝑖 = 1

− 𝛥2 ∑(𝑐𝑖
†𝑐𝑖+2

† + h. c. )

𝑁−2

𝑖 = 1

. (1)
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Here, 𝑐𝑖
†, 𝑐𝑖  represent the creation and annihilation operators of YSR states at site 𝑖 of a one-dimensional chain 

with 𝑁 sites. The on-site energies −𝐸0 would correspond to the YSR state energies of the individual Mn impurity. 
The model includes nearest-neighbor (NN: index 1) and next-nearest-neighbor (NNN: index 2) hopping (t1, t2) 
and superconducting pairing (∆1, ∆2) (Fig. 4e). The model connects to the Kitaev chain48 if only the NN terms are 
kept. 
 
Notably, a perfectly collinear antiferromagnetic ordering is characterized by an ETRS (see Methods) consisting of 
physical time reversal inverting the spin directions and a translation by the distance between the chain atoms10. 
In the present Hamiltonian expressed in the basis of atomic YSR states, the ETRS implies that hopping terms are 
only allowed between atomic YSR states with the same spin, i.e. between NNNs in the present model (see 
Methods and Fig. 4e). In contrast, the effective superconducting pairing ∆1 can easily be induced between 
adjacent atoms, since their spins are anti-aligned, and will be suppressed for NNNs (∆2), where the spins have a 
parallel alignment. For non-zero SOC these restrictions are lifted (see Methods), and the ratio of the coefficients 
induced by the SOC and present without the SOC may be estimated by the dimensionless parameter 𝛼R/ℏ𝑣F, 
where 𝛼R is the Rashba parameter and 𝑣F is the Fermi velocity. This parameter was estimated to be 𝑘h/𝑘F,0 =
0.094 for Mn/Nb(110) in Ref. 26. We consequently pay particular attention to the case t1<< t2, and ∆1>>∆2 of our 
minimal model and further assume 𝐸0 ≈ 0.0 meV, which is motivated by the experimental YSR state energies 
for N = 1,2,3 (Fig. 1c). 
Experimentally, information about the sub-gap bands’ dispersion can be extracted from one-dimensional 
quasiparticle interference (QPI) measurements26,31 (see Supplementary Note 4 and the extracted dispersion of 
the scattering vectors in Fig. 4c). We adjust the parameters of the minimal model such that the dispersions of 
the possible scattering vectors q1, q2 in Fig. 4b extracted from the calculated dispersion in Fig. 4a reasonably fit 
the experimental dispersions of Fig. 4c. Using these parameters, we calculate the spatially resolved LDOS for 
various chain lengths N (Fig. 4d, Supplementary Fig. 4, and Methods) which, given the few free parameters,  agree 
surprisingly well with the experimental data in Fig. 1c,d. In particular, the minimal model nicely reproduces the 
appearance of non-zero energy end states with an oscillatory decay towards the chain center at energies 𝜀+/− in 

a large minigap 𝛥b, the fast convergence of these end states towards 𝜀+/− already for short chains 

(Supplementary Fig. 4), as well as the dispersive nature of the bulk states. 
 

 
 
Figure 4 | Minimal model for antiferromagnetic YSR chains and experimental QPI results.  a, YSR band structure from the 
minimal model using the parameters 𝐸0 = 0.0 meV, 𝑡1 = 0.1 meV, 𝑡2 = 0.6 meV, 𝛥1 = 0.0 meV (dashed lines) as well as 
𝛥1 = 0.5 meV (solid lines), and 𝛥2 = 0.0 meV. The position of k = ±π/4 is marked by dashed lines. b, Absolute values of the 
line-wise FFT of a calculated LDOS line-profile similar panel d using N = 100 sites. c, Absolute values of the line-wise FFT of 
the experimental dI/dV line-profile in Fig. 1d. The supposed dispersive scattering vectors q1, q2 and the edge state energies 
𝜀+,− are marked in panels a-c. d, Calculated LDOS along a chain of N = 40 sites using the parameters from panels a and b. The 

energies of the finite-energy end states 𝜀+/− and the chain’s bulk minigap 𝛥b are marked. e, Sketch of the parameters in an 

antiferromagnetically ordered chain considered in the minimal model of the YSR states. The symbols indicate up (⨀) and 



7 
 

down (⨂) oriented magnetic moments, respectively. 𝑡1 (𝑡2) is the NN (NNN) hopping, 𝛥1 (𝛥2) is the NN (NNN) pairing term 
and 𝐸0 is the on-site potential energy (see Methods). f, Eigenenergies of a finite-size chain with N = 40 for varying on-site 
energy 𝐸0 and hopping parameters 𝑡1 = 0.0 meV, 𝑡2 = 0.6 meV. g, Same as panel e, but with a small ETRS breaking term, 
𝑡1 = 0.1 meV, 𝑡2 = 0.6 meV. h, Same as panel e and g, but with an unrealistically large ETRS breaking term, 𝑡1 =
0.4 meV, 𝑡2 = 0.6 meV. 𝛥1 = 0.5 meV, 𝛥2 = 0.0 meV are chosen for all panels f-h. The Majorana number M of the system 

is trivial (+1) in the red regions and non-trivial (-1) in the blue regions (see Methods for details). The dark blue lines in panels 
f-h are end states of the system.  

