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Abstract

We present a theoretical study of quantum phases and quantum phase tran-
sitions occurring in non-Hermitian PT -symmetric superconducting qubits
chains described by a transverse-field Ising spin model. A non-Hermitian
part of the Hamiltonian is implemented via imaginary staggered longitudinal
magnetic field, which corresponds to a local staggered gain and loss terms.
By making use of a direct numerical diagonalization of the Hamiltonian for
spin chains of a finite size N , we explore the dependencies of the energy spec-
trum, including the energy difference between the first excited and the ground
states, the spatial correlation function of local polarization (z-component of
local magnetization) on the adjacent spins interaction strength J and the
local gain (loss) parameter γ. A scaling procedure for the coherence length ξ
allows us to establish a complete quantum phase diagram of the system. We
obtain two quantum phases for J < 0, namely, PT -symmetry broken antifer-
romagnetic state and PT -symmetry preserved paramagnetic state, and the
quantum phase transition line between them is the line of exception points.
For J > 0 the PT -symmetry of the ground state is retained in a whole region
of parameter space of J and γ, and a system shows two intriguing quantum
phase transitions between ferromagnetic and paramagnetic states for a fixed
parameter γ > 1. We also provide the qualitative quantum phase diagram
γ−J derived in the framework of the Bethe-Peierls approximation that is in
a good accord with numerically obtained results.
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1. Introduction

Quantum phase transitions at zero temperature, which occur as a result
of competing ground state phases with spontaneous change of macroscopic
physical quantities upon small variation of physical parameters, keep to fas-
cinate scientific community for several decades [1, 2]. The cuprate supercon-
ductors, which can be tuned from a Mott insulating to a d-wave supercon-
ducting phase by carrier doping are a paradigmatic example[3] and are still
not fully understood[4]. Further examples are the quantum ferromagnetic-
paramagnetic, the quantum Kosterlitz-Thouless transitions, quantum spin
liquid phases have been identified in numerous condensed matter systems
including but not limited to one- or two dimensional lattices of Josephson
junctions [2, 5, 6], granular metals and superconductors [7, 8, 9], supercon-
ducting interacting qubits [10, 11, 12, 13], magnetic low-dimensional frus-
trated systems [14] and photonic band-gap cavities [15].

A special role in the theoretical study of quantum phase transitions be-
longs to seminal integrable low-dimensional models, like the quantum X−Y
model supporting the superconductor-insulator transition, one-dimensional
spin chain systems with an exchange type of interaction displaying the Mott
insulator-superfluid transition, and one-dimensional spin chains of ~σ = 1/2 in
the presence of both an Ising type (σ̂z

n · σ̂z
n+1) of interaction and a transverse

magnetic field in which the quantum phase transition between paramagnetic-
(anti)ferromagnetic states occurs [16]. In the latter case the exact eigenvalues
and eigenstates can be analytically calculated by using the Jordan-Wigner
transformation [17]. However, in the presence of both transverse and longi-
tudinal magnetic fields the system ceases to be integrable, and therefore, to
obtain the quantum phase diagram one needs to use complex numerical [18]
or approximated analytical methods [19, 20, 21, 22].

This field of quantum phase transitions has received the new twist as
various photonic [23, 24, 25] and solid state [26, 27, 28, 29] systems have
been realized, whose dynamics is governed by a non-Hermitian parity-time
PT -symmetric Hamiltonian. Such Hamiltonians can be implemented in sys-
tems where a non-equilibrium growth of the population of specially chosen
quantum states, i.e., states with a gain, can be completely compensated by
a loss present in the other states.

A general theoretical analysis of such systems was provided by the sem-
inal works of C. Bender with co-workers [30, 31, 32]. In particular, they
showed that the PT -symmetric non-Hermitian Hamiltonian can exhibit a
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purely real eigenvalues spectrum, identifying the PT -symmetry preserved
quantum phase. At the same time as the gain/loss parameter varies, there
is also another regime of the Hamiltonian where the eigenvalues of the PT -
symmetric Hamiltonian become complex conjugate ones, signalling the bro-
ken PT -symmetric quantum phase, where the so-called exception point (line)
determines the quantum phase transition between PT -symmetry preserved
and broken phases. The phase transitions in various PT -symmetric systems
have received some attention recently[33, 34, 35, 36, 37, 38] yet this question
was rarely addressed in the context of quantum phase transition in the known
paradigmatic quantum systems. This is partially connected to the fact that
there is still less known on how to realize and control PT -symmetric quantum
Hamiltonian systems experimentally.

