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Combinatorial optimization problems can be mapped onto Ising models, and their ground state
is generally difficult to find. A lot of heuristics for these problems have been proposed, and one
promising approach is to use continuous variables. In recent years, one such algorithm has been
implemented by using parametric oscillators known as coherent Ising machines. Although these
algorithms have been confirmed to have high performance through many experiments, unlike other
familiar algorithms such as simulated annealing, their computational ability has not been fully
investigated. In this paper, we propose a simple heuristic based on continuous variables whose
static and dynamical properties are easy to investigate. Through the analyses of the proposed
algorithm, we find that many local minima in the early stage of the optimization and bifurcation
delay reduce its performance in a certain class of Ising models.

I. INTRODUCTION

Combinatorial optimization problems are generally
hard to solve, and a lot of algorithms to tackle them have
been proposed. Such computationally difficult problems
can be mapped onto the ground state search problem for
the Ising models [1]. Algorithms based on this corre-
spondence have also been proposed, and many of them
are inspired by physical phenomena. Some use discrete
spin variables, which appear in Ising models. Simulated
Annealing (SA) is known as a representative example [2],
and its implementation and development have been ac-
tively pursued. Moreover, many different types of algo-
rithms based on continuous variables such as soft spins
have also been proposed [3–10].

The coherent Ising machine (CIM) is one of the heuris-
tics that use continuous variables. It basically consists of
degenerate optical parametric oscillators (DOPOs) and
their phases are interpreted as Ising spins [4]. It is de-
vised in the expectation that by controlling the interac-
tions among DOPOs corresponding to the Ising coupling
matrix, the system stabilizes to the ground state configu-
ration of the Ising models. The high performance of such
methods in optimization has actually been reported in
both numerical simulations [4, 11] and experiments with
optical devices [12–15]. To describe the dynamics of the
CIM, theoretical models have been discussed [16–18]. In
addition, various methods have been devised to improve
the performance [18–21].

Despite such experimental, numerical, and theoreti-
cal developments, the principle of optimization in the
CIM itself has not been studied extensively. Unlike other
heuristics such as SA [22], no firm theoretical basis has
been found to guarantee its high performances. The CIM
is a type of gradient based optimization. It consists of
bosons interacting via the Ising coupling matrix, and
through the optimization, the state evolves under the
time dependent external fields. Even within the mean
field approximation, it is a nonlinear dynamical system
controlled by the time dependent parameter. Although

its nonlinearities play an important role for the optimiza-
tions [23], it is generally difficult to analyze [4]. Re-
searchers have attempted to investigating the property
by researching the energy landscape or its steady state
through the optimizations [4, 24, 25]. However, these
analyses only deal with the small and simple Ising mod-
els, or the case of a large degrees of freedom limit. In
applying the CIMs to more complex problems, their po-
tentials need to be clarified in more general cases from
the theoretical point of view.

In this paper, we propose a simple model, which fa-
cilitates analyses of its computational property by intro-
ducing time dependent Lagrange multipliers to the mean
field CIM. In contrast to the usual mean field CIM, posi-
tions of the fixed points in the landscape are analytically
obtained in our model, so the linear stability around them
is also easy to discuss. In addition to its static aspect, we
also discuss the existence of the bifurcation delay [26–29].
It can also be observed in the usual CIM at least at the
mean field level. These properties will affect optimization
ability of the proposed model in a kind of gradient-like
algorithm. Finally, we numerically investigate these ef-
fects on the optimizations by using random matrices as
the Ising models. To verify that our model is a good toy
model for investigating the property of the CIM, we also
discuss the relation between our model and mean field
CIM without noise.

The paper is organized as follows. In Sec. II, we intro-
duce a simple heuristic using continuous variables like the
CIM. In Sec. III, we analyze the linear stability around
its fixed points and discuss the bifurcation delay as a
dynamical property. To see the relation between local
minima and the performance, we numerically simulate
the dynamics for a certain class of Ising models in Sec.
IV. Our conclusions are presented in Sec. V.
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II. MODEL

We discuss the property of the algorithm show later
for solving Ising problems without magnetic fields. The
Ising problem is defined as finding the ground state of
the following Ising Hamiltonian:

H(S) =
1

2

∑
i 6=j

JijSiSj , (1)

where S is a N dimensional Ising spin vector with Si =
±1 (i, j = 1, . . . , N) in the elements. An N ×N dimen-
sional matrix Jij represents the Ising coupling matrix,
which is a symmetric Jij = Jji and Jii = 0. For later
discussion, the eigenvalues of Jij are represented as li and
the smallest ones are written as lmin.

