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Moiré systems have emerged in recent years as a rich platform to study strong correlations. Here,
we will discuss a simple, experimentally feasible setup based on periodically strained graphene
that reproduces several key aspects of twisted moiré heterostructures — but without introducing
a twist. We consider a monolayer graphene sheet subject to a Ca-breaking periodic strain-induced
psuedomagnetic field (PMF) with period Las > a, along with a scalar potential of the same period.
This system has almost ideal flat bands with valley-resolved Chern number £1, where the deviation
from ideal band geometry is analytically controlled and exponentially small in the dimensionless
ratio (Las/lg)? where Ip is the magnetic length corresponding to the maximum value of the PMF.
Moreover, the scalar potential can tune the bandwidth far below the Coulomb scale, making this
a very promising platform for strongly interacting topological phases. Using a combination of
strong-coupling theory and self-consistent Hartree fock, we find quantum anomalous Hall states
at integer fillings. At fractional filling, exact diagonaliztion reveals a fractional Chern insulator
at parameters in the experimentally feasible range. Overall, we find that this system has larger
interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability compared to
twisted graphene systems, even in their ideal limit.

Introduction— The discovery of correlated states in
moiré materials has transformed the study of strongly
correlated phases [IH6]. Moiré materials provide a plat-
form where the bandwidth can be tuned by adjusting the
twist angle, enabling the realization of topologically triv-
ial and non-trivial strongly interacting bands. Beyond
bandwidth and topology, recent works have identified
the quantum geometry of the wavefunctions [THI2] as a
central ingredient in understanding interacting physics,
including the effective quasiparticle dispersion [12HI5],
the stability of correlated topological phases [8 [0, 16
[I9] and the type and properties of collective excitations
[7, 10, 14, 20-22]. However, compared to bandwidth,
quantum geometry is significantly more difficult to tune
since it is mostly fixed by the form of the moiré potential.

A prominent example is twisted bilayer graphene
(TBG), where an ideal limit called the chiral limit [23]
can be theoretically achieved by tuning intrasublattice
moiré tunneling to zero. The model exhibits flat C' = +1
bands satisfying the trace condition [8] 9] [T}, 24], which
relates the Fubini-study metric to the Berry curvature.
Such bands, which have been dubbed “ideal bands", are
equivalent to those of the lowest Landau level (LLL)
in a non-uniform magnetic field [8, @], making them a
very promising platform to realize[25] exotic phases such
as fractional Chern insulators (FCIs) [, [0, [I6HI9] and
skyrmion superconductivity [20, 27]. However, known
experimental knobs cannot tune TBG to its chiral (ideal)
limit (although lattice relaxation moves couplings to-
wards this limit [28430]). Alternating-twist multilayer
generalizations [3IH35] may improve the situation, par-
ticularly at higher magic angles [30], but still do not of-
fer sufficient tunability. Other moiré systems employing

Bernal-stacked bilayer graphene such as twisted mono-
bilayer [36H42] or double-bilayer [43H50] admit idealized
chiral models [51H54] but in practice involve additional
terms such as trigonal warping [55] which moves them
even further from ideal conditions.

Strain engineering provides another route to realize
narrow bands with strong correlations [56H59]. Strain
acts on graphene as a pseudo-magnetic field (PMF) with
equal and opposite strength in each valley [60H68]. Early
theoretical works focused on strain profiles that real-
ize a uniform PMF to emulate Landau level physics
[64, [69, [70]. However, these realizations require the
atomic displacement u to grow quadratically with dis-
tance [71] which is only possible experimentally within
a limited length scale (~ 10 — 100nm) [72] [73]. A more
controllable setup is that of periodic strain, which yields
a periodic PMF with a vanishing average over the unit
cell. This is realized experimentally by suspending mono-
layer graphene on a network of nanorods [74], or through
the spontaneous buckling of a graphene sheet on spe-
cific substrates such as NbSey where a Cy-breaking PMF
was recently observed [75]. This PMF was shown to give
rise to narrow bands [76H79], but their quantum geom-
etry and the resulting interaction physics are yet to be
explored.

Recent progress in understanding the conditions for
ideal bands in Dirac systems was inspired by Ref. [23],
which identified general conditions for ideal flat bands in
chirally symmetric Dirac Hamiltonians. A fully flat ideal
band is realized if the sublattice-polarized wavefunctions
at the Dirac point have zeros in real space [23] [80]. How-
ever, one important distinction between strain and moiré
potentials is that the former gives rise to an Abelian gauge



field whereas the latter gives a non-Abelian gauge field
[23, [R1] for the Dirac electrons. This poses a challenge for
the realization of ideal bands in strained graphene, since
the sublattice polarized wavefunctions of a Dirac parti-
cle in an Abelian field are exponential functions that can
never have zeros.

