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ABSTRACT

Automatic speech recognition (ASR) systems typically rely on
an external endpointer (EP) model to identify speech boundaries. In
this work, we propose a method to jointly train the ASR and EP tasks
in a single end-to-end (E2E) multitask model, improving EP quality
by optionally leveraging information from the ASR audio encoder.
We introduce a “switch” connection, which trains the EP to consume
either the audio frames directly or low-level latent representations
from the ASR model. This results in a single E2E model that can
be used during inference to perform frame filtering at low cost, and
also make high quality end-of-query (EOQ) predictions based on
ongoing ASR computation. We present results on a voice search
test set showing that, compared to separate single-task models, this
approach reduces median endpoint latency by 120 ms (30.8% re-
duction), and 90th percentile latency by 170 ms (23.0% reduction),
without regressing word error rate. For continuous recognition,
WER improves by 10.6% (relative).

Index Terms: endpointing, end-to-end speech recognition, voice ac-
tivity detection, end of query detection, multitask

1. INTRODUCTION

End-to-end (E2E) approaches to automatic speech recognition
(ASR) have been the subject of growing interest in recent years,
and ASR is now a prominent input modality for many products, in-
cluding digital personal assistants, smart speakers, and smartphone-
based applications [1, 2]. E2E models outperform conventional
ASR systems by integrating multiple tasks (acoustic modeling and
language modeling) into a single model and training them jointly
[3]. In this work, we continue this integration by incorporating
another model which is typically trained separately, the endpointer
model (EP).

The EP model is typically trained as small standalone model
(e.g., [4)5]), which assists recognition by generating two types of
signals, voice activity detection (VAD) and end-of-query (EOQ) de-
tection. First, the VAD task is to classify each frame according to
whether it contains speech or silence. This signal is then used for
“frame filtering,” i.e. discarding non-speech frames from the input
before passing it to the much larger ASR model. For streaming ASR
systems (which operate on audio frames in real-time as they are re-
ceived), this reduces computation by allowing the system to “skip”
unnecessary frames. This is particularly important for continuous-
query tasks, such as voice dictation, where recognition may run
for an arbitrarily long period and computational savings accumulate
over time.

The other primary task for the EP model is EOQ prediction,
which is specific to “short-query” speech tasks, such as digital as-
sistants or interactive voice response (IVR) applications (e.g. “Play
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Bruno Mars.”). The task is to predict when the user is done speak-
ing, at which point the system should close the microphone and gen-
erate a response [4)]. High-quality EOQ detection is critical to re-
ducing system latency, since a response typically will not be gener-
ated until the system recognizes that the user has finished speaking.
For voice recognition systems, user-perceived latency (UPL) is an
important factor for a satisfactory experience [6]. While complete
speech recognition systems are complex and many individual com-
ponents impact UPL, the quality of EP prediction is the largest single
determinant [7].

Integrating the ASR and EP models is a natural next step in the
progression towards E2E recognition. E2E training can confer two
main benefits for this application. First, recognition and endpoint-
ing quality may improve, as joint training is likely to lead to better
quality models by forcing the model to learn representations that
generalize well across related tasks. Secondly, E2E training of ASR
and EP reduces the infrastructure burden of building speech recog-
nition systems, since only a single model would need to be trained,
deployed, and maintained.

Other E2E approaches to jointly train EP and ASR mostly fo-
cus on subsuming the EP task into the ASR task, which we term
“decoder-based” EOQ detection, since they require inference by the
ASR decoder to produce an EOQ signal. Decoder-based approaches
can be effective for EOQ detection [7]], but maintaining an acoustic-
based EOQ detector helps cover the long-tail of utterances that the
decoder-based EOQ does not detect properly [8]. Additionally, ASR
decoding can be susceptible to high latency during streaming recog-
nition if frame batching into larger chunks is being imposed for com-
putational efficiency [9]]. Also, frame filtering based on VAD pre-
diction is impossible using only a decoder-based signal. Therefore,
the proposed method aims to augment the capabilities of a decoder-
based EOQ detection with acoustic-based endpointing in a fully E2E
setup. Best results for EOQ detection are obtained when combining
acoustic- and decoder-based methods [3} 7, 18]].

