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Abstract

We consider the Quantum Natural Gradient Descent (QNGD) scheme which was
recently proposed to train variational quantum algorithms. QNGD is Steepest Gra-
dient Descent (SGD) operating on the complex projective space equipped with the
Fubini-Study metric. Here we present an adaptive implementation of QNGD based on
Armijo’s rule, which is an efficient backtracking line search that enjoys a proven con-
vergence. The proposed algorithm is tested using noisy simulators on three different
models with various initializations. Our results show that Adaptive QNGD dynamically
adapts the step size and consistently outperforms the original QNGD, which requires
knowledge of optimal step size to perform competitively. In addition, we show that
the additional complexity involved in performing the line search in Adaptive QNGD
is minimal, ensuring the gains provided by the proposed adaptive strategy dominates
any increase in complexity. Additionally, our benchmarking demonstrates that a sim-
ple SGD algorithm (implemented in the Euclidean space) equipped with the adaptive
scheme above, can yield performances similar to the QNGD scheme with optimal step
size.

Our results are yet another confirmation of the importance of differential geometry
in variational quantum computations. As a matter of fact, we foresee advanced math-
ematics to play a prominent role in the NISQ era in guiding the design of faster and
more efficient algorithms.

1 Introduction

Quantum processors currently suffer from low qubit counts and short coherence times, which
restricts the number (and the depth) of quantum algorithms that can be executed. An
approach to deal with this limitation is the variational approach [1, 2, 3], where the short-
lived qubits are recycled multiple times. A classical optimizer (e.g., SGD) is entrusted with
administering part of the dynamics. The quantum component runs a parametric circuit,
an ansatz, given the parameter values provided by the classical controller. Conversely, the
classical optimizer, updates the circuit parameters by minimizing the expectation value of
the parametric circuit. The term hybrid quantum-classical neural network is often used and
puts variational algorithms in the wider context of quantum machine learning [4, 5].

A recent and attractive proposal to train variational algorithms was outlined in [6], which
employs a SGD, preconditioned with the inverse of the Fubini-Study tensor. For a geometer,
the parameters update takes place on the Kähler manifold of the pure quantum states (i.e.,
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the complex projective space). The idea was used before in [7] in classical machine learning.
Subsequent results ([6, 8, 9]) showed that this preconditioning does indeed lead to a better
performance and faster training.

Here we take this geometrical approach further and provide an adaptive implementation
of the QNGD scheme, thus mitigating the dependence of its performance on the step size.
For this, we have employed the so-called Armijo rule, which is an efficient backtracking line
search scheme with a proved convergence [10]. We have tested our scheme on three different
models with various initializations. Our results show that the Adaptive QNGD scheme
dynamically adapts the step size and consistently outperforms QNGD which requires the
knowledge of the optimal step size to perform competitively. Remarkably, our results also
show that a simple steepest gradient descent equipped with the adaptive scheme above, can
yield performances similar to the QNGD with optimal step size.

This work is organized as follows. In Section 3, we briefly review the concepts behind
the QNGD technique, and highlight its implementation on quantum processors. In Section
4, we introduce our scheme and compare its complexity with that of the QNGD scheme. We
show that the additional circuit evaluations needed are insignificant. Section 5.2 contains
the results of our benchmarking conducted on three different problems. We conclude with
a brief summary.
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2 Acronyms

AdaptQNGD Adaptive Quantum Natural Gradient Descent
qngd Quantum Natural Gradient Descent
sgd Steepest Gradient Descent
realAmplitude ansatz alternating RY (θ) and cnot layers
FullFubiniMetric full Fubini-Study metric calculation procedure

3 Quantum Natural Gradient Descent

The complex projective space CPN is identified with the quotient space S2N+1/U(1) where
U(1) is the circle group. Given two (normalized) pure quantum states |ψ〉 and |ϕ〉 in CPN ,
the Fubini-Study distance between the two is given by

dFS(|ψ〉, |ϕ〉) = arccos
√
〈ψ|ϕ〉〈ϕ|ψ〉. (3.1)

Let N = 2n. For convenience, we place ourselves in CPN−1. Let us assume |ϕ〉 = U(θ)|0〉,
where the ansatz {U(θ), θ ∈ Rp} is a smooth submanifold of the Lie group U(2n). Passing
to the infinitesimals gives the quantum geometric tensor [6]

