
Estimating phase transition of perturbed J1 − J2 Heisenberg quantum chain
in mixtures of ground and first excited states

Sayan Mondal1, George Biswas2, Ahana Ghoshal1, Anindya Biswas2∗, Ujjwal Sen1∗
1Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211 019, India

2National Institute of Technology Sikkim, Ravangla, South Sikkim 737 139, India
∗Correspondence can be sent to anindya@nitsikkim.ac.in and ujjwal@hri.res.in.

We show that the nearest neighbour entanglement in a mixture of ground and first excited states - a subjacent
state - of the J1 − J2 Heisenberg quantum spin chain can be used as an order parameter to detect the phase
transition of the chain from a gapless spin fluid to a gapped dimer phase. We study the effectiveness of the order
parameter for varying relative mixing probabilities between the ground and first excited states in the subjacent
state for different system sizes, and extrapolate the results to the thermodynamic limit. We observe that the
nearest neighbour concurrence can play a role of a good order parameter even if the system is in the ground
state, but with a small finite probability of leaking into the first excited state. Moreover, we apply the order
parameter of the subjacent state to investigate the response to separate introductions of anisotropy and of glassy
disorder on the phase diagram of the model, and analyse the corresponding finite-size scale exponents and the
emergent tricritical point in the former case. The anisotropic J1 − J2 chain has a richer phase diagram which is
also clearly visible by using the same order parameter.

I. INTRODUCTION

The study of quantum many-body systems utilizing the
concepts of quantum information theory is a fruitful avenue
for investigating various many-body quantum phenomena like
quantum phase transitions [1–5]. Investigations in this direc-
tion include Refs. [6, 7], wherein bipartite quantum entan-
glement [8–10] was used as an order parameter for detec-
tion of the quantum phase transition in the one-dimensional
transverse Ising and other XY quantum spin models. Later
on, multipartite quantum entanglement measures like geo-
metric [10–13] and generalized geometric measure [14, 15],
and other quantum correlation measures like quantum dis-
cord [16, 17], have been shown to be effective detectors of
quantum phase transitions in many-body quantum systems.
See e.g. Refs. [18–33] and Refs. [34, 35] in this regard.
A strong connection between entanglement and many body
physics has been established by the numerical simulation of
quantum many-body systems using matrix product states [36–
38], projected entangled pair states [39], density matrix renor-
malization group [39–43], tensor network states [44–49], etc.
Experimental evidence of these and related concepts in quan-
tum many-body systems are found in atoms in an optical lat-
tice [50, 51], trapped ions [52, 53], photons [54], and nu-
clear magnetic resonance systems [55] of particles. Further-
more, the connection between quantum information theory
and many-body quantum systems helps in quantum state engi-
neering which facilitates the development of realistic quantum
computation.

The phenomenon of quantum phase transition in the J1−J2
Heisenberg spin model, where J1 and J2 stand for the nearest
and next to nearest neighbour coupling constants respectively,
is a well known one. See e.g. [56–60]. Classically, phase
transitions occur when the system approaches a certain critical
temperature, beyond which the macroscopic properties of the
system change [61–64]. Quantum phase transitions take place
at absolute zero temperature, when some external parameter
or coupling strength is varied [1, 4, 65]. The quantum phase

transition of the one-dimensional antiferromagnetic J1 − J2
model from a gapless fluid to gapped dimer phase was inves-
tigated in [66–70] using exact digonalization and field theory
formalism. Subsequently, measures of bipartite entanglement,
like concurrence [71, 72], quantum fidelity [73], and valence
bond entanglement [74] have been shown to be good detec-
tors of the quantum phase transition, considering the respec-
tive quantities in the first excited state, but not in the ground
state [75, 76]. The measure of multipartite entanglement, gen-
eralized geometric measure, also could not indicate the quan-
tum phase transition while considering the ground state [33].

Quantum systems are usually prone to noise from the envi-
ronment. One of the most common forms of noise is thermal
noise, and a many-body system prepared at very low tempera-
tures, is practically a mixture of its low-lying energy states.
The study of critical phenomena and quantum information
measures of such systems are extensively done for the ground
state. It is however interesting to study other low-lying states
as well, as the system can only be in the ground state at the
absolute zero temperature, which is not practical.

In this paper, we show that the nearest neighbour concur-
rence of a mixture of ground and first excited states of the
one-dimensional quantum Heisenberg J1 − J2 model can be-
have as a good indicator of the quantum phase transition in the
model. We consider a mixture of the ground and first excited
states to mimic the state of the system at some finite tempera-
ture - the higher excited states, being present with lower prob-
abilities, are ignored. We find that the two-party entanglement
of such a state indicates the presence of the critical point in
the ground state of the model. We are therefore trying to find
“shadows” of the ground state quantum phase transitions in
a given physical system, in states of the same system which
have a finite but low temperature. This is physically meaning-
ful, as a real state of a system will always be of the latter type.
Although the concept of using a mixture of ground and first
excited states and identifying entanglement as a good order
parameter of phase transition in this model are already studied
in the literature, in this paper we try to investigate this matter
more deeply. Recently, concurrence [71, 72] and shared pu-
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rity [77], have been shown to be good quantum phase transi-
tion indicators in a mixture of ground and low-lying energy
states for the J1 − J2 model on a spin chain [78]. In that
work, they have considered the mixture of ground and low-
lying energy states with certain mixing probabilities. On the
contrary, in this paper we find that for arbitrarily small mixing
probabilities also, the critical point can be observed. Further-
more, we investigate the effect of mixing probabilities on the
phase transition points for different system-sizes and a finite-
size scaling analysis is done to find the critical point in the
thermodynamic limit. Moreover, we analyse the effect of in-
troduction of an anisotropy parameter in the nearest neighbour
and next-nearest neighbour coupling constants of the system
and in particular investigate the change in the phase transition
point on varying the anisotropy parameter. A scaling analysis
is done here as well. A phase diagram of the system is clearly
visible for this case. From the depictions given in this paper,
we can see the phase boundaries among the various phases of
the system like spin fluid state, dimer phase and Néel phase.
In previous works, the phase boundaries were obtained using
various methods like level-spectroscopy [79] and tensor net-
work methods [80]. In this work, we obtain a similar phase
boundary, using nearest-neighbour concurrence. We reiterate
here that quantum phase transitions happen only at zero tem-
perature, and so the studies of finite low-temperature states
or low-lying eigenstates detect the traces of zero-temperature
transitions that are still visible in a state that is not a zero-
temperature state.