Therefore, our proposed method integrates the EP model into the
audio encoder of an E2E ASR model to produce an acoustic-based
EP prediction. A straightforward way to accomplish this is to share
layers with the ASR encoder, a technique known as “hard parameter
sharing” [10]. Li et al. [11] previously explored training the VAD
task on top of the lowest layers of an ASR model, with good re-
sults. However, directly applying this technique would cause issues
when deployed for inference. EP models are typically kept as small
as possible in order to be computationally efficient, since they must
produce a VAD prediction for every audio frame (for frame filtering)
[12]. Since ASR models are much larger than EP models, layer shar-
ing may not be computationally viable. For example, each encoder
layer in the ASR model described in [13]] is approximately 32 times
larger than the endpointer model described in [14]]. Running that
single ASR layer for a VAD prediction on every audio frame would
require a major increase in computation. Addressing this concern is



the motivation for the novel architecture we propose here.

The key insight for our proposed method is that while frame
filtering using a VAD signal is subject to a strict computational con-
straint, the EOQ task is free to leverage computation from the ASR
model, since its signal is required only while speech is ongoing. It is
therefore desirable to have a small EP model that can operate on au-
dio input directly, but also operate on the latent representation from
the ASR system when it’s available. During inference, the EP can be
fed audio frames until it detects speech onset, at which point the au-
dio will be fed to the ASR model, “activating” the shared layers; the
EP model can then be fed the latent representations from the shared
layers until speech offset is detected. This scheme is most desirable
in the short-query scenario, where improvements to EOQ prediction
directly impact UPL, since the system can more quickly recognize
that the user is finished speaking. We train this EP model by intro-
ducing the novel “switch” connection: for each training example, the
input to the EP is randomly chosen between the two possible inputs,
the audio frames and the latent representation from the shared lay-
ers. Thus the model learns to expect either type of input, and can
produce a prediction accordingly.

We evaluate the proposed method on real-world testsets, evalu-
ating EOQ performance on short-query utterances and frame filter-
ing performance on voice dictation data. We find that the proposed
method reduces median EOQ detection latency improves by 120ms,
a 30.8% reduction, and 90th percentile latency by 170ms, a 23.0%
reduction, with no regression in word error rate (WER). Because
EOQ detection directly affects user experience by ending recogni-
tion and generating a response faster, this is a substantial improve-
ment to UPL. Further, we demonstrate on a continuous-query voice
dictation set that frame filtering performance does not suffer rela-
tive to baseline; in fact, the word-error rate for the multitask ASR
model improves, possibly by integrating the EP target signal into its
acoustic understanding.

2. RELATED WORK

Early work on VAD relied on hand-crafted acoustic features, such
as zero-crossing rate, energy ratio, and signal periodicity [15} [16].
Later, supervised machine-learning methods, including Hidden
Markov Models (HMM) and Gaussian Mixture Models (GMM),
were also shown to be effective [17]. Recent approaches have fo-
cused on deep neural network (DNN) structures, and long short-term
memory (LSTM) modules in particular have been shown to perform
well [18} 14, [19]. As mentioned above, Li et al. implement VAD
prediction by placing a fully-connected layer on top of the convolu-
tional neural network (CNN) encoder of an ASR model [[11].

For the reasons explored in Section[I} E2E integration of the EP
and ASR has been of recent interest, and several decoder-based ap-
proaches have been explored. Yoshimura et al. [20] implement VAD
by regarding the blank tokens in a CTC-based ASR model as the
non-speech region. Chang et al. [8] perform EOQ detection by aug-
menting the ASR search space with an end-of-sentence token. Lu et
al. extend the technique proposed in [§] to multi-speaker recognition
[21]. As stated in Section decoder-based methods complement but
cannot fully replace acoustic EP signals.