 
Having substantiated the minimal model by comparison to the experimental data, we investigate its parameter-
dependent phases and the topological nature of the edge states in the following. Figs. 4f-h show the energy 
spectrum of a 40-site chain vs. the on-site energy 𝐸0 for different values of the hopping terms t1 and t2. It can be 
seen that the topologically non-trivial phase of the Kitaev chain is entirely quenched for 𝑡1 → 0 which 
corresponds to zero SOC (Fig. 4f). This is a consequence of the ETRS, which results in a Kramers degeneracy of all 
states, hence to a topologically trivial Majorana number. This finding agrees with previous studies, showing that 
topologically non-trivial phases cannot be found in antiferromagnetic YSR chains without either strong SOC or 
additional supercurrents9,10 breaking the ETRS. However, it is found that the end states at finite energy are 
formed even in this topologically trivial regime for t2 > t1. Each of these end states is twofold degenerate for 
even-length chains and shows a small splitting for odd-length chains where the ETRS is broken (cf. the observed 
experimental splittings in the regime 8 < N < 14 for odd N in Fig. 1c); the degeneracy is restored for semi-infinite 
chains (𝑁 → ∞). The fact that they merge with the continuum of states in Figs. 4f-h for large 𝐸0 without a gap 
closure further proves their topologically trivial origin.  
 
For non-zero values of t1, corresponding to finite SOC, the non-zero-energy end states in some part of the 
topologically non-trivial phase are preserved (Fig. 4g). But now, also a topologically non-trivial phase with zero-
energy MMs is recovered, which only takes up a large proportion of the phase space for unrealistically large 
values of SOC (Fig. 4h).  
 

Conclusions & Outlook 
In conclusion, we have shown that the in-gap quasiparticle structure of dense, antiferromagnetic YSR chains can 
be qualitatively described by a minimal model. In contrast to ferromagnetic chains, the antiferromagnetic 
structure facilitates the formation of a large minigap in the YSR band even without SOC. This observation may be 
qualitatively explained by the fact that all YSR states in a ferromagnetic chain possess the same spin polarization, 
meaning that the s-wave superconducting pairing in the substrate may only open a gap in the spectrum for non-
zero SOC. For the antiferromagnetic chain the localized YSR states at the sites have an alternating spin 
polarization, which enables pairing between these states without SOC and can lead to a considerably larger 
minigap. This large size of the minigap naturally leads to a strong localization of potential end states, since their 
extension is inversely proportional to the minigap width26,49. Therefore, antiferromagnetic chains appear to be 
more suitable for the realization of well-localized end states than their ferromagnetic counterparts. However, as 
visible from our simulations in Fig. 4f and as was shown in Refs. 9 and 10, the formation of the topologically non-
trivial phase now is a threshold effect: the SOC has to compete with the pairing potential, meaning that 
unrealistically large values of SOC have to be assumed in order to enable the formation of MMs. This is in contrast 
to the ferromagnetic chain, which is gapless in the absence of SOC and consequently an arbitrarily weak SOC may 
drive it into the topologically non-trivial regime. The most promising path towards combining the large minigap 
of antiferromagnetic chains with the easily achievable topologically non-trivial phases of ferromagnetic chains 
lies in the realization of YSR bands formed by non-collinear spin configurations23,50. 
 