In practical scenarios, it is neither possible to reach absolute
zero-temperature nor is it possible to completely isolate our
system from the environment. This makes it quite difficult
to fabricate a lattice chain with N quantum spin− 1

2 particles.
There may arise fluctuations in the positions of the spins in
the lattice or in the tuning parameters of the set-up, or the
magnetic field may not be homogeneous. These imperfections
are very difficult to keep track of and are usually modelled as
disorder. It is therefore both natural and potentially useful to
study the effect of disorder in our system. Sometimes, the
presence of disorder may provide some advantages over the
ideal situation [81–129]. This type of disordered system is
more realistic and we show that entanglement still behaves
as an identifier of phase transition even if the system is some
distance away from its ideal disorder-free nature. In our work,
we introduce a disorder parameter in the system and obtain
the shifts in the critical point of the system in the presence of
glassy Gaussian disorder.

The remainder of the paper is arranged as follows. The one-
dimensional J1−J2 Heisenberg spin model and the definition
of the quantum information order parameter, concurrence, is
discussed in Sec. II. The behaviour of nearest neighbour con-
currence, especially its dependence on the mixing probabil-
ity of ground and first excited states is presented in Sec. III.
A finite-size scaling for the extrapolation of the results in
the thermodynamic limit is also presented in this section. In
Sec. IV, we introduce an anisotropy parameter in the system
and note the shift of the phase transition point depending on
the parameter and extrapolate the result to the thermodynamic
limit. Section V contains the behaviour of nearest neighbour

concurrence in the presence of glassy Gaussian disorder. The
concluding remarks are presented in Sec. VI.

II. MOTIVATING THE CHOICE OF SYSTEM STATE

The one-dimensional J1 − J2 Heisenberg spin model, hav-
ing the nearest and next-nearest neighbour coupling constants
as J1 and J2 respectively, can be described by the Hamilto-
nian,

H = J1ℏ
N∑
i=1

σ⃗i · σ⃗i+1 + J2ℏ
N∑
i=1

σ⃗i · σ⃗i+2, (1)

with N being the number of spins of the system and σ⃗ =
σxx̂+σy ŷ+σz ẑ, where σx, σy and σz represent the Pauli ma-
trices. Here we employ periodic boundary conditions, which
means that σ⃗N+1 = σ⃗1. Here J1ℏ and J2ℏ, having the unit
of energy, stand for the anti-ferromagnetic coupling constants
and are therefore zero or positive real numbers. This model
can describe some solid state systems like SrCuO2 [130].
This model is also known as the Majumdar–Ghosh model for
α = J2

J1
= 1

2 [56]. At α = 1
2 , the model is exactly solv-

able and the ground state is doubly degenerate. The quan-
tum phase transition of the one-dimensional antiferromagnetic
J1 − J2 model from a gapless fluid to gapped dimer phase
driven by the change of the system parameter α was inves-
tigated in [66–69] using exact digonalisation and field the-
ory formalism. It was found that the phase transition occurs
around a critical value of the parameter, αc ≈ 0.241. The
anisotropic J1 − J2 Heisenberg quantum spin model with an
anisotropic coupling constant δ along the z direction was stud-
ied in [131–134]. When α ≲ 0.24, for δ < 1, the system is
in the spin fluid phase and for δ > 1, it goes into the Néel
phase. In the spin fluid phase, no ordered arrangement of
spins is formed, and they remain fluctuating even at absolute
zero temperature [135, 136]. Néel order phase is an antiferro-
magnetic phase below a sufficiently low temperature (known
as Néel temperature) [137, 138]. The phase diagram of this
model in the range 0 ≤ α ≤ 1

2 for δ ≥ 0 and δ ≤ 0 is studied
in [133, 139]. The anisotropy constant δ plays an important
role in the phase diagram of this model between 0 ≤ α ≤ 1

2 ,
and so it is important to study the effect of this anisotropy
term on the "isotropic" phase transition from gapless fluid to
gapped dimer phase around αc ≈ 0.241.

In the literature, the phase transition point was investigated
by determining the difference between the singlet-triplet and
the singlet-singlet energy gaps for finite-size systems [67, 68].
The singlet-triplet and singlet-singlet energy gaps are respec-
tively given by

Gst(N,α) = E
(0)
1 (N,α)− E

(0)
0 (N,α),

Gss(N,α) = E
(1)
0 (N,α)− E

(0)
0 (N,α).

E
(0)
m (N,α) and E

(l)
m (N,α) are respectively the ground and

the lth excited state energies in the total spin angular momen-
tum, Stotal = m subspace. The measures of bipartite entan-
glement, like concurrence [71, 72], and quantum fidelty [73]
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FIG. 1. Nearest neighbour concurrence of the J1 − J2 model. The concurrence between two consecutive spin particles is plotted with respect
to the relative coupling strength α for different values of p of the subjacent state for (a) N = 20 and (b) N = 24. The regions near the
transition points are magnified and shown in the respective insets. The different colors of the lines with the different symbols represent the
different values of p, which are mentioned in the legends. The quantity plotted along the horizontal axes is dimensionless, whereas the same
along the vertical axes are in ebits.

have been shown to be good detectors of the quantum phase
transition, considering the respective quantities in the first ex-
cited state, but not in the ground state [75, 76]. So, while
the phase transition at α ≈ 0.2411 is a zero-temperature phe-
nomenon at the ground state, there could exist order param-
eters that find their shadows in the first excited state instead
of the ground state. The measure of multipartite entangle-
ment, generalized geometric measure, also could not indicate
the quantum phase transition while considering the ground
state [33]. Thus, concurrence, a measure of two-qubit en-
tanglement, can be considered as an order parameter for de-
tecting the phase transition of the J1 − J2 model, not in the
ground state but in the first excited state [75] as well as in a
mixture of ground and some low-lying energy states [78].

