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The quantum marginal problem is concerned with characterizing which collections of quantum
states on different subsystems are compatible in the sense that they are the marginals of some
multipartite quantum state. Presented here is a countable family of inequalities, each of which is
necessarily satisfied by any compatible collection of quantum states. Additionally, this family of
inequalities is shown to be sufficient: every incompatible collection of quantum states will violate at
least one inequality belonging to the family.

I. INTRODUCTION

The quantum marginal problem (QMP) is interested
in characterizing the space of reduced/marginal states of
a multipartite quantum state, and is widely regarded as
being an important, albeit challenging problem to solve.

Connections and applications of the QMP to other
topics in quantum theory (and beyond) include mul-
tipartite entanglement and separability [1, 2], quan-
tum error correction [3–5], entropic constraints [6–9],
other forms of quantum compatibility problems [10–
12], the asymptotics of representations of the symmetric
groups [7, 13, 14], the asymptotic restriction problem for
tensors [15], random matrix theory [16, 17], and many-
body physics [18].

The quantum marginal problem, and its associated ter-
minology, is derived from an analogous problem in prob-
ability theory called the classical marginal problem. The
classical marginal problem is concerned with character-
izing the relationships between the various marginal dis-
tributions of a joint, multivariate distribution [19–21].
As a joint probability distribution and its marginals can
always be faithfully represented by the eigenvalues of a
joint quantum state and its marginals using a product
eigenbasis, the quantum marginal problem subsumes the
classical marginal problem, and consequently, any of its
applications [19, 22–24].

One of the earliest formulations of the problem dates
back to the early 1960s, when, for the purposes of sim-
plifying calculations involving the atomic and molecu-
lar structure, quantum chemists became interested in
characterizing the possible reduced density matrices of
a system of N interacting fermions [25, 26]. This ver-
sion of the problem, referred to as the N -representability
problem, has a long history [18, 27–31] that continues to
evolve [32–34].

Now the QMP comes in a variety of flavours which
can be broadly organized by considering any additional
assumptions or constraints that are imposed on either i)
the properties of the joint state, and/or ii) the properties
of the set of candidate density operators [35].

When focusing on the joint state, specializations of
the QMP exist where the joint state is assumed to be

fermionic [27], bosonic [36], Gaussian [37, 38], separa-
ble [39], or having symmetric eigenvectors [40]. Gener-
ally speaking, the QMP is difficult in the sense that it
is a QMA-complete problem [36, 41–43]. For the pur-
poses of this paper, the only restriction imposed on joint
states will be that they live in a finite-dimensional Hilbert
space, with a finite and fixed number of subsystems.

Regarding the list of candidate density operators, e.g.,
(ρAB , ρBC , ρAC), the list of subsystems they correspond
to, e.g., (AB,BC,AC), is known as the marginal sce-
nario, while the individual elements, e.g., AB, BC, or
AC, will be referred to as marginal contexts. A key con-
sideration for understanding previous work on the QMP
is whether the marginal contexts are disjoint. When the
marginal contexts are disjoint, a complete solution to
the QMP is known [44, 45]. For a given specification
of Hilbert space dimensions, this solution takes the form
of a finite list of linear inequality constraints on the spec-
tra of the candidate density operators. These solutions
furthermore recover earlier results pertaining to low di-
mensional Hilbert-spaces [46–49].

In contrast, when the marginal scenario involves over-
lapping marginal contexts, existing results are compar-
atively more sporadic and typically weaker, being only
applicable to low-dimensional systems, small numbers of
parties, or only yielding necessary but insufficient con-
straints [50–54]. One promising approach, developed
in [7] for relating marginal spectra to the recoupling the-
ory of the symmetric group, appears limited to situations
where the marginal contexts do not overlap too much.

Whenever a candidate set of density operators is ex-
plicitly given, one strategy to decide their compatibility
is to use convex optimization techniques, e.g., semidef-
inite programming [55]. If the joint state is not neces-
sarily pure, compatibility can be decided with a single
semidefinite program [53]. Additionally, when the joint
state is assumed pure, compatibility can still be decided
by an infinite hierarchy of semidefinite programs [5]. In
either case, analytic inequality constraints that serve as
witnesses for incompatibility can be extracted from the
outputs of such semidefinite programs [53].

The objective of this paper is to improve our under-
standing of the QMP, in particular for the case of over-
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lapping marginal contexts, by i) deriving inequality con-
straints that are necessarily satisfied by all compatible
collections of density operators, and ii) proving that if
a collection of density operators satisfies these inequali-
ties, then they are compatible. This paper begins by for-
mally defining the QMP and then reformulating it from
a different perspective. The primary advantage of this
reformulation of the QMP is that it exposes an implicit
symmetry of the problem which is helpful in deriving our
main result.

II. A REFORMULATION OF THE QMP

This section introduces some notation and terminology
that is sufficient to formally define both the QMP and
an equivalent reformulation that is better suited for the
techniques developed in subsequent sections.

First and foremost, every Hilbert space considered will
be complex, finite-dimensional, and labeled by some sub-
script X, e.g., HX . For each labeled Hilbert space,
HX , we will implicitly assume there exists some canon-
ical orthonormal basis such that HX

∼= CdX where
dX = dim(HX). The corresponding set of linear oper-
ators, density operators (states), and pure states of HX

are respectively denoted L(HX), D(HX), and P(HX).
The identity operator on HX is denoted IX .

Given a list of labels, S = (X1, . . . , Xk), which we
identify with the concatenated string, S ' X1 · · ·Xk,
the composite Hilbert space HX1

⊗ · · · ⊗ HXk , will be
labeled by S itself and thus denoted HS . For instance, if
S = ABC, then HABC = HA ⊗HB ⊗HC . Additionally,
for any positive integer n and label X, the list of labels
consisting of n copies of X will be abbreviated by

nX := (X, n. . ., X) ' X n· · · X (1)

Using this notational convention, the nth tensor-power
of a Hilbert space HX can be written as H⊗nX = HnX =
H
X
n···X .

Associated to any instance of the QMP, is a joint (or
global) Hilbert space HJ where J = (X1, . . . , Xp) is a
given finite list of labels called the joint context. Every
non-empty sublist S of J will be called a marginal con-
text. For each S ⊆ J , the partial trace from HJ onto HS

will be denoted by

TrJ\S : L(HJ)→ L(HS). (2)

A finite, non-empty tuple of marginal contexts,

M = (S1, . . . , Sm), (3)

is called a marginal scenario. The cardinality of a
marginal scenario will always be denoted by m = |M|.

Problem 1 (QMP). Given a marginal scenario, M =
(S1, . . . , Sm), and list of states (ρS1

, . . . , ρSm) where

ρSi ∈ D(HSi) for each i ∈ {1, . . . ,m}, decide if there
exists a joint pure state ψJ ∈ P(HJ) such that

∀Si ∈M : ρSi = TrJ\Si(ψJ). (4)

Whenever such a pure state ψJ exists, the m-tuple of
states (ρS1 , . . . , ρSm) is said to be compatible and other-
wise they are incompatible.

For the sake of brevity, unless otherwise specified, a
joint Hilbert space HJ with joint context J will always
be implicitly given together with a particular marginal
scenario M = (S1, . . . , Sm) of length m.

Our first step is to reinterpret the m linear constraints
imposed on the joint state ψJ by Eq. (4) as a single linear
constraint on the mth tensor-power state, ψ⊗mJ . Specifi-
cally, the m-tuple of states (ρS1

, . . . , ρSm) satisfies Eq. (4)
if and only if

ρS1 ⊗ · · · ⊗ ρSm = TrJ\S1
(ψJ)⊗ · · · ⊗ TrJ\Sm(ψJ). (5)

This observation motivates the following definitions.