In this letter, we will show that by combining slowly-
varying periodic Cy-breaking PMF with a scalar poten-
tial of the same periodicity in monolayer graphene, we
can realize an almost ideal flat band with valley resolved
Chern number C = +1. By almost ideal, we means that
deviations from ideality, i.e. trace condition violation, are
analytically controlled and exponentially small ~ e~
where o ~ (Lys/lg)?. Here, Ly > Ggraphene 18 the pe-
riod of the PMF and Ig is the magnetic length corre-
sponding to the maximal PMF. This deviation is < 1 for

experimentally realistic parameters.

We show that the bandwidth is tunable by tuning the
scalar field, and can be made almost two orders of mag-
nitude smaller than the Coulomb scale. We study this
limit of small bandwidth, where the interaction is ex-
pected to dominate the physics, using analytical strong
coupling theory, Hartree-Fock and exact diagonalization.
We provide evidence for quantum anomalous Hall (QAH)
states and fractional Chern insulators (FCIs) at integer
and fractional fillings, respectively. Our results suggest
that this system is more tunable and has favorable pa-
rameters to realize QAH and FCI states compared to
twisted graphene systems, even in their ideal limit.

Flat bands and topology— Our starting point is the
continuum model of strained graphene with a triangular
CT-breaking PMF [75] that has the form
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where G| = Ryy/3Go, Go = \/54721\4(1,0) are the 6 small-

est reciprocal lattice vectors, and G; = G + iGy.

The Hamiltonian in a single valley has the form H =
vpo - (—ihV + e A) where V x A = B. The other valley
is generated by time-reversal symmetry 7. H is invariant
under three-fold rotation C3 and M, 7, the combination
of mirror z — —z and time-reversal. Strain breaks both
CyT and M, symmetries of graphene [76} [77]. Further-
more, H has the chiral symmetry o, Ho, = —H, which
protects a single Dirac cone per valley against gapping
out even though Co7T symmetry is broken. A sublattice
potential o< o, can be used to open a gap at the Dirac
cone, but such a potential cannot be freely tuned in prac-
tice. On the other hand, since the Dirac cone is only
protected by chiral symmetry, we can in principle open
a gap using a purely scalar potential o< gg. To find such
a potential, we note that the sublattice polarized wave-
functions at the Dirac point are given by the simple expo-
nentials ¥ 4/p et? (with —V2¢ o B, see Eq. @) which

Bandwidth W 0.1 :
0.12 Gap A

g
= 0.05 A :
5 0.1t 0.5
< K r K’ K
5] L 0 a =0.4, 3 =0.068
4 0.08 0 — :
T LN N e e
f 0.06 Coulomb energy scale e=10 T
= 3 C=+1
g 0.04 €=15 5 | i
] QO """" [
Z 0.02 ; :
m T i
' ic=0
0 * ! i
03 04 05 06 07 08 09 1
e K T K’ K

FIG. 1. (a) The PMF as described by Eq. (I). The two
lattice vectors are highlighted. The band structures of two
systems having Hamiltonian in Eq. without (b) and with
(c,d) scalar potential. The Chern numbers of the middle four
bands are labeled. (e) The minimal bandwidth W of the
C = +1 flat band below the zero energy and its bandgap A
with respect to the lower band for different a by applying the
scalar potential that minimizes the bandwidth as shown in the
inset. The red square, triangle, and star in the inset label the
parameters used in plotting (b-d). The relative energy scale
has been emphasized by an arrow for @ = 0.4. All energy
scales are measured in units of Eg = hvp|Go|. This is equal
to 0.3 eV for the parameters of Ref. [75].

are peaked at the maxima/minima of ¢. Hence, a scalar
potential o< ¢ will act as a tunable sublattice potential
that opens a gap at the Dirac point. The explicit form
of the potential is Hy = ooV ), e’GrT which matches
precisely the PMF pattern. This potential matches the
height buckling pattern [75] so it can be generated by a
vertical electric field [79) [82].

It is convenient to express the Hamiltonian in dimen-
sionless units by measuring the momentum in units of
|Go| = \/gz and introducing the magnetic length for

M

the PMF By = el% Then we can write
B

H = Ey([k+ aA] o+ pV(r)), (2)

where Ey = hop|Go|, o = 1/1%|Go|? = 3(La/47lE)?,
and 8 = Vy/Ey are constants, and A and V' are dimen-
sionless gauge and scalar potentials given by
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where A = A, +iA,. Using the experimental parameters
Lys = 15 nm and I ~ 3.2 nm, the setup of Ref. [75] cor-
responds to @ &~ 0.4 and Ey ~ 0.3 eV. Fig. [I|b-c) show
typical band structures for o = 0.4 without (8 = 0) and
with (8 # 0) scalar potentials. For § = 0, the most
prominent feature is a pair of isolated bands. They are
connected by a single Dirac cone protected by chiral sym-
metry {H,0,} = 0. C5 symmetry further pins this Dirac
cone at the graphene valley (I" point for the supercell).