For a two-qubit density matrix, the concurrence C is de-
fined as

C = max(0,
√

λ1 −
√
λ2 −

√
λ3 −

√
λ4), (2)

where λi’s are the eigenvalues of ρρ̃ with λ1 being the largest.
Here, ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy) and ρ∗ is the complex
conjugate of ρ in the computational basis. In this paper, we
consider mixtures of the ground and first excited states and
investigate whether its concurrence acts as a good order pa-
rameter. We consider a situation where there is a possibil-
ity of the spins to be in the first excited state of the Hamil-
tonian with probability p and the ground state of the same
with probability (1 − p). Here we take p as the probabil-
ity corresponding to the Maxwell-Boltzmann distribution, viz.

p = e
−E(1)(N,α)−E(0)(N,α)

kBT

1+e
−E(1)(N,α)−E(0)(N,α)

kBT

, where kB is the Boltzmann con-

stant and T is the absolute temperature of the system. Here we
have omitted the subscipts m of E’s, as all energies are con-
sidered in the calculations. A periodic boundary condition is
imposed on the system, i.e., σN+1 = σ1. The quantum state

being considered can therefore be represented as

ρ = (1− p)|Ψ0⟩⟨Ψ0|+
p

d

d∑
i=1

|Ψi
1⟩⟨Ψi

1|, (3)

where |Ψ0⟩ is the ground state and |Ψi
1⟩s are the first excited

states with d-fold degeneracy. We will refer to this as the
subjacent state. We have only considered systems with even
number of spins, for this the ground state has no degeneracy.
The motivation behind considering the subjacent state is that a
physical system at non-zero temperature, will be in a thermal
mixture of the eigenstates of the system and for very low tem-
peratures, the ground state and first excited states will have
considerably higher probability than the other excited states.
In fact, for every small p, we can find a non zero finite tem-
perature which corresponds to the probability distribution be-
tween the first excited state and ground state. In this paper
we are restricting ourselves to small values of p, vis-á-vis low
but non-zero temperatures, as for higher temperatures, higher
energy states will also contribute which we are ignoring. For
the numerical analysis, the ground and first excited states of
the system are obtained by using the Lanczos method [140]
of exact diagonalisation. The concurrence we obtain in the
paper is the concurrence of two consecutive spins. Due to the
symmetry of the Hamiltonian, and as we are imposing peri-
odic boundary condition, the entanglement between any two
nearest neighbour spins will be the same. In the succeeding
sections, "concurrence" refers to the nearest neighbour con-
currence. In the succeeding section, we investigate how the
behaviour of concurrence as an order parameter depends on
the values of p, for the J1 − J2 model.

III. CONCURRENCE OF SUBJACENT STATE AS ORDER
PARAMETER IN J1 − J2 MODEL

The behaviour of concurrence as an order parameter
strongly depends on the mixing probability p of the ground
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FIG. 2. Nearest neighbour concurrence of the J1 − J2 model for different system sizes. Here we have depicted the nearest neighbour
concurrence with relative coupling α for different values of N , for (a) p = 0.10, (b) p = 0.20, (c) p = 0.25 and (d) p = 0.30 of the subjacent
state. The different colors of the lines with different symbols represent different values of N , which are mentioned in the legends. The quantity
plotted along the horizontal axes is dimensionless and the same along the vertical axes is in ebits.

and the first excited states. In Fig. 1, we depict the nature of
concurrence with the relative coupling strength α for different
values of mixing probability p for N = 20 and N = 24, in
the J1 − J2. As already known, we observe that the nearest
neighbor concurrence of the ground state (p = 0) does not
show any discontinuity but the same for the first excited state
(p = 1) shows a sharp discontinuity in concurrence when plot-
ted against α. The same exercise for intermediate values of p
(say for p = 0.05, p = 0.15 and p = 0.25) reveals an inter-
esting observation even if the probability of the presence of
the first excited state is relatively small, the jump in the con-
currence is discernible. So concurrence can be an indicator
of phase transition even when the system resides in the first
excited state with only a small probability and in the ground
state with a large probability. See Figs. 1-(a) and 1-(b). With
increase in p, the jump increases and becomes more promi-
nent. The point of discontinuity, which we consider to be the
point of phase transition (αc) is the same for all values of p for
a fixed N . The neighbourhood, of the phase transition point
is magnified and plotted in the insets of both the panels. The
nature of concurrence is highly oscillating in this near-critical
regime and the amplitude of oscillation increases with the in-
crease of p values. For determining the critical point, αc, we
take the average of the two α values just before and just after
the discontinuous jump in the concurrence. See the insets of
Fig. 1.

In Fig. 2 we consider the same phenomenon but from a dif-
ferent perspective. Here we fix the values of p of the subjacent
state in each panel and investigate the nature of concurrence
for different values of N . This time the figure reveals a dif-
ferent characteristic of the transition point. For a fixed N , the
critical transition point (αc) is independent of p (see Fig. 1),
whereas αc decreases as the system size N increases, for a
fixed value of p. A tabular representation as a proof of this
fact is presented in Table I.

Note that the discrete jump in nearest-neighbor concur-
rence only occurs when applying periodic boundary condi-
tions. When we apply an open boundary condition to the same
model described in Eq. (1), specifically by setting the range of
the first summation in Eq. (1) to run from i = 1 to N − 1 and
the range of the second summation to run from i = 1 to N−2,
we observe that the nearest-neighbour concurrence of the sub-
jacent state monotonically increases for system sizes that are
twice odd numbers (e.g., N = 10, 14, 18), while it monoton-
ically decreases for system sizes that are twice even numbers
(e.g., N = 12, 16, 20). We do not detect any discontinuity in
the concurrence within the region of J2/J1 = α ∈ [0.0, 0.5]
for these cases. This may be because of the finite size effects
of the quantum chain with open boundaries.

This approach of utilising the subjacent state to detect the
phase transition in the J1 − J2 Heisenberg spin chain can be
extended to the J1 − J2 model on a two-dimensional lattice.
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FIG. 3. Nearest-neighbour concurrence of J1 − J2 model for different system sizes at constant temperature. The connotations here are the
same as in Fig. 2, but at a constant temperature with a varying mixing probability at each α for different system sizes. Here, in panel (a)
kBT = 1, and in panel (b) kBT = 2 (in units of J1ℏ). The quantity plotted along the horizontal axes are dimensionless and the same along
the vertical axes are in ebits.