Definition 1. The Hilbert space on M, denoted HM, is

HM := HS1
⊗ · · · ⊗HSm . (6)

The partial trace from mJ onto M, denoted TrmJ\M, is

TrmJ\M := TrJ\S1
⊗ · · · ⊗ TrJ\Sm . (7)

Note that the partial trace from mJ ontoM, TrmJ\M,
is simply the partial trace operation mapping elements of
L(HmJ) = L(H⊗mJ ) to elements of L(HM) = L(HS1

⊗
· · · ⊗HSm).

Definition 2. An M-product state is any state, ρM ∈
D(HM), of the form

ρM = ρS1
⊗ · · · ⊗ ρSm (8)

where each component, ρSi , is a state in D(HSi).

Since there is a bijection between m-tuples of states
(ρS1

, . . . , ρSm) and M-product states ρS1
⊗ · · · ⊗ ρSm ,

the QMP can be equivalently restated entirely in terms
of ρM.

Problem 2. Given anM-product state, ρM, determine
whether or not there exists a pure state ψJ such that

ρM = TrmJ\M(ψ⊗mJ ). (9)

The equivalence between Problem 1 and Problem 2
follows directly from Eq. (5); moreover, whenever such a
pure state ψJ exists in either formulation of the QMP, it
satisfies both Eq. (4) and Eq. (9). Pursuant to this equiv-
alence, anM-product state, ρS1

⊗· · ·⊗ρSm , is said to be
compatible whenever the m-tuple of states (ρS1

, . . . , ρSm)
is compatible (and incompatible otherwise). The set of
all compatible M-product states will be denoted CM.

1 The assumption of purity in the joint state can be made without
loss of generality (see Appendix D).
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III. NECESSARY AND SUFFICIENT
INEQUALITY CONSTRAINTS

In this section, we construct inequalities that are neces-
sarily satisfied by all compatibleM-product states, ρM.
These inequalities, therefore, can be used to answer the
QMP in the negative; if anM-product state violates any
of the forthcoming inequalities, then it is incompatible.
In addition, it will be shown that if anM-product state,
ρM, satisfies all of the forthcoming inequalities, then it
must be compatible.

These inequalities emerge from considering the permu-
tation symmetry of the kth tensor power, ψ⊗kJ , of a pure
state ψJ ∈ P(HJ). For each k ∈ N, let Sk be the sym-

metric group on k symbols, and let TJ : Sk → L(H⊗kJ )

be the representation of Sk acting on H⊗kJ by permuta-
tion of its k factors.

Definition 3. The kth symmetric subspace ∨kHJ ⊆
H⊗kJ is defined as

∨k HJ = {|φ〉 ∈ H⊗kJ | ∀π ∈ Sk, TJ(π) |φ〉 = |φ〉}. (10)

The orthogonal projection operator onto ∨kHJ will be

denoted by Π
(k)
J .

Given any vector |ψJ〉 ∈ HJ , it is straightforward to

verify that |ψJ〉⊗k is an element of the kth symmetric

subspace ∨kHJ ⊆ H⊗kJ .

Proposition 1. Let ψJ = |ψJ〉 〈ψJ | be a pure state, let
k ∈ N. Then

ψ⊗kJ ≤ Π
(k)
J , (11)

where Π
(k)
J is defined in Definition 3.

By comparing Eq. (9) with Eq. (11), and recalling that
partial traces are positive channels, it becomes possible
to eliminate ψJ from Eq. (9). For example, when k =
m, the partial trace TrmJ\M applied to Eq. (11) yields

TrmJ\M(ψ⊗mJ ) ≤ TrmJ\M(Π
(m)
J ) and thus we obtain the

following corollary.

Corollary 2. If ρM is a compatible M-product state,
then

ρM ≤ TrmJ\M(Π
(m)
J ). (12)

In Appendix F, it is shown that the utility of this con-
straint is quite sensitive to the marginal scenario under
consideration. For certain marginal scenarios, Eq. (12)
happens to be satisfied by all M-product states, and

2 Throughout this paper, an inequality A ≥ B between Hermi-
tian operators A and B always indicates that A − B is positive
semidefinite, i.e. A−B ≥ 0. See [56, Section V].

thus is useless for the purposes of the QMP. Neverthe-
less, for other marginal scenarios, Eq. (12) happens to be
violated by some M-product states, and thus is a non-
trivial condition for the compatibility of an M-product
state ρM.

Analogous reasoning can be used to construct stronger
inequality constraints for the QMP. When k is a multiple
of m, k = nm, one can apply the nth tensor power of
TrmJ\M to both sides of Eq. (11). While it is clear from
the preceding discussion that this will yield inequality
constraints necessarily satisfied by allM-product states,
we will additionally show that their satisfaction for all
n ∈ N is sufficient to conclude that ρM must be an M-
product state.

Theorem 3. An M-product state, ρM, is compatible if
and only if for all n ∈ N,

ρ⊗nM ≤ Tr⊗nmJ\M(Π
(nm)
J ). (13)

Note that Tr⊗nmJ\M is the partial trace operation taking

elements of L(H⊗nmJ ) to elements of L(H⊗nM ).
To prove Theorem 3 we use the following lemma,

proven in Appendix C, that the upper-bound in Eq. (13),
up to normalization, represents the expected value of σ⊗nM
when σM is sampled according to a probability measure,
νM, whose support is precisely the set of compatibleM-
product states, denoted CM.

Lemma 4. There exists a probability measure, νM, over
D(HM), with support CM, such that for all n ∈ N,

Tr⊗nmJ\M(Π
(nm)
J ) =

(
nm+dJ−1

nm

) ∫
CM
νM(dσM)σ⊗nM , (14)

where dJ = dim(HJ).

Proof. See Appendix C.

Now consider a measurement effect, En, acting on
H⊗nM , i.e. a Hermitian operator En ∈ L(H⊗nM ) such that

0 ≤ En ≤ I⊗nM . If Eq. (13) is satisfied by some state

ρM ∈ D(HM), and Tr(Enρ
⊗n
M ) 6= 0, then Lemma 4 im-

plies

sup
σM∈CM

Tr(Enσ
⊗n
M )

Tr(Enρ
⊗n
M )

≥
(
nm+dJ−1

nm

)−1
. (15)

Therefore, to show that every M-product state, ρM,
eventually violates Eq. (13), and thus prove Theorem 3,
it suffices to prove the existence of a sequence of mea-
surement effects, n 7→ En, such that the above ratio of
probabilities, as a function of increasing n, approaches

zero faster than
(
nm+dJ−1

nm

)−1
, thus violating Eq. (15).

The particular problem of finding a sequence of mea-
surements such that Tr(Enρ

⊗n
M ) stays reasonably large

while simultaneously minimizing Tr(Enσ
⊗n
M ) for all σM

distinct from ρM is related to the problems of asym-
metric quantum state discrimination and quantum hy-
pothesis testing [57–61]. Broadly speaking, existing re-
sults in these fields are sufficiently strong to establish



4

the claimed violation of Eq. (15) for each incompatible
ρM 6∈ CM. Our specific approach relies on ideas de-
veloped by Keyl [62] for the purposes of quantum state
estimation3.

In the interest of being constructive and non-
asymptotic, in Appendix J (specifically Remark 1) we
show how to construct, for each ρM, an explicit sequence
of projection operators, n 7→ En, such that for all n ∈ N,

sup
σM∈CM

Tr(Enσ
⊗n
M )

Tr(Enρ
⊗n
M )

≤ exp(−(n− d2M)Ω(ρM) + c(ρM))

(16)
where c(ρM) ≥ 0 and Ω(ρM) ≥ 0 are quantities in-
dependent of n (but dependent on ρM) and dM =
dim(HM). Additionally, it is shown that the exponential
rate, Ω(ρM), vanishes if and only if ρM is compatible
and thus its positivity can serve as a witness of the in-
compatibility of ρM.