Recently, a general analysis have been used to identify different quan-
tum regimes in exemplary non-Hermitian small superconducting qubits (two-
levels) systems, i.e. PT -symmetric single qubit [27, 28, 29] and two inter-
acting qubits [39]. Therefore, a next natural question arise: what are the
quantum phases and quantum phase transitions occurring in large systems
of PT -symmetric interacting superconducting qubits? This question was
addressed in a few papers [40, 41, 42] where Ising spin chains in a complex
transverse magnetic field were theoretically studied. Notice here that such
the non-Hermitian PT -symmetric model is still integrable one.

In this manuscript we present a theoretical study of the ground and low ly-
ing exciting states occurring in Ising spin chains in the presence of both trans-
verse and longitudinal magnetic fields. A non-Hermitian part of total Hamil-
tonian is provided by an imaginary PT -symmetric staggered longitudinal
magnetic field. This renders the presented model genuinely non-integrable.
Such an imaginary longitudinal magnetic field can be implemented in optical
systems [23, 24, 25], trapped ions and ultracold atoms [43, 44], Bose-Einstein
condensate [26] with the PT -symmetric combination of gain and loss, and in
superconducting [27, 28] or nitrogen-vacancies [29] qubits systems interacting
with auxiliary qubits.

We focus on the quantum phase diagram γ − J at zero temperature in
the thermodynamic limit of N → ∞ (N is a total number of spins in the
chain). Here, γ and J are the gain (loss) and the coupling strength between
adjacent spins, accordingly. In order to establish the quantum phase diagram
we use direct numerical diagonalization of the non-Hermitian Hamiltonian
for a finite size spin chain accompanied by the scaling approach [45, 46, 47]
and the analytical Bethe-Peierls approximation [19, 20, 21, 22].
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The paper is organized as follows. In Section 2 we describe the model,
write down the non-Hermitian PT -symmetric Hamiltonian for the transverse-
field Ising spin chain and explain in detail our numerical procedure. In Sec-
tion 3 we numerically explore the dependence of the energy spectrum, the
energy gap between the first excited and ground states, and a spatial cor-
relation function of the local spin polarization (z-component of local mag-
netization) on the interaction strength J and the gain (loss) parameter γ
for non-Hermitian Ising spin chains of a moderate size N (up to N = 18).
In this Section we also extract the correlation length ξN(J, γ), and, using
the scaling analysis, obtain a complete phase diagram of a non-Hermitian
PT -symmetric transverse-field Ising spin chain in the limit of N → ∞ (see
Section 4). In Section 5 using the Bethe-Peierls approximation [48, 49] the
qualitative phase diagram will be analytically reconstructed. We conclude
with Section 6.

2. Model and numerical procedure.

We consider a one-dimensional chain composed of N interacting spins 1/2
placed in the transverse (x-direction) magnetic field Hx of a strength ∆. The
interaction strength J between adjacent spins is the Ising interaction, i.e.,
−Jσ̂z

n · σ̂z
n+1. The positive (negative) sign of J determines the ferromagnetic

(antiferromagnetic) couplings, accordingly. In our model an imaginary stag-
gered longitudinal magnetic fieldHz of a strength γ provides a PT -symmetric
non-Hermitian part of the Hamiltonian in the form, iγ(−1)nσ̂z

n. The model is
presented schematically in Fig. 1. At zero temperature, the physical proper-
ties of a PT -symmetric non-Hermitian spin chain are completely determined
by the Hamiltonian written as follows

ĤPT =
N∑

n=1

[
∆σ̂x

n + (−1)n−1 iγσ̂z
n

]
− J

N∑
n=1

σ̂z
nσ̂

z
n+1. (1)