N αc N αc

8 0.24630 18 0.24221
10 0.24449 20 0.24201
12 0.24349 22 0.24180
14 0.24286 24 0.24164
16 0.24248

TABLE I. The values of αc for increasing size (N) of the system for
p = 0.30 in the subjacent state for the J1 − J2 model. All quantities
are dimensionless.

The two-dimensional J1 − J2 Heisenberg spin model is gov-
erned by the Hamiltonian,

H2−d = J1ℏ
∑

σ⃗i · σ⃗j + J2ℏ
∑

σ⃗i · σ⃗k. (4)

Here the first summation involves pairs of nearest neigh-
bours, whereas the second summation deals with pairs of
nearest neighbours along the diagonals. In Fig. 4, we plot
the nearest-neighbour concurrence of this two-dimensional
J1 − J2 model, for N = 16, on a 4 × 4 lattice. Our findings
reveal a discontinuous jump in the nearest-neighbour concur-
rence at approximately α ≈ 0.4, which indicates a phase tran-
sition from ‘ordinary-Néel order’ to an intermediate phase of
a ‘plaquette or columnar dimer’ phase. It can be shown that
the same methodology also detects the (anti-)ferromagnetic to
paramagnetic phase transition in the one-dimensional trans-
verse Ising model, where the concurrence attains a maximum
at the critical point.

Till now, we were considering the situation where the mix-
ing probability p is left constant while nearest neighbour
concurrence is investigated with varying relative coupling
strengths, α. See Figs. 1 and 2. This implies that we require
the temperature to be changed at each α to keep the mixing
probability fixed with the changes of α. Arguably, a more
practical study is to investigate the nature of nearest neigh-
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FIG. 4. Nearest-neighbour concurrence of the two-dimensional J1−
J2 model for N = 16 on a 4 × 4 lattice. Here we have depicted
the nearest-neighbour concurrence with relative coupling strength α,
for different values of the mixing probability p of the subjacent state.
The quantity plotted along the horizontal axis is dimensionless and
the same along the vertical axis is in ebits.

bour concurrence at a fixed temperature. Therein, the proba-
bility p, of the subjacent state, change with α, as the change
in α leads to changes in E(1)(N,α) and E(0)(N,α). For our
analysis, we fixed the temperature to kBT = 1 and 2. At very
low temperatures, the system’s state would consist, for prac-
tical purposes, of a mixture of the ground state and the first-
excited state. Essentially, the excited state serves as a source
of thermal noise in the system. To model a situation where
this thermal noise arises due to a non-zero temperature, we
can envision the mixed state as being associated with a fixed
temperature, or with a fixed admixture of the excited state.
The former is considered in Figs. 1 and 2, while the latter is
taken up in Fig. 3. We find that both these noise models lead
to the same phase transition points for the parent Hamiltonian.

From Fig. 2, it is evident that by keeping the mixing proba-
bility (p) constant, we can observe the phase transition in the
one-dimensional J1 − J2 model as we vary α. Since fixing



6

the probability leads to temperature variations with changes in
α, this phase transition might be construed as being induced
by temperature. However, as illustrated in Figs. 2 and 3, the
nearest-neighbor concurrence at fixed temperature and at fixed
p is similar in nature, and the estimated critical point of phase
transition is also at the same point in the parameter space in
both the cases. In the case of phase transitions induced by
thermal fluctuations, the phase transition becomes apparent as
the system’s temperature varies. Given that the critical point
remains constant in scenarios where the temperature is fixed,
it follows that the observed phase transitions are not induced
by thermal fluctuations. Therefore, we can infer that the phase
transition we observe here is not thermally induced.

Further illustrations are done for fixed p. Investigations at
fixed temperature will provide equivalent information. The
difference between the values of concurrence ∆C, just before
and after the transition point, decreases as we increase the sys-
tem size. The numerical values of ∆Cs for increasing system
size, for a fixed p, are given in Table II. This may potentially
be a disadvantage in the thermodynamic limit, N → ∞. A
finite-size scaling is needed to see whether concurrence can
still play the role of a good detector of phase transition in a
mixture of ground and first excited state for N → ∞.

N ∆C N ∆C

8 3.2× 10−2 18 6.8× 10−3

10 2.0× 10−2 20 5.6× 10−3

12 1.4× 10−2 22 4.8× 10−3

14 1.1× 10−2 24 4.2× 10−3

16 8.3× 10−3

TABLE II. The values of ∆C (in ebits) for different sizes (N ) of the
system for p = 0.30, for the J1 − J2 model.
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FIG. 5. Critical point of the J1 − J2 model in the thermodynamic
limit for the subjacent state at p = 0.30. Here we have fitted the
values of αc corresponding to different N obtained from Table I,
with Eq. (5). The data points are shown by blue dots and the black
dotted line represents the fitting curve. Both the axes are plotted in
log scale and the quantities plotted are dimensionless.

As the precise quantum phase transition point on the α-axis
for an infinitely large system is unknown, we extrapolate the
transition points of N = 8, 10, 12, 14, 16, 18, 20, 22, 24 size
systems to N = ∞. To extrapolate, we have chosen the fitting
function, viz.

αc(N) = αc(∞) + aN−b. (5)

On fitting the values of αc(N) with the system size (N ) from
Table I, we obtain αc(∞) = 0.24099 with the 95% confi-
dence interval ±4.9 × 10−9, a = 0.24 (95% confidence in-
terval ±1.9 × 10−6) and b = 1.8 (95% confidence interval
±4.1×10−6). Thus the value of relative coupling (α) at which
there is a discontinuity, asymptotically tends to αc = 0.24099,
with the standard error 3.2 × 10−5, for p = 0.30 in the sub-
jacent state. Here we have used non-linear least-square fitting
to find the values of the parameters, the 95% confidence inter-
vals, and the error, for the fitting curves [141–143]. We can
also see from Fig. 5 that the difference, αc(N)− αc(∞), de-
creases almost linearly with the increase of N , when plotted
in log− log scale.

