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Using a thermodynamically consistent, mesoscopic model for modern complementary metal-oxide-
semiconductor transistors, we study an array of logical circuits and explore how their function is constrained
by recent thermodynamic uncertainty relations when operating near thermal energies. For a single NOT gate,
we find operating direction-dependent dynamics, and an optimal trade-off between dissipated heat and operation
time certainty. For a memory storage device, we find an exponential relationship between the memory retention
time and energy required to sustain that memory state. For a clock, we find that the certainty in the cycle time
is maximized at biasing voltages near thermal energy, as is the trade-off between this certainty and the heat dis-
sipated per cycle. We demonstrate that a simple control mechanism for the clock leads to a monotonic increase
in cycle time certainty with biasing voltage alleviating its degradation at large biasing voltages. These results
provide a framework for assessing thermodynamic costs of realistic computing devices, allowing for circuits to
be designed and controlled for thermodynamically optimal operation.

While semiconductor-based computational capacity [1, 2]
and efficiency [3–5] has exhibited sustained exponential
growth over the past century, continued adherence of these
trends is being disrupted as feature sizes approach atomic
length scales and energetic scales near those of thermal
noise [4, 5]. At such small scales, computation has to rec-
oncile with unavoidable noise[6, 7]. This noisy limit has been
termed thermodynamic computing [8, 9] and requires the de-
velopment of new principles to achieve robust and energy-
efficient information processing [10–13]. In this letter, we ex-
plore fundamental limitations encountered when computing
in this regime by showing how the function of realistic log-
ical circuits is bounded by recent thermodynamic uncertainty
relations[14, 15].

Building upon equilibrium thermodynamics-based limits on
computing operations, such as Landauer’s limit on the cost
of bit erasure [16], stochastic thermodynamics[17] provides
a framework for exploring the inherent limits of logical circuit
operations on small scales, far from equilibrium. Recent re-
sults like fluctuation theorems, thermodynamic uncertainty re-
lationships, and speed limits [18–27] can be used to strengthen
bounds on computation within the thermodynamic comput-
ing regime, provided a physically-consistent, stochasticmodel.
Using a recently developed model for current complementary
metal-oxide-semiconductor (CMOS) transistors,[28] we study
the interplay between accuracy, speed, and heat dissipation of
an array of computations performed near thermal energies, lo-
cating optimal trade-offs between thermodynamic and opera-
tional costs.

Model – Many conventional engineering approaches for
characterizing the effects of noise on circuit operation rely
on assumptions only valid near equilibrium or near specific
operating conditions [29–32], guaranteeing neither thermody-
namic consistency nor accuracy far from equilibrium[33]. To
provide a more faithful description of stochastic circuits, we
require models that obey local detailed balance and exhibit

shot noise [34], while accurately reproducing known circuit
characteristics. Recently, several stochastic models for CMOS
devices have been proposed[28, 35, 36], enabling the study of
noisy circuits and the associated thermodynamic costs when
operating these devices near thermal energies[37–39]. Here,
we employ one such model[28] to study systems of inverters,
or logical NOT gates, built from single electron tunnel junc-
tions operating within the classical limit [40], and using a ca-
pacitive charging model for the readout voltage. This model
meets the three criteria emphasized above and in principle can
be parameterized directly from microscopic calculations, pro-
viding a link between circuit performance and the underlying
materials properties.
As shown in Fig. 1 (a), each inverter contains an N-type and

a P-type transistor, each modeled by the band energy of an
electron in the transistor �N

(

Vin
)

and �P
(

Vin
)

, respectively,
with energy levels controlled by the inverter’s input voltage
Vin. This form of �i is valid in the limit of high gate capaci-
tance. We set �N = qVin and �P =

3
2qVd − qVin to reproduce

the characteristic voltage transfer curve of an inverter where
q is the unit of charge[28]. The transistors are connected to
three electron reservoirs: a source connected to the N-type
transistor with reference voltage Vs = 0, a drain connected
to the P-type transistor with voltage Vd > 0 resulting in a
cross-voltage, and an output gate connected to both transis-
tors. While the source and drain are held fixed, the output gate
voltage changes as electrons accumulate in the gate according
to dVg∕dt = −Jg(t)∕Cg, where Jg is the current of electrons
into the gate and Cg is the gate capacitance [41].