Gij =
〈
∂θiϕ|∂θjϕ

〉
− 〈∂θiϕ|ϕ〉

〈
ϕ|∂θjϕ

〉
. (3.2)

The real part F = Re(G), called the Fubini-Study metric, is positive semi-definite, Her-
mitian, and is the unique metric compatible with the quotient structure above. Formally,
CPN equipped with the Fubini-Study metric is a Kähler manifold. This rich geometrical
structure implies that the gradient descent update has the form

θ ← θ − λ∇f(θ), (3.3)

with
∇f(θ) = F (θ)−1∇Euclf(θ), (3.4)

for any smooth real-valued function f on CPN−1.
All ansatzes considered in this paper are structured with layers. An example of this is

given by the following parametric circuit

|0〉 RY (2a) RY (2c)

|0〉 RY (2b) RY (2d)

which has two parametric layers: a first layer of parametric rotations, RY (θ) = e−i
θ
2Y ,

followed by a non-parametric layer consisting of a single cnot gate, followed by a final
parametric layer of Y rotations. This type of ansatze (alternating is RY (θ) cnot gates) is
referred to as a realAmplitude ansatz in the literature.

Given this layer-based structure, the Fubini-Study metric is structured into block-diagonal
(a block for each layer) and off-diagonal parts. The former are readily computed as in [6].
For the off-diagonal parts, which are slightly less straightforward to implement, we have
used a method similar to the one proposed in [12] which adds an extra ancilla qubit to
the original circuit. For instance, continuing with the ansatz above, the circuit for the first
component of the off-diagonal term Gac = 〈∂aϕ|∂cϕ〉 is given by
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|0〉 Y RY (2a) Y

|0〉 RY (2b)

|0〉 H H

Here, the second component in equation 3.2 vanishes, since the prepared quantum state has
only real amplitudes. We shall refer to the full Fubini-Study metric calculation procedure
as FullFubiniMetric.

4 Adaptive Quantum Natural Gradient Descent

4.1 Illustrative Example

Before we give the details of the proposed scheme, let us illustrate how the new adaptive
scheme compares with traditional QNGD scheme. We will do so using the problem of finding
the electronic ground state energy (after Born-Oppenheimer approximation) of the Hydrogen
molecule [13]. Its fermionic Hamiltonian is mapped (using Jordan–Wigner transformation)
into the two-qubit Hamiltonian

H = α0I1I2 + α1Z1I2 + α2I1Z2 + α3Z1Z2 + α4Y1Y2 + α5X1X2. (4.1)

Ii, Xi, Yi and Zi are resp., the identity operator and the Pauli operators acting on the ith
qubits. The coefficients αj are real-valued functions of the inter-atomic distance between
the two Hydrogen nuclei. For this Hamiltonian, we consider the simplified ansatz

|0〉 RY (θ1)

|0〉 RY (θ2)

which prepares the state |ψ(θ1, θ2)〉. The Fubini-Study metric is

F (θ1, θ2) =
1

4

[
1 0
0 1

]
,

which is, in this simple case, independent of both θ1 and θ2.
Figure 1 shows the training trajectories taken by QNGD with different learning rates η

and by the proposed adaptive scheme, all starting from the same initial point θ1 = −0.1
and θ2 = −0.2. The results show that, not only does AdaptQNGD converge much faster
than the three other schemes, but it also uses a large step-size in the early stages of the
algorithm (when the surface allows for this behaviour) and decreases the steps size closer to
the minima, effectively slowing down which avoids the arbitrary bouncing as observed with
step size 1.
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Figure 1: Upper Left: The contour plot of the Hydrogen Hamiltonian with demo ansatz. Upper

Right: Comparison of training paths taken by different schemes to approach the minima, with

maximum number of epochs set to 20. The QNGD scheme with step size η = 1 does not converge.

The QNGD with step sizes = 0.5 and 0.25 and the AdaptQNGD schemes all converge, however,

AdaptQNGD converges much faster. Lower left: The figure shows the convergence of average

value of the Hamiltonian with iteration counts for each of the schemes discussed in the center plot.

Lower right: The figure depicts the step sizes chosen by the AdaptQNGD over the course of the

algorithm. These figures demonstrate that the algorithm is able to exploit larger step sizes when

the surface allows, and tune it lower upon reaching close to the minima, resulting in faster overall

convergence.