Having obtained the transition point (for p = 0.30) in the
thermodynamic limit, we can now investigate the utility of
concurrence as a phase transition detector at N → ∞.For
checking this, we fit the values of ∆C for different p’s with
the following expression:

∆C(N) = ∆C(∞) + γN−δ. (6)

We find that for p = 0.30 as well as for other values of p,
the jump does not asymptotically tend to zero. There is some
finite discontinuity ∆C(∞) as N → ∞ and hence we have
achieved our goal of finding a quantum information-theoretic
indicator of phase transition in the thermodynamic limit. The
numerical values of the jumps in the thermodynamic limit,
∆C(∞), for different values of mixing probability, along with
the standard errors of fitting, are given in Table III. The scal-
ing exponent δ in (6), turns out to be approximately 2.08 for
all values of p. The fitting functions and the corresponding

p ∆C(∞) Error

0.01 8.3× 10−4 2.9× 10−7

0.05 8.6× 10−4 4.1× 10−6

0.10 9.1× 10−4 9.1× 10−6

0.15 9.6× 10−4 1.5× 10−5

0.20 1.0× 10−3 1.7× 10−5

0.25 1.1× 10−3 2.5× 10−5

0.30 1.1× 10−3 1.8× 10−5

1.00 1.8× 10−3 8.4× 10−5

TABLE III. The asymptotic values of ∆C (in ebits) in the thermo-
dynamic limit (N → ∞) for different values of p, for the J1 − J2

model.

∆C(N)−∆C(∞) (in log− log scale) with respect to system
size N for two fixed values of p is demonstrated in Fig. 6.
We have performed the analysis also for other values of p and
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FIG. 6. Jump in concurrence at critical point at thermodynamic limit. Here we have fitted the values of ∆C for different N with Eq. (6) for (a)
p = 0.05 and (b) p = 0.30. The data points are shown by blue dots and the black dotted line represents the fitting curve. The axes are plotted
in log scale and the quantity described along vertical axes are in ebits whereas the same along horizontal axes is dimensionless.
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FIG. 7. Nearest neighbour concurrence just before and just after the
jump near the critical point of the J1 − J2 model for the subjacent
state. Here we have looked into the dependence of C+ and C− on
p for N = 20. The rectangular dots are the values before the dis-
continuity (C−) and the circular dots are the same just after the jump
(C+). The dotted lines represent the corresponding fitting functions.
The quantity plotted along the horizontal axis is dimensionless and
the same described along the vertical axis is in ebits.

found a qualitatively similar behaviour. The behaviour is very
similar to that of αc(N)−αc(∞). Both decreases almost lin-
early with the increase of N on the log− log scale. Compare
Figs. 5 and 6.

Till now we were discussing about the phase transition
point of the J1 − J2 model, and the jump in concurrence at
that point. It could also be interesting to study the values of
nearest neighbour concurrence in the vicinity of phase tran-
sition point and its dependence on the mixing probability p
for different system sizes. We depict the dependence of con-
currence, just before the jump by C− and the same just after
the jump by C+, on p for N = 20 in Fig. 7, with rectangular
and circular dots respectively. We find that for small values
of p, the values of concurrence, either way about the point of
discontinuity, decreases linearly. The behaviour is similar for
other values of N too. Here we end our discussion about the
phase transition of the ideal J1 − J2 Heisenberg spin chain.
In the succeeding sections, we will look into the response to

anisotropy and disorder of the phase diagram of the model.

IV. RESPONSE TO ANISOTROPY OF THE PHASE
TRANSITION POINT

The one-dimensional J1 − J2 Heisenberg spin model with
an anisotropic coupling constant along z-direction can be
named as the one-dimensional spin- 12 XXZ J1 − J2 spin
model and its governing Hamiltonian may be written as

HXXZ = J1ℏ
N∑
i=1

(σ⃗i · σ⃗i+1)δ + J2ℏ
N∑
i=1

(σ⃗i · σ⃗i+2)δ, (7)

where (−→σi · −→σj)δ = σx
i σ

x
j + σy

i σ
y
j + δσz

i σ
z
j with δ being a

dimensionless anisotropy constant. This model is known to
have various quantum phases [79] and can describe the spin-
Peierls compound CuGeO3 [144, 145]. As already discussed,
the system is in a spin fluid state for α ≲ 0.24 and δ < 1, and
it goes to a Néel phase for δ > 1. For α ≳ 0.24, the system
goes into a dimer phase. A schematic representation of these
phase boundaries is shown in the left panel of Fig. 8.

In the previous section, we have studied the behaviour of
concurrence by changing the mixing probability. In this sec-
tion, we have taken a fixed mixing probability p. All further
analysis is done for

p = 0.2689 ≈ e−1

1 + e−1
. (8)

We are therefore fixing the temperature as T ≈
E(1)(N,α)−E(0)(N,α)

kB
for each α. Now we investigate the be-

haviour of concurrence on the (α, δ) parameter space. In the
right panel of Fig. 8, we observe that there is a dip in the con-
currence along the δ = 1 line for low α, indicating the spin
fluid to Néel order quantum phase transition. It shows a sharp
drop to indicate the spin fluid to dimer quantum phase transi-
tion for δ < 1, and a sharp jump to indicate the dimer to Néel
quantum phase transition for δ > 1. Thus, we observe that
a discontinuity in the concurrence serves as an indicator of a
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FIG. 8. Phase diagram of the XXZ J1 − J2 spin model. The left panel represents a schematic quantum phase diagram of the one-dimensional
XXZ J1 − J2 spin model on the (α , δ) plane. In the right panel, we have plotted the nearest neighbour concurrence of the subjacent state on
the (α, δ) plane, and considered it as an order parameter for the transitions in the XXZ J1 − J2 model. Here, N = 16. The concurrence (C)
is in ebits, while all other quantities are dimensionless.