We propose the mean field approximated CIM algo-
rithm using continuous variables xi(t) with auxiliary vari-
ables yi(t) that obey the following equations:

dxi
dt

= −

x3i +m(t)xi + β
∑
j

Jijxj

+ 2κΘ(t− tc)yixi,

(2)

dyi
dt

= −κΘ(t− tc)(−δm(t) + x2i ), (3)

where Θ(t) is the Heaviside step function and β > 0, κ ≥
0, tc,mc are time independent parameters. Time depen-
dent parametersm(t) and δm(t) can be arbitral functions
of time t, and in the later analysis, they are taken as lin-
ear functions.

This system can be regarded as a gain-dissipative sys-
tem with auxiliary variables or a kind of the Augmented
Lagrange method (see Ref. [30, 31]). Some variations
have been proposed in the context of the Ising solver
[6, 20, 32, 33]. We note that in particular for κ = 0 our
model reduces to the usual mean field CIM [4, 18] with-
out noise terms, and continuous variables xi correspond
to amplitudes of DOPO signals. In solving the Ising prob-
lem, we set the matrix Jij as the Ising coupling matrix
and evolve the system from initial time t = 0 to final
time t = T . Finally the ground state of the Hamiltonian
(1) is calculated on the basis of the final state obtained
as Si = sgn(xi(T )). In this paper, initial conditions for
xi(0) are chosen uniformly at random from the interval
[−r, r], r ∈ R and those for the auxiliary variables are
yi(0) = 0.

III. MODEL PROPERTY

In this section, we analyze the static and dynamical
aspects of the systems especially related to the search-
ing ability of the solutions for the Ising problem. Our
algorithm is based on the gradient method, and we con-
sider the situation where the time dependent parameters

slowly change in time for sufficiently large T . Then we
assume that its algorithmic property can be captured by
analyzing the fixed points and their linear stability. Due
to the presence of auxiliary variables, fixed point anal-
yses are much easier than the usual mean field CIM.
In the following discussion, the forms of the time de-
pendent parameter are chosen as m(t) = −εt + mc and
δm(t) = −m(t−tc)+mc with ε > 0 and mc = εtc−βlmin.

A. Static property

Let us consider here the static property of this sys-
tem that includes locations of the fixed points and their
linear stability. In this section, we focus on a particular
situation where the time dependent parameters have a
certain fixed value m(t) = m, δm(t) = δm.

When t ≤ tc, there is only a trivial fixed point xi = 0,
and its linear stability can be obtained by considering
the corresponding Jacobian matrix for xi defined J0 ≡
−m−βJij . Because of the value ofmc, it is linearly stable
as long as t < tc, and at t = tc it has zero eigenvalues.

On the other hand t > tc, non-trivial fixed points are
given by the solutions of the simultaneous equations cal-
culated from Eqs.(2) and (3) as

xi = ±
√
δm, (4)

yi =
1

2κ

m+ δm + βσi
∑
j

Jijσj

 , (5)

where σi ≡ sgn(xi). It is found that the bifurcation oc-
curs through the changing parameters. We note that
these 2N fixed points correspond to all configurations
that S can take, so the ground state of the Hamiltonian
(1) is given as one of those.

Let us focus on the latter situation in which the non-
trivial fixed points appear. Before going to the discussion
for the case of the non-trivial fixed points, we note that
the origin is not a fixed point for κ 6= 0. The linear
stability analysis for these non-trivial fixed points can be
performed by considering the eigenvalues of the following
2N × 2N dimensional matrix:

J =

[
Jxx Jxy

Jyx Jyy

]
, (6)

where each N × N dimensional matrices are defined as
Jxx ≡ diag(−2δm + βσi

∑
j Jijσj)− βJij , Jxy = −Jyx ≡

2κ
√
δmdiag(σi), and Jyy ≡ 0. Here diag(vi) means N×N

dimensional diagonal matrix with the elements of some
N dimensional vector vi. As reported in [20], the eigen-
values of this type of Jacobian matrix λ±i (σ, δm) can be
expressed as follows:

λ±i (σ, δm) =
1

2

(
µi(σ)±

√
µ2
i (σ)− 16κ2δm

)
, (7)
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by using µi(σ) which is defined as the ith eigenvalues
of Jxx. Since the inside of the square root is not neces-
sarily positive, these eigenvalues are complex numbers
in general. These 2N eigenvalues consist of N pairs
of λ+i (σ, δm) and λ−i (σ, δm) for each index i. We note
that their signs are completely determined by µi(σ):
sgn(Re(λ±i (σ, δm))) = sgn(µi(σ)), so it is sufficient to
examine the signs of µi(σ) to discuss the stability. In ad-
dition, if δm is sufficiently large (i.e., near the final time
of the evolution), µi(σ) will be dominated by the influ-
ence of the −2δm term in the diagonal component of Jxx

and all eigenvalues of the Jacobian J become negative.
As a result, all fixed points will be stable. By using these
results, we can discuss the number of local minima in the
optimizations.

B. Dynamical property

Now let us consider the effect of the time dependent
parameters. In general, the time evolution of the system
is difficult to obtain analytically, but within a particu-
lar time interval, their dynamics can be captured by lin-
earized equations. In this section, we discuss the dynam-
ical aspect of our model from the viewpoint of the bifur-
cation delay [26–29]. We will see that this phenomenon
delays the actual time when the bifurcation occurs due
to the time dependence of the parameter m(t).

To improve the perspective of the following analy-
sis, it is convenient to rewrite Eqs. (2) and (3) by us-
ing new variables ai(t) ≡ yi + κ

∫ t
0

dt′Θ(t′ − tc) δm(t)

and M(t; tc) ≡ m(t) + 2κ2Θ(t − tc)
∫ t
tc

dt′δm(t′). We
set initial conditions for new introduced variables as
ai(0) = yi(0) = 0. From here, we consider the follow-
ing linear approximation around the origin like

dxi
dt

= −
∑
j

(M(t; tc)δij + βJij)xj , (8)

dai
dt

= 0, (9)

where δij is the Kronecker delta. These linear equations
can describe the dynamics if the effect of the nonlinear
terms is negligible and such situations are expected to
occur from t = 0 to around tc.

Auxiliary variables ai(t) do not evolve in time, and we
only focus on the dynamics of xi(t) whose explicit forms
are given by

xi(t) =
∑
j

e−Uij(t;tc)xj(0), (10)

where we introduce the time dependent matrix
Uij(t; tc) ≡

∫ t
0

dt′′ (M(t′′; tc)δij + βJij). To discuss the
bifurcation delay, its instantaneous eigenvalues play an
important role. They are represented as

Λi(t; tc) = U(t; tc) + βtli, (11)

0 50 100 150 200 250 300
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FIG. 1. The bifurcation delay time tb as a function of tc for
κ = 0 (Eq. (13)) and 0.01 (Eq. (14)).

and we here introduce U(t; tc) ≡
∫ t
0

dt′′M(t′′; tc) related
tom(t). They can take both positive and negative values.

While all Λi(t; tc) are positive, xi(t) approaches the
origin heading in vmin, which is the eigenvector of Jij
corresponding to lmin. Although the origin is no longer a
linearly stable fixed point at t = tc, as long as all Λi(t; tc)
remain positive, xi(t) is still trapped in the neighborhood
of the origin and remains proportionally toward vmin.
This is known as the bifurcation delay, and its time of
trapping can be characterized by the bifurcation delay
time tb that satisfies the following equation:

Λmin(tb; tc) = 0, (12)

where Λmin(tb; tc) = U(tb; tc) + βtbl
min is the smallest

eigenvalues of Uij . Because of the linear time dependence
of parameters m(t) and δm(t), we can obtain the explicit
form of tb as a function of tc and κ. For κ = 0, the
solution of the above equation is

tb = 2tc, (13)

and for κ 6= 0, it is

tb =
1

2κ2

(√
4κ2tc + 1

(√
3 sin

θ

3
+ cos

θ

3

)
+ 2κ2tc − 1

)
,

(14)

where π
2 ≤ θ ≤ π satisfies the following relation using

z ≡ κ2tc as θ = tan−1
(
2z
√

16z4 + 12z2 + 3
)
. Due to

our definition of mc, the solution does not depend on β.
We plot the relations between tb and tc in Fig. 1. From
these results, the effective optimization is expected to
occur in T − tb. In addition, tb exhibits similar behavior
in both cases κ = 0 and 0.01. The important thing is
that tb is independent of ε. No matter how small ε is,
it takes a finite value and may affect the results of the
Ising optimizations, which we will see in the numerical
experiments.
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IV. NUMERICAL RESULTS