Proof of Theorem 3. The discussion preceding Theo-
rem 3 has already established the “only if” portion of
Theorem 3: applying Tr⊗nmJ\M to Eq. (11) when k = nm

yields

ρ⊗nM = Tr⊗nmJ\M(ψ⊗nmJ ) ≤ Tr⊗nmJ\M(Π
(nm)
J ). (17)

Therefore, all that remains is to prove the “if” portion of
Theorem 3. Suppose ρM ∈ D(HM) is a state that satis-
fies Eq. (13) for some particular value of n. By combining
Eq. (16) with Eq. (15), we conclude

Ω(ρM) ≤ ln
(
nm+dJ−1

nm

)
+ c(ρM)

n− d2M
. (18)

Since
(
nm+dJ−1

nm

)
∈ O(ndJ−1) is polynomial of degree

dJ−1 in n, the upper bound above approaches zero in the

limit as n → ∞. For finite n, the inequality in Eq. (18)
merely implies that Ω(ρM) must be small. For the pur-
poses of Theorem 3, if a state ρM satisfies Eq. (13) for all
n, Eq. (18) implies that Ω(ρM) = 0 and thus ρM ∈ CM
must be a compatible M-product state.

IV. CONCLUSION

This paper makes progress toward an analytic solu-
tion to the quantum marginal problem (QMP) by con-
structing an countably-infinite family of necessary oper-
ator inequalities whose satisfaction by a given tuple of
density operators is sufficient to conclude their compat-
ibility. The primary advantage of this approach is its
generality: for any finite Hilbert space dimension(s) and
any number of subsystems with arbitrary overlap, the
corresponding family of necessary inequalities is shown
to be sufficient. The results of this paper, therefore, con-
stitute the first quantifier-free solution to the QMP for
overlapping marginal contexts. However, the characteri-
zation of compatible density operators produced by this
approach is not finite, and thus inherently more chal-
lenging to compute. Evidently, further insights will be
required to produce a finite set of necessary and suffi-
cient conditions for the overlapping QMP.
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Appendix A: Schur-Weyl Decompositions

Given any representation of the symmetric group Sn

over a finite-dimensional complex space, such as the
aforementioned tensor-permutation representation T :
Sn → L((Cd)⊗n), Maschke’s Theorem guarantees the
representation is completely reducible and therefore de-
composes into irreducible subrepresentations [65, The-
orem 1.5.3]. Furthermore, the complete set of non-
isomorphic irreducible representations of Sn is isomor-
phic to the set of conjugacy classes of Sn [65, Proposition
1.10.1] which itself is isomorphic to the set of partitions
of n.

Definition 4. A partition of n, λ = (λ1, . . . , λ`), is a
sequence of non-increasing (λi ≥ λi+1) positive integers
(λi ∈ N) whose total sum is n (

∑
iλi = n). The length

of λ is denoted by ` = `(λ). The set of all partitions of
n will be denoted Yn.

For each partition λ ∈ Yn, let ωλ : Sn → Wλ denote
the corresponding irreducible representation of Sn, oth-
erwise known as the Specht module for λ [65, Section 2.3].
Using this notation, the Maschke decomposition of the
tensor-permutation representation T : Sn → L((Cd)⊗n)
yields a decomposition of (Cd)⊗n,

(Cd)⊗n ∼=
⊕

λ∈Yn
Wλ ⊗ V dλ , (A1)

where the V dλ denotes the multiplicity space, whose di-
mension counts the number of isomorphic copies of Wλ

in (Cd)⊗n. It is also worth noting that dim(V dλ ) > 0
if and only if `(λ) ≤ d [65] and therefore the above
summands over λ are implicitly restricted to the sub-
set Ydn ⊆ Yn of partitions of n with length at most d.
Another result, referred to as Schur-Weyl duality [66,
Chapter 9], implies that the multiplicity space V dλ itself
supports an irreducible representation of GL(d), denoted
πλ : GL(d) → L(V dλ ). Let |φλ〉 ∈ V dλ denote the unique
highest weight vector of V dλ characterized by the property
that

πλ(diag(x1, . . . , xd)) |φλ〉 =

d∏
i=1

xλii |φλ〉 (A2)

for all diag(x1, . . . , xd) ∈ GL(d). Furthermore, for each
partition λ ∈ Ydn, let

ιλ : Wλ ⊗ V dλ ↪−→ (Cd)⊗n (A3)

be the Sn × GL(d)-intertwining isometry from the iso-
typic subspace Wλ ⊗ V dλ into (Cd)⊗n associated to λ.
Furthermore, let

Πλ
d := (ιλ)(ιλ)† (A4)

denote the corresponding orthogonal projection operator
acting on (Cd)⊗n.

Proposition 5. Let Q ∈ L((Cd)⊗n) be an Sn-invariant
operator in the sense that

∀g ∈ Sn : T (g)QT †(g) = Q. (A5)

Then Q admits of the following decomposition,

Q =
⊕
λ∈Ydn

IWλ
⊗ τλ(Q), (A6)

where the λ-component of Q, τλ(Q) ∈ L(V dλ ), is defined
as

τλ(Q) =
TrWλ

(ι†λQιλ)

dim(Wλ)
. (A7)

Proof. This follows from an application of Schur’s
lemma [67, Theorem 4.29].

Definition 5. Let πλ : GL(d) → V dλ be the irreducible
representation of GL(d) with highest weight vector |φλ〉 ∈
V dλ where λ ∈ Ydn. For each unitary operator U ∈ U(d) ⊆
GL(d), let the twirled highest weight vector be defined as
|φUλ 〉 := πλ(U) |φλ〉 ∈ V dλ .

In Appendix J, specifically Proposition 13, we shall see
that the quantity 〈φUλ | τλ(ρ⊗n) |φUλ 〉, which depends only
on λ ∈ Ydn and U†ρU ∈ D(Cd), admits of a formula that
remains well-defined even when λ is permitted to be a
non-increasing sequence of non-negative real numbers.

Appendix B: Spectra & Partitions

The purpose of this section is to develop a connec-
tion between i) partitions λ ∈ Ydn with length at most
d, and ii) the possible eigenvalues of density operators
ρ ∈ D(Cd).

Definition 6. A subset C ⊆ Rd is called a convex cone
if it is closed under

i) addition: for any x, y ∈ C, x+ y ∈ C, and

ii) multiplication: for any x ∈ C, and a ≥ 0, ax ∈ C.

Two convex cones that are relevant here will be the
cone of non-negative real numbers,

Rd≥0 = {(x1, . . . , xd) ∈ Rd | ∀i : xi ≥ 0}, (B1)

and the subset of non-increasing non-negative real num-
bers,

Rd;↓≥0 = {(x1, . . . , xd) ∈ Rd | x1 ≥ · · · ≥ xd ≥ 0}. (B2)
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While there is a natural surjective map from Rd≥0 to

Rd;↓≥0 which sorts the elements of (x1, . . . , xd) in a non-
increasing order, there is also a bijective linear map

γ : Rd≥0 → Rd;↓≥0 which takes partial sums. Specifically, γ

maps y = (y1, . . . , yd) ∈ Rd≥0 to γ(y) = (γ1(y), . . . , γd(y))
where

γi(y) = yi + yi+1 + · · ·+ yd. (B3)

The inverse of γ, henceforth denoted δ : Rd;↓≥0 →
Rd≥0, takes finite differences; specifically, δ maps x =

(x1, . . . , xd) ∈ Rd;↓≥0 to δ(x) = (δ1(x), . . . , δd(x)), where

δi(x) = δi(x1, . . . , xk) =

{
xi − xi+1 1 ≤ i < d

xd i = k
. (B4)

Definition 7. For each x = (x1, . . . , xd) ∈ Rd≥0, the size

of x, |x|, is the sum of its elements

|x| = x1 + · · ·+ xd, (B5)

The normalization of x is defined4 as

x

|x| =

(
x1
|x| , . . . ,

xd
|x|

)
. (B6)

Two subsets of Rd;↓≥0 will be crucial to the results of Ap-
pendix J. The first subset was already discussed in Ap-
pendix A, namely partitions of n with length at most d:

Ydn ⊆ Rd;↓≥0. If the length, `, of λ = (λ1, . . . , λ`) is strictly

less than d, then it can be viewed as a element of Rd;↓≥0 by

padding λ with d− ` zeros, i.e. λ ∼= (λ1, . . . , λ`, 0, . . . , 0).
The second subset corresponds to the set of possible
eigenvalues, or spectra, of density operators D(Cd).
Definition 8. The set of spectra, or sorted probability
distributions, is

Sd = {s ∈ Rd;↓≥0 |
∑d

i=1
si = |s| = 1}. (B7)

While the normalization of any partition, λ ∈ Ydn, is
a spectrum, λ

n ∈ Sd, multiplying a spectrum, s ∈ Sd, by
n ∈ N does not necessarily produce a partition because
the entries of ns, (ns1, . . . , nsd), may not be integer-

valued. Nevertheless, ns ∈ Rd;↓≥0 can always be approxi-

mated by a partition, λ ∈ Ydn, so that |λi − nsi| ≤ 1 for
all i ∈ {1, . . . , d}.5 In Appendix J, it will be useful to
consider approximating ns with a partition, λ, in a dif-
ferent manner, where i) degeneracies of s are preserved,
i.e., δi(s) = 0 =⇒ δi(λ) = 0, and ii) non-degeneracies of
s are adequately represented, e.g., δi(λ) ≥ δi(ns). The
next lemma shows that this can always be accomplished
by partitions, λ, whose size is approximately n.

4 Assuming x ∈ Rd
≥0 is not equal to all-zero d-tuple, x 6= (0, . . . , 0),

so that |x| > 0.
5 An explicit scheme for accomplishing such an approximation is

to let t = n−
∑

ibnsic and define λi = bnsic+ 1 whenever i ≤ t
and λi = bnsic whenever i > t.

Proposition 6. Let s = (s1, . . . , sk) ∈ Sd be a spectrum

and n ∈ N. Let λ = (λ1, . . . , λd) ∈ Nd;↓≥0 be defined by

λi = dn(si− si+1)e+ · · ·+ dn(sd−1− sd)e+ dnsde, (B8)

such that δi(λ) = dδi(ns)e holds. Then λ is a partition
of size |λ| where6

n ≤ |λ| ≤ n+
(
d+1
2

)
− 1. (B9)

Proof. First note that for all 1 ≤ i ≤ d,

εi := dδi(ns)e − δi(ns), (B10)

is upper and lower bounded by 0 ≤ εi < 1. From this
observation, it will be shown that λ approximates ns,
specifically,

0 ≤ λi − nsi < d− i+ 1, (B11)

To prove Eq. (B11), we use (reverse) induction start-
ing from the base case of i = d. Since λd = δd(λ) =
dδd(ns)e = dnsde = nsd + εd, we have λd − nsd = εd
and thus Eq. (B11) holds when i = d. Then, assuming
Eq. (B11) holds for i = j+ 1, we prove it holds for i = j.
Since

δj(λ) = λj − λj+1 = dδj(ns)e (B12)

= δj(ns) + εj = nsj − nsj+1 + εj , (B13)

we conclude that λj − nsj = λj+1 − nsj+1 + εj and thus
0 ≤ λj − nsj < d − j + 1 which is Eq. (B11) for i = j.
Finally, Eq. (B9) follows from Eq. (B11) by summing
over all i:

0 ≤ |λ| − n |s| <
d∑
i=1

(d− i+ 1) =
(
d+1
2

)
. (B14)

Since |λ| is necessarily an integer, |s| = 1, and the upper
bound above is strict, Eq. (B11) holds.

Appendix C: Proof of Lemma 4

Proof of Lemma 4. Let dJ = dim(HJ), let µJ be the
U(dJ)-invariant Haar probability measure over the space
of pure states P(HJ), For any k ∈ N, the orthogonal

projection operator, Π
(k)
J , onto the symmetric subspace,

∨kHJ , is proportional to the expected value of ψ⊗kJ when
ψJ is sampled according to the probability measure µJ :

Π
(k)
J =

(
k+dJ−1

k

) ∫
P(HJ )

µJ(dψJ)ψ⊗kJ , (C1)

6 These bounds are also tight for every d: if s =
(d+1

2

)−1
(d, d −

1, . . . , 1), then n = 1 or n =
(d+1

2

)
yields λ = (d, d−1, . . . , 1) with

size |λ| =
(d+1

2

)
which achieves the upper bound when n = 1 and

the lower bound when n =
(d+1

2

)
.



8

where the normalization factor is simply Tr[Π
(k)
J ] =(

k+dJ−1
k

)
. The proof of Eq. (C1) follows from Schur’s

lemma (see [68, Proposition 6]).
Next, define the map τM : P(HJ)→ D(HM) by

τM(ψJ) = TrmJ\M(ψ⊗mJ ). (C2)

Let νM be the push-forward measure of µJ through τM,
i.e. νM = µJ ◦ τ−1M .

Next note that the coefficients τM(ψJ) are homoge-
neous polynomials of degree m in the coefficients of ψJ ,
and thus τM is continuous and measurable. Addition-
ally, by construction, the image of τM is precisely the set
of compatible M-product states CM. Therefore, since
P(HJ) is compact (as HJ is finite-dimensional), CM is
also compact (and thus closed). Moreover, the support
of the pushforward measure, νM = µJ ◦ τ−1M is equal to
CM.7 Finally, using Eq. (C1), linearity of TrmJ\M, and
a change of variables,

Tr⊗nmJ\M(Π
(nm)
J )

∝
∫
P(HJ )

µJ(dψJ)(TrmJ\M(ψ⊗mJ ))⊗n, (C3)

=

∫
P(HJ )

µJ(dψJ)(τ(ψJ))⊗n, (C4)

=

∫
CM

νM(dσM)σ⊗nM . (C5)

Appendix D: Pure vs. Full QMP

One might wonder why the version of the QMP con-
sidered in this paper (Problem 1) seems to be exclusively
interested in the existence of joint states that are pure,
ψJ ∈ P(HJ), instead of the more general density opera-
tor, ρJ ∈ D(HJ). In order to distinguish between these
two types of QMP, the former is sometimes called the
pure QMP, while the latter is sometimes called the full
QMP. Of these two variants, the full QMP is arguably
a much closer analogy to the classical marginals prob-
lem [19].

The distinction between these two variants is strongest
when the marginal scenario under consideration, M =
(S1, . . . , Sm), has disjoint marginal contexts, i.e. Si ∩
Sj = ∅ for all i 6= j, or equivalently HM = HS1

⊗ · · · ⊗

7 This is because, by the closure of CM, ρM 6∈ CM implies there
exists an open set, O containing ρM, such that O∩CM = ∅ which
implies νM(O) = µJ (τ−1

M (O)) = µJ (∅) = 0, i.e. ρM is not in
support of νM. Moreover, if σM ∈ CM and O′ is any open set
containing σM, τ−1

M (O′) is non-empty and open (by continuity of

τM) in P(HJ ) and thus νM(O′) = µJ (τ−1
M (O′)) > 0. Therefore,

because νM(O′) > 0 for all open sets containing σM, σM is in
the support νM.

HSm
∼= HJ . Under the assumption of disjoint marginal

contexts, the full QMP becomes trivial; every collection
of density operators (ρS1

, . . . , ρSm) are the M-marginals
of the density operator ρJ = ρS1 ⊗ · · · ⊗ ρSm . On the
other hand, under this assumption, the pure QMP re-
mains non-trivial.