The system evolves stochastically according to a Markovian
master equation )tP(t) =WP(t)where P is the configurational
probability vector andW is the stochastic generator, with ele-
mentsWij specifying the rate at which an electron transitions
from state j to i and Pi(t) being the probability of being in
state i at time t. The ratio of forward and reverse rates sat-
isfy local detailed balance, Wij∕Wji = e−�(Ei−Ej ), where Ei
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is the energy of a given configuration and � = 1∕kBT is the
inverse temperature defined with Boltzmann’s constant kB and
temperature T . The rates are defined using the Fermi distribu-
tion where the transition rate of an electron from an electrode
j to a transistor i is Wij = Γ

(

e�(�i−qVj ) + 1
)−1 and the re-

verse isWji = Γ − Γ
(

e�(�i−qVj ) + 1
)−1 where Γ specifies the

timescale for transitions and is physically set by the resistance
of the transistor-electrode interface.

We work in units of thermal voltages and times, VT =
kBT ∕q and �ℏ respectively, and set Γ−1 = 5�ℏ so the
timescale of electron transitions is longer than the timescale of
thermal fluctuations [40], with ℏ being Planck’s constant. For
reference, at room temperature VT ≈ 26 meV and �ℏ ≈ 25 fs.
In these units, the model inverter is determined by a specifica-
tion of the input voltage Vin and cross-voltage Vd.
Inverter –We start by considering the operation of a single

NOT gate, which takes an input binary signal X and outputs
its logical inverse Y according to the mapping:

X =

{

0, Vin = 0
1, Vin = Vd

, Y =

⎧

⎪

⎨

⎪

⎩

0, Vout ≤ �Vd
1, Vout ≥ (1 − �)Vd
∅, otherwise

. (1)

In the deterministic limit, when the input is X = 1, current
through the P-type transistor is inhibited, bringing the capac-
itor gate into effective contact with only the source reservoir
with Y = 0. Conversely, when the input voltage is X = 0,
current is inhibited in the other transistor and the capacitor is
connected to the drain reservoir, with Y = 1. All calculations
performed for the single inverter are obtained using numeri-
cally exact time evolution, obtained using a Padé approxima-
tion [42] with a truncated Hilbert space of 16Cg(Vd + 4). For
calculations where simulation times are not explicitly shown,
we use time steps distributed logarithmically up to 1016�ℏ.

Figure 1(b) shows the time dependent response of the in-
verter to an alternating input voltage, with the left and right
panels corresponding to setting X = 0 and X = 1, respec-
tively at t = 0. Lower cross-voltages require less electron
accumulation in the capacitor gate, and additionally fluctua-
tions in the gate output are significantly larger for smaller Vd.
These small accumulations and large fluctuations lead to re-
sponse times that are orders of magnitude faster at low cross-
voltages, highlighting a trade-off between output certainty and
characteristic response time. While the steady-state statistics
of the charged and discharged inverter are symmetric, we ob-
serve that the dynamics are not. As accentuated at larger Vd,
the capacitor discharging happens rapidly, while charging oc-
curs relatively slowly. This difference can be understood en-
ergetically. When discharging the capacitor, its occupation
regulates the voltage in such a way that discharging becomes
energetically more favorable as the gate empties. In the op-
posite direction, the accumulation of electrons becomes more
energetically unfavorable as the gate charges, causing an expo-
nential slowing of current into the gate as a function of time.
Additionally, this leads to circulation of electrons between the

FIG. 1. Characterization of the NOT gate. (a) Illustration of the
logical symbol and correspondingMarkovmodel. (b) The probability
of Vout with blue and green shading corresponding to different cross-
voltages. The left (right) panel illustrate the dynamics of charging
(discharging) the inverter, with input voltages switched at t = 0. (c)
Trade-off between first passage time certainty and heat dissipation for
discharging and charging over a range of Vd with � = 0.05, with the
shaded region forbidden by the thermodynamic uncertainty relation.
(d) The same trade-off as in (c) for the charging process shown as a
function of the probability of a correct gate output in the steady-state
with varying accuracy thresholds � ∈ [0, 0.05, 0.1, 0.2].