Our study builds on these prior works and offers several new
contributions. While prior work in joint ASR and EP training in [11]
focuses solely on the VAD task, we perform both VAD and EOQ
tasks; leveraging the ASR encoder for E2E prediction is a novel ap-
proach to acoustic-based EOQ. Additionally, to the authors’ knowl-
edge, the “switch” connection is an entirely novel solution to the
problem of differing computational constraints for frame filtering
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Fig. 1: Model Architecture Multitask ASR and EP model, featur-
ing shared encoder layers and a switch connection. During training,
the switch connection randomly chooses between two inputs with
equal probability for each training example.

versus EOQ detection. This is a critical technique for real-world
deployment of an E2E ASR and EP model, as it must meet the con-
straints of a real-time speech recognition system.

3. MODEL

3.1. Endpointing Task

Similar to [14]], the endpointing task is modeled as a frame-level
classification task, where each frame is classified as one of four
speech classes:

speech,

initial silence,
S= { } (€))

intermediate silence,

final silence

Within an utterance, all frames before speech begins are labeled “ini-
tial” silence, and all frames after the final speech segment are labeled
“final;” all other segments are labeled “intermediate.” Because this
method is intended for streaming speech recognition scenarios, we
allow the EP model to condition its predictions on previous frames.
Formally, for each audio frame at time ¢ the model predicts:

P(S¢|Xo:t) (@3]

where X is the sequence of input frames, and S is the sequence of
frame-wise speech class labels, S; € S.

We therefore achieve a categorical distribution over S for
every frame; at inference time, we derive the VAD signal for
each frame by applying a threshold to the predicted probability
P(S; = speech|Xo::), and likewise for the EOQ signal using
P(S; = final silence| Xo.¢).



We optimize the EP task using standard cross-entropy loss
Lep = CE(S, S) 3)

where S is the predicted class label probabilities for a given utter-
ance.

3.2. ASR Task

E2E ASR models derived from the RNN-T structure [3|] involve
an audio encoder and prediction network, roughly analogous to an
acoustic model (AM) and language model (LM), respectively, in
classical ASR systems. Information from both networks are joined
together to produce a prediction P(Y|X), where Y is a tokenized
representation of the transcript. This is optimized using RNN-T loss,
described more fully in [3]. Briefly: the ASR model is trained
to output sequences containing valid wordpiece tokens or special
“blank” tokens that are ignored; predictions containing blanks are
called “alignments.” The training loss is:

EASR = logP(YlX) = Z
A:B(A)=Y

P(A|X) 4)

where B is a function mapping an alignment A to valid output se-
quences by removing all instances of the blank symbol [22].

3.3. Multitask Model and Switch Connection

In the proposed model, ASR and EP are trained jointly. We first
modify the training loss to be a weighted average of the ASR and EP
loss functions:

Lo = Aasr + (1 — X) Lep Q)

where A\ € [0,1] is a hyperparameter defining the training weight
given to the ASR task.

The first two conformer layers of the ASR’s audio encoder are
shared with the EP via hard parameter sharing [10]. The EP model
may consume either the audio frames directly or the latent represen-
tation from the shared layers. During training, the input given to
the endpointer is determined stochastically per utterance by select-
ing the audio frames or the latent features with equal probability. We
term this a “switch” connection. A diagram of this model is shown
in Figure[T]