At the level of generality considered in this paper,
wherein the marginal scenario M = (S1, . . . , Sm) is per-
mitted to contain overlapping marginal contexts, e.g.,
Si ∩ Sj 6= ∅, the distinction becomes less important be-
cause the marginals of a mixed state can equivalently be
viewed as the marginals of any of its purifications. Specif-
ically, there exists a density operator σJ ∈ D(HJ) with
marginals ρS = TrJ\S(σJ) for all S ∈ M if and only
if there exists a joint pure state ψJJ ′ ∈ P(HJ ⊗ HJ′)
(where HJ′ ∼= HJ) such that (TrJ\S ⊗ TrJ′)(σJ) = ρS
for all S ∈ M. Consequently, the techniques developed
in this paper, which directly apply to the pure QMP, can
also be applied to any instance of the full QMP without
substantial modification.

Appendix E: Diagrammatics

The purpose of this section is to briefly introduce some
diagrammatic notation that will be useful for performing
a few calculations in Appendix F. The particular nota-
tions involving symmetrization and antisymmetrization
used here (Eq. (E11) and onward), are taken from Cvi-
tanović’s excellent textbook [69] on diagrammatic calcu-
lations of invariants of Lie groups, and are essentially the
same those used by Penrose [70]. For a categorical justifi-
cation of this notation, see [71]. For further applications
within quantum theory, see [72–74].

The essential idea is to depict linear operators, L :
HX → HY , by pictures with corresponding inputs and
outputs:

L

Y

X

. (E1)

Of course, two linear operators can be combined in at
least three different ways; specifically, by addition +,
tensor product ⊗, and sequential composition ◦. These
operations are depicted respectively as

L+M

Y

X

= L

Y

X

+ M

Y

X

, (E2)

L⊗M

Y

X

Z

W

= L M

Y

X

Z

W

, (E3)

M ◦ L
X

Z

=
L

M

Y

X

Z

. (E4)
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Important special cases of this notation include the iden-
tity operator IX : HX → HX ,

I

X

X

= X , (E5)

and vectors |ψX〉 : C→ HX (and their conjugates 〈ψX | :
HX → C) as

ψ

X
, and

ψ

X
. (E6)

This notation is especially elegant for depicting two con-
cepts frequently encountered in this paper: the partial
trace and permutations.

First, given a bipartite operator L : HX⊗HY → HX⊗
HY , the partial trace TrY over Y , is depicted as

TrY (L)

X

X

= L

X

X

Y . (E7)

The trace over the identity operator IX : HX → HX ,
which is equal to the dimension of HX , is therefore de-
picted as a closed loop

dX = dim(HX) = I X = X = X . (E8)

Second, the tensor permutation representation, TX :
Sm → L(H⊗mX ), of the symmetric group, Sm, has ele-
ments depicted naturally as follows. When m = 2, S2 =
{e, (12)}, and the identity TX(e) and swap TX((12)) are
depicted respectively by

X X

, and
X X

. (E9)

Analogously, for m = 3, the 3! = 6 permutations in S3

are depicted by

X X X

,
X X X

,
X X X

,

X X X

,
X X X

,
X X X

.

(E10)

The orthogonal projection operator, Π
(2)
X , onto the sym-

metric subspace ∨2HX ⊆ H⊗2X , referred to as the sym-
metrization operator, is given the following unique nota-
tion:

X X

:= Π
(2)
X

X X

=
1

2
X X

+
1

2
X X

. (E11)

Similarly, the orthogonal projection operator onto the

antisymmetric subspace ∧2HX ⊆ H⊗2, denoted by Π
(1,1)
X

and referred to as the antisymmetrization operator, is
depicted in a complementary manner:

X X

:= Π
(1,1)
X

X X

=
1

2
X X

− 1

2
X X

. (E12)

Generalizing this notation for the orthogonal projection
operators onto the symmetric and antisymmetric sub-
spaces of H⊗mX for m > 2 can be done recursively as
follows. For the sake of clarity, the Hilbert space label,
X, can often be omitted without introducing ambiguity.

...

...
=

1

m

(
...

...
+ (m− 1) ...

...

...

)
, (E13)

...

...
=

1

m

(
...

...
− (m− 1) ...

...

...

)
. (E14)

Finally, in order to generalize the above symmetrization
and antisymmetrization notation to the case of multi-
partite Hilbert spaces, e.g., HXY = HX ⊗ HY , we in-
troduce the following notational definition for the joint

symmetrization Π
(2)
XY :

X YX Y

=
1

2 X YX Y

+
1

2
X YX Y

. (E15)

Appendix F: The n = 1 Case

This section explores the strength of the constraint
imposed by Eq. (13) for the special case when n = 1
(equivalently Eq. (12)) for the purposes of detecting in-
compatibleM-product states. For marginal scenarios in-
volving disjoint marginal contexts, it will be shown that
Eq. (12) happens to be satisfied by all M-product states,
and therefore is useless for the QMP. For at least some
marginal scenarios involving non-disjoint marginal con-
texts, it will shown that Eq. (12) is already capable of wit-
nessing the incompatibility of certain M-product states.
Finally, it is shown that for some (admittedly degenerate)
marginal scenarios, the constraint imposed by Eq. (12) is
also sufficient for the corresponding QMP.

Throughout this section, unipartite subsystems are
labeled alphabetically, e.g., A,B,C . . ., and their re-
spective dimensions denoted by lower-case letters, e.g.,
a = dA, b = dB , etc.

Consider the marginal scenario M = (A,B) (m = 2)
for the joint context J = AB. In this scenario, the QMP
is already fully solved: ρA and ρB are the marginals of
some pure state ψAB if and only if spec(ρA) = spec(ρB)
(see Appendix G). To what extent, if any, does Eq. (12)
reproduce this known solution? If ρA and ρB are the
marginals of some pure state ψAB , Eq. (12) implies

ρA ⊗ ρB ≤ (TrB ⊗ TrA)(Π
(2)
AB). (F1)
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To calculate the right-hand side of the above inequality,
it will be convenient to use the diagrammatic notation

introduced in Appendix E. Specifically, Π
(2)
AB can be de-

picted using Eq. (E15) (with X,Y substituted by A,B),

and thus (TrB ⊗ TrA)(Π
(2)
AB) is equal to

A BBA
=

1

2 A BBA

+
1

2 A BBA

, (F2)

=
ab

2 A B

+
1

2 A B

, (F3)

=
1 + ab

2 A B

. (F4)

Therefore, Eq. (F1) is equivalent to ρA ⊗ ρB ≤ 1
2 (1 +

ab)IA ⊗ IB , i.e.

ρA ρB

A B

≤ 1 + ab

2
A B

, (F5)

which is an inequality satisfied by all (A,B)-product
states ρA ⊗ ρB because ρX ≤ IX already holds for all
ρX ∈ D(HX) and ab ≥ 1. In fact, it is not too difficult to
show that whenM = (X1, . . . , Xk) contains disjoint con-
texts, i.e. Xi∩Xj = ∅ for i 6= j, the inequality in Eq. (12)
is always trivial because TrmJ\M(TJ(π)) ≥ IM holds for

all π ∈ Sk and thus TrmJ\M(Π
(m)
J ) ≥ IM also. Fortu-

nately, the same is not necessarily true for non-disjoint
marginal scenarios.

For an example of a non-trivial instance of Eq. (12),
consider the marginal scenario M = (AB,AC,BC) for
the joint context J = ABC. In this scenario, the afore-
mentioned operator inequality becomes

ρAB ⊗ ρAC ⊗ ρBC ≤ (TrC ⊗ TrB ⊗ TrA)(Π
(3)
ABC). (F6)

The projector Π
(3)
ABC onto ∨3(HA ⊗ HB ⊗ HC) can be

expressed as

A B C

=
1

3!

[
A B C

+
A B C

+ (F7)

A B C
+

A B C
+

A B C
+

A B C

]
.

Therefore, (TrC ⊗ TrB ⊗ TrA)(Π
(3)
ABC) becomes

A B C

=
1

3!

[
abc

A B C
+ (F8)

+ c
A B C

+ a
A B C

+ b
A B C

+ 2
A B C

]
.