To highlight the role of topology, we adopt a sublat-
tice basis. For 8 = 0, {0,,H} = 0 which means that
[0.,H?] = 0, thus we can label the eigenfunctions of
H? (which are doubly degenerate) by a sublattice index
a/Bk- These wavefunctions are linear superpositions
of the energy eigenfunctions ¥ 4,p 1 = (1/vV2) (e 0, -
Ve k) where 0, - e X Y_c. Importantly, while the
wavefunctions for the lower/upper band around neutral-
ity are singular at the Dirac point and cannot be assigned
a Chern number, the sublattice wavefunctions are well-
defined everywhere [9, [83, [84]. In the SM [85], we show
that the sum of these two Chern numbers is necessarily
odd, implying that these two bands are non-trivial within
a single valley [76]. By direct computation, the sublattice
A (B) wavefunction has Chern number +1 (0) in the K
valley.

Adding a scalar potential with 5 > 0 gaps the Dirac
point and leads to a well-isolated C' = 1 band polarized
on the A sublattice as shown in Fig. c). Remarkably,
the scalar potential can be tuned to obtain an almost
perfectly flat band, shown in Fig. [I[[d). At a = 04,
the experimental value in Ref. [75], 8 = 0.068 gives the
minimal bandwidth. Using a height modulation around
0.2 nm [75], this can be generated by a vertical electric
field of 100 mV /nm.

The minimal bandwidth is plotted as a function of «
in Fig. e) together with the corresponding gap to the
closest band with the value of 8 at which this minimum
is realized given in the inset. We note that all energy
scales decrease exponentially with a. This exponential
squeezing of bands was also observed in chiral TBG for
large inverse angle « [23] and will be explained below. On
top of the exponential squeezing, the scalar potential fur-
ther flattens the topological band leading to a minimum
bandwidth that is smaller by almost two orders of mag-
nitude relative to the typical energy scale at a given a.
This almost flat topological band then opens possibilities
for exploring strongly correlating physics, which will be
discussed below. For interacting physics, it is instructive
at this point to also introduce the scale of the Coulomb
interaction: Vo = e2/(4mweegLyas). In dimensionless units,
ve = Vo /Ey = V/3e?/8m2ecqurph ~ 0.63 /¢ which is inde-
pendent of Lys. In Fig. e), we show the energy hierar-
chy of the bandwidth and the band gap as compared to
the Coulomb energy scale. We can see the the bandwidth
is significantly smaller than the Coulomb scale, placing
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FIG. 2. (a,b) Two zero mode wavefunctions at the I point
and (c) the amplitude of the wavefunction at the K point.
(d) The square root deviation y/1 — |overlap| between the real
wavefunction and the ansatz for 5 = 0 in Eq. @ averaged over
all k-points in the BZ. (e,f) The Berry curvature §2 and the
trace condition violation (Trg — |2])/|Q| of the C' = +1 band
of interest (see main text). Parameters are « = 0.4, = 0.
The dotted hexagon indicates the BZ.
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the system in the strongly interacting regime.

Wavefunctions and quantum geometry— We now con-
sider the wavefunctions of the middle two bands for
B = 0. We choose to measure the momentum relative to
the graphene K, point such that the Bloch wavefunctions
are Y a/(r) = ei(k*Kg)'TuhA/B(r). At the shifted T'
point (i.e., k— K, = 0) [86], we have a pair of zero modes
satisfying the equations

Dyr,p = Dur,p =0, Dipp g =Dlur 4 =0 (4)

with D = —2i0 + oA and DI = —2id + aA. Not-
ing that A = —2i0V, we can easily solve Eq. @) as
Yr.a/p(r) = eFoV(r) These wavefunctions are plot-

ted in Fig. a,b). We note that unless « is small, the
weight of the A sublattice wavefunction r 4 is strongly
suppressed at » = 0 and peaked at the two other Cjy
invariant points which are related by M,7, while the B
sublattice wavefunction ur p is strongly peaked at r = 0.
Meanwhile, the wavefunction at the K point for the A
sublattice polarized state (i.e., topologically nontrivial)



is also shown in Fig. [2c).

To understand the quantum geometry of the bands,
let us review the argument of Ref. [23] which showed
that we can construct an ideal perfectly flat Chern band
for a Dirac operator if the zero mode wavefunction at
the Dirac point 9y has a zero somewhere in real space.
Assuming the zero is at » = 0 to be compatible with
rotation symmetry, the wavefunctions take the form

. (T(Z +iB_1k) ik
Yr(r) = Te Yo(r), (5)
where k = k, + ik, and B = 2= = 482 with Ayc

and Agy being the areas of the unit cell and the Bril-
louin zone (BZ), respectively. These wavefunctions sat-
isfy D(0)vr = 0 if D(d)1bg = 0 and transform as Bloch
states under translations Y (r + R) = e By (r) for
any lattice vector R. The latter property follows from
the properties of the modified Weierstrass sigma func-
tion [I1 B7] which has a zero at z = 0 and satisfies
o(z + R) = nre? BETR/2) (%) where ng = +1 if R/2
is a lattice vector and —1 otherwise.