During inference, the switch connection is replaced with an in-
put logic determined by the EP prediction for the previous frame.
We maintain two thresholds, Ovap, Oeoq € [0, 1], which are hyperpa-
rameters. We say the EP predicts speech if P(speech) > 6yap, and
predicts EOQ if P(final silence) > 6goq. We begin by feeding au-
dio frames to the EP, without passing them down to the ASR model.
Then, when speech onset is detected, audio frames are passed to the
ASR model, and the EP model performs inference with the ASR la-
tent features as input. The subsequent logic differs depending on the
type of recognition. In continuous recognition, we simply return to
the non-speech state once the EP-predicted speech posterior drops
below Ovap. In the short query case, we wait for the system to de-
clare EOQ, using a combination of signals from the acoustic- and
decoder-based EOQ detectors, at which point we end recognition
(see §4.4). This logic is illustrated as a finite state machine diagram
in Figure[2]

start —

P(final) > fgoq
P(speech) > 6vap

(a) State machine for short queries, e.g. “Play Bruno Mars.”

P(speech) > Ovap

P(speech) < Bvap

(b) State machine for continuous recognition, e.g. “To be, or
not to be, that is the question...”

Fig. 2: Inference Logic Finite state machine diagrams representing
the logic determining which input is given to the EP during stream-
ing recognition. While the EP predicts that the user is not speaking,
inference is run on the EP only, using the audio frames as input (“EP
Only”). When speech is detected by the EP, inference is run on both
ASR and EP, using the ASR latent features as input for the EP (“ASR
+ EP”).

4. EXPERIMENTAL SETUP
4.1. EP Model

Input to the endpointer model is passed through a fully-connected
projection layer, which feeds into a 3-layer stack of 128-dim LSTM
blocks [23], similar to [S}14]]. The output from the LSTM encoder
is fed to another fully-connected layer, which projects the 128-dim
encoding to a 4-dim output vector. These values are passed as logits
through a softmax function to obtain probability predictions for each
frame.

4.2. ASR Model

As our ASR model, we use a ~150M parameter streaming cascaded
conformer-transducer (Conf-T) [24, [13]], which features a causal
conformer encoder with 7 layers and attention dimension 512, and a
V2 embedding decoder (i.e., the prediction network computes em-
beddings based on the two most recent non-blank tokens). As this is
a streaming model [25]], the causal encoder is given only left-context
during recognition. The encoder contains a time-reduction stacking
layer after the second conformer layer, which down-samples the
input by a factor of 2.

As this is a cascaded-encoder setup [26], outputs from the causal
encoder are passed to a second encoder which receives limited right
context, composed of 6 conformer layers with dimension 384. The
V2 embedding decoder two produces predictions based on both the
causal and non-causal encoder features; the word-error rates (WER)
reported in Section[5]are obtained from the non-causal pathway. This
model also features an E2E-EP [8]], wherein the ASR search space is
augmented with an </ s> token that signals EOQ (see §4.4).



4.3. Training Setup

The acoustic features used for all experiments are 128-dim log-mel
features, computed in 32ms windows every 10ms. Each frame is
stacked with three previous frames to produce a 512-dim vector and
downsampled to 30ms, and concatenated with a 16-dim one-hot do-
main ID vector.

Our training dataset contains ~400k hours of English utter-
ances sampled from multiple domains, including voice-search tasks,
far-field environments, telephony conversations, and audio drawn
from longform videos. All utterances are anonymized and hand-
transcribed, and augmented using room simulations and artificial
noise with signal-to-noise ratios (SNR) between Odb and 30db.
SpecAugment [27] is applied for regularization. Training labels for
the endpointer are generated by running a forced word alignment
based on the transcription label [28]. Once speech and non-speech
regions are identified, the first non-speech segment is classified as
“initial silence,” the last one as “final silence,” and all others as “in-
termediate silence.” All experiments are implemented in TensorFlow
[29] and the Lingvo toolkit [30] on 8x8 slices of Tensor Processing
Units [31].

The baseline used for comparison uses single-task versions of
the above models, trained separately and combined into a complete
speech recognition system. The single-task ASR model is trained
for 600k steps, with a global minibatch size of 4096 utterances us-
ing the Adam optimizer [32]. All ASR training includes FastEmit
[33] to encourage the model to emit hypotheses with low latency.
The single-task EP model is trained for 300k steps, as the model
converges much more quickly. For the multitask ASR and EP mod-
els, we set A = 0.98, and train with the same parameters described
above for single-task ASR models.