In this section, we discuss the optimization properties
in terms of the linear stability and the bifurcation delay
through numerical calculations. First, we consider the
relations between these quantities and the success prob-
ability for obtaining the ground state in our proposed
model. In addition, the comparison between our model
and mean field CIM without noises is also numerically
investigated from the viewpoint of success probability.
Throughout this paper, we consider the relation for fixed
energy scale β = 0.3 with normalized Ising matrices that
is defined in the following subsection. For other β, we
also numerically investigate these relations reported in
Appendix A. Here the system size is set to N = 20.
The results of their time evolutions obeying Eqs. (2) and
(3) are numerically calculated by using the fourth order
Runge-Kutta method with time step ∆t = 0.01 and final
time T = 500.

A. Ising Models

For numerical experiments, we use the so-called
Wishart planted ensembles (WPE) proposed by Hamze
et al. [34] as Ising models. Their algorithmic hardness
for the ground state search can be tuned via the param-
eter α introduced later. The detailed properties of the
model are given in the reference, and here we only give
the definition of the model. When we specify a solution
(spin vector) S(GS), the corresponding WPE is defined
by using the following quantities:

J̃ij ≡
1

N

M∑
µ=1

wµ ⊗wµ −Diag

(
1

N

M∑
µ=1

wµ ⊗wµ

)
,

(15)

where Diag(A) denotes a matrix with the diagonal com-
ponent of some matrix A as its diagonal elements and M
column vectors in N dimensions wµ (µ = 1, . . . ,M) are
taken to follow the Gaussian distribution N (0,Σ) whose
covariance is defined as

Σ ≡ N

N − 1

(
I− 1

N
S(GS)S(GS)T

)
, (16)

with the N dimensional identity matrix I. The WPE can
be expected to be a more difficult problem in which to
find the solution for small α ≡ M

N as discussed in Ref. [34].
To fix energy scales between different α, we use the fol-
lowing normalized WPE in the numerical simulations:

Jij =
1

C
J̃ij , (17)

with a normalization constant C ≡ max(|J̃ij |). We use
S(GS) = (1, . . . , 1) and fixed random seed for generat-
ing the distribution N (0,Σ). We report the results for
the following numerical experiments of different random
seeds in Appendix B.
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FIG. 2. Number of stable fixed points during the optimization
for β = 0.3.

B. Calculation of the linear stable fixed points

To investigate the relation between the property for
optimal solution search and static properties of the sys-
tem, the number of stable fixed points NSP is computed
as a function of δm. The definition of NSP is a number
of the fixed points whose eigenvalues of corresponding
Jacobian J are all negative for δm.

For the normalized WPE models, the vector wµ is per-
pendicular to S(GS) by construction, so Jxx for S(GS) is
obtained as

Jxx = diag (−2δm)− β

NC

M∑
µ=1

wµ ⊗wµ. (18)

Since
∑M
µ=1 w

µ ⊗ wµ is a positive semi-definite matrix
and its eigenvalues are non-negative. From these prop-
erty, we see that the fixed point corresponding to S(GS)

is stable for any positive δm.
The numbers of stable fixed points for β = 0.3 are

shown in Fig. 2 that represents the relations between δm
and NSP. In each α, we take the value of δm from 0.001
to 0.5 divided by 200. The dependence of δm on NSP
differs from instance to instance. In particular for small
α, many fixed points appear between δm = 0 and 0.1.
It is expected that their differences probably affect the
success probability, which we will numerically observe in
a later section.

C. The effect of the number of stable fixed points
on the Success probability

In this subsection, we report the numerical results that
show the relations between NSP and the success proba-
bility. The success probability means the percentage of
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FIG. 3. Success probability of the optimizations for α =
0.05, 0.15, . . . , 0.95.

trials in which the ground state is obtained among multi-
ple trials from randomly generated initial conditions. For
each Ising model and each parameter, 1000 trials were
performed.

We here take ε = 0.05, 0.01, 0.001, tc = 20, and initial
conditions are taken from the interval [−0.1, 0.1]. We
show the results of the optimizations for κ = 0.01 in
Fig. 3. The result shows that small α instances are diffi-
cult in all ε, and it is found that the smaller the ε , the
higher the accuracy. Considered together with the results
of small α instances in Fig. 2, many local minima that
appear in large numbers early in the calculation interfere
with the Ising optimization. We note that this can also
be found to occur in other random seeds (see Appendix
B). In the normalized WPE, the fixed point correspond-
ing to the ground state stabilizes before any other fixed
points. To increase the success probability, it is better
to find the correct fixed points before many local minima
stabilize. Therefore, the slow changing of δm(t) in time
is needed for the optimizations.