To identify the quantum phases and the phase transitions as a function of
the system parameters we use the following numerical procedure. Fixing the
parameters J/∆ and γ/∆ we numerically diagonalize the Hamiltonian (1) for
spin chains of various sizes (N = 2÷18), and obtain the eigenvalues, εn, and
right (left) eigenvectors |Rn〉 (|Ln〉). The periodic boundary conditions were
used in most of numerical calculations. Notice here, that real and complex
conjugate values of εn determine the PT -symmetry preserved and broken
regimes, accordingly.
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Figure 1: Schematics of a one-dimensional chain of interacting Ising spins placed
in a complex magnetic field. Antiferromagnetic (J < 0) (a), ferromagnetic (J > 0)
(b) and quantum paramagnetic (c) states are shown. The transverse magnetic field,
Hx ' ∆, and an imaginary longitudinal magnetic field, Hz ' iγ, are indicated.

Using these eigenvalues and eigenvectors we calculate the energy differ-
ence (the energy gap) between the first excited and the ground states, ∆ε,
and the ground state spatial correlation function of a local spin polarization
(z-component of a local magnetization) defined as

C(n−m) = 〈R0|σ̂z
nσ̂

z
m|R0〉. (2)

Here, |R0〉 is the eigenvector of the ground state. In the PT -symmetry
broken regime the state |R0〉 corresponds to the eigenvalue ε0 with a negative
imaginary part. After that we vary the parameters J/∆ and γ/∆ in wide
regions, i.e., −1.5 < J/∆ < 1.5 and 0 < γ/∆ < 2, and the numerical
procedure was repeated.

3. Results

In this Section we present our main results, i.e, the dependence of the
energy spectrum, the energy gap and the spatial correlation function C(n−
m) on the parameters J/∆ and γ/∆.
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3.1. Energy spectrum

Using the numerical procedure described in the previous Section we obtain
the dependence of eigenvalues of the Hamiltonian (1) on the effective coupling
strength J̃ = J/

√
J2 + ∆2 for different values of γ̃ = γ/

√
J2 + ∆2. The

typical results are presented in Fig. 2 for an exemplary spin chain with
N = 4 and open boundary conditions. The energy levels of a PT -symmetric
Hamiltonian are either real, or form complex conjugated pairs.

From this figure one can conclude that there is an important difference in
the properties of the ground state, i.e., the state with the minimal value
of a real part of the eigenvalues. Indeed, for an antiferromagnetic cou-
pling (J < 0) the presence of gain (loss) γ induces a transition between
the PT -symmetry preserved and broken regimes. Moreover, a critical cou-
pling strength Jcr determining a transition (the so-called exception point)
decreases with γ. These features are a direct consequence of the same parity
symmetry of an antiferromagnetic state and a staggered imaginary longitudi-
nal magnetic field. In the opposite case of a ferromagnetic coupling (J > 0)
the ground state is in the PT -symmetry preserved regime for all values of J
and γ.

For the larger values of γ̃, the energy spectrum develops more complicated
features. For example, the two exception points of the second order can
coalesce and go through the exception point of the third order [50, 51] as
seen in Fig. 2(c,d) (indicated by small open rectangles). Since the detailed
discussion of the energy spectrum properties is a separate interesting issue
we will present it elsewhere.

3.2. Energy gap between the first excited and ground states.

An important physical characteristics of quantum phases and quantum
phase transitions is the energy gap ∆ε between the first excited and the
ground states. For example, in the thermodynamic limit T = 0 and N →∞
the quantum phase transition in the Hermitian transverse field Ising model
occurs as ∆ε = 0 [16]. Moreover, such energy gap determines the resonant
response of quantum systems to an applied small alternating perturbation
[39, 52, 53, 54].