Our minimal model furthermore reproduces the presence of intriguing finite-energy end states in the 
antiferromagnetic chains which are not topologically protected and whose energy can be tuned by local 
potentials. A corresponding topologically trivial phase has been characterized by Pientka et al. as a two-channel 
p-wave superconducting wire where the interaction between two pairs of MMs lifts their energy to finite values 
and destroys their topological protection3,51. However, we want to emphasize that this separation into two 
channels is not straightforward if SOC is present, and thus, this argument must not be taken at face value. 
Coincidentally, the trivial end states may appear at near-zero energy by local potentials where they could be 
misinterpreted as MMs. We have shown here that a local perturbation of the end states with defects is a distinct 
way to prove their topologically trivial or non-trivial nature. This methodology can be used on other sample 
systems to probe the stability of candidate topological edge modes against local disorder.  
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Methods 
Experimental procedures 
The experiments were performed in a home-built STM setup under ultra-high-vacuum at a base temperature of 
T = 320 mK52. Nb(110) and Ta(110) single crystals were used as a substrate and cleaned by high-temperature 
flashes to T > 2700 K with an e-beam heater. In this way, atomically clean surfaces with only few residual oxygen 
impurities on the surface can be obtained for both materials, as shown previously37,53. Subsequently, single Mn 
atoms were deposited onto the surface of the clean substrates held at low temperatures (T < 7 K), resulting in a 
statistical distribution of adatoms. We use superconducting Nb tips made from mechanically cut and sharpened 
high-purity Nb wire. The tips were flashed in situ to about 1500 K to remove residual contaminants. STM images 
were obtained by regulating the tunneling current Istab to a constant value with a feedback loop while applying a 
constant bias voltage Vstab across the tunneling junction. For measurements of differential tunneling conductance 
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(dI/dV) spectra, the tip was stabilized at bias voltage Vstab and current Istab as individually noted in the figure 
captions. In a next step, the feedback loop was switched off and the bias voltage was swept from -Vstab to +Vstab. 
The dI/dV signal was measured using standard lock-in techniques with a small modulation voltage Vmod (RMS) of 
frequency f = 4.142 kHz added to Vstab. dI/dV line-profiles and maps were acquired recording multiple dI/dV 
spectra along a one-dimensional line or a two-dimensional grid of lateral positions on the sample, respectively. 
Note that we chose stabilization parameters at which the contribution of Andreev reflections and direct Cooper 
pair tunneling can be neglected (see Supplementary Note 3). The use of superconducting Nb tips increases the 
effective energy resolution of the experiment beyond the Fermi-Dirac limit54. However, the differential tunneling 
conductance dI/dV measured with superconducting tips is proportional to the convolution of the sample’s local 
density of states (LDOS) and the superconducting tip density of states (DOS). Consequently, STS data need to be 
numerically deconvoluted in order to resemble the sample’s LDOS, as it is typically known for the interpretation 
of STS experiments. After careful deconvolution of the spectra, the superconducting gaps of the Nb and Ta 
surfaces are found to be ∆Nb = 1.51 meV and ∆Ta = 0.64 meV, respectively (see Refs. 26,31 for Nb and Supplementary 
Fig. 3 for Ta). We show only deconvoluted data throughout the manuscript (see Supplementary Note 3 for 
details). Mn chains were constructed using lateral atom manipulation36,37 techniques at low tunneling resistances 
of R ≈ 30 - 60 kΩ. 
 
Minimal model for YSR bands in antiferromagnetic chains 
Pientka et al. showed in Ref. 3 that the low-energy electronic structure of a single orbital chain of classical 
magnetic moments with a helical spin texture embedded in a three-dimensional superconducting host can be 
reduced to an effective Bogoliubov-de-Gennes Hamiltonian on a basis of projected YSR states. Subsequent 
models of the same type included Rashba-type SOC in ferromagnetic chains in Refs. 2,4,6 and non-zero potential 
scattering and particle-hole asymmetric spectral weights in Refs. 31,55. Here, we combine the SOC with non-zero 
potential scattering and a general spin structure, where the impurity atoms are assumed to be identical apart 
from the orientation of their classical spin. The effective Hamiltonian describing the YSR subgap band is given by 
 

ℋ =
1

2
∑[𝑐̃𝑖

† 𝑐̃𝑖]
𝑖,𝑗

[
ℎ𝑖𝑗 Δ𝑖𝑗

Δ𝑖𝑗
† −ℎ𝑖𝑗

∗ ] [
𝑐̃𝑗

𝑐̃𝑗
†] , (2) 

 
with the matrix elements expressed as 
 

ℎ𝑖𝑗 = −𝐸0𝛿𝑖𝑗 + ℎ𝑖𝑗
(0)⟨↑ (𝑖)| ↑ (𝑗)⟩ + ℎ𝑖𝑗

(𝛼)⟨↑ (𝑖)|𝑖𝜎𝑦| ↑ (𝑗)⟩, (3) 

Δ𝑖𝑗 = Δ𝑖𝑗
(0)⟨↑ (𝑖)| ↓ (𝑗)⟩ + Δ𝑖𝑗

(𝛼)⟨↑ (𝑖)|𝑖𝜎𝑦| ↓ (𝑗)⟩, (4) 

 

where 𝐸0 is the single-impurity YSR energy. The real-valued coefficients ℎ𝑖𝑗
(0)

, ℎ𝑖𝑗
(𝛼)

, Δ𝑖𝑗
(0)

 and Δ𝑖𝑗
(𝛼)

 are material-

specific constants, decaying with the distance 𝑟 = |𝒓𝑖 − 𝒓𝑗| as ∝ 𝑟−1𝑒𝑖𝑘F𝑟−𝑟/𝜉0  for an isotropic electronic 

structure in three dimensions. Crucially, these terms do not depend on the magnetic structure of the chain but 
only on the electronic structure of the substrate and on the magnetic and non-magnetic scattering amplitudes 
of the impurities.  Constants with superscript (0) remain finite at zero SOC, while the terms with superscript (𝛼) 
vanish. Exemplary formulae for these coefficients are given in Refs. 4,6. We refrain from giving their full form here 
since they are not used explicitly in this manuscript, where the coefficients are fit to the experimentally observed 
YSR band structure, remaining consistent with the above form. Following a similar analysis to Ref. 4, the most 
important conclusion is that the (𝛼) terms are linear in the dimensionless SOC parameter 𝛼R/ℏ𝑣F in leading 
order, making them typically two orders of magnitude smaller than the (0) terms. Due to the oscillatory decay 
of the parameters with the distance, it might be possible but considerably difficult to design a system where the 
(𝛼) and (0) terms have comparable magnitude; decreasing the Fermi velocity in flat bands may also provide a 
way for achieving this. 
 