transistors and capacitor when charging, while electrons move
directly from the capacitor out of the inverter when discharg-
ing. The functionally unnecessary transitions caused by this
circulation cause higher heat dissipation rates during the load-
ing process.
To understand more precisely the interplay between the

thermodynamic and operational costs for the inverter, we can
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employ a thermodynamic uncertainty relationship

�2p =
⟨�p⟩2

⟨��2p ⟩
≤

⟨Q⟩
2qVT

(2)

where brackets indicate an trajectory ensemble average, �p is
the first passage time to an output voltage passing the accuracy
threshold � [43], and �x = (x − ⟨x⟩) [44]. The thermody-
namic uncertainty relationship is a general result from stochas-
tic thermodynamics, valid for any Markovian jump process. It
states that the certainty in the first passage time, �p, is bounded
from above by the heat dissipated over a trajectory,Q, defined
as Q = ∫

�p
0 dt Q̇(t), with Q̇(t) =

∑

i,jWijPj(t) lnWji∕Wij
[45]. The bound relates the minimum thermodynamic cost for
a given desired certainty in the first passage time. In practical
terms, higher certainty in operation time allows for process-
ing input bits at higher rates with lower probabilities of incor-
rect or inconclusive readings, while reducing excess dissipated
heat caused by longer operating times. Figure 1 (c) shows how
this bound depends on the cross-voltage. For the discharg-
ing process, we observe an optimal compromise between first
passage time certainty and heat dissipation near Vd = 5VT.
No such peak is immediately evident for the charging process
and, more strikingly, the bound is significantly looser due to
larger fluctuations in first passage times and the excess dissi-
pated heat caused by internal cycle currents. That the bound is
not saturated for any Vd implies that the operation of the NOT
gate is not limited by thermodynamic constraints and that ob-
served limits are products of the particular CMOS design and
operation.

In Fig. 1 (d), we vary the cross-voltage and plot the trade-
off between first passage time certainty and heat dissipation,
as a function of the probability of a correct output at long
times Pcorrect = ⟨Y ⟩X=0, where the ensemble average is over
long-time trajectories with the specified input. We addition-
ally show multiple curves corresponding to differing values
of � and observe the emergence of an optimal trade-off, near
Vd = 3. Loosening � moves the curves significantly to-
wards the bound by dissipating less heat. The combination
of these effects allows for thermodynamically optimal opera-
tion at higher probabilities of correct outputs as � increases,
with similar but less pronounced effects not shown for the dis-
charging process.

Memory Device – Next we consider a static random ac-
cess memory (SRAM) device built by coupling two invert-
ers, as shown in the inset of Fig. 2 (a). This device oper-
ates using so-called flip-flop circuitry, meaning it exhibits a
bistable steady-state, which is a dynamical consequence of a
pitchfork bifurcation. The inverter’s state can be set by switch-
ing on V 1set , employing feedback from V 1out to V

2
in. Here, we

will focus on memory maintenance, which can be reliably
achieved at sufficiently large cross-voltages by switching both
setting voltages off and both feedback loops on. To simulate
the memory device, we perform an approximate evolution us-
ing a fourth-order Runge-Kutta scheme acting on a truncated
Hilbert space using a time step of Δt = �ℏ∕10 until a final

time of tf ≈ 106�ℏ.
Figure 2 (a) shows the steady-state probability of observ-

ing an output voltage Vout = V out1 . The requisite bistability
for memory storage arises at Vd∕VT ≈ 2.5 where the cross-
voltage overcomes the effects of thermal fluctuations. No-
tably the bistability is a unique consequence of the nonequi-
librium driving, which disappears in the absence of a finite
cross-voltage. At finite Vd, the degeneracy of the steady-state
manifests as a spontaneous switching of Vout as a function of
time, illustrated in Fig. 2 (a), as evaluated using Gillespie sim-
ulations [46]. For large Vd we observe Vout∕Vd is localized
near 0 or 1 for time scales much larger than individual inverter
operation time scales ⟨�p⟩, indicating persistent memory stor-
age. At long times, however, output voltage is stochastically
inverted, corrupting the memory storage.
We define �err as the time required for a memory device,

initialized in one of the bistable states, to experience a bit flip
memory error. Figure 2 (b) shows the average time required
for a bit flip to occur ⟨�err⟩ [47] as a function of the char-
acteristic time of a single inverter. We observe that the rate