4.2 Main Algorithm

AdaptQNGD algorithm

Input parameters: (α, β, km, tol, ε) – See table below for description.

Step 1 Initialize: θ0, i = 0.

Step 2 Compute the Euclidean gradient:

∇Euclf(θi) = ParameterShift(θi).

Step 3 Compute the Fubini-Study gradient:

F (θi) = FullFubiniMetric(θi),

F (θi)
−1 = pseudoInvert (F (θi), ε),

∇f(θi) := F (θi)
−1∇Euclf(θi).

Step 4 Terminate if the stopping criteria (defined below) is met, else
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(1) Compute ki:

ki =∇ min

{
k ∈ [0, km]

∣∣f(θi)− f(θi −
β

2k
∇f(θi)) ≥ α

β

2k
‖∇f(θi)‖22)

}
, (4.2)

where ‖‖2 is the Euclidean norm.

(2) Update step size to λi = β/2ki ,

(3) Update parameters as θi+1 = θi − λi∇f(θi), and proceed to Step 2.

The five input parameters are defined as follows:

1. α ∈ (0, 1) is a constant to tune the sensitivity of the Armijo’s line search principle.
Lower values of α skews the rule toward preferring higher step sizes and higher skews
it toward lower step sizes.

2. β > 0 is the maximum rate used by the algorithm.

3. km > 0 is the maximum number of steps searched by the line search algorithm in
finding the best step size.

4. tol > 0 governs the stopping criteria defined below.

5. ε > 0 a tolerance parameter used in the pseudoInvert function described below. For
all our simulations, ε is set to 10−3.

The ParameterShift procedure in Step 2 is well known and defined in different places,
including [14]. The pseudoInvert function is a variant of the Moore–Penrose pseudo-
inverse where apart from the zero eigenspace, we also ignore the eigenspace having eigenval-
ues less than ε. It doesn’t satisfy all Moore–Penrose properties[15] but works very well in
the simulations considered here, avoiding the unreasonably large jumps caused at the singu-
larities of the Fubini metric F . This can also be seen as a variant of Tikhonov regularization
[16], which has shown to circumvent the effect of barren plateaus [9].

The stopping criteria is defined by the difference between the computed and the exact
energies i.e., |f(θ)− fExact(θ)| ≤ tol. In cases when computing the exact energies is infea-
sible, one can resort to other techniques developed in the gradient descent literature, for
instance ||∇f(θi)|| ≤ tol, or even ‖f(θi−1)− f(θi))‖ ≤ tol.

The key point to note here is that step 4 shows that the line search is essentially a binary
search. This means that our scheme AdaptQNGD compares reasonably with the “vanilla”
QNGD which requires O(pM + p2M) = O(p2M) QPU calls–where M is the total number
of iterations to achieve the desired tolerance, and p is the total number of parameters. For
AdaptQNGD the total number of QPU calls is O(p2M ′ +M ′ log2(km)) or O(p2M ′) since
log2(km) < p2, where M ′ (which is less or equal to M) is the number of iterations the
proposed scheme takes to converge. This favourable asymptotic behaviour is key for the
future applicability of our adaptive scheme.

5 Experimentation

5.1 Setup

We benchamarked our algorithm on three models, the Hydrogen and Lithium Hydride
molecules and the transverse field Ising model. We have used the RealAmplitude ansatze
introduced in Section 3. All procedures used were implemented with TensorFlow Quantum
library.
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5.1.1 The Hydrogen Model

We took a closer look into the Hydrogen molecule discussed in the illustrative example in
Subsection 4.1. In particular, we wanted to compare against the results presented in [8].
Therefore, we have used the same Hamiltonian (with α0 = α3 = α4 = 0, α1 = α2 = 0.4, and
α5 = 0.2)

H = 0.4(ZI + IZ) + 0.2XX, (5.1)

which has the spectrum {−
√

17/5,−1/5, 1/5,
√

17/5}, with −
√

17/5 ≈ −0.82462 being the
lowest energy (our target). We have also considered the same ansatz

|0〉 RY (2a) RY (2c)

|0〉 RY (2b) RY (2d)

We randomly initialize its parameters by choosing 100 different initial points, uniformly
distributed over [0, 2π]. For each of these initial points, we first simulate the regular QNGD
scheme for different rates, and then simulate the AdaptQNGD scheme with α = 0.01 and
β = 0.5.