phase transition between the spin fluid and dimer phases in the
anisotropic one-dimensional J1 − J2 model. Also, the phase
transition between Néel and dimer is also signified by discon-
tinuity of concurrence. On the other hand, we observe that
the phase transition between the spin-fluid and Néel phases is
distinguished by a discontinuity in the first derivative of the
concurrence. So, here the nature of the signatures observed
in concurrence varies for different phase transitions. In this
regard, it is important to note that, as the discontinuity in the
order parameter is indicative of a phase transition, it is also
quite common for order parameters to display continuity near
the critical point, while their derivatives exhibit discontinu-
ities, as observed in [146, 147]. The points of transition,
say along lines parallel to the α-axis, are calculated by using
exact diagonalisation on finite systems. A finite-size scaling
analysis is therefore useful. For a fixed δ, we fixed the critical
point αC(δ,N), for a system of size N , and use the rational
polynomial,

f (N) =
p1N

2 + p2N + p3
N2 + q1N + q2

, (9)

to estimate the quantum phase transition point of an infinitely
large system [148]. The corresponding phase diagram, using
both finite-size predictions as well as the extrapolated ones is
presented in the upper left panel of Fig. 9. We analyse their
finite-size scaling behavior, by fitting a function of the form,

αc(N) = αc(∞) + a′N−β , (10)

and obtain the finite size scaling exponents (β) for different
(δ). The corresponding data for δ < 1 is presented in A I and
the same for δ ≥ 1 is shown in A II, in the Appendix A. Here
αc(∞) is the value of αc for N → ∞ and a′ is a constant.

We magnify the region around the multi-criticality point for
α ≈ 0.24 and δ = 1, in the inset of of the upper left panel of
Fig. 9. We notice that the phase boundary changes with the
change in δ. The numerical values of critical phase transition
points αc decrease monotonically with the increase of δ from
0 to 1 and increase monotonically thereafter.

For further analysis, we plot the critical transition points αc

with respect to the distance in δ axis from the point δ = 1 in
the upper right panel of Fig. 9, for N = 16. From the inset of
the upper left panel of Fig. 9, we can observe an asymmetry
in αc values on the two sides of δ = 1. This asymmetry is
clearer in the upper right panel. We can see that the slope of
the curves representing the ∆α values for the δ > 1 region is
much greater than those for the δ < 1 one.

We find that αc approaches 1
2 in the limit of δ → ∞. We

now analyse the scaling behavior of the phase transition point
with δ. We choose the fitting function,

αδ
c = α∞

c − a′′δ−d, (11)

where α∞
c is the value of αc at δ = ∞ and a′′ is a constant.

We present the variation of α∞
c − αδ

c against δ (both on log
scale) for N → ∞ in the lower panel of Fig. 9. The scal-
ing exponent is found to be d = 0.82 with 95% confidence
interval ±0.025 and the standard error is 0.012

V. RESPONSE TO GLASSY DISORDER OF THE PHASE
TRANSITION POINT

A system is said to be glassy disordered if there is a dis-
ordered system parameter whose equilibration time is much
larger than the time spans relevant for our investigations of
the system. So, during the time of observation, the disordered
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FIG. 9. Phase diagram and finite-size scaling for transitions of the XXZ J1−J2 model. The phase diagram is presented in the upper left panel.
We focus on the transitions to the dimer phase and the multi-critical point. The transitions are assumed to be signaled by the discontinuities
of the nearest neighbour concurrence in the subjacent state. The orange dots correspond to the extrapolated discontinuity points in the large
N limit. A magnified version of this depiction closer to the δ = 1 region is shown in the inset. In the upper right panel, we compare the
nature of critical transition points on the two sides of δ = 1. Here we take the magnitude of the distance from δ = 1 as ∆(δ) and depict the
corresponding αc values for both sides of the δ = 1 point. The critical αc values on the left of δ = 1 is depicted by blue dots and the same
on the right side are depicted by red squares for system size N = 16. In the lower panel, we present the finite size scaling of the extrapolated
critical transition points αc along δ-axis for δ > 1 for N → ∞. For the values of scaling exponent and the corresponding 95% confidence
interval see the main text. All the quantities plotted along the axes in all the three panels are dimensionless.

parameters effectively do not change for a certain realization
of disorder. This disorder is analogous to that of a spin glass
system [89, 149, 150]. Glassy disorder has also been referred
to as a quenched disorder [1, 89, 149–153]. Studies on spin
chains with glassy disorder include [83, 87, 88, 108, 117, 121,
123, 124, 126, 127, 129, 154–156]. Here we study the effect
of introduction of a glassy disorder parameter in the J1 − J2
model. We analyse the response of the quantum phase tran-
sition point on introduction of a glassy anisotropy parameter.
Precisely, we insert a z − z interaction term in the J1 − J2
Hamiltonian (1) for each Heisenberg interaction term σ⃗i · σ⃗j .
The unit-free coupling strength, ∆, for each interaction then
is independently distributed with respect to that for any other
term. However, they are all Gaussian distributed with vanish-
ing mean and standard deviation σ:

P (∆) =
1

σ
√
2π

e−
1
2

(
∆
σ

)2

, −∞ < ∆ < ∞. (12)

The considerations in this section are therefore complemen-
tary to those in the preceding one, even though both deal with
a z-z interaction anisotropy in the J1 − J2 model. Note that
the usual J1−J2 model lies in the σ → 0 limit for the analysis

of the glassy disordered model of this section. In comparison,
the same limit is obtained for δ → 1 for the considerations of
the XXZ J1−J2 model of the preceding section. The disorder
averaged concurrence is given by

CG =

∫ ∞

−∞
C(∆̃)

1

σ
√
2π

e−
1
2

(
∆̃
σ

)2

d∆̃. (13)

Here, ∆̃ represents the entire collection of ∆s of the system,
and the ∆̃2 in the exponent denotes the sum of the square of
such ∆s. We use Monte Carlo integration to evaluate the inte-
gral. Now for each realisation, ∆s are chosen independently
by choosing random numbers from a Gaussian distribution
with mean zero and standard deviation σ, and then the near-
est neighbour concurrence is calculated for that realisation by
using the subjacent state. We average over a large number of
realisation and check for convergence.

