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Transport of ions in hydrophobic nanotubes
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The theory of electrokinetic ion transport in cylindrical channels of a fixed surface charge density is revisited.

Attention is focused on impact of the hydrophobic slippage and mobility of adsorbed surface charges. We

formulate generalised Onsager relations for a cylinder of an arbitrary radius and then derive exact expressions

for the mean electro-osmotic mobility and conductivity. To employ these expressions we perform additional

electrostatic calculations, with the special focus on the non-linear electrostatic effects. Our theory provides

a simple explanation of a giant enhancement of the electrokinetic mobility and conductivity of hydrophobic

nanotubes by highlighting the role of appropriate electrostatic and hydrodynamic length scales and their ratios.

We also propose a novel interpretation of zeta potentials of cylindrical channels.

I. INTRODUCTION

Nanopores are ubiquitous to nature, and nanoporous ma-

terials found applications in various technologies. Electroki-

netic transport phenomena in nanotubes include an electro-

osmotic flow in response to an applied electric field, a conduc-

tance, emerging due to a convective ion transfer by this flow

in addition to a conventional migration of ions (electrophore-

sis), and also a streaming current that is generated by pressure

gradient if any [1, 2]. The transport of ions (i.e. streaming

and conductivity currents) in these nanoscale systems is of es-

pecial interest being important for physiological phenomena,

energy harvesting, biosensing and more [3–7]. Besides, from

the measured streaming current the zeta potential of surfaces

can be inferred, which is important in colloid and interface

science [8–10]. Finally, with the advent of nanofluidics there

has been considerable interest in an unusually high conduc-

tance of electrolyte solutions in confined systems.

Extensive efforts have gone into investigating conductiv-

ity in nanotubes and flat-parallel slits experimentally. Stein

et al. [11] found a remarkably high conductivity of dilute so-

lutions in nanoslits that is independent on the salt concentra-

tion. The corresponding to a saturation plateau conductiv-

ity augments with the surface charge density [12]. Measure-

ments in nanotubes have shown that the conductivity plateau

decreases with the radius [13]. Balme et al. [14] reported that

the height of conductance plateaus is augmented in hydropho-

bic nanopores. The body of experimental work investigating

the streaming current (including inferring the zeta potential)

is much less than that for the conductivity current, although

there is some literature in this area [15–18]. However, de-

spite a rapid rise of an experimental activity, ion transport has

been given insufficient attention compared with the transport

of water. For example, we are unaware of any previous work

that has addressed the impact of hydrodynamic (hydrophobic)

slippage [19–24] on the streaming current, although the am-

plification of an electro-osmotic flow in slippery channels was

a subject of active experimental research [25–28].

∗ Corresponding author: oivinograd@yahoo.com

There is some literature describing attempts to provide a

satisfactory theory of electric currents emerging in confined

electrolytes. The majority of previous work considered pla-

nar geometries (where the exact solution to a non-linear elec-

trostatic problem exists, although can only be expressed in

terms of an elliptic integral) and assumed the classical no-

slip boundary conditions at the charged walls [29]. The con-

ductivity plateau at low salt has been attributed to the sur-

faces of a constant charge density [11]. Bocquet and Charlaix

[2] have briefly discussed the expected shift of the conduc-

tance plateau due to a hydrodynamic slip, assuming immobile

surface charges. Applying some simple scaling arguments

these authors propose that this should be ∝ b/ℓGC, where b

is the slip lenth and ℓGC is the Gouy-Chapman length, which

is inversely proportional to the surface charge density [30].

At slippery surfaces adsorbed charges could be mobile, and,

therefore, responding to the external electric field as discussed

by Maduar et al. [31] and supported by ab initio simula-

tions [32]. Mouterde and Bocquet [33] derived scaling expres-

sions describing a contribution of a hydrodynamic slip taking

into account the mobility of adsorbed ions that later allowed

one to interpret the computer simulation data on channel con-

ductivity with physisorbed surface charges [34]. Their results,

however, apply only for a situation of channels of a thick-

ness that significantly exceeds the Debye length λD of the bulk

electrolyte. Recently Vinogradova et al. [35] proposed an an-

alytical theory of ion conductivity in slippery parallel-plate

channels of an arbitrary thickness. These authors derived sim-

ple expressions for the mean conductivity of the channel in

two regimes, of thick and thin slits, highlighting the role of

hydrodynamic slip and mobility of adsorbed surface charges.