We are aware of the sensitive nature of the speech recognition
research and other Al technologies used in this work. All training
data used in this work abides by Google Al Principles [34].

4.4. Declaring EOQ

For short-query utterances, recognition may be ended by either
acoustic- and decoder-based EOQ detection. The proposed method
is considered the acoustic-based EOQ detector. As explained in §3.1]
acoustic EOQ is predicted if P(final silence) > 6goq. Decoder-
based EOQ detection is performed by augmenting the ASR target
vocabulary with a special token </s> indicating the predicted end
of speech [8}135,136]. The ASR model predicts EOQ if the top beam
contains that token with prediction cost lower than a hyperparameter
0-,s>. EOQ can be declared by either the acoustic- or decoder-based
signal, whichever comes first. Once EOQ is detected, we impose
a short mandatory waiting period w to further avoid deletion errors
due to early cutoff. For each experiment, 6goq, 0</s>, and w are
swept using grid search on the evaluation set to optimize median
and 90th percentile latency for a given WER (chosen here to be
5.8). All systems evaluated in this work have both acoustic- and
decoder-based EOQ detection enabled, since the end-to-end nature
of the proposed system may affect both methods of endpointing.

4.5. Evaluation

We evaluate EOQ detection performance on a short-query dataset
containing ~14k anonymized and hand-transcribed far-field utter-
ances of voice search traffic. The main metrics of interest are WER,
and endpoint latency, defined as the amount of time between when
the user stops speaking (ground truth EOQ) and the detected EOQ.
The ground truth EOQ is estimated using a forced word alignment

Table 1: Short-Query Results ASR and EP performance for the
proposed multitask model in a complete speech recognition system.
We report word-error rate (WER (%)), and 50th/90th percentile end-
point latency (EP50, EP90 (ms)).

[ Exp. [ Method [ WER [ EP50 [ EP90 ]
Bl Separate Models 5.8 390 740
El Multitask Model 5.8 320 610
E2 + 2 Shared Layers 5.8 270 560
E3 + Switch Connection 5.8 270 570

Table 2: Continuous Results Frame filtering performance for the
proposed system, evaluated on a continuous query test set. We report
word-error rate (WER (%)), broken down by deletions, insertions,
and subsitutions. We also report the percentage of audio remaining
after frame filtering (Speech %).

[ Exp. | WER | del [ ins [ sub [ Speech % |
B1 104 | 1.1 | 47 | 45 0.73
B1, no filter 14.4 1.2 | 82 | 50 1.0
E3 9.3 1.2 | 3.6 | 44 0.73
E3, no filter 13.6 1.2 |1 7.6 | 48 1.0

in the same fashion as the endpointer training labels are generated.
We report the median and 90th percentile latency (EP50 and EP90,
respectively).

We evaluate frame filtering performance on a continuous-query
dataset containing ~14k anonymized and hand-transcribed utter-
ances of voice dictation traffic, which are broken up into speech
segments of ~10 seconds on average. We report WER, and the
percentage of the utterance that is left after frame filtering, which
measures on how many frames ASR inference is run (lower is
better).

5. RESULTS
5.1. EOQ Detection

We present results for a step-wise progression towards the proposed
system in Table I} Our baseline (B1) configuration uses separately
trained ASR and EP models, combined in a single speech recog-
nition pipeline. The first experiment (E1) trains these two models
jointly using the multitask loss function described in but with-
out any parameter sharing. This helps verify that the multitask learn-
ing task is effective, independent of other architectural changes. We
then introduce parameter sharing (E2), placing the EP model down-
stream of the second conformer layer in the ASR audio encoder. At
this stage, all input to the EP is passed through the first two con-
former ASR layers for both VAD and EP - this allows us to assess
the quality impact of sharing parameters with the ASR model. This
improves median and 90th percentile latency by 30.8% and 23.0%,
respectively. Note that this is not a deployable model, since the VAD
prediction would be too expensive for frame filtering.