To show that Eq. (F6) is a non-trivial constraint, we con-
sider consider the case of three qubits, i.e. a = b = c = 2.
For a given pair of qubits, the unique antisymmetric

pure state (also called the singlet state), Φ = |Φ〉 〈Φ| ∈
P(C2⊗C2), can be identified with |Φ〉 = 1√

2
(|01〉− |10〉)

and depicted as follows

Φ
= , s.t. = − , = 1. (F9)

When applied to (TrC ⊗ TrB ⊗ TrA)(Π
(3)
ABC) (assuming

a = b = c = 2) we obtain the identity

=
1

3!
(abc− a− b− c− 2) = 0, (F10)

which, when combined with Eq. (F6) proves that the
(AB,AC,BC) marginals of a three-qubit pure state
ψABC always satisfy

ρAB ρBC ρCA = 0. (F11)

An example of an incompatible triple of states
(ρAB , ρAC , ρBC) whose incompatibility is witnessed by
the above equality constraint is the triple of anti-
correlated states, ρAB = ρAC = ρBC = 1

2 (|01〉 〈01| +
|10〉 〈10|), where the left-hand side evaluates to 2−5.
Other examples includes the triple of singlets ρAB =
ρAC = ρBC = Φ (with value 2−4), or the triple of
maximally mixed states ρAB = ρAC = ρBC = I

2 ⊗ I
2

(with value 2−6). An example of an inconsistent triple
of states for which Eq. (F11) happens to be satisfied is
ρAB = ρBC = |00〉 〈00| and ρAC = |11〉 〈11|.

To conclude, consider the rather non-standard
marginal scenario M = (X,X) for the joint context
J = X. Taken literally, the QMP for this marginal
scenario is to determine, for any given pair of states
ρX , σX ∈ D(HX), whether or not there exists a pure state
ψX ∈ P(HX) such that ρX = ψX and σX = ψX . This
marginal scenario can be regarded as “non-standard” for
at least two reasons: (i) the marginal context X is re-
peated twice inM, and (ii) since X is not a proper subset
of X, ρX and σX are not proper marginals of ψX . Taken
together, the QMP for this scenario has a simple solution:
ρX and σX are compatible if and only if they are both
pure states and equal to each other. Nevertheless, in this
scenario Eq. (12) is a valid constraint; in particular, it

simplifies to ρX ⊗ σX ≤ Π
(2)
X , or diagrammatically

ρX σX

X X

≤
X X

. (F12)

The above inequality implies that Tr(σXρX) = 1 since

0 ≤ ρX σX
≤ = 0, (F13)
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and

ρX σX
=

1

2 ρX σX
− 1

2 ρX σX
, (F14)

=
1

2

(
1−

ρX

σX

)
. (F15)

Since Tr(σXρX) = 1 holds if and only if σX = ρX =
ψX for some pure state ψX , we see that Eq. (12), which
becomes Eq. (F12), is both necessary and sufficient for
the M = (X,X) instance of the QMP.

Appendix G: The Bipartite QMP

This section considers the bipartite marginal scenario,
M = (A,B), for the joint context J = AB. For this
scenario, the QMP is fully solved and admits of a simple
solution: ρA and ρB are the marginals of a joint pure
state ψAB ∈ P(HAB) if and only if they have the same
spectrum [35, 44]. A natural question arises: how does
Theorem 3 recover this well-known result?

To answer this question, first let a = dim(HA), b =
dim(HB), and let ` = min(a, b). For this scenario,
Eq. (13) becomes

(ρA ⊗ ρB)⊗n ≤ (TrB ⊗ TrA)⊗n(Π
(2n)
AB ). (G1)

Now let sA ∈ Sa and sB ∈ Sb be the spectra of ρA
and ρB . Using the results of Appendix J (or essentially
the spectral estimation theorem [14, 63]), together with
Eq. (C1), it is possible to show that the exponential fac-
tor in Eq. (16), Ω(ρA ⊗ ρB), depends only on rA and rB
and is equal to:

Ω(ρA ⊗ ρB) = inf
r∈S`

(D(sA ‖r) +D(sB ‖r)), (G2)

where D(p‖q) is the relative entropy D(p‖q) =∑
i pi(ln pi − ln qi). Since D(p‖q) only vanishes if p = q,

Ω(ρA⊗ ρB) only vanishes if sA = sB . Therefore, we con-
clude that ρA and ρB are the (A,B)-marginals of a pure
state ψAB ∈ P(Ca ⊗ Cb) if and only if they have equal
spectra. Additionally, using Pinsker’s inequality [75],

‖p− q‖21 ≤ 2D(p‖q), and the triangle inequality for ‖·‖1,
we obtain:

‖sA − sB‖21 ≤ 3(‖sA − r‖21 + ‖sB − r‖21) (G3)

≤ 6(D(sA ‖r) +D(sB ‖r)). (G4)

Therefore, Ω(ρA ⊗ ρB) ≥ ‖sA − sB‖21 /6.
A more direct consequence of Eq. (G1) is the following

proposition.

Proposition 7. Let n ∈ N and let α ∈ Yan and β ∈ Ybn
be partitions. If ρA ⊗ ρB satisfies Eq. (G1), then

sα(rA)sβ(rB) ≤
∑
λ∈Y`2n

cλαβ
dim(V aλ ) dim(V bλ )

dim(Wλ)
, (G5)

where rA and rB are the spectra of ρA and ρB re-
spectively. Additionally, sα and sβ are Schur func-
tions [65, 76] and cλαβ is the Littlewood-Richardson co-

efficient [77–79].

Proof. One of the most powerful tools for decomposing
bipartite Hilbert spaces, specifically the symmetric sub-
space of a bipartite system ∨k(HA⊗HB) ∼= V ab(k), is known

as GL(a)×GL(b)-duality [80] (see also [81, Eq. (2.25)]):

V ab(k)
∼=
⊕
λ∈Y`k

V aλ ⊗ V bλ , (G6)

where ` = min(a, b). Using this result, and applying

Πα
A ⊗Πβ

B to the right-hand-side of Eq. (13), we obtain

Tr⊗nAB{(Πα
A ⊗Πβ

B)(Tr⊗nB ⊗ Tr⊗nA )(Π
(2n)
AB )}

= dim(Wα) dim(Wβ)
∑
λ∈Y`2n

cλαβ
dim(V aλ ) dim(V bλ )

dim(Wλ)
,

(G7)

where cλαβ counts the multiplicity of the Sn × Sn irre-
ducible representation space Wα ⊗Wβ inside Wλ under
the restriction of S2n to Sn ×Sn. By comparison, ap-

plying Πα
A ⊗Πβ

B to the left-hand-side of Eq. (13) yields

Tr((Πα
A ⊗Πβ

B)(ρ⊗nA ⊗ ρ⊗nB )) (G8)

= Tr(Πα
Aρ
⊗n
A )Tr(Πβ

Bρ
⊗n
B ), (G9)

= sα(rA) dim(Wα)sβ(rB) dim(Wβ). (G10)

Therefore, Eq. (G1) implies Eq. (G5) and thus the claim
holds.

Appendix H: Fermionic & Bosonic QMP

Our sufficient family of necessary inequality con-
straints can be modified to handle the fermionic and
bosonic variants of the QMP. Recall that a state describ-
ing a system of p fermions (resp. bosons) with f internal
degrees of freedom, is typically modeled by an element
of the antisymmetric subspace ∧pCf (resp. the symmet-
ric subspace ∨pCf ). Since ∧pCf (resp. ∨pCf ) can be
viewed as a subspace of a p-partite composite Hilbert
space (Cf )⊗p, and ∨n ∧p Cf (resp. ∨n ∨p Cf ) serves as
the respresentation space for an irreducible representa-
tion of SU(∧pCf ) ∼= SU(dim(∧pCf )) ∼= SU(

(
f
p

)
) (resp.