The magnetic structure only enters in the matrix elements of the vectors |↑ (𝑖)⟩ = (cos 𝜗𝑖/2 𝑒−𝑖𝜑𝑖/2, sin 𝜗𝑖/

2 𝑒𝑖𝜑𝑖/2) and |↓ (𝑖)⟩ = (sin 𝜗𝑖/2 𝑒−𝑖𝜑𝑖/2, − cos 𝜗𝑖/2 𝑒𝑖𝜑𝑖/2), which are eigenvectors of the spin operator 𝑺𝑖𝝈 with 
𝑺𝑖 = (sin 𝜗𝑖 cos 𝜑𝑖 , sin 𝜗𝑖 sin 𝜑𝑖 , cos 𝜗𝑖) describing the magnetization direction of the 𝑖th impurity. In Eqs. (3) 
and (4), the Pauli matrix 𝜎𝑦  enters due to the Rashba term when assuming that the chain is along the 𝑥 direction; 
for a different chain direction or symmetry class, a different spin direction would be selected by the SOC. In the 

selected representation, the matrices possess the symmetry 𝒉 = 𝒉† and 𝚫 = −𝚫T, and the particle-hole 
constraint may be represented in the usual form as 𝐶 = 𝜏𝑥𝐾, where 𝜏𝑥 exchanges the creation and annihilation 
operators and 𝐾 denotes complex conjugation. 



11 
 

 
We assume an antiferromagnetic spin structure with alternating sublattices 𝐴 and 𝐵 with 𝜗𝐴 = 𝜋 − 𝜗𝐵 = 𝜗 and 
𝜑𝐴 = 𝜑𝐵 + 𝜋 = 𝜑. This implies ⟨↑ (𝐴)| ↑ (𝐵)⟩ = 0 and ⟨↑ (𝐴)| ↓ (𝐴)⟩ = 0, i.e., the hopping ℎ𝑖𝑗  vanishes 

between sites at an odd distance and the pairing Δ𝑖𝑗 vanishes between sites at an even distance, as discussed in 

the main text. Due to the alternating structure, we restrict the Hamiltonian to NN and NNN terms, which we 
justify by the compact spatial structure of the YSR states of single Mn atoms on Nb(110) and on Ta(110) and their 
comparably weak coupling for interatomic distances above 1 nm19,28,31,37. The matrices read 
 

𝒉 =

 
𝐴
𝐵
 

[

⋱        
… 𝑡2 − 𝑖𝑡2

′ 𝑠∥ 𝑡1𝑠⊥ −𝐸0 −𝑡1𝑠⊥ 𝑡2 + 𝑖𝑡2
′ 𝑠∥ …  

 … 𝑡2 + 𝑖𝑡2
′ 𝑠∥ −𝑡1𝑠⊥

∗ −𝐸0 𝑡1𝑠⊥
∗ 𝑡2 − 𝑖𝑡2

′ 𝑠∥ …
       ⋱

] , (5) 

𝚫 =

 
𝐴
𝐵
 

[

⋱        
… −Δ2𝑠⊥ −Δ1 + 𝑖Δ1

′ 𝑠∥ 0 −Δ1 − 𝑖Δ1
′ 𝑠∥ Δ2𝑠⊥ …  

 … −Δ2𝑠⊥
∗ Δ1 + 𝑖Δ1

′ 𝑠∥ 0 Δ1 − 𝑖Δ1
′ 𝑠∥ Δ2𝑠⊥

∗ …
       ⋱

] , (6) 

 
where 𝑠∥ = sin 𝜗 sin 𝜑 and 𝑠⊥ = − cos 𝜑 − 𝑖 cos 𝜗 sin 𝜑 are the components of the impurity spin parallel and 
perpendicular to the 𝑦 direction preferred by the SOC. The Hamiltonian of the antiferromagnetic chain possesses 
the ETRS 𝑇eff = 𝑈𝐵𝑅1𝐾, where 𝑅1  is translation by a lattice constant and 𝑈𝐵 adds a negative sign on sublattice 𝐵 
and acts as identity on sublattice 𝐴. 
 