In the case of non-Hermitian PT -symmetry transverse field Ising spin
chains we numerically calculate the dependence of the real part of the gap,
<e(∆ε), on the parameters of J/∆ and γ/∆. For the spin chain of N = 18
this dependence is presented in Fig. 3 in the form of two-dimensional color
plot. In agreement with Fig. 2 one can also conclude that the energy gap ∆ε
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Figure 2: The dependence of a real part of normalized eigenvalues ε̃n =
εn/
√
J2 + ∆2 on the normalized coupling strength J̃ = J/

√
J2 + ∆2 for a

N = 4 spin chain. The parameter γ̃ = γ/
√
J2 + ∆2 was chosen as

0; 0.21; 0.40125; 0.48375. The shaded ribbons around the curves depict the scaled
imaginary part of the normalized eigenvalues. In the panels (c) and (d), small

open rectangles mark the positions of the third order exception points.
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Figure 3: Color plot of the real part of the energy gap, <e(∆ε) between the first
excited and the ground states for spin chains of N = 18.

has an imaginary part for an antiferromagnetic coupling (J < 0) only, indi-
cating the presence of a sharp transition between the PT -symmetry broken
macroscopic antiferromagnetic and PT -symmetry preserved paramagnetic
states. Concluding this subsection we stress that for spin chains with a fer-
romagnetic coupling (J > 0) the energy gap does not contain the imaginary
part for a whole range of parameter γ, indicating the presence of quantum
phases preserving the PT -symmetry. Notice here that the energy gap <e(∆ε)
demonstrates scarce changes in a whole range of parameters J and γ as a
total number of spins varies from N = 10 up to N = 18.

3.3. Spatial correlations of the local spin polarization in the ground state.

Quantum phase transitions are identified more precisely by analyzing the
spatial correlations of physical quantities. For chains of interacting spins it
is convenient to use spatial correlation function of the local spin polarization
(z-component of the magnetization), see Eq. (2). In Fig. 4 we present a
two-dimensional color plot of the dependence

√
C(|1− (N/2 + 1)|) on the
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Figure 4: Color plot of the spatial correlations characterized by the square root
of the midpoint correlation function

√
C(|1− (N/2 + 1)|) for spin chains with

N = 18.

parameters J/∆ and γ/∆ for a spin chain with N = 18. This characteristics√
C(|1− (N/2 + 1)|) can be considered as the order parameter which goes

to zero value in the PT - symmetry preserved paramagnetic state. The sharp
lines determining the corresponding quantum phases (compare with Fig. 3 )
are very well seen in Fig. 4. However, we obtain also a substantial dependence
of the order parameter on a total number of spins N as N varies from 10 to
18, and therefore, to precisely determine the quantum phase transitions lines
in the limit of N → ∞ we apply the ordinary finite size scaling procedure
[45, 46, 47].

3.4. The correlation length: finite size scaling.

As the practical way to compute the correlation length ξ, we adopt the
definition based on the Fourier transform of the correlation function C(j)
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(see Ref. [47]):

ξ =
1

q1

√
S(0)

S(q1)
− 1, (3)

where q1 = 2π/N and

S(q) =
N∑
j=0

cos qjC(j). (4)

In the case of the antiferromagnetic couplings (J < 0), we compute the
Fourier transform of the absolute value of the correlation function C(j). The
correlation length ξ depends on the parameters J and γ as well as the total
number of spins N . However, the dependence of the ratio ξ/N on γ for a
fixed value of J demonstrate a standard scaling behavior [45, 46, 47], i.e., all
curves for different values of N intersect in a single point. It is presented in
Fig. 5 for a few values of J .

4. Phase diagram of non-Hermitian PT -symmetric transverse-field
Ising spin chain.

By making use of the dependencies of the energy gap ∆ε (see Fig. 3),
the order parameter

√
C(|1− (N/2 + 1)|) (see Fig. 4) and the coherence

length ξ (see Fig. 5) on the parameters J and γ we obtain a complete
quantum phase diagram presented in Fig. 6. We stress here that the quantum
phase transition line occurring for J < 0 is the exception line separating the
PT -symmetry preserved paramagnetic (III) and PT -symmetry broken (IV)
antiferromagnetic phases. In fact, close to the quantum phase transition line
such non-Hermitian spin chain with an antiferromagnetic coupling can be
qualitatively described as a single macroscopic two-level system, where two
even (odd) sub-lattices form corresponding macroscopic eigenstates, in the
presence of a global gain (loss) γ. In the presence of a ferromagnetic coupling
(J > 0) the PT -symmetry of the ground and first excited states is preserved,
and in a narrow region of γ > 1 we obtain two quantum phase transitions,
i.e., ferromagnet-quantum paramagnet-ferromagnet transitions: one is in the
region of small J and other one is in the region of large J .