SU(
(
p+f−1
p

)
)), the analogue of Eq. (C1) holds and thus

an analogue of Lemma 4 also holds. Altogether, a gener-
alization of Theorem 3 holds:

Corollary 8. Let HV ⊆ HJ be a subspace of a joint
Hilbert space, HJ . AnM-product state, ρM = ρS1

⊗· · ·⊗
ρSm , is compatible with a joint pure state ψV ∈ HV ⊆ HJ

in the subspace HV if and only if for all n ∈ N,

ρ⊗nM ≤ Tr⊗nmJ\M(Π
(nm)
V ), (H1)
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where Π
(nm)
V is the projection operator onto the nm-

symmetric subspace ∨nmHV ⊆ H⊗nmJ .

Appendix I: Counting Solutions to the QMP

Whenever a givenM-product state, ρM = ρS1
⊗ · · · ⊗

ρSm , is shown to be compatible, a natural follow-up prob-
lem is to determine whether or not the joint state, ψJ ,
satisfying Eq. (9) is unique. For the bipartite marginal
scenario,M = (A,B), if the common spectrum of ρA and
ρB is s = (s1, . . . , sr, 0, . . . , 0), with positive values dis-
tinct, i.e. s1 > · · · > sr > 0, then the unique pure state,
ψAB ∈ P(HJ), satisfying Eq. (9) is ψAB = |ψAB〉 〈ψAB |
where

|ψAB〉 =

r∑
i=1

√
si |φ(i)A 〉 ⊗ |φ

(j)
B 〉 , (I1)

where {φ(i)A }ri=1 and {φ(i)B }ri=1 are the eigenvectors of
ρA and ρB . If, however, the common spectrum,
(s1, . . . , sr, 0, . . . , 0), is degenerate in the sense that some
of its values are identical, then the solution to Eq. (9) may
not be unique. A familiar example of this phenomenon,
for the two-qubit Hilbert space HJ

∼= C2 ⊗ C2, are the
four Bell states all sharing the same pair of maximally-
mixed, single-qubit marginals, ( I2 ,

I
2 ).

The following result generalizes Eq. (17) by considering
the possibility that an M-product may be compatible
with multiple, orthogonal, joint states.

Corollary 9. Let ρM = ρS1
⊗· · ·⊗ρSm be anM-product

state and {ψ(1)
J , . . . , ψ

(v)
J } be a set of joint pure states,

satisfying i) for all 1 ≤ j, k ≤ v,

Tr(ψ
(j)
J ψ

(k)
J ) = | 〈ψ(j)

J |ψ
(k)
J 〉 |2 = δj,k, (I2)

and ii) for all 1 ≤ i ≤ m, and 1 ≤ k ≤ v,

ρSi = TrJ\Si(ψ
(k)
J ). (I3)

Then, the following inequality holds:

vnmρ⊗nM ≤
∑

λ∈Yvnm

Tr⊗nmJ\M(Πλ
J). (I4)

Proof. Let PV be the orthogonal projection operator onto

the subspace of HJ spanned by {ψ(k)
J }vk=1, i.e.,

PV =

v∑
k=1

ψ
(k)
J . (I5)

Since each ψ
(k)
J has marginals (ρS1 , . . . , ρSm), we con-

clude

Tr⊗nmJ\M(P⊗nmV ) = vnmρ⊗nM . (I6)

Furthermore, P⊗nmV commutes with TJ(π) for all π ∈
Snm and thus commutes with Πλ

J for every λ ∈ YdJnm. In
fact, we obtain

P⊗nmV =
∑

λ∈Yvnm

Πλ
JP
⊗nm
V Πλ

J ≤
∑

λ∈Yvnm

Πλ
J , (I7)

because i) Πλ
JP
⊗nm
V = 0 for all λ with length `(λ) > v,

and ii) PV ≤ IJ . Applying Tr⊗nmJ\M yields Eq. (I4).

Note that Eq. (I4) is equivalent to Eq. (17) if v =
1. Also note that while Eq. (I4) is necessary for the
existence of v orthogonal solutions to the QMP, satisfying
Eq. (I4) for all n is generally insufficient (for v > 1) to
conclude that v orthogonal solutions to the QMP exist.
For example, if v = dJ , Eq. (I4) simplifies to

ρ⊗nM ≤
(
IM
dM

)⊗n
. (I8)

The above constraint is evidently satisfied for all n ∈ N, if
and only if ρM is the maximally-mixedM-product state,
i.e., ρM = IM/dM. However, such states are generally
incompatible [82], e.g., it can be shown that ( IAa ,

IB
b ) are

not the (A,B)-marginals of any pure state, ψAB , if a 6= b.

Appendix J: Keyl Divergence & State
Discrimination

The purpose of this section is to prove Theorem 15
which can be interpreted as an explicit strategy for asym-
metric quantum state discrimination. While Theorem 15
is exclusively used by this paper in the proof of Theo-
rem 3, it may be of independent interest. Many of the
results of this section come directly from Keyl’s work on a
large-deviation-theoretic approach to quantum state es-
timation [62]. The only additional insight not taken from
[62] is the use of Proposition 6 in the proof of Theorem 15.
Both Appendix A and Appendix B are considered pre-
requisites for this section.

Definition 9. Let x ∈ Rd;↓≥0 and let ρ ∈ D(Cd), define

∆x(ρ) =
∏d

i=1
pmi(ρ)δi(x), (J1)

where pmi(ρ) is the ith (leading) principal minor of ρ,
i.e. the determinant of the upper-left i × i-submatrix
of ρ with respect to some fixed, computational basis
{|0〉 , . . . , |d〉}.8

The function defined in Eq. (J1) is also referred to as
the generalized power function [83, Notation 4.1]. Note
however, in [83], x is restricted to be a partition with
length at most d, while ρ is permitted to be any d × d
complex-valued matrix.

8 If it happens that pmi(ρ) = 0 and δi(x) = 0 for some index i,
then the indeterminant expression 00 is taken to be equal to 1.
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Proposition 10. Let s = (s1, . . . , sd) ∈ Sd be the spec-

trum of σ ∈ D(Cd). For all x = (x1, . . . , xd) ∈ Rk;↓≥0 ,

∆x(σ) ≤ ∆x(diag(s1, . . . , sd)) =
∏d

i=1
sxii , (J2)

with equality holding if and only if σ = diag(s1, . . . , sd).

Proof. Consider any i ∈ {1, . . . , d}. Let (s
(i)
1 , . . . , s

(i)
i )

with s
(i)
1 ≥ · · · ≥ s

(i)
i denote the eigenvalues of the

i × i leading principal submatrix of σ so that pmi(σ) =

s
(i)
1 · · · s

(i)
i . According to Cauchy’s interlacing theorem

(see [84] or [85, Thm. 4.3.17] noting the reversed order-
ing of labels), for all 1 < i ≤ d,

s
(i)
1 ≥ s

(i−1)
1 ≥ s(i)2 ≥ · · · ≥ s

(i)
i−1 ≥ s

(i−1)
i−1 ≥ s(i)i . (J3)

Therefore, for any k and i such that 1 ≤ k ≤ i ≤ d,

sk = s
(d)
k ≥ s

(i)
k ≥ s

(k)
k . Therefore, for all i ∈ {1, . . . , d},
pmi(σ) ≤ s1 · · · si, (J4)

with equality holding (for all i) only if σ =
diag(s1, . . . , sd).

Proposition 11. Let s = (s1, . . . , sd) ∈ Sd ⊆ Rd;↓≥0.
Then

∆s(diag(s)) =
∏d

i=1
ssii = exp(−H(s)) > 0. (J5)

where H(s) = −∑d
i=1si ln si is the Shannon entropy of

s.