In presence of the glassy disorder in the parameter ∆, the
concurrence shows a behaviour similar to that of the ordered
case and a sufficiently visible difference in the values of con-
currence before and after the phase transition point is ob-
served. See Fig. 10 in this regard. The difference is that
the change in concurrence around the phase transition point



10

0.34

0.35

0.36

0.37

0.38

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C
G

 α 

(a) σ = 0.08

0.366

0.370

0.374

0.230 0.240 0.250 0.260 0.270 0.34

0.35

0.36

0.37

0.38

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C
G

 α 

(b) σ = 0.10

0.364

0.368

0.372

0.230 0.240 0.250 0.260 0.270 0.280 0.290

0.34

0.35

0.36

0.37

0.38

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C
G

 α 

(c) σ = 0.13

0.362

0.366

0.370

0.374

0.230 0.250 0.270 0.290
0.34

0.35

0.36

0.37

0.38

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
C

G

 α 

(d) σ = 0.20

0.360

0.364

0.368

0.230 0.250 0.270 0.290 0.310

FIG. 10. Nearest neighbour concurrence in presence of Gaussian disorder for N = 14. The disorder averaged concurrence (averaged over
5× 104 realizations) is plotted along the vertical axes when the ∆s are chosen independently from a Gaussian distribution with mean zero and
for different values of the standard deviation σ (given in the legends). The region close to the transition point is shown in the insets where the
continuous line represents the polynomial fitting function. The quantity plotted along horizontal axes is dimensionless, whereas that plotted
along vertical axes is in ebits.

is not as sharp as that in the ideal situation. The discontinuity
in concurrence at the phase transition point becomes less and
less prominent, as we increase the strength of disorder, ie., the
standard deviation σ of the disorder distribution. As we in-
crease σ to more than 0.2, it becomes difficult to point out the
region around the phase transition point.

Since the discontinuity in the profile of the concurrence is
not sharp, we adopt here a method that is different from the
one used until now to identify the phase transition. As we see
from Fig. 10, the profile of concurrence with α goes from con-
cave to convex at the phase transition point. We can then fit
a cubic polynomial in the near-critical region, and the inflec-
tion point of the polynomial can be considered as the point of
phase transition. The inflection point of a cubic polynomial is
the point where the function changes its curvature from neg-
ative to positive or vice versa, and hence the polynomial has
a vanishing double derivative at this point. Suppose that the
cubic polynomial is given by

CG(α) = a1α
3 + b1α

2 + c1α+ d1. (14)

The near-critical region along with the fitting function are
shown in the insets of Fig. 10. The values of the critical
points for different system sizes by changing the strength of
disorder are given in Table A III for the mixing probability
p = 0.2689 (see (8)), and in Table A IV for mixing proba-
bility p = 0.1344, along with the standard errors of fitting.
The phase transition point gradually shifts to higher α with

the increase of the strength of disorder (σ). Furthermore, we
analyse the finite-size scaling for the case of p = 0.2689 from
the data set in Table A III. The fitting function is of the form,

αdis
C (N) = αdis

C (∞) + aN−b.

For σ = 0.05, αdis
C (∞) = 0.2476 and b = 7.69 and for σ =

0.08, αdis
C (∞) = 0.2492 and b = 7.38. For the former, the

root-mean-square error of the fitting function is 0.87× 10−3,
and for the latter, the same is 0.94× 10−3.

Throughout this study, we have utilised the subjacent state
to detect the phase transition of a J1 − J2 Heisenberg spin
chain. However, it is important to ask, if any mixed state other
than the subjacent state, defined in Eq. (3), can show signa-
tures of phase transition. In the work presented in [78], it was
demonstrated that, for the one-dimensional J1 − J2 model,
the thermal state, i.e., the canonical equilibrium state, which
is a mixture of all possible energy eigenstates, exhibits no dis-
continuity in nearest neighbor concurrence near the critical
point. Furthermore, the authors explored a scenario where
the full multiplet was not included, and the mixture incorpo-
rated states up to the third excited state. In this particular case
as well, they did not observe any discontinuity in the nearest
neighbor concurrence near the critical point. Therefore, it be-
comes evident that employing the subjacent state is more ad-
vantageous in detecting quantum phase transitions in a J1−J2
Heisenberg spin chain compared to using the thermal state or
states composed of higher energy levels.
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VI. CONCLUSION

We have investigated the utility of nearest neighbour entan-
glement of a mixture of the ground and first excited states -
the subjacent states - which mimic the low but non-zero tem-
perature states of the system, for detection and analysis of
quantum phase transitions in one-dimensional J1−J2 Heisen-
berg quantum spin models. We want to find signatures of the
ground state quantum phase transitions in a given physical
system at low but finite temperatures by utilizing the subjacent
states. This is of significant interest because a real physical
system will always be at a finite temperature. We try to find
the extent to which such a finite-temperature state can mirror
the zero-temperature transitions in the system. We have stud-
ied the dependencies of the critical phase transition point on
the mixing probability, and found that concurrence - a mea-
sure of two-qubit entanglement - can play the role of a good
order parameter even if the ground state probability is large
compared to that of the first excited state, whereas it is already
known that the ground state concurrence itself cannot perform
the role of a good indicator of phase transition in these mod-
els. We have extrapolated the results to the thermodynamic
limit and obtained the phase transition point αc ≈ 0.24099,
for the isotropic J1 − J2 Heisenberg quantum spin chain with
α = J2/J1, which is very close to the value already known
in literature, obtained by various methods [68, 70, 74, 75] and
we have also shown that the critical point does not depend on
this mixing probability.

Moreover, we applied the same order parameter of the sub-
jacent state for analysing phase transitions in the J1 − J2
model, tweaked by either anisotropy or glassy disorder in
the coupling strengths. We introduced anisotropy in one spe-
cific direction for both the nearest neighbour and next-nearest
neighbour interactions, and studied the effect of anisotropy on
the critical phase transition point for various system sizes, and
subsequently extrapolated to the thermodynamic limit. Here,
we obtained a phase diagram of the anisotropic J1−J2 model,

which shows the phase boundaries of the existent phases of
the system like spin fluid state, dimer phase and Néel phase.
In previous works, these phase boundaries of an anisotropic
J1 − J2 model was detected by some other order parame-
ters [79, 80], but we showed that detection of such phase
boundaries is possible at finite temperature with a quantum-
informatics order parameter.