For 𝑠⊥ = 0, the ETRS may be rewritten in Fourier space as a Kramers symmetry 𝑇eff
2 = −1, enforcing the pairwise 

degeneracy of the state. If the impurity spins have a component perpendicular to the direction selected by the 
SOC, then one obtains 𝑇eff

2 ≠ −1 and the Kramers degeneracy or the ETRS is broken in this sense. This can be 
assumed to be the case here, since the spins have an out-of-plane component while the SOC selects an in-plane 
direction. If we set 𝑠∥ = 0 which does not influence whether ETRS is broken or not, and chose 𝑠⊥ = 1 to be real 
which can be achieved by an appropriate rotation of the spin quantization axes around 𝑦,  then the local gauge 

transformation 𝑐𝑗 = (−1)𝑗𝑈𝐵𝑖 𝑐̃𝑗 and 𝑐𝑗
† = (−1)𝑗𝑈𝐵𝑖 𝑐̃𝑗

†, where (−1)𝑗𝑈𝐵 describes a sign change after every 

two lattice sites, transforms the Hamiltonian in Eqs. (2), (5) and (6) to the form given in Eq. (1) in the main text. 
 
The following analysis is introduced in Ref. 31. Here, we repeat the necessary details and adjust it to the 
antiferromagnetic system. Starting from Eq. (1) in the main text, the LDOS as a function of energy 𝐸 and position 
𝑥 along a one-dimensional lattice of N sites in Fig. 4d is computed by exact diagonalization of the low-energy 
Hamiltonian in Eq. (1) and summing over all pairs of eigenvalues 𝐸𝑖 and eigenvectors 𝜓𝑖: 
  

LDOS(𝐸, 𝑥) = ∑[𝑃 |𝜓𝑖,𝑒(𝑥)|2 + (1 − 𝑃)|𝜓𝑖,ℎ(𝑥)|2] (−
𝜕𝑓(𝐸 − 𝐸𝑖 , 𝑇 = 320 mK)

𝜕𝐸
)

𝑖

(7) 

 
with the respective particle- (e) and hole-components (h) of the solutions and the Fermi-Dirac function 
𝑓(𝐸, 𝑇) simulating the experimental thermal broadening. Here, 𝑃 = 0.2 is chosen to account for the particle-
hole asymmetric spectral weight observed when tunneling into YSR bands.  
 

The presence of the ETRS along with the particle-hole constraint (symmetry class DIII for 𝑇eff
2 = −1 and BDI for 

𝑇eff
2 = 1) suggests that the system should be described by a different topological invariant than the Majorana 

number defined for the Kitaev chain with only particle-hole constraint (symmetry class D)10. However, the bulk-
boundary correspondence cannot be used to conclude on the presence of topologically protected edge modes 
based on a different classification, because the finite chain typically does not possess an ETRS. The translation 
along the chain described for the infinite chain above is obviously broken for a finite chain. Odd-length chains 
have a net magnetic moment; therefore, they cannot be described by any ETRS. Instead of the translation, 
another lattice symmetry could be combined with the physical time reversal to obtain 𝑇eff for an even-length 
chain. However, the mirror symmetries proposed in Ref. 10 do not hold for the chain built along the [11̅1] 
direction. A 180° rotation around the out-of-plane direction at the middle of the chain holds for the considered 
system, but perturbing one end of the chain breaks the 180° rotation symmetry. Based on the above, only the 
Majorana number M introduced for the Kitaev chain can be used as an indication for the presence of topologically 
non-trivial edge states, since this does not rely on the ETRS. This topological invariant ℳ can be calculated as: 
 



12 
 

ℳ = sgn{Pf[𝐻̃(0)]Pf[𝐻̃(𝜋/𝑑)]} (8) 

 

where Pf denotes the Pfaffian and 𝐻(𝑘) is the k-space Hamiltonian in the Majorana basis48. For the present 

system Pf[𝐻(𝑘)] = −𝐸0 − 𝑡𝑘 , where 𝑡𝑘 = 2𝑡1 cos 𝑘𝑑 + 2𝑡2 cos 2𝑘𝑑 is the Fourier transform of the hopping 

terms. The topological invariant ℳ takes the value -1 (+1) for the YSR band crossing the Fermi level an odd (even) 
number of times between 0 and 𝜋/𝑑 when the superconducting pairing terms are set to zero. The system is 
always in the topologically trivial regime in the antiferromagnetic case without SOC (𝑡1 = 0), where 𝑡𝑘  is 𝜋/𝑑 
periodic and the number of band crossings is even. Changing the parity of the band crossings requires adding 
strong ETRS-breaking terms to the Hamiltonian. For the extended model described by Eqs. (2), (5) and (6), the 
boundary of the Brillouin zone is reduced to 𝜋/(2𝑑) due to the antiferromagnetic structure, and there are two 

particle-hole pairs for each wave vector. In this case, M is given by the sign of the product of Pf[𝐻(0)] =