The wavefunctions host ideal quantum geometry
in a specific sense that we now describe. A crucial prop-
erty of the wavefunction is that its cell-periodic part
ur = e *7yy is a holomorphic function of k. This
property is equivalent [24, [88] [89] to the trace condition,
trg(k) = |Q(k)| where g,, (k) is the Fubini-study met-
ric, defined as the symmetric part of the quantum metric
tensor 1, (k) = (Ok, ur|(1 — |ug) (ur|)|Ok, ur), and Q(k)
is the Berry curvature. Equivalently, this property has
been recently interpreted as a vortex attachment condi-
tion, which enables the construction of trial FCI states
that are guaranteed to be exact ground states for repul-
sive short-range interactions [24) 5I], [53]. These three
equivalent properties define an ideal band.

Since the wavefunction 9r 4 is given by a simple expo-
nential, it cannot have any zeros. However, for « suffi-
ciently large [90], this wavefunction is exponentially small
at 7 = 0. As a result, we can multiply it by a regulator
fr(r) which vanishes at 0 but is close to 1 everywhere else;
such a replacement will only change the wavefunction
by an exponentially small term. We further require the
wavefunction to be rotationally symmetric, which means
that it can only depend on |r|. One possible choice of
regulator is fy(r) = 1 — e~ for some k-independent
1 > 0. Define an (unnormalized) variational state

wZ,A(T) =

whose Bloch periodic part uk A= = e~k ’"1/)" is a holo-

morphic function of k, meaning that this ansatz satis-
fies the ideal band condition. Thus, the deviation of the
real wavefunction from the ansatz provides a measure
for the violation of the ideal band condition. This devi-

ation, measured by \/1 — [(vr, 4l ) |[91] is plotted in

Fig. [d) for different values of n. The error decreases
with a, as expected, and is always < 0.3%. This indi-
cates that the violation of the trace condition Trg — ||
is very small [see Fig. Pf(e,f)]. The trace violation is fur-
ther reduced when £ is tuned to give the minimal band-
width (see S.M. [85]). We note that the wavefunction
@, up to a k-independent phase, corresponds to the LLL
of a Dirac particle in an inhomogeneous magnetic field
B(r) = —V2log |f,(r)e=*V(") /o(z)| that has a non-zero
average flux of 27 per unit cell [§].

The wavefunction of the B sublattice, which is topolog-
ically trivial and Wannierizable, is strongly peaked at r =
0. Thus, we can write an ansatz [92] for the Bloch wave-
function at any k given by vy p(r) = 3 p e'F BeaV (= R)
where V/(r) = V(r) for r within the unit cell centered
at 0 and —oo otherwise. Combined with the ansatz for
the sublattice A wavefunction, Eq. @, we see that pro-
jecting the § = 0 Hamiltonian onto the two flat bands
yields exponentially small dispersion; the Hamiltonian
only contains sublattice off-diagonal terms which contain
the overlaps (¥ 4|tg) ~ e~®. This also explains why the
value of the scalar potential S needed to flatten the band
decreases exponentially with a [cf. the inset in Fig.[I|(e)].
A detailed analysis of the band energetics is provided in
SM [85].

Interacting phases for the partially filled Chern band—
Next we consider the effect of interactions upon partially
filling the flat Chern band by hole doping the band struc-
ture in Fig. 1| relative to charge neutrality. Due to valley
and spin, we consider the filling v € [ 4,0]. Using a

screened Coulomb interaction Vg, = tanh |q|d, we

266 2eeolq]
consider an interacting Hamiltonian H + Hine with [9, 83]

Hlnt—2AZV6pq6p q» pq—ZAaq

a,k

T
a,kca,k-i-q

(7)
where 6pq = pg — Pqs Pq = D0,k %a.GAa,c(k). Here,
a = (s,7) is a combined index for spin s and val-
ley 7, G are reciprocal lattice vectors, and A, q(k) =
(Ua ke |Ua,k+q) are form factors.

In the limit of small bandwidth, we can employ
strong coupling analysis similar to that done in TBG
[9, 183], 184} 94] to deduce that the ground states at integer
fillings are generalized spin-valley ferromagnets. The ar-
gument is explained in detail in SM [85] and summarized
here. Our setup is simpler than TBG, since there is a sin-
gle band per spin and valley. It is also simpler than other
moiré systems like twisted double bilayer graphene which
have a single band per spin and valley but whose disper-
sion is non-neglegible [55]. At v = —1 and v = —3, the
ground state is a QAH spin and valley polarized insulator
with Chern number +1 that spontaneously breaks both
SU(2) spin and time-reversal 7. At v = —2, we have two
degenerate ground state manifolds: (i) a QAH valley fer-
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FIG. 3. (a) Exact diagonalization spectrum at v = —2/3
on 24 k-points of the QAH band at v = —1, as discussed in
the text. The ground state is approximately three-fold de-
generate (box). (b) Spectral flow of the three ground states
under flux insertion, indicating a Laughlin state. (c-f) Self-
consistent Hartree Fock spectra of the strongly-correlated in-
sulators discussed in the text. System size 24 x 24. Parame-
ters: o = 0.4, 8 = 0.068, and Eo = 0.325 ¢V [93]

romagnet with C' = £2 and (ii) a family of spin-polarized
states with C' = 0 consisting of a spin ferromagnet in each
valley. The two manifolds (i) and (ii) are degenerate in
our model, but adding an intervalley Hund’s coupling is
expected to lift the degeneracy and select states in (ii)

[55, 85, [95].