Such complex quantum phase diagram can be qualitatively obtained by
using the Bethe-Peierls approximation (see Fig. 6, purple and green dashed-
dotted lines).
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Figure 5: The curves ξ/N vs. γ/∆ for fixed values of J demonstrating the scaling
behavior, are shown. The values of J were chosen as −0.4(a), 0.04(b), 0.4(c) and

0.8(d).
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Figure 6: Quantum phase diagram of the ground state. Orange points with error
bars determine the critical line obtained using the intersection points of both
ξ/N -γ/∆ and ξ/N -J/∆ curves with different N (see Fig. 5). Blue solid line
is the critical line determined by the threshold level curve for the gap. Purple
and green dash-dotted lines are the critical lines obtained using the Bethe-Peierls
approximation with 2-spin and 6-spin clusters, respectively (see section 5). The
obtained quantum phases are denoted as follows: quantum paramagnetic (I) and
ferromagnetic (II) phases ; PT -symmetry preserved quantum paramagnetic (III)

and PT -symmetry broken (IV) antiferromagnetic phase.
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5. Phase diagram in the Bethe-Peierls approximation.

It is instructive how qualitatively correct results may be obtained by
employing the Bethe-Peierls approximation [20, 21, 22]. Generally in this
approach one has to choose a central spin (marked as 0) and treat its in-
teractions with the adjacent spins exactly, and at the same time the two
neighbouring spins are lumped together into a single spin (marked as 1).
The interaction of the nearest neighbours with next-to-nearest neighbours is
taken into account by introducing the internal effective magnetic field deter-
mined by the average z-component of the magnetization, M . Diagonalizing
the effective 4 × 4 Hamiltonian Ĥeff we obtain the ground state |GS(M)〉.
The effective Hamiltonian has to be accompanied by the self-consistency
condition written as

〈GS(M)|σz
0|GS(M)〉 = 〈GS(M)|σz

1|GS(M)〉. (5)

Next we apply such generic procedure for non-Hermitian PT -symmetry
Ising spin chains. We will treat spins chains with antiferromagnetic and
ferromagnetic couplings separately. As J < 0 applying the π rotation of all
even spins in z− y plane we transform an antiferromagnetic spin chain with
a staggered imaginary magnetic field into a ferromagnetic spin chain with a
uniform imaginary field, and arrive to the effective Hamiltonian:

Ĥaf
eff = ∆ (σx

0 + 2σx
1 )− 2|J |σz

0σ
z
1 − 2|J |Mσz

1 + iγ (σz
0 + 2σz

1) . (6)

Diagonalizing such Hamiltonian we obtain the ground state eigenvalueEgs(M)
and eigenfunction, |GSR(M)〉. Using the self-consistency equation (5), where
we need to replace |GS(M)〉 with |GSR(M)〉, we obtain the effective mag-
netization M , and obtain the quantum phase transition between the BPT -
symmetry preserved paramagnetic (M = 0) and broken antiferromagnetic
(M 6= 0) states. The quantum phase transition line is shown in the left part
of Fig. 6 by purple dashed-dotted line.

For spin chains with a ferromagnetic coupling (J > 0) the effective Hamil-
tonian for an odd central spin 0 acquires the form

Ĥ f
eff = ∆ (σx

0 + 2σx
1 )− 2Jσz

0σ
z
1 − 2JMσz

1 + iγ (σz
0 − 2σz

1) . (7)

Notice here that the effective Hamiltonian for an even central spin is ob-
tained by complex conjugation, and therefore, the ground state for even
spin is obtained by complex conjugation from the ground state for odd spin.
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Moreover, the averages 〈GSR(M)|σz
0|GSR(M)〉 and 〈GSR(M)|σz

0|GSR(M)〉
are unaltered if the state is complex conjugated. As a result, we can still use
Eq. (5) as the self-consistency condition.