(−𝐸0 + 2𝑡2)2 + (2Δ1)2 and Pf[𝐻(𝜋/(2𝑑))] = (−𝐸0 − 2𝑡2)2 + (2Δ1
′ 𝑠∥)2 − |2ℎ1𝑠⊥|2, which simplifies to the 

same condition as above for 𝑠∥ = 0 and 𝑠⊥ = 1, and also demonstrates that a finite value of 𝑠∥ does not prefer 
the formation of a topologically non-trivial state. 
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Supplementary Note 1 | Calculations on the stability of states against local disorder 
 

In Fig. 3 of the main manuscript text, the response of end states to local potential changes is studied. In the 
model introduced in Fig. 4 and in the Methods section of the main manuscript text, this type of disorder would 
correspond to disorder in the YSR energy 𝐸0 at individual sites of the chain. Depending on the type of state that 
is perturbed by disorder, a different response is expected. In particular, the more local a certain state is, the more 
it is expected to react to disorder. To sketch this effect, we use the model presented in the Methods section of 
the main manuscript text and add randomly distributed values from the interval [−𝛿𝐸0, 𝛿𝐸0] to the on-site YSR 
energies 𝐸0,𝑖 for every site 𝑖 of the chain. The results are shown in Supplementary Fig. 1: for states perfectly 
localized on one individual site (Supplementary Fig. 1a), the spread in eigenenergies is – as expected – simply 
linearly increasing with the magnitude of the noise in the potential with slope of 1. In contrast, MMs are expected 
to be protected against disorder due to their non-local nature1. Supplementary Fig. 1b shows the same evolution 
of the eigenvalues with increasing disorder for a chain with N = 21 sites in the small-gap topologically non-trivial 
regime where the precursors of MMs (PMMs) still oscillate strongly in energy with increasing chain length due 
to large overlap of the Majorana wave functions2. Notably, the near-zero energy mode is much more stable 
against local disorder than the atomic states in Supplementary Fig. 1a. However, this protection is not much 
stronger than the one from the finite-size quantized states3,4 at finite energies, which also split only weakly for 
moderate disorder strength. This is a result of the spatially extended nature of both PMMs and the finite-size 
quantized states. In contrast, the MMs in Supplementary Fig. 1c, showing the large-gap scenario of the 
topologically non-trivial phase, are much more protected compared to all other states and remain at zero energy 
even for large values of 𝛿𝐸0 because of their clear nonlocality. Although the magnetic structure of the chain does 
not enter the minimal model explicitly, the parameter values chosen in Supplementary Fig. 1b and c can be 
thought of representing a ferromagnetic chain where the minigap is opened by the spin-orbit coupling. Finally, 
the phase with t2 >> t1 analyzed in Fig. 4 of the main manuscript text, modelling an antiferromagnetic chain, is 
studied in Supplementary Fig. 1d. The end states at finite energy of 𝐸 ≈ ±0.5 meV react strongly to disorder. 
This is highlighted by the blue dashed lines in Supplementary Fig. 1d, indicating the (maximal) splitting of the 
states in Supplementary Fig. 1a, showing that the response of the end states is about 50% as strong as for the 
uncoupled sites. The effect can be understood to be a consequence of the strongly localized nature of the end 
states. Overall, these theoretical results agree with the experimental findings of Fig. 3 in the main manuscript 
text where the end states were found to split by several tens of µeV when perturbing them with magnetic or 
non-magnetic defects. It should be noted that they also split into two particle-hole pairs (i.e. four solutions in 
total) for every distribution of 𝛿𝐸0 whereas MMs and their precursors always split into a single particle-hole pair. 
This further supports the interpretation that our model maps well onto the experimental platform.  

 

 

Supplementary Figure 1 | Stability of end states against local potential noise. a, Eigenstates of a chain of N = 21 uncoupled 
sites (𝑡1 = 𝑡2 = 𝛥1 = 𝛥2 = 0.0 meV) with increasing potential noise 𝛿𝐸0 added to the on-site potential 𝐸0 = 0 meV. 
Obviously, the distribution width of the eigenstates spreads linearly with a slope of 1 (blue dashed lines). b, Eigenstates of a 
chain of N = 21 sites in the small-gap topologically non-trivial regime vs. increasing potential noise 𝛿𝐸0. Parameters: 𝑡1 =
0.6 meV, 𝑡2 = 0.0 meV, 𝛥1 = 0.06 meV, 𝛥2 = 0.0 meV. c, Eigenstates of a chain of N = 21 sites in the large-gap topologically 
non-trivial regime vs. increasing potential noise 𝛿𝐸0. Parameters: 𝑡1 = 0.6 meV, 𝑡2 = 0.0 meV, 𝛥1 = 0.2 meV, 𝛥2 = 0.0 meV. 

d, Eigenstates of a chain of N = 21 sites with trivial end states in the regime t2 >> t1 vs. increasing potential noise 𝛿𝐸0. Blue 
dashed lines represent the slope of 1 as also shown in panel a. Parameters: 𝑡1 = 0.0 meV, 𝑡2 = 0.6 meV, 𝛥1 = 0.5 meV, 𝛥2 =
0.0 meV. 