In contrast to TBG, there are no further anisotropies
to consider here. In addition, intervalley coherent orders
are strongly disfavored since they involve coherent su-
perposition of states from opposite Chern bands, leading
to nodes in the order parameters [55, 96]. Furthermore,
the interaction-generated dispersion due to Hartree-Fock
corrections [I3HI5] [94] is smaller compared to TBG with
similar interaction parameters [85]. This follows from the
delocalization of the A-sublattice wavefunctions across
two different points, related by M, T, (see Fig. ) which
leads to a much milder Hartree potential than that of the
AA-site-localized TBG electrons. This makes the QAH
more energetically favored against competing states com-
pared to TBG [97]. The ground states at different fill-
ings are confirmed through self-consistent Hartree-Fock,
shown in Fig. |3] which verify the QAH states at v = —1,
and —3 and the degenerate spin and valley polarized

states at v = —2. We notice here the relatively large gaps
and small quasiparticle dispersion compared to TBG (see
SM [85] for comparison).

We expect that the flat ideal Chern bands of the A
sublattice will host FCIs when fractionally filled. We ver-
ify this in the simplest case where we electron-dope the
v = —1 spin and valley polarized QAH state, such that
the doped charge enters in a single flavor. We study the
filling v = —2/3 using single-flavor exact diagonalization
and show our results in Fig. [3] We see clear signatures of
a Laughlin state with 3-fold ground state degeneracy and
spectral flow indicating topological order. We note that
we have not included the interaction-generated disper-
sion. Includng this introduces inhomogenieties that make
ED extremely sensitive to grid choice. We note however
the DMRG results of Ref. [19] showed that FCIs in chiral
TBG are stable up to relatively large values of dispersion.
Given the milder Hartree dip in our setup that makes the
interaction-generated dispersion a lot smaller compared
to TBG [85], we expect the FCIs to survive its addition.
We leave a detailed analysis of this effect to future works.

Discussion— We studied a system of monolayer
graphene with periodic, Cs-breaking pseudo-magnetic
field combined with a periodic scalar field with the same
period Lps > a. This system may be realized experimen-
tally by placing graphene on top of a Cs-breaking sub-
strate such as NbSes. The substrate causes both strain,
leading to a Cy-breaking PMF, and height modulation,
giving a periodic potential in perpendicular electric field.
Other realizations involve a network of nanorods [74] ar-
ranged in a Cy-breaking pattern (see Ref. [76]), combined
with a periodic scalar potential (which can be generated
by a patterned dielectric [98],[99] or a separate moiré hBN
potential [I00]). Our analysis has shown that this system
is simpler and more tunable than most graphene-based
moiré systems even in ideal limits. Thus, it represents an
extremely promising platform to realize quantum anoma-
lous Hall states and fractional Chern insulators, as we
have shown numerically. Furthermore, by switching the
sign of the scalar field or the gate voltage, we can ac-
cess both a topological band and a trivial band within
the same system. From an experimental viewpoint, the
main technical challenge in the current setup based on
NbSeq substrate lies in the difficulty of gating the sam-
ple since the substrate is metallic. By overcoming this
technical difficulty or using a different Cs-breaking but
insulating substrate, we predict this system to be an ideal
platform to study strong correlation effects in topological
bands with significant advantages over twisted multilayer
graphene-based moiré systems.
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SUPPLEMENTAL MATERIAL

This Supplementary Material contains detailed discussions on symmetries of the Hamiltonian, the effect of the

scalar potential, band energetics, and interacting phases.

Symmetries of the Hamiltonian

In this section, we briefly overview the symmetries of
the Hamiltonian with the gauge field A and scalar
field V' given by Eq.[3] In particular, the z and y com-
ponents of the field are given by

A, :ReA:iZsinW—l

Ay =1Im Z—lZCOb

G =iy "Gy, (S1)

_Z E Gl@-@ZGl‘r,
l

(52)

lGl’!‘_

(cos 2L, sin ).