Finally, we introduce the switch connection (E3), which is our
proposed candidate model. The ideal case for this experiment is
to match the quality of E2 — we observe that training with a switch
connection does not degrade the median latency, and only marginally
increases 90th percentile latency.

5.2. Frame Filtering

We present the frame filtering performance of the our proposed E2E
model on continuous-query utterances in Table[2] The results com-
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Fig. 3: WER vs. Median Latency Response curves showing the
optimal median latency for a given WER on the short query test set.

pare the baseline (B1) and proposed system (E3), which are exactly
the same models as listed in Table[T] We evaluate both systems with
frame filtering enabled and disabled, to demonstrate the effect of
filering on WER. The results show that both systems are similarly
effective at filtering, leaving 73% of the utterance remaining after
discarding silence frames. Note that a major source of word errors
in both systems come in the form of insertions — we observe that the
E2E ASR models examined in this study are prone to hallucinating
words during noisy non-speech parts of the audio. Therefore, frame
filtering has the additional benefit of reducing insertion WER, by
recognizing and filtering out non-speech frames. This is why apply-
ing the frame filter actually reduces WER.

Perhaps surprisingly, the ASR system in E3 has superior WER,
and most of the relative reduction in WER is due to lower insertion
errors. We speculate that in the multitask architecture, the shared
encoder layers learn from the EP target about which frames contain
speech. This makes the ASR results more resistant to the aforemen-
tioned hallucinations during periods of non-speech noise, even when
the EP is inactive.

5.3. Analysis

We now further analyze the performance of the proposed system.
The EOQ task involves a tradeoff between WER and latency, since
more aggressive EOQ detection may lead to deletion errors if EOQ
is declared too early. Therefore, multiple operating points along this
tradeoff curve are possible. To better visualize the performance of
these systems across WERs, we plot the median latency for various
WERSs for the test set evaluated in Tablem We depict this plot in Fig-
ure@ note that lower curves (toward the bottom right) are better. All
multitask experiments outperform B1 at every WER, demonstrating
the effectiveness of joint learning. E2 offers a substantial advantage
over El, since a shared layers allow the EP to make higher quality
EOQ decisions. We observe that introducing the switch connection
in E3 offers similar performance across the range of WERs as E2.
We also present visualizations of the EOQ posterior during recogni-
tion for short-query utterances, demonstrating the quicker recogni-
tion of the proposed system compared to baseline.

To better understand the speedup in EOQ latency, we plot the
posterior of the predicted P(final silence) posteriors for the baseline
(B1) and proposed (E3) systems over time during utterance recogni-
tion. Figure 4 provides three representative examples, which show
that the proposed system often transitions between predicted states
at a similar speed, but earlier in the utterance. Additionally, a com-
mon pattern, as pictured in example (b), is for the baseline system
to momentarily lose confidence in declaring EOQ, causing a slight
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Fig. 4: EOQ Posterior Plots showing the predicted posterior
P(final silence) during recognition on representative examples of
human-spoken short queries.

endpointing delay; the proposed system was not found to exhibit this
behavior.

6. CONCLUSIONS

E2E modeling has rapidly become the preferred approach for build-
ing the high quality ASR models that underlie popular speech-based
technologies. This work presents a multitask approach to jointly
training the acoustic EP and ASR in a single E2E model, by shar-
ing parameters between the ASR audio encoder and EP model. To
enable low-cost frame filtering, we introduce the novel “switch” con-
nection, which trains the EP to accept either audio frames directly or
the latent representation from the shared encoder layers. During in-
ference, the EP can be used as a standalone model for VAD-based
frame filtering while the user is not speaking, or as a high-quality
EOQ predictor which leverages ongoing ASR computation. Apply-
ing this E2E architecture leads to substantial quality improvements
in EOQ detection latency. WER for continuous recognition also im-
proves, likely due to a better robustness against hallucinations due to
non-speech noise. Additionally, unifying the ASR and EP tasks into
a single model removes the infrastructure burden of maintaining two
separate models. We recommend further research in the direction of
shared acoustic understanding between ASR and EP tasks.