 
 
 



Supplementary Note 2 | Spin-polarized measurements on Mn/Ta(110) 
 

The antiferromagnetic ground state of densely packed Mn chains along the [11̅1] direction on Nb(110) was 
determined in Ref. 5 and confirmed by ab-initio calculations in Ref. 6. Yet, the magnetic couplings of Mn adatoms 
on Ta(110) are not a priori known. Therefore, we performed additional measurements with spin-polarized Cr 
tips5,7 on Mn chains along [11̅1] on Ta(110). Cr tips were made from high-purity Cr splinters glued into a W tip 
holder with conductive H20E glue8. The tip was subsequently heated to 𝑇 ≈ 700 K in situ and voltage pulses of 
10 V were applied against a Pt(111) surface in order to remove oxide layers from the tip apex. Supplementary 
Fig. 2a shows an STM topography image of a Mn9 chain on Ta(110) imaged with a Cr tip in a weak external field 
of 𝐵𝑧 = +20 mT. Four maxima are observed on the chain, corresponding to the spatial positions of the atom 
No. 2, 4, 6 and 8. When reversing the field direction (𝐵𝑧 = −20 mT), imaging the same chain results in a pattern 
with three maxima on atoms No. 3, 5 and 7 and minima in between. These two images can be interpreted as 
follows: the Mn chain is antiferromagnetically aligned, yielding an alternating contrast on neighboring sites. 
While the Cr tip’s magnetization is stable in an external field, the degeneracy of the two collinear 
antiferromagnetic Néel states sketched above the panels is slightly lifted by the external field acting on a 
structure with an odd number of sites9. The terminal chain sites always feature an electronic contrast which 
makes it hard to interpret the spin-contrast on them. This could be the reason why 3 and 4 maxima are found in 
the images instead of 4 and 5. Note that the spin-contrast is detected in the Z signal since we use very small bias 

voltages of Vstab = 1 mV.  

 

Supplementary Figure 2 | Spin-polarized STM images of the magnetic ground state of Mn chains on Ta(110). a, Constant-
current STM image of a Mn9 chain on Ta(110) in a weak out-of-plane magnetic field of 𝐵𝑧 = +20 mT using a spin-polarized 
Cr tip with stable magnetization. The sketch above the image illustrates the antiferromagnetic spin texture of the nine atoms 
which are stabilized into one of the Néel ground states by the external field. b, Constant-current STM image of the same Mn9 
chain measured in a reversed field of 𝐵𝑧 = −20 mT, revealing opposite spin contrast. Above the image, the reversed spins 
compared to panel a are sketched. Dashed lines are guides to the eye. The white scale bar corresponds to 500 pm. 
Parameters: Vstab = 1 mV, Istab = 0.2 nA.  

 
Supplementary Note 3 | Determination of tip and sample gaps 
 

The numerical deconvolution process performed on the data presented in the main figures (see Methods for 
details) requires sufficient knowledge of the tip density of states 𝜌t(𝐸). We assume a broadened Dynes density 
of states for the superconducting Nb tip apex, given by: 
 

𝜌t(𝐸) = 𝜌0𝑅𝑒

[
 
 
 

𝐸 − i𝛤

√(𝐸 − i𝛤)2 − 𝛥t
2

]
 
 
 

. (𝑆1) 

 
Here, 𝜌0 denotes the normal conducting DOS, Re is the real part, 𝛤 is the Dynes broadening parameter and 𝛥t is 
the tip’s superconducting gap. Throughout this work, 𝛤 = 0.01 meV is chosen for all tips used. The value of 𝛥t is 
estimated by measurements of multiple Andreev reflections (MARs) appearing as weak additional peaks in dI/dV 
spectra for low junction resistances10. This effect is shown in Supplementary Fig. 3 for tunneling between a 
superconducting Nb tip and a clean Ta(110) sample surface: for high junction resistances (Supplementary Fig. 
3a), the convolution of the sample’s and tip’s coherence peaks yields a large peak in dI/dV at 𝑒𝑉 = ±(𝛥t + 𝛥Ta), 
where 𝛥Ta is the gap of the Ta sample.  
 



In contrast, for lower junction resistances (Supplementary Fig. 3b), additional peaks at ±1.25 mV and ±0.64 mV 
are found. Since the latter value matches the superconducting gap of Ta while the first value is only slightly 
smaller than the gap of Nb, we attribute these peaks to Andreev tunneling occurring at 𝑒𝑉 = ±𝛥t and 𝑒𝑉 =
±𝛥Ta, respectively10. Importantly, the MAR peaks are not visible in the high resistance limit (Supplementary Fig. 
3a), indicating that single-particle tunneling is the dominant transport channel and that the deconvolution 
process is justified. The result of a numerical deconvolution of the spectrum shown in Supplementary Fig. 3a is 
presented in Supplementary Fig. 3c. Indeed, this spectrum is well described by a Dynes density of states (see Eq. 
S1) as well when choosing a broadening parameter of 𝛤 = 0.03 meV and a gap 𝛥Ta = 0.64 meV. 
 