We now focus on the action of symmetries on the single

where we used G| =

valley Hamiltonian. The other valley is generated by the
action of time-reversal symmetry. In the absense of any
gauge fields (i.e. strain), the single-valley Dirac Hamil-

tonian Hp(r) = —io - V has the following symmetries
CsHp(r)Cyt = e T Hp(e 5 vr)el5 e, (S3)
MyHD($7y)M b= U:rHD( y)am (84)
(CoT)Hp(r)(C2T) ™ = 0uHp(~7)ow,  (S5)
(Mo T)Hp(x,y)(MT)™" = Hp(=z,y)  (S6)

The vector potentlal plece is 6-fold rotationally symmet-
ric since A(ze5) = % A(z), i.e. A(z) transforms as
a vector under rotation. Since A,(—z,y) = A.(z,y),
Aa:(x’_y) = _Ax(xvy) and Ay(_x’y) - —Ay(ﬂf,y),



Ay(z,—y) = Ay(z,y), we find

(CoaT)A(r) - (CoT) ' = A(—r) -0 = —A(r) - o (ST7)
M,A(z,y) - a’My_1 = A, (x,—y)os — Ay(z, —y)oy

=—A(r)-o (S8)
(M, T)A(r) - o (M, T) ™ = Au(—2,y)os — Ay(—2,y)oy
=A(r) o (S9)

Thus, the strain field breaks both Cy7 and M, while
preserving M, 7T and Cjs.

Band topology

Here we will show that the total Chern number of the
two bands around neutrality is odd. To understand the
properties of these bands in the sublattice basis, we note
that they are adiabatically connected to the bands ob-
tained by adding to the Hamiltonian a large mass term
Ao, projected to the space of the two flat bands. For
positive/negative A, the lower band is polarized on sub-
lattice B/A. For sgn A = v = +£1, let us define the
Chern number of the A/B sublattice bands to be C4/p .
The Hamiltonian H(A) = o - (k + A) + Ao, satisfies
H(A) = —o.H(—=A)o. which means that Cy/p 4 =
Ca/B,— = Cyyp- On the other hand, for small A, we
know that the Chern number changes by +1 as we change
the sign of A from negative to positive (since the Chern
number of a continuum Dirac cone is %sgn(A). Thus,
Cp,4+ = Cy_ + 1 which implies Cp = C4 + 1. As a
result, the total Chern number C = Cy +Cp =2C4 +1
is necessarily odd. This is verified in Fig. [l| (b,c,d) by
direct computation.

The effect of scalar potential on trace condition
violation and bandwidth of the flat C = +1 band

As discussed in the main text, the trace condition for
the topological C = +1 band is only slightly violated
because its wavefunctions are exponentially close to a
set of ansatz that satisfies exactly the trace condition.
Here we numerically confirm that after the introduction
of the scalar potential, the trace condition violation be-
comes even smaller when the minimal bandwidth of that
C' = +1 band is realized, i.e., § = 0.068 for & = 0.4 [see
Fig. [[a,b)]. A naive intuition for this extra reduction
of the violation is that the scalar potential puts an en-
ergy barrier for A sublattice wavefunctions around r = 0,
making 14 g=o(r = 0) even closer to zero (recall that an
exact zero of 14 k—o at » = 0 implies a flat and ideal
band for the § = 0 chiral model). However, for suffi-
ciently large § the breaking of chiral symmetry becomes
significant enough to increase both the bandwidth and
the trace condition violation substantially. By diagonal-
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FIG. 4. (a) The Berry curvature and (b) the trace condition
violation for the system with @ = 0.4 and 8 = 0.068. (c)
The bandwidth of the flat C = +1 band achieved for @ =
0.4 at different 8’s using the full model and projected band

model. (d) The parameters from Egs.(S10]), (S11) obtained

by projecting the Hamiltonian onto the middle two bands in
Fig. b). The purple curve shows the resulting flat band in
the projected model.

izing the full model (red dashed curve in Fig.[d]c)), we see
that there is an optimal value of g for a given « (we show
the bandwidth, but the trace condition is also optimized
at a nearby value of f3).

To see why there is an optimal value for § for op-
timizing the bandwidth, we project the Hamiltonian
onto the middle two bands depicted in Fig. [[[c) (i.e.,
a = 0.4,5 = 0) using the sublattice polarized wavefunc-
tions {|¢a k), |¥B k) }- This projected model is accurate
for small 5 and captures the existence of an optimal value
as shown in the blue line of Fig. c). We obtain

H2 (k) = (s il b+ @ A(r)] - ol ) = ho, (K)o

(S10)
Note that there is also generically a term proportional
to oy, but for convenience we choose to rotate it into o
for each k with a (in general singular) sublattice-band-
dependent gauge transformation 1, — €%%7=9);,. Only
the gauge invariant squared dispersion will enter below,
however.

We also have

VE2(k) = (b 4| BV (1) |ths k) = Viry (K)o + Vi (k)7
(S11)
where s,s’ = A, B. The projected parameters h,,, Vg,
and V, are plotted in Fig. Ekd), where one should notice
that the shape of h,, reproduces the dispersion of the
middle two bands in Fig. b), as expected.

The final dispersion of this projected model is then



Voo £ +/h3, + V2. We note that V;, (k) oc 8 has weak
k dependence, while h,_(k) has a prominent dip at the
T" point corresponding to the zero energy Dirac point of
the 3 = 0 model (see Fig. [d(d)). The term V,,, then acts
as a mass for the Dirac cone dispersion of h,(k), which
yields a rapidly flattening quadratic dispersion o« 1/f as
seen in Fig. c) for small 5. For large 8 the momentum
dependence of V;, _ (k) dominates the residual quadratic
dispersion, such that the dispersion increases with 3, but
because the momentum dependence of V;,, _ (k) is so weak
the total dispersion reaches a tiny value before finally
increasing.