Corollary 12. Let ρ ∈ D(Cd) have spectrum s =
(s1, . . . , sd) ∈ Sd and let U ∈ U(d) be a unitary such
that ρ = Udiag(s1, . . . , sd)U

† and let σ ∈ D(Cd). Then

∆s(U
†σU)

∆s(diag(s))
= exp(−K(ρ‖σ)) (J6)

where K(ρ‖σ) is defined as

K(ρ‖σ) =
∑d

i=1
si ln si − δi(s) ln pmi(U

†σU), (J7)

where K(ρ‖σ) ∈ [0,∞] and K(ρ‖σ) = 0 if and only if
σ = ρ.

Notice that if ρ and σ are simultaneously diagonal-
ized by U so that U†σU = diag(t1, . . . , td), the quan-
tity K(ρ‖σ) simplifies to the classical relative entropy,

D(s‖ t) =
∑d
i=1 si(ln si − ln ti), also known as Kullback-

Liebler divergence [86]. Also note that, in general,
K(ρ‖σ) does not equal the quantum relative entropy
S(ρ‖σ) = Tr(ρ(ln ρ− lnσ)), but is nevertheless bounded
by K(ρ‖σ) ≤ S(ρ‖σ) [62]. For these reasons, we refer
to the quantity K(ρ‖σ) as Keyl-divergence.

Proposition 13. Let λ ∈ Ydn be a partition of n ∈ N
and let |φUλ 〉 ∈ V dλ be the twirled highest weight vector for
U ∈ U(d) (see Definition 5). Then for all σ ∈ D(Cd),

〈φUλ | τλ(σ⊗|λ|) |φUλ 〉 = ∆λ(U†σU). (J8)

Proof. This result is noted by Keyl as [62, Eqs. (141) &
(151)] with reference to [87, Section 49].

Henceforth, define the projection operator ΦUλ ∈
L(H⊗|λ|) by

ΦUλ := ιλ(|φUλ 〉 〈φUλ | ⊗ IWλ
)ι†λ, (J9)

so that,

Tr(ΦUλ ρ
⊗|λ|) = dim(Wλ)∆λ(U†ρU). (J10)

Corollary 14. Let ρ, σ ∈ D(Cd) and let U ∈ U(d) diag-
onalize ρ, i.e. ρ = Udiag(s1, . . . , sd)U

†. If ρ has rational
spectra s = (s1, . . . , sd) ∈ Sd, i.e. there exists a q ∈ N
such that qs ∈ Ydq is a partition of q, then for all n ∈ N,

Tr(ΦUnqsσ
⊗nq)

Tr(ΦUnqsρ
⊗nq)

= exp(−nqK(ρ‖σ)). (J11)

Proof. The proof follows from Eq. (J10) and Corollary 12.
When Eq. (J10) is applied to the numerator and denom-
inator on the left-hand-side of Eq. (J11), the common
factor of dim(Wnqs) > 0 cancels out.

A result similar to Corollary 14 holds for arbitrary
states ρ ∈ D(Cd), e.g., for states that do not have ra-
tional spectra.

Theorem 15. Let ρ, σ ∈ D(Cd), let s = (s1, . . . , sd) ∈ Sd
be the spectrum of ρ, and let U ∈ U(d) diagonalize ρ,
such that ρ = Udiag(s1, . . . , sd)U

†. Then there exists a
sequence, n 7→ λn ∈ Ydn of partitions such that for all
n ∈ N,

Tr(ΦUλnσ
⊗n)

Tr(ΦUλnρ
⊗n)

≤ D(s) exp(−(n−
(
d+1
2

)
+ 1)K(ρ‖σ)).

(J12)
where D(s) is a constant depending only on s.

Proof. The proof relies on an explicit construction of a
sequence, n 7→ λn, that satisfies the claim. For each
non-negative integer k ∈ N≥0, let µk be the partition
characterized by δi(µ

k) = dδi(ks)e (see Proposition 6).
Then for any state η ∈ D(Cd), we claim

∆ks(η)∆µ1(η) ≤ ∆µk(η) ≤ ∆ks(η). (J13)

To see the upper bound, note that for all i ∈ {1, . . . , d},
δi(µ

k) ≥ δi(ks) > 0 so pmi(η)δi(µ
k) ≤ pmi(η)δi(ks)

since pmi(η) < 1 (noting Eq. (J4)). For the lower
bound, note that δi(µ

k) = dδi(ks)e ≤ δi(ks) + dδi(s)e =
δi(ks) + δi(µ

1), so ∆µk(η) ≥ ∆ks(η)∆µ1(η) holds. Next,
apply Corollary 12 and Eq. (J13) (the upper bound when
η = U†σU , and the lower bound when η = U†ρU =
diag(s1, . . . sd)) to obtain

Tr(ΦUµkσ
⊗|µk|)

Tr(ΦU
µk
ρ⊗|µk|)

≤ exp(−kK(ρ‖σ))

∆µ1(diag(s1, . . . sd))
. (J14)
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Now, notice that Eq. (J14) is almost in the form of
Eq. (J12). The main obstacle remaining is simply that
the size of µk needs to be decoupled from the spectra
of ρ. Fortunately, Proposition 6 guarantees that

∣∣µk∣∣ is,

at least, approximately equal to k because k ≤
∣∣µk∣∣ ≤

k +
(
d+1
2

)
− 1. Moreover, since

∣∣µk+1
∣∣ ≥ ∣∣µk∣∣, there al-

ways exists at least one value of k such that µk has size
approximately n for any n ∈ N; specifically, there exists
a k ∈ N such that

n−
(
d+1
2

)
+ 1 ≤

∣∣µk∣∣ ≤ n. (J15)

Now simply define λn ∈ Ydn by

λn = (µk1 + n−
∣∣µk∣∣ , µk2 , . . . , µkd), (J16)

where k is the largest such that µk satisfies Eq. (J15).

Note that when n is small (n <
(
d+1
2

)
− 1), is entirely

possible for k = 0 and µ0 = (0, 0, . . . , 0), in which case,
λn = (n, 0, . . . , 0). This definition ensures

Tr(ΦUλnρ
⊗n) = s

n−|µk|
1 Tr(ΦUµkρ

⊗|µk|), (J17)

Tr(ΦUλnσ
⊗n) ≤ Tr(ΦUµkσ

⊗|µk|). (J18)

Therefore, from Eqs. (J14) and (J15), we conclude
Eq. (J12) where D(s) is the constant

D(s) = s
1−
(
d+1
2

)
1

(
∆µ1(diag(s1, . . . sd))

)−1
(J19)

= s
1−
(
d+1
2

)
1

d∏
i=1

(s1s2 · · · si)−dδi(s)e. (J20)

Remark 1. To derive the inequality claimed in Sec-
tion III, namely Eq. (16), from the result of Theorem 15,

note that
(
d+1
2

)
− 1 ≤ d2 and substitute

i) En = ΦUλn ,

ii) Ω(ρM) = infσM∈CM K(ρM ‖σM),

iii) c(ρM) = lnD(spec(ρM)), and

iv) d = dM = dim(HM).

The claim that Ω(ρM) vanishes if and only if ρM ∈ CM
follows from the compactness of CM and the following
corollary.

Corollary 16. Let C ⊆ D(Cd) be compact. Define

Ω(ρ) := inf
σ∈C

K(ρ‖σ) . (J21)

Then Ω(ρ) = 0 if and only if ρ ∈ C.

Proof. If ρ ∈ C, then Corollary 12 implies Ω(ρ) =
K(ρ‖ρ) = 0. Otherwise if ρ 6∈ C, then consider, for

each fixed x ∈ Rd;↓≥0 and U ∈ U(d), that the function
σ 7→ ∆x(U†σU) ∈ [0, 1] is continuous as pmi(U

†σU) is
a polynomial in the coefficients of σ. The compactness
of C guarantees (using the extreme value theorem) the
supremum is attained by some σUx ∈ C:

∆x(U†σUx U) = sup
σ∈C

∆x(U†σU). (J22)

Since Ω(ρ) = K
(
ρ‖σUx

)
and ρ 6= σUx , we conclude, from

Corollary 12, that Ω(ρ) 6= 0.