5.1.2 Lithium Hydride (LiH) Model

The Hamiltonian for LiH operates on four qubits and has 99 4-local Pauli terms. The com-
plete list of these local Pauli terms can be found in [17]. We employ again the RealAmpli-
tude ansatz, now with six parameterized layers, with a full entangling layer between every
two of the former. The number of layers, compared to the H2 model, is greater here to make
the ansatz sufficiently expressive [17]. To initialize the parameters of the ansatz, a similar
random strategy as above is used, with simulations for 100 different initial points. For each
of these initial points, the QNGD scheme is simulated with different step sizes, and finally
the AdaptQNGD is simulated using α = 0.01 and β = 1.

5.1.3 Transverse Field Ising (TFI) Model

The Hamiltonian is used in [9] and is given by

HTFIM = −

 ∑
1≤i≤N

ZiZi+1 + t
∑

1≤i≤N

Xi

 (5.2)

with t, a real positive parameter, and the periodic condition, N + 1 = 1, on the two sums
(the N here is a different notation than the one used in the Section 3).

We fix t to 0.1 and vary N in the interval [2, 10]. We have used two setups:

• In the first setup, we choose the ansatz to have a minimum number of parameters
while being expressive enough. Our simulations show that we need at least two pa-
rameterized layers with a full entanglement layer in-between.

• For the second setup, we choose the ansatz to study the behaviour of the proposed
scheme in handling the over-parameterization problem. For this, we choose the number
of parameterized layers equivalent to the size of the problem (N), while enclosing an
entanlging layer between each parameterized layers. For instance, for N = 5, we use
five parameterized layers and four entangling layers.
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Figure 2: Left: Variation of the median number of epochs needed to converge for 10 random
initializations of the H2 ansatz parameters with learning rate. The box plots indicates
the 25th and the 75th percentile of the epochs required to converge. Right: Comparison of
CDFs of the number of epochs needed for the ADAPT QNGD and the QNGD, with varying
step-sizes, to reach the lowest energy of the Hydrogen Hamiltonian.

5.2 Results

In this section, we report our results and findings obtained using AdaptQNGD for the
different models introduced above. Below we have set α = 0.01, β = 0.5 and km = 6, inde-
pendent of the model, the instance size and the ansatz depth. The common thread below is
that slight deviations in the optimal step size substantially degrades the performance of the
various QNGD algorithms. At the same time, our AdaptQNGD scheme was able to auto-
matically adjust its step size and match the optimal QNGD. Moreover, the AdaptQNGD
was able to capture the correct dynamical change of the step size throughout the training
and thus outperforming QNGD even with the optimal initial step size.

5.2.1 The Hydrogen Model

sAs discussed earlier, we chose 100 different initial points. For each of these initial points, we
simulate the QNGDS for step sizes 0.125, 0.25, 0.5 and 1. We set the termination tolerance
tol to 0.01. We refer to the number of epochs, for a given scheme to terminate, as Epochs
to Terminate (EoT).

Figure 2 (Left) shows the variation of the median number of epochs needed to converge
to the minimum eigenvalue of the Hydrogen Hamiltonian with the learning rate (step size)
of the QNGD scheme. The median is taken across 10 random initial runs. It is clear from
the plot that only for a range of learning rates, the QNGD scheme actually converges, and
the rate of convergence highly depends on the chosen learning rate.

Figure 2 (Right) shows the Cumulative Distribution Functions (CDF) of EoT for the
Hydrogen model using the QNGDs with different step sizes and the AdaptQNGD. In
addition, the dotted black line at ordinate 0.5 is drawn to compare the performance of
different schemes at their medians. Figure 2 clearly shows the dependence of the performance
of the QNGD scheme on the choice of the step-size, with the step size of 0.5 performing
the best among others simulated. Doubling the step size to 1 degrades the performance
extensively causing almost all the runs to be requiring more than 100 EoTs. On the other
hand, decreasing the step sizes to 0.25 and 0.125 leads to sub-optimal performance. In
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(a) (b)

Figure 3: Comparison of CDFs of the number of epochs needed for the AdaptQNGD and
the QNGDS to reach the lowest energy of the LiH Hamiltonian, with (a) tol = 0.01 and (b)
tol = 0.001.

general, it is difficult to predict beforehand the optimal step size, which requires extensive
numerical simulations.