FIG. 2. Characterization of the memory device’s behavior and ad-
herence to thermodynamic speed limits. (a) Probability of Vout as a
function of Vd, with crosses locating points of maximum probability
at each Vd illustrating the onset of bistability. Example trajectories are
shown for before and after the onset of bistability. (b) Mean time for a
memory error as a function of the inverter relaxation time, controlled
by increasing Vd, as indicated on the top x-axis label, with the red
dashed line indicating ⟨�err⟩ = ⟨�p⟩. The shaded region is forbidden
by the dissipation time uncertainty principle.
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of memory error occurrences decreases exponentially with re-
spect to ⟨�p⟩, thus increasing the average memory stability
time by roughly five orders of magnitude, from about 100 ns
to 20 ms for Vd∕VT = 2 to 5. The dissipation time uncertainty
principle [21] puts a lower bound on the average time for a bit
flip memory error to occur

⟨�err⟩ ≥
(

�⟨Q̇⟩
)−1 (3)

where ⟨Q̇⟩ is the average rate of heat dissipation in the steady-
state. The region restricted by this lower bound is shown as the
shaded area in Fig. 2 (b), indicating that the inequality is satis-
fied, but far from saturated. This suggests that energy pumped
into the SRAMdevice is efficiently directed into preserving the
memory state. Indeed this can be quantified using a nonequi-
librium version of transition state theory[23]. Transition state
theory bounds the rate of a transition between two metastable
states using the stationary distribution Pss(Vout) and an uncor-
related estimate of the time to cross a dividing surface between
the two states. Taking the dividing surface to be Vout = Vd∕2,
and the typical time to cross the barrier as ⟨�p⟩, a nonequilib-
rium transition state theory estimate for ⟨�err⟩ is

⟨�err⟩ ≳ ⟨�p⟩
Pss(Vout∕Vd ≤ �)
Pss(Vout∕Vd = 1∕2)

(4)

which is shown in Fig. 2 (b). Here the steady-state has been
evaluated numerically with � = 0.4. The nonequilibrium tran-
sition state theory provides a very accurate estimate of the
memory time, reflecting the likelihood of observing a fluctu-
ation of Vout = 1∕2 as becoming exponentially unlikely with
increasing Vd in accord with recent large deviation function
analysis[37]. The accuracy of the transition state theory es-
timate demonstrates that little energy is wasted speeding up
transitions[23].

Clock – An uneven number of inverters coupled sequen-
tially in a ring creates a system with a frustrated steady-state,
because all inverters cannot simultaneously output the logical
inverses of their inputs. This frustration causes cyclic oscilla-
tions, whose period is controlled by inverter operation times,
making the device operate as a clock under deterministic con-
ditions and providing an example of circuitry with non-trivial
functionality. To simulate the dynamics of such a clock, we
perform kinetic Monte Carlo simulations using the Gillespie
algorithm. We define the time for the clock to undergo a sin-
gle cycle �c as the time for the output, Y , to cycle from 1−� to
� and back again to 1 − �, using � = 0.4. All results are aver-
aged over simulations containing at least 50,000 clock cycles.