The same characterization for measurements on the clean Nb(110) surface can be found in the Supplementary 
Information of Ref. 3. 
 

 

 
Supplementary Figure 3 | Determination of tip and sample gaps for measurements on Ta(110). a, dI/dV spectrum measured 
on the clean Ta(110) surface at high junction resistance (Vstab = -2.5 mV, Istab = 1 nA, Vmod = 20 µV), showing prominent peaks 
at bias voltages 𝑒 ∙ 𝑉 = ±(𝛥𝑡 + 𝛥𝑇𝑎) and no additional sub-gap peaks. b, dI/dV spectrum measured with the same tip at low 
junction resistance (Vstab = -2.5 mV, Istab = 10 nA, Vmod = 20 µV) with distinct additional peaks visible at 𝑒 ∙ 𝑉 = ±𝛥𝑡 = 1.25 
meV and 𝑒 ∙ 𝑉 = ±𝛥𝑇𝑎 due to multiple Andreev reflection processes. Furthermore, Josephson tunneling occurs at zero 
voltage, yielding a zero-bias peak. c, Spectrum from panel a after numerical deconvolution (see Methods) using the previously 
determined tip gap parameter 𝛥𝑡  from panel b. Assuming a superconducting density of states modeled by the Dynes function 
with 𝛤 = 0.03 𝑚𝑒𝑉 and 𝛥𝑇𝑎 = 0.64 𝑚𝑒𝑉 (solid line) describes the data (dark points) well. 

 
 
Supplementary Note 4 | Sub-gap quasiparticle interference measurements 
 

The standing-wave-like patterns observed experimentally in Figs. 1b,d of the main manuscript can be explained 
by interference of energetically degenerate sub-gap quasiparticles with momenta 𝒌i and 𝒌f in the YSR bands2,3. 
As sketched in Fig 4a of the main manuscript, two dominant QPI branches with scattering vectors q1 and q2 
(|𝒒| = |𝒌i − 𝒌f|) are expected based on the minimal model of the main manuscript text for small 𝐸0 (i.e. deep 
YSR states), 𝑡1 ≪ 𝑡2 and 𝛥1 ≫ 𝛥2 (appropriate for an antiferromagnetic chain). By performing a line-wise fast 
Fourier transform (FFT) analysis of the experimental data in Fig. 1d of the main manuscript, information about 
the YSR band dispersion can be extracted (Fig. 4c). Note that the FFT analysis does not directly display the band 
structure but the possible scattering vectors q in the QPI process.  
 

Focusing on the hole-like part of the data in Fig. 4c (𝐸 > 0), two dominant arcs around 𝑞 = 0 are observed, one 
with negative (supposedly q1) and one with positive (supposedly q2) curvature. Comparing these to the predicted 
scattering vectors in Fig. 4a and the theoretically simulated QPI pattern in Fig. 4b, it is found that q1 is expected 
to be close to 𝑞/2 = ±𝜋/4 at the bottom of the hole-like band (indicated by the gray dashed lines), which is the 
case for the supposed q1 branch extracted from the experimental data (Fig. 4c). Additionally, QPI from scattering 
of type q2 (Fig. 4a) would result in a branch with positive effective mass, which could be the second arc marked 
in Fig. 4c. The electron-like part of the figure can be explained in the same way, although asymmetries in the 
particle- and hole-spectral-weight of the individual YSR states11,12 can lead to a slightly different appearance of 
the QPI patterns3. Interestingly, the end states at 𝜀+/− ≈ ±0.5 meV also feature a prominent Fourier component 

of 𝑞/2 = ±𝜋/4. Additional frequency components, e.g. at ±𝜋/8 or zero, can be attributed to artifacts of the FFT 
acting on a peaked signal like an end state.  This suggests that the end states inherit properties like the 
wavelength from the observed dispersive sub-gap band. A similar effect is known for topological MMs13,14. 
 



 
 
 

 
Supplementary Figure 4 | Calculated evolution of the end states with the length of the antiferromagnetic chains. Evolution 
of the LDOS calculated using the minimal model described in the main manuscript text on the terminal two sites of a chain 
with increasing number of sites N. The used parameters are 𝐸0 = 0.0 meV, 𝑡1 = 0.1 meV, 𝑡2 = 0.6 meV, 𝛥1 = 0.5 meV, and 
𝛥2 = 0.0 meV. For N = 1 and 2, there are no terminal sites and the total DOS is shown. The energies of the finite energy end 
states 𝜀+/− are marked. 
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