Figure 2 also shows that the AdaptQNGD, with the parameters mentioned above,
performs similar to the QNGDs with the optimal step size 0.5. Note that the AdaptQNGD
only requires the step sizes it has to choose from, eliminating the need for the knowledge of
the optimal step size.

5.2.2 Lithium Hydride Model

The simulations were ran for 100 different random initial points, as discussed earlier, and for
each initial point, the QNGDS was simulated with step sizes 0.125, 0.25, 0.5 and 1. Figures
3a and 3b shows the distribution of EoT for each of the schemes, using tol = 0.01 and
tol = 0.001, respectively.

Both figures confirm the dependence of the performance of the QNGD scheme on the
choice of the step-size. Notice that in this model, the optimal step size is 0.5. In the same
time, the AdaptQNGD was able to perform close to the best performance obtained by the
QNGD scheme. In fact, the performance in Figure 3a, of the former is slightly better than
the latter. This is due to the fact that, although the step size of 0.5 seems to be a better
choice among the others simulated here, it may be the case that it is not the best for the
entire duration of convergence. The landscape of the cost function may at times allow for
a faster descent (or convergence), but the QNGD scheme is always limited to using only a
fixed step size for the entire duration of the algorithm. Here again, the AdaptQNGD learns
this dynamically and proceeds with choosing larger step sizes than 0.5 whenever possible,
and as a result can converge faster.

5.2.3 Transverse Field Ising (TFI) Model

In this last model, the simulations were ran for 25 different random initial points, and for
each initial point the QNGD scheme was simulated with step sizes 0.03125, 0.0625, 0.125,
and 0.25 and, as in the previous models, the AdaptQNGD scheme was simulated with
α = 0.01, β = 1 and km = 6.

For each size N , we first plot the median of the distribution of epochs to terminate, and
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Figure 4: Comparison of median number of epochs needed of the AdaptQNGD with the
QNGD scheme using Boxplots. The box around the median points indicates the containment
of 25th to 75th percentiles .

then around the median, plot a box containing the realizations between the 25th and the
75th percentiles to obtain a comprehensive view of the performance. Figure 4 shows our
first result for the TFI model obtained using tol = 0.01.

This set of simulations again show that QNGD scheme depends on the choice of step
size, in which the optimal step size in this case equals 0.125. The performance degrades
considerably with step size 0.25 or higher. Expectedly, the AdaptQNGD overcomes this
and adaptively chooses the best step size. Note that as the problem size increases, the
number of epochs needed to terminate also increases, a phenomena also seen in [9].

Figure 5: Comparison of median number of epochs needed of the ADAPT SGD scheme
with the QNGD scheme using Boxplots. The box around the median points indicates the
containment of 25th to 75th percentiles .

As a next result, we provide a comparison between the QNGD scheme and the Steepest
Gradient Descent (SGD) equipped with the adaptive procedure used in AdaptQNGD (i.e.,
setting the tensor F to identity in AdaptQNGD). This is an interesting comparison since
the vanilla SGD is blind to the underlying geometry (the complex projective space with the
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Fubini-Study metric), which results in much slower convergence than the QNGD scheme [8].
Remarkably, by using the adaptive step size technique, which defaults to choosing a large
step size when permissible by the landscape, we are able to obtain similar performance as
the optimal QNGD scheme. Figure 5 demonstrates this behaviour. This can prove to be
very useful, as avoiding the computation of Fubini matrix leads to a substantial decrease in
the number of circuit evaluations and henceforth the cost of simulating the algorithm can
be significantly smaller.

5.2.4 Over-parameterization

Figure 6: Comparison of median number of epochs needed of the ADAPT QNGD scheme
with the QNGDS for varying rates, using Boxplots. The box around the median points
indicates the containment of 25th to 75th percentiles.

We conclude this section with another interesting result.We have simulated the TFI
model in the context of over-parametrization. Figure 6 shows the results obtained. We
observe here a concerning aspect of the QNGD scheme. Note that, the rate which performs
superior to all other rates for lower N , eventually degrades in performance as N is increased,
when employing the QNGD scheme. For instance, the rate of 0.125 performs the best, on
average, relative to other rates, for N less than 5, but significantly deteriorates for any
N larger than 5. As a result, a new rate dominates amongst the set of rates, in terms of
performance, as N changes. This makes it exhausting to compute the best rate for every
problem size (i.e., N) individually. AdaptQNGD was able to choose the most favourable
rate for every problem size and performs equivalent to the best QNGD performance without
being aware of the optimal rate.