D. Bifurcation delay effect on the Success
probability

We report the dynamical effect on the searching abil-
ity of our model in terms of the bifurcation delay. Noting
that here we also fix the calculation time T = 500 for all
experiments. As discussed in Sec. III B, when tc is 250,
bifurcation delay time tb equals approximately 500(= T )
from Eq. (14), and this can also be checked by the nu-
merical results in Fig. 4. The results of the optimizations
in tc = 1, 11, 21, . . . , 291 are shown in Fig. 5. From these
results, we see significant decreases in the success proba-
bility for all α in tc larger than around 250 as expected.
We now conclude the bifurcation delay affects the op-
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FIG. 4. Time evolution of xi(t) with tc = 250 in α = 0.95.
Each colored line shows amplitude xi(t) for each index i.
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FIG. 5. Success probability of the optimizations with tc =
1, 11, . . . , 291 and κ = 0.01 in all α.

timizations, and see that the value of tc (or m(t) and
δm(t)) should be properly chosen for the optimizations.

E. Comparison between proposed model and mean
field CIM without noises

We also discuss the optimization property of our model
and mean field CIM without noises. Here the latter is
defined as κ = 0 in Eq. (2). First, the results of the
optimizations are shown in Fig. 6. We take the same pa-
rameters used in Sec. IVC. Although fixed point analysis
discussed in Sec. III A cannot be applied for κ = 0, we can
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0.05, 0.15, . . . , 0.95 for ε = 0.001 with κ = 0 and 0.01.
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FIG. 7. Success probability of the optimizations with tc =
1, 11, . . . , 291 and κ = 0 in all α.

see that both results are in good quantitative agreement
at least for these problems. For other WPE with differ-
ent random seeds, these tendencies are also confirmed,
which we discuss in detail in Appendix B.

In addition, we numerically check the effect of bifur-
cation delay for κ = 0. Here we also take the same pa-
rameters used in Sec. IVD. Figure 7 shows the results
which show that the bifurcation delay also obstructs the
optimization in κ = 0. In this case, decline in the success
probability around tc = 250 is consistent with the result
of Eq. (13).

V. CONCLUSION

In this paper, we proposed a coherent Ising machine
(CIM)-like heuristic whose properties are easier to inves-
tigate by time dependent Lagrange multipliers and stud-
ied the effects of local minima and the bifurcation delay
on the optimizations. To see these effects clearly, we
used the normalized Wishart planted ensembles (WPE)
for the experiments. From the results (Figs. 2 and 3), we
have numerically observed that the ground state search
is hindered by a lot of local minima in the early stage
of the optimizations. This information is easily obtained
from the linear stability analyses. It should be noted that
the existence of many local minima is merely a sufficient
condition for problems to be difficult. In fact, there is no
significant difference in Fig. 2 for α = 0.55 and 0.65, but,
the difference of the success probability between them
is obvious. It is expected that the factors of this dif-
ference are other than the number of local minima. We
have also pointed out the effects of the bifurcation de-
lay on the optimizations (Fig. 4). Due to the parameter
varying in time, the dynamics are changed from what
is expected from the bifurcation theory for static prop-
erty. Moreover, the optimization results of our model
quantitatively agree with those of mean field CIM with-
out noises (Fig. 6). The effects of the bifurcation delay
on the optimizations have also seen in mean field CIM
without noises (Fig. 7). These results suggest that our
model not only has easy-to-investigate property but also
is useful to analyze the performance of other CIM-like
algorithms.

Let us comment on applicability of our results such
as the relationship between local minima and the suc-
cess probability for other Ising models. Our model and
analyses discussed in Sec. III can be applied to any Ising
models. However, the fixed points corresponding to the
ground state are not stable in the first stage of the cal-
culation in general. Therefore, as well as the ratio of
increase in the number of local minima, the timing of
the stabilization of the fixed points corresponding to the
ground state could also affect the optimizations. Investi-
gating these factors in detail is important future work.