7. REFERENCES

[1] Johan Schalkwyk, Doug Beeferman, Frangoise Beaufays, Bill
Byrne, Ciprian Chelba, Mike Cohen, Maryam Kamvar, and
Brian Strope, “Your Word is my Command”: Google Search
by Voice: A Case Study, pp. 61-90, Springer US, Boston, MA,
2010.

[2] Teresa Fernandes and Elisabete Oliveira, “Understanding con-
sumers’ acceptance of automated technologies in service en-



(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

counters: Drivers of digital voice assistants adoption,” Journal
of Business Research, vol. 122, pp. 180-191, 2021.

A. Graves, “Sequence Transduction with Recurrent Neural
Networks,” CoRR, vol. abs/1211.3711, 2012.

Shuo-Yiin Chang, Bo Li, Tara N Sainath, Gabor Simko, and
Carolina Parada, “Endpoint detection using grid long short-
term memory networks for streaming speech recognition.,” in
Proc. Interspeech, 2017.

Roland Maas, Ariya Rastrow, Chengyuan Ma, Guitang Lan,
Kyle Goehner, Gautam Tiwari, Shaun Joseph, and Bjorn
Hoffmeister, “Combining acoustic embeddings and decod-
ing features for end-of-utterance detection in real-time far-field
speech recognition systems,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 5544-5548.

Karen Ward Nigel G. Ward, Anais G. Rivera and David G.
Novick, “Root causes of lost time and user stress in a simple
dialog system,” in Interspeech, 2005.

Yuan Shangguan, Rohit Prabhavalkar, Hang Su, Jay Ma-
hadeokar, Yangyang Shi, Jiatong Zhou, Chunyang Wu, Duc
Le, Ozlem Kalinli, Christian Fuegen, and Michael L. Seltzer,
“Dissecting user-perceived latency of on-device e2e speech
recognition,” ArXiv, vol. abs/2104.02207, 2021.

S. Chang, R. Prabhavalkar, Y. He, et al., “Joint Endpointing
and Decoding with End-to-End Models,” in Proc. ICASSP,
2019.

Y. He, T. N. Sainath, R. Prabhavalkar, et al., “Streaming End-
to-end Speech Recognition For Mobile Devices,” in Proc.
ICASSP, 2019.

Sebastian Ruder, “An overview of multi-task learning in deep
neural networks,” arXiv, vol. abs/1706.05098, 2017.

Meng Li, Shiyu Zhou, and Bo Xu, “Long-running speech rec-
ognizer: An end-to-end multi-task learning framework for on-
line asr and vad,” ArXiv, vol. abs/2103.01661, 2021.

Sebastian Braun and Ivan Tashev, “On training targets for
noise-robust voice activity detection,” in 2021 29th European
Signal Processing Conference (EUSIPCO), 2021, pp. 421-
425.

T. N. Sainath, Y. He, A. Narayanan, et al., “Improving the
Latency and Quality of Cascaded Encoder,” in Proc. ICASSP,
2022.

Shuo-Yiin Chang, Bo Li, and Gabor Simko, “A unified end-
pointer using multitask and multidomain training,” in Proc.
ASRU, 2019.

Selma Ozaydin, “Examination of energy based voice activ-
ity detection algorithms for noisy speech signals,” European
Journal of Science and Technology, 2019.

Kirill Sakhnov, Ekaterina Verteletskaya, and Boris Simak,
“Low-complexity voice activity detector using periodicity and
energy ratio,” in 2009 16th International Conference on Sys-
tems, Signals and Image Processing, 2009, pp. 1-5.