Repeating the procedure presented above for antiferromagnetic spin chains,
we obtain the effective magnetization M for J > 0, and obtain the quan-
tum phase transitions between the BPT -symmetry preserved paramagnetic
(M = 0) and ferromagnetic (M 6= 0) states. The quantum phase tran-
sition line is shown in Fig. 6 by purple dash-dotted line. To conclude this
section we notice that for a fixed value of γ > 1 the Bethe-Peierls approxima-
tion provides two quantum phase transitions, i.e. ferromagnet-paramagnet-
ferromagnet, that is in a good accord with numerically exact calculations. We
also obtain that substituting two central spins 0 and 1 on the spin cluster
composed of 6 interacting spins allows to substantially improve the agree-
ment. In this case, the self-consistency equation is obtained by comparing
the magnetization of the two central spins with the magnetization of the two
next-to-central ones. The resulting phase transition line is shown in Fig. 6
by green dash-dotted line.

6. Conclusions.

In conclusion we theoretically study various quantum phases occurring in
non-Hermitian PT -symmetric Ising spin chains in the transverse magnetic
field, ∆. Non-Hermitian part of the Hamiltonian is provided by imaginary
staggered longitudinal magnetic field. Physically this model describes also
one-dimensional chains of interacting superconducting qubits in the presence
of staggered gain (loss) γ. The presence of a particular quantum phase
is determined by an interplay of two parameters, the interaction strength
between adjacent spins J and the gain (loss) γ.

Using the direct numerical diagonalization of the Hamiltonian (1) for
Ising chains composed of N (N was up to 18) interacting spins, accompany-
ing by the scaling procedure for the correlation length ξ(N), we were able
to construct the complete quantum phase diagram γ/∆-J/∆ in the thermo-
dynamic limit N → ∞. The quantum phase diagram with the quantum
phase transitions line is presented in Fig. 6. We identify four different quan-
tum phases, i.e., paramagnetic and ferromagnetic states, and PT -symmetry
preserved paramagnetic and PT -symmetry broken antiferromagnetic states.
These quantum phases differ by temporal (the energy gap between the first
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excited and ground states, ∆ε, Fig. 3) and spatial (the order parameter, Fig.
4) correlations.

Overall one can see that the imaginary longitudinal magnetic field drives
the quantum phase transition into the ordered phase. In particular, we ob-
tain that spin chains with antiferromagnetic coupling (J < 0) demonstrate
the behavior resembling a macroscopic non-Hermitian PT -symmetry two-
levels system (a single qubit). The quantum phase transition between the
PT -symmetry preserved paramagnetic and broken antiferromagnetic states,
occurs through the exception point. It is a result of the same parity between
a staggered longitudinal magnetic field and magnetizations of even/odd sub-
lattices. At the same time, the model exhibits a peculiar asymmetry between
the antiferromagnetic and the ferromagnetic types of interaction: the ground
state on the ferromagnet-paramagnet transition does not go through the ex-
ception point. It is also interesting that spin chains with a ferromagnetic
coupling (J > 0) display a rather intriguing behavior, i.e., for fixed values
of γ > 1 an initial increase of the interaction strength J as J/∆ � 1 leads
to the transition from the ferromagnetic state to the paramagnetic one. The
paramagnetic state is stable in a wide region of J/∆ ' 1. As J > Jcr(γ)
the system displays another quantum phase transition from the paramag-
netic state to the ferromagnetic one. The detailed discussion of these two
quantum phase transition, e.g., the critical indices of the dependencies of the
order parameter

√
C(N/2), coherence length ξ and the energy gap δε on the

J and γ will be presented elsewhere.
We also provide the qualitative description of the quantum phase diagram

by making use of the Bethe-Peierls approximation, and obtain a good accord
with numerically calculated quantum phase diagram.

Finally, we notice that the obtained quantum phases and quantum phase
transitions between them can be experimentally verified in PT -symmetric
systems of interacting qubits by measuring e.g., the response to a small ac
electromagnetic field [39, 52, 53, 54].
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