We also note applications of our results for using al-
gorithms like CIMs. In general, the Ising Hamiltonian
has several hyper-parameters such as coefficients of the
penalty terms. To solve the problems efficiently, these
hyper-parameters need to be tuned properly. For ex-
ample, in Quantum Annealing, because of the adiabatic
theorem, the energy gap between the ground state and
first excited state during the annealing is a good indi-
cator in tunings. In contrast, there has been no general
characteristic of difficulties in optimizations for CIMs so
far. It would be an interesting direction to investigate
the relation between the property of local minima and
the appropriate values of hyper-parameters in our model
and CIMs.
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Appendix A: The energy scale dependence on the dynamics and the success probability

In the main text, we focus on the computational property only for fixed energy scale β = 0.3. However, the
β dependence on the dynamics needs to be considered, in particular for practical situations. Here we report the
bifurcation dynamics in β = 0.03, 0.1, 0.3, and 1 for α = 0.05, 0.55, and 0.95 as examples. These results are shown in
Fig. A.1. For large β, the bifurcation phenomenon does not completely occur at t = 500, which is employed for the
final time T of the optimizations in the main text. These situations are out of the scope of our analyses in this paper.

Fig. A.2 also reports the number of stable fixed points, success probability of the optimizations in our model, and
comparisons of success probability between our model and mean field CIM without noises for β = 0.1 and 0.03 in
each row. In β → 0 limit, xi does not interact with each other. It is expected that the differences between α will
vanish and the results of optimizations will be close to a random sampling result. In fact, the success probability in
all α decreases for smaller β. We note that the comparisons of NSP between different β do not give a precise relation
for the success probability. This is because the typical time scale of relaxations to local minima varies in different β.
It can be seen that our observations for the relation between NSP and the success probability are actually established
only in each β.

Appendix B: Numerical results for the normalized WPE with different random seeds

To discuss dependencies of our results on the random seed, we here report the results corresponding to Figs. 2, 3,
and 6 for other random seeds. We perform the numerical calculations with the same parameters except random seeds.
The results are shown in Fig. B.1. Our considerations discussed in the main text are also valid in these cases.
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FIG. A.1. Time evolution of the amplitudes xi(t) until t = 1000 in β = 0.03, 0.1, 0.3, and 1 from the top in each row, for
α = 0.05, 0.55, and 0.95 from left to right in each column.



11

0.0 0.1 0.2 0.3 0.4 0.5
δm

101

102

103

104

105

106

N
S

P

α = 0.05

α = 0.15

α = 0.25

α = 0.35

α = 0.45

α = 0.55

α = 0.65

α = 0.75

α = 0.85

α = 0.95

0.0 0.2 0.4 0.6 0.8 1.0
α

0

20

40

60

80

100

S
u

cc
es

s
p

ro
b

ab
ili

ty
(%

)

ε =0.001

ε =0.01

ε =0.05

0.0 0.2 0.4 0.6 0.8 1.0
α

0

20

40

60

80

100

S
u

cc
es

s
p

ro
b

ab
ili

ty
(%

)

κ =0.01

κ =0

0.0 0.1 0.2 0.3 0.4 0.5
δm

101

102

103

104

105

106

N
S

P

α = 0.05

α = 0.15

α = 0.25

α = 0.35

α = 0.45

α = 0.55

α = 0.65

α = 0.75

α = 0.85

α = 0.95

0.0 0.2 0.4 0.6 0.8 1.0
α

0

20

40

60

80

100
S

u
cc

es
s

p
ro

b
ab

ili
ty

(%
)

ε =0.001

ε =0.01

ε =0.05

0.0 0.2 0.4 0.6 0.8 1.0
α

0

20

40

60

80

100

S
u

cc
es

s
p

ro
b

ab
ili

ty
(%

)

κ =0.01

κ =0

FIG. A.2. The three figures in each row correspond to the results in Figs. 2 (Number of stable fixed points during the
optimization:left), 3 (Success probability of the optimizations for α = 0.05, 0.15, . . . , 0.95:center), and 6 (Success probability of
the optimizations for α = 0.05, 0.15 . . . , 0.95 with κ = 0 and 0.01:right) in the main text. The results are obtained for β = 0.03
(top) and 0.1 (bottom) in each row.
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FIG. B.1. The three figures in each row correspond to the results in Figs. 2 (Number of stable fixed points during the
optimization for β = 0.5:left), 3 (Success probability of the optimizations for α = 0.05, 0.15, . . . , 0.95:center), and 6 (Success
probability of the optimizations for α = 0.05, 0.15 . . . , 0.95 with κ = 0 and 0.01:right) in the main text for other random seed.
The results are obtained by using a different random seed in each row.
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