Xiukun Wu, Mengyao Zhu, Renjie Wu, and Xiaoqiang Zhu,
“A self-adapting gmm based voice activity detection,” 2018
IEEE 23rd International Conference on Digital Signal Pro-
cessing (DSP), pp. 1-5, 2018.

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

Florian Eyben, Felix Weninger, Stefano Squartini, and Bjorn
Schuller, “Real-life voice activity detection with lstm recur-
rent neural networks and an application to hollywood movies,”
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 483-487, 2013.

Sibo Tong, Hao Gu, and Kai Yu, “A comparative study of
robustness of deep learning approaches for VAD,” 2016 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 5695-5699, 2016.

Takenori Yoshimura, Tomoki Hayashi, K. Takeda, and Shinji
Watanabe, “End-to-end automatic speech recognition inte-
grated with ctc-based voice activity detection,” ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6999-7003, 2020.

Liang Lu, Jinyu Li, and Yifan Gong, “Endpoint detection for
streaming end-to-end multi-talker asr,” in ICASSP, 2022.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhu-
ber, “Connectionist Temporal Classification: Labeling Unseg-
mented Sequenece Data with Recurrent Neural Networks,” in
Proc. ICML, 2006.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov
1997.

A. Gulati, J. Qin, C.-C. Chiu, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proc. In-
terspeech, 2020.

Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T
Loss,” in Proc. ICASSP, 2020.

A. Narayanan, T. N. Sainath, R. Pang, et al., “Cascaded en-
coders for unifying streaming and non-streaming ASR,” in
Proc. ICASSP, 2021.

D. S. Park, W. Chan, Y. Zhang, et al., “SpecAugment: A Sim-
ple Data Augmentation Method for Automatic Speech Recog-
nition,” in Proc. Interspeech, 2019.

Pedro J Moreno, Christopher F Joerg, Jean-Manuel Van Thong,
and Oren Glickman, “A recursive algorithm for the forced
alignment of very long audio segments.,” in ICSLP, 1998,
vol. 98, pp. 2711-2714.

M. Abadi et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” Available online:
http://download.tensorflow.org/paper/whitepaper2015.pdf,
2015.

J. Shen, P. Nguyen, Y. Wu, et al., “Lingvo: a modular
and scalable framework for sequence-to-sequence modeling,”
arXiv:2005.08100, 2019.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bha-
tia, Nan Boden, Al Borchers, et al., “In-datacenter performance
analysis of a tensor processing unit,” in Proc. international
symposium on computer architecture, 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. ICLR, 2015.

J. Yu, C.-C. Chiu, B. Li, et al., “FastEmit: Low-latency Stream-
ing ASR with Sequence-level Emission Regularization,” in
Proc. ICASSP, 2021.



[34]

(35]

(36]

Google Al, “Our Principles,” https://ai.google/
principles.

B. Li, S.-Y. Chang, T. N. Sainath, et al., “Towards fast and
accurate streaming end-to-end ASR,” in Proc. ICASSP, 2020.

Yingzhu Zhao, Chongjia Ni, C. C. Leung, Shafiq R. Joty,
Chng Eng Siong, and Bin Ma, “Preventing early endpoint-
ing for online automatic speech recognition,” ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6813—-6817, 2021.


https://ai.google/principles
https://ai.google/principles

	1  Introduction
	2  Related Work
	3  Model
	3.1  Endpointing Task
	3.2  ASR Task
	3.3  Multitask Model and Switch Connection

	4  Experimental Setup
	4.1  EP Model
	4.2  ASR Model
	4.3  Training Setup
	4.4  Declaring EOQ
	4.5  Evaluation

	5  Results
	5.1  EOQ Detection
	5.2  Frame Filtering
	5.3  Analysis

	6  Conclusions
	7  References