Strong coupling analysis

We now discuss interactions in the Chern band directly
below charge neutrality and will derive the exact many-
body ground states in the strong coupling limit. Due to
valley and spin, the band has four "flavors". We consider
a Hamiltonian with strong repulsive interactions plus the
small dispersion in the four flat bands [9, [R3]:

1
H= Z CL,kha(k)Ca,k + 94 Z VqOpqdp—q,  (512)
o,k

q
0pq = pq — Pq, Pq = Z dq.G Z Aa,c(k), (S13)
GeA* a,k

Pa = Z AO‘*Q(k)CL,k:COé,k+q7 (814)
a,k

where Vg is some repulsive interaction, ¢, are the an-
nihilation operators for the flat band below charge neu-
trality labelled by a flavor index o = (s,7) = (T / |
,K/K'), A* is the reciprocal lattice, and hg is the non-
interacting dispersion. The form factors are defined as
Aa,q(k) = (Ua k|Ua,k+q) and we assume a periodic gauge
such that Ay q(k + G) = Aa (k) and cq k+G = Ca,k for
any reciprocal lattice vector G. Intuitively, dp measures
the change in density relative to charge neutrality.

This choice of the Hamiltonian (S12) guarantees that
the interaction term vanishes when acting on a state
where the four flat bands are fully filled |Tgy) =

[l Cl,k|0> (where |0) is the state where the four flat
bands are empty). To see this, we note that

0 if g ¢ A*

S15
‘\Ilfu]]> if qc A* ( )

Cl,kca,k+q|‘lffu11> = {

which implies pq|l/}fu11> = ﬁq|l/}fu11>.

We note that we can alternatively write the interaction
in terms of the normal-ordered operators such that the
interaction term annihilates the state |0) where the four
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flat bands are empty:
P 1
H = ;C&7kha(k)ca,k + Byl zq: Vg :pqp—q: (516)

where the single-particle dispersion is now modified as

ha(k) = ha(k) + hE (k) — 4] (k) (S17)
and AT and hY are the Hartree and Fock dispersions
defined as

RER) = 50 D Valaa B (515)

1
hi(k)= 15 D Verac(k) D As-c(k). (S19)
GeA~ Bk’

Using time-reversal symmetry and the periodicity of the
gauge, we have the identity A\s - (k) = A _, _g(k+
G) = X\ _, _c(k) = Xsr.g(—k), which implies that
>k A8.G(k) is independent of the flavor 3. Thus, we can
rewrite the Hartree potential as

hEHF) =5 Y VohaaW)Ma, Mo =Y Arx. alk).
GeA* k'
(S20)
The Hamiltonian has a U(2) x U(2) symmetry, con-
sisting of U(1) charge conservation and SU(2) spin con-
servation in each valley.

At integer fillings, spin-valley ferromagnets are ezact
eigenstates of this Hamiltonian [I3] 14, B3] in the flat
band limit hg = 0. Fig. illustrates a few of these
states. The arguments we use below are akin to those
used in TBG (see [9] for a pedagogical treatment), but
generally simpler as there are half as many flat bands
here. To see that flavor ferromagnets are exact eigen-
states of the Hamiltonian, we note that the density op-
erator consists of a sum over flavors pg = > pa.q
Pova =Dk Ag(K)c! ;o krq where the density operator
only acts within this flavor. Denoting the state where
the o flavor is fully filled (empty) by |2 (1¥Snow));

empty
we find po.q|U8y) = Pa,ql¥hy) and pa,q\\Ilg‘mth = 0.
Thus, for a generalized Ferromagnet (GFM) where each
flavor is either full or empty, we find
Hint|[Varm) = Earm|Yarm) (S21)
— Hopy _ V]
Eerm= Y, hi(k)="3 > VeM_gMa (522)

k,a empty GeA*

The single particle excitations on top of [¥gpym) can be
obtained exactly as follows. Using Koopman’s Theorem,
electron (hole) excitations are obtained as CL7k|\I/GFM>
(Ca,k|Perm)) where flavor « is empty (full). The corre-
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FIG. 5. The fillings of the four flavors of flat bands in the
various generalized ferrogmangets discussed in the text. Each
Chern sector has a U(2) x U(2) symmetry.

sponding spectrum is given by

€a,c(k) =
Ga)h(k) =

+hE (k) -
—h (k) —

vIh! (),
[v|he (k).

(S23)
(S24)

The GFMs will be the actual ground state of the sys-
tem if the gap to charged excitation is much larger the
quasiparticle dispersion [14], 84] which is the case for our
system (see Fig. [6]).