Separately, we incorporated a glassy disorder parameter in
a coupling of the J1 − J2 model and investigated its effect on
the phase diagram. We observed that the disorder smoothens
the marker of phase transition. The phase transition point also
shifted towards higher values of α depending on the strength
of the disorder. Importantly, we performed finite-size scaling
in each of the cases considered. The phenomenon of phase
transition of a disordered J1 − J2 model is already studied in
the literature, but having the nearest neighbour entanglement
as an indicator of phase transition, even in presence of disor-
der in this model, is a potentially interesting result, which re-
veals the usefulness of quantum information theoretic proper-
ties in detecting paradigmatic many-body phenomena in a re-
alistic scenario. We believe that the results would lead towards
the establishment of the consideration of physical quantities
in the subjacent state as a proper and fruitful order parameter
for detection and characterisation of cooperative physical phe-
nomena, since such quantities in the subjacent state are theo-
retically accessible just like ground state physical quantities
and experimentally more viable in comparison to the same.
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Appendix A: Tables

δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = 6 0.33334 0.32259 0.31250 0.30304 0.29412 0.28572 0.27778 0.27028 0.26316 0.25642
N = 8 0.32924 0.31856 0.30851 0.29906 0.29017 0.28178 0.27387 0.26640 0.25934 0.25265

N = 10 0.32736 0.31668 0.30663 0.29717 0.28828 0.27989 0.27199 0.26453 0.25749 0.25082
N = 12 0.32628 0.31560 0.30556 0.29611 0.28722 0.27884 0.27094 0.26349 0.25646 0.24980
N = 14 0.32562 0.31494 0.30490 0.29546 0.28657 0.2782 0.27031 0.26286 0.25583 0.24918
N = 16 0.32518 0.31450 0.30447 0.29503 0.28614 0.27778 0.26989 0.26245 0.25542 0.24877
N ≈∞ 0.32347 0.31286 0.30284 0.29342 0.28464 0.27632 0.26862 0.26120 0.25404 0.24732

β 1.80 1.82 1.82 1.83 1.88 1.90 2.00 2.01 1.92 1.88

TABLE A I. Critical transition points αc for different values of N along with the extrapolated N → ∞ limit for δ < 1 using nearest neighbour
concurrence of the subjacent state as the order parameter in the XXZ J1 − J2 model. The last row presents the finite-size scaling exponents at
different δ.
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δ 1 2 3 4 5 6 7 8 9 10

N = 6 0.25000 0.33334 0.37500 0.40000 0.41667 0.42858 0.4375 0.44445 0.45000 0.45455
N = 8 0.24630 0.32928 0.37127 0.39664 0.41363 0.42581 0.43497 0.44212 0.44784 0.45253
N = 10 0.24449 0.32739 0.36956 0.39512 0.41228 0.4246 0.43388 0.44111 0.44692 0.45168
N = 12 0.24349 0.32634 0.36861 0.39428 0.41152 0.42392 0.43325 0.44054 0.44639 0.45120
N = 14 0.24288 0.32570 0.36803 0.39376 0.41106 0.42350 0.43288 0.44020 0.44608 0.45090
N = 16 0.24248 0.32528 0.36766 0.39342 0.41076 0.42323 0.43263 0.43997 0.44587 0.45071
N ≈∞ 0.24116 0.32382 0.36647 0.39226 0.40973 0.42228 0.43172 0.43916 0.44517 0.45002

β 1.96 1.91 2.00 1.93 1.95 1.93 1.89 1.92 1.97 1.92

TABLE A II. Critical transition points αc for different values of N along with the extrapolated N → ∞ limit for δ ≥ 1 using nearest neighbour
concurrence of the subjacent state as the order parameter in the XXZ J1 − J2 model. The last row presents the finite size scaling exponents at
different δ.

σ
N = 6 N = 8 N = 10 N = 12 N = 14

αC error αC error αC error αC error αC error

0.05 0.25434 0.0081 0.24881 0.0044 0.24608 0.0036 0.24820 0.0028 0.24834 0.0023

0.08 0.25521 0.0068 0.25038 0.00085 0.24750 0.0024 0.25002 0.0013 0.24968 0.00074

0.10 0.25567 0.0061 0.25154 0.0011 0.25415 0.0020 0.25416 0.0013 0.25629 0.00057

0.13 0.25975 0.0030 0.25804 0.0010 0.25761 0.00053 0.26736 0.00096 0.25547 0.00085

0.15 0.26095 0.0026 0.26053 0.00045 0.26215 0.0012 0.25951 0.00075 0.27500 0.00078

0.18 0.26237 0.0019 0.26618 0.00079 0.26659 0.00057 0.27478 0.00078 0.23801 0.00065

0.20 0.26442 0.0018 0.26821 0.00085 0.27002 0.00089 0.27985 0.00078 0.27977 0.00042

TABLE A III. The values of αc for different sizes of the system (N) and different σ for the mixing probability p = 0.2689, in the J1 − J2

Heisenberg chain with glassy anisotropy.

σ
N = 6 N = 8 N = 10 N = 12 N = 14

αC error αC error αC error αC error αC error

0.05 0.25201 0.0046 0.24879 0.0020 0.24799 0.0016 0.24826 0.0015 0.24465 0.0014

0.08 0.25353 0.0043 0.25034 0.00071 0.25225 0.0012 0.25044 0.000033 0.25357 0.00078

0.10 0.25567 0.0031 0.25201 0.0000014 0.25557 0.00099 0.25363 0.00048 0.26879 0.00081

0.13 0.25860 0.0055 0.25701 0.0024 0.25590 0.0012 0.25849 0.00081 0.26155 0.00092

0.15 0.25943 0.0044 0.25749 0.0023 0.25878 0.0010 0.26269 0.00070 0.26787 0.00094

0.18 0.26058 0.0034 0.26094 0.0011 0.26262 0.0011 0.26387 0.00082 0.27721 0.00098

0.20 0.26540 0.0037 0.26238 0.00095 0.26604 0.00062 0.26943 0.00064 0.28565 0.00079

TABLE A IV. The values of αc for different sizes of the system (N) and different σ for the mixing probability p = 0.1344, in the J1 − J2

Heisenberg chain with glassy anisotropy.
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