6 Conclusion

In this paper, we have proposed an adaptive and efficient training scheme for variational
quantum algorithms (such as QAOA and VQE) based on the Fubini-Study metric, in con-
junction with Armijo line search rule. Our results show that the new adaptive scheme
outperforms QNGD and mitigates its dependence on the optimal step size. Our scheme
captures the optimal dynamical change in the step size as the training proceeds. In addition,
our results also show that a simple gradient descent scheme (with respect to the Euclidean
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metric) equipped with the adaptive scheme, can yield performances similar to the QNGD
with optimal step size.

More importantly, the results presented provide further confirmation of the importance
of differential geometry in variational quantum computations. This is not surprising given
the fact that this type of computation is optimization of smooth functions on Riemannian
manifolds. More generally, we foresee that advanced mathematics will feature centrally in
the NISQ era in guiding the design of faster and more efficient practical algorithms.
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8 Appendix: Connection With A−stability Theory [11]

Let f(θ) = 〈ϕ(θ)|H|ϕ(θ)〉 be the expectation value where |ϕ(θ)〉 = U(θ)|0〉 and H is a
Hamiltonian of interest (for instance, U(θ) is the QAOA ansatz and H is a classical Hamil-
tonian i.e., a QUBO). Let us also assume that θ∗ is a local minimum for the expectation
value function f(θ). One can think of the dynamical update of the ansatz parameters as the
flow of the following dynamical system

dθ(ε)

dε
= −∇f(θ(ε)),

θ(ε) = θ0.

(8.1)

In the vicinity of θ∗, where θ0 is assumed to belong, we linearize the gradient flow above
into the following linear ODE system (Dahlquist equations)

dθ(ε)

dε
= −Hf (θ∗) · (θ − θ∗),

θ(ε) = θ0,

(8.2)

with Hf (θ∗) the Hessian of f , which is positive semi-definite because θ∗ is a local minimum.
If we apply the forward Euler method, we get

θk+1 = (Id− hHf (θ0))θk = (Id− hHf (θ0))kθ0. (8.3)

The term R = (Id− hHf (θ0)) is the stability function of the forward Euler method and is
required to satisfy ||R|| < 1 for the method to converge. Staying in the vicinity of a local
minimum, the optimal rate for the forward Euler method is h =

∑
λi/
∑
λ2i , where λi are
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the eigenvalues of the Hessian matrix Hf (θ0). This comes from the fact that the eigenvalues
of the stability function R are exactly the real numbers 1 − hλi, and subsequently, the
optimal rate can be obtained with

argminh>0||R|| = argminh>0

∑
i

(1− hλi)2. (8.4)

Since Fubini-Study tensor is a positive semi-definite, after the change of variables τ =
F−1(θ0)θ, the formula above can also be applied to the new Hessian Hf (τ) = F−1

t
HfF

−1.
Notice this change of coordinates changes the Riemannian manifold from the Euclidean
space to the Fubini-Study manifold, and the dynamical update (the gradient flow (8.1))
changes accordingly.

Now consider depth one QAOA solving the max-cut problem for a triangle

U(θ) = U(β, γ) = e
−i
β

2
(X1 +X2 +X3)

×e
−i
γ

2
(1− Z1Z2 − Z1Z3 − Z2Z3)

,

with (β, γ) ∈ [0, π/2] × [0, π]. Starting from the uniform superposition, we obtain the
expectation value depicted in Figure 7, and the Fubini-Study tensor:

F (θ) =

[
2− 2 cos(2θ2) 0

0 1
4

]
(8.5)

A direct application of the optimal rate formula above gives h = 0.093 with R = 0.602
when Fubini-Study is used, and a slower rate h = 0.022 and R = 0.762. In other words,
Fubini-Study metric captures the correct geometry of the parameter space and makes the
gradient descent converge faster.

Figure 7: Expectation value landscape for the simple example of QAOA depth 1 solving the
max cut problem for a triangle. The level sets around the two symmetric global minima are
not exactly circular, which makes the gradient descent to slightly slowdown.
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