In Fig. 3 (a), we show the output voltage autocorrelation
function CVi,Vi (t) = ⟨�Vi(0)�Vi(t)⟩, as a function of time and
cross-voltage. At low cross-voltages, the three output volt-
ages evolve nearly independently, with CVi,Vi (t) revealing ex-
ponential correlations. Above Vd ≈ 3VT persistent oscillations
emerge but are damped by the stochasticity of the evolution.
We find a maximal persistence in the autocorrelation function
oscillation at Vd ≈ 7VT, where the clock undergoes approx-
imately 3.5 cycles. In this region oscillations are persistent

FIG. 3. Adherence to thermodynamic bounds of the logical
clock. (a) Rescaled voltage autocorrelation function C∗

Vi ,Vi
(t) =

CVi ,Vi (t)∕CVi ,Vi (0) as a function of applied cross-voltage. Example
trajectories at Vd = [2.1VT, 7VT, 12.1VT], with each curve repre-
senting how the output voltage of one of the inverters evolves. (b)
The certainty in clock operation time �mem as a function of aver-
age clock cycle time ⟨�c⟩ and applied cross-voltage (top axis) (green
squares), with the shaded regions indicating the forbidden regions
from the uncertainty relations. The red dashed line indicates where
⟨�c⟩2 = ⟨��2c ⟩. (c) The certainty in clock operation as in (b) with the
simple threshold control mechanism.

for long times and the fluctuations in �c are small relative to
the mean cycle time. Above Vd ≈ 10VT, the autocorrelation
exhibits oscillation for only 1/2 of a cycle because, while os-
cillations are persistent for long times, the fluctuations in �c
are large relative to the mean cycle time as anticipated from
Fig. 1 (c) and the single NOT gate. In this regime, we find
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the cycle time to be inversely proportional to to voltage output
amplitude, which evolves stochastically.

We define the certainty in the cycle time as �mem =
√

⟨�c⟩2∕⟨��2c ⟩, and plot this for Vd ∈ [1VT, 20VT] in Fig. 3
(b). The red dashed line indicates where the cycle time’s fluc-
tuations are equal to its mean, where we find a narrow range of
cross-voltages where there is reliable cycling. The thermody-
namic uncertainty relationships expressed in Eqs. 2 and 3 can
be adapted to give upper and lower bounds on this quantity

√

⟨Q⟩
2

≥ �mem ≥

√

⟨�c⟩
�⟨Q̇⟩⟨��2c ⟩

, (5)

where ⟨Q⟩ is the average heat dissipated over a cycle, and ⟨Q̇⟩
is the average rate of heat dissipation in the steady-state. The
upper and lower bounds are shown as the shaded regions in
Fig. 3 (b), showing that the upper bound is best saturated when
�mem is maximized. This occurs for a large enough cross-
voltage that the coupled inverters exhibit bistability, but not
so large that the fluctuations in the transition time are large.

To expand the range of reliable cycle times, we propose a
simple control mechanism acting between each of the invert-
ers. If the output voltage from an inverter is greater than 1−�,
then a thresholding mechanism exerts work on the system and
provides an input voltage of exactly Vd to the next inverter in
the cycle, with an analogous threshold setting the input to 0 if
the output is less than �. By doing this, the inverter is always
driven with an optimal input voltage amplitude, circumvent-
ing the slow response observed when voltage amplitudes are
small. Figure 3 (c) shows the resulting performance of �mem.
As the cross-voltage increases, �mem increases monotonically,
avoiding the loss in cycle time certainty at large cross-voltages,
plateauing to provide constant clock reliability across a broad
range of cycle times. The uncertainty relationships continue
to be best saturated at intermediate values of Vd, indicating
optimal heat dissipation costs for cycle certainty remains in a
similar range as without control.

Conclusion – We have used a Markovian model for realis-
tic logical inverters in the regime of thermodynamic comput-
ing to explore the interplay between operating characteristics,
like accuracy and time, and thermodynamic properties, partic-
ularly heat dissipation. Our results demonstrate the theoretical
limits of CMOS circuits using bounds derived from stochastic
thermodynamics. As we have shown, this provides a frame-
work for simultaneously exploring the fundamental behavior
of noisy computational circuits, characterizing their optimal-
ity, and using the gained insight to propose more efficient op-
erating procedures and circuits. We expect this work will pro-
vide a foundation for future work towards understanding and
designing efficient thermodynamic computers. Current tech-
niques should allow for the improvement of thermodynamic
efficiencies by adapting principles from optimal control the-
ory to operational control schemes [48–53] and by exploring
the effects of circuit layout [13]. To extend this approach to
larger circuits, more scalable simulation techniques, such as
tensor network methods [54–58], can be adapted.
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