The manifold of GFM ground states at different fill-
ings can be generated by acting with U(2) x U(2) sym-
metry on simple GFM states. Such a manifold can be
concisely parameterized in terms of the correlation ma-
trix P,s(k) = (cL)kC@,c}, which satisfies P2 = P for
Slater determinant states. For GFM states, P(k) is k-
independent, and its trace is related to the filling via
tr P = 4 — |v|. TIts spin polarization is (S;) = trs;P,
where s, , . are the spin Pauli matrices. Similarly, the
valley polarization (which is the same as the Chern num-
ber) is given by C' = tr7,P, where 7., . are the valley
Pauli matrices.

We now discuss the GFM ground states at each integer
filling in detail. At v = —3, we can write the simple spin-
valley ferromagnets as

PP = 4(1+sz)(1i72). (S25)
This describes a state where valley 7 = F is fully empty,
whereas valley 7 = =+ has a half-filled spin-polarized
with the 1 spin filled (see Fig. . The two states Pf’)
are related by time-reversal symmetry and have Chern
numbers Cy = tr Pf’) = +1. Acting with U(2) x U(2)
symmetry yields a manifold of states in each Chern sec-
tor that is equivalent to a sphere labelled by a single
unit vector m. The corresponding density matrix is
PP =11+n-s)1+m,).

12
The analysis at ¥ = —1 is quite similar, with

PO =1 4n )1 4m) 4 (1FT)  (5%)
which corresponds to completely filling the 7 = F valley
and half-filling the 7 = 4+ valley with a spin-polarized
state. This also describes two manifolds of states with
Chern number Cy = F1.

At half-filling, v = —2, we can write the valley ferro-

magnets

(S27)

ﬂ2—2uim
which correspond to filling 7 = =+ valley leading to a
QAH insulator with Chern number C = +2. Each state
is a singlet under U(2) x U(2). In addition, we can also
write the spin ferromagnet

1
P® = _(1+s.)

> (S28)

which has zero Chern number. Acting with U(2) x U(2)
generates a manifold of states parametrized by two unit
vectors mn4:

1
P2 = (14+n;-s)(14+7)+

1
s$,my,m_ 4 Z(l—’_n*s)(l_,rz)
(S29)
All states P( i and PS( ,2 +,n_ are degenerate in our model.
This degeneracy can be lifted by adding an intervalley
Hund’s coupling term [83] 95] Jy S, - S_ where Sy are

the (second quantized) spin operators in the 7 = + valley.

For the valley-polarized states P( ) , this term vanishes.
For spin polarized states, it yields the anisotropy Jgn, -
n_, which select a ferromagnet n, = n_ for Jy < 0
and a spin-valley locked antiferromagnet ny = —n_ for
Jg > 0.

As a reference of comparison, we can compare our sys-
tem to TBG aligned with hBN substrate (TBG-hBN).
The TBG-hBN system lacks C5 symmetry and has a
single sublattice polarized Chern band per flavor mak-
ing a direct comparison with our system possible. QAH
states have already been observed in TBG-hBN at v = 3
[101), 102], and FCIs were observed at finite but small
magnetic field [25]. To make our comparison transpar-
ent, we use same energy units for both systems, i.e. we
use energy units Fy = 0.324 eV, which corresponds to
Ljy; =~ 13.3 nm, the moiré period at TBG’s first magic
angle. Fig. [6] and Table [[] contain a comparison between
our system and TBG-hBN both in the ideal chiral limit
and the more realistic limit where the ratio of intrasub-
lattice to intersublattice tunneling is finite, kK = 0.7. We
conclude that our system has flatter Chern bands than
TBG, even in the presence of interactions. We therefore
expect it to host a variety of strongly-correlated phases.



(a) Bandgap [meV]

v=—1lv=-2v=-3
Strained graphene 30.97 30.64 28.82
Chiral TBG 22.82 17.43 12.03
Realistic TBG 15.8 6.73 -3.32

(b) Bandwidth (conduction band) [meV]
v=—1lv=-2v=-3
Strained graphene 1.49 0.33 2.14
Chiral TBG 0.25 5.64 11.04
Realistic TBG 1.3 9.08 19.14

(c) Bandwidth (valence band) [meV]
v=—lv=-2v=-3
Strained graphene 5.12 6.94 8.75
Chiral TBG 10.54 1594 21.33
Realistic TBG ~ 21.35 31.38 41.42

TABLE 1. (a) bandgap, (b) bandwidth for the conduction
band, and (c) bandwidth for the valence band for the quasi-
particle dispersion for the strong coupling ground states at
different filling for our model of strained graphene together
with hBN-aligned TBG in the chiral limit x = 0 and away
from it kK = 0.7. We use TBG at the first magic angle.
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FIG. 6. Comparison between our model of periodically strained graphene and hBN-aligned TBG both in the chiral limit xk = 0
and away from it k = 0.7. As in the main text, we used dielectric constant € = 10, screening distance d = 10 nm and sublattice
potential for the top later dtop = 15 nm [96]. We used an overall energy scale Ey = 0.324 eV corresponding to the energy scale
of TBG at the first magic angle. Detailed values for the gaps and bandwidth are provided in Table [[
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