Cylinders constitute a more realistic model for artificial

nanotubes and real porous materials, but remain much less

theoretically understood. The main challenge is related to

electrostatic calculations in the cylindrical geometry. Since

the exact solution to non-linear electrostatic problem is still

unknown, one needs to rely on numerical solutions or approx-

imations. The analytical theory of an electro-osmotic flow in

no-slip nanotubes developed by Rice and Whitehead [36] is

restricted to small surface potentials. Later Levine et al. [37]

extended this model for a no-slip cylinder to higher potentials

and obtained expressions for streaming and conductivity cur-

http://arxiv.org/abs/2211.00927v2
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rents, but only in the integral form. During last few years some

approximate analytical expressions for a conductance in cylin-

drical nanopores have been obtained by postulating either the

overall electroneutrality (‘Donnan equilibrium’) [38, 39], and

also for the ‘counter-ions only’ case (so-called co-ion exclu-

sion approximation) [40]. A slippery nanotube has been con-

sidered in [41]. These authors proposed an expression relat-

ing the conductivity to the integral of an electrostatic poten-

tial, assuming the surface charges are immobile. Numerical

integration showed that at a given (high) surface charge the

conductivity increases with the slip length, but a physical in-

terpretation of this result has not been proposed. Green [42]

also studied hydrophobic nanotubes with immobile surface

charged and derived some useful expressions for transport co-

efficients. He showed that the hydrodynamic slip boundary

conditions are consistent with the Onsager relations. Silkina

et al. [43] performed calculations of an electro-osmotic flow

in nanotubes by applying electro-hydrodynamic slip bound-

ary conditions [31], i.e. allowing for a mobility of adsorbed

charges in response to electric field. They obtained a rigorous

asymptotic result for a situation of strongly overlapping dif-

fuse layers at high surface potential and predicted a parabolic

velocity (and potential) profile. This solution, however, is ac-

curate only when λD/ℓGC ≤ 1, i.e. when the surface charge is

sufficiently small. The authors interpreted the shift (amplifi-

cation) of the electro-osmotic velocity profile due to slippage

and concluded that the mobility of adsorbed charges reduces

the effect, but made no attempt to investigate the transport of

ions.

In this paper we present the results of a study of ion trans-

port in the hydrophobic nanotubes with the fixed surface

charge density. The hydrophobicity implies that the electro-

hydrodynamic boundary condition [31] is imposed, i.e. be-

sides hydrophobic slippage we deal with a migration of ad-

sorbed ions in response to an applied electric field. The the-

ory has the merit of yielding useful analytical results as well

as being very well suited to numerical work. Our work pro-

vides new insight into streaming and conductivity currents in

the nanotubes, as well as gives an interpretation of their zeta

potential.

Our paper is arranged as follows. In Sec. II, we define our

system and present some general considerations concerning

the Onsager relations and transport coefficients. Section II A

describes the derivation of the Onsager relations for a hy-

drophobic nanotube. A detailed calculation of coefficients

for the mobility matrix is presented in Sec. II B. The concept

of a zeta potential of hydrophobic nanotubes is introduced.

The approximate equations for zeta potentials and mean con-

ductivity are derived in Sec. III. Numerical results for zeta-

potentials and conductivity are presented in Sec. IV and com-

pared with approximate theoretical expressions. We conclude

in Sec. V. In Appendix A we briefly discuss the possible re-

duction of ion mobilities with salt concentration to argue that

this effect can safely be neglected in our system. Appendix B

contains a derivation of electrostatic relationships required for

calculations of streaming and conductivity currents.

FIG. 1. Sketch of the charged nanotube of radius R that is coupled

with a bulk electrolyte reservoir characterized by the Debye length

λD. An applied pressure gradient −∂z p induces a hydrodynamic flow

and streaming current. An applied electric field E induces an electro-

osmotic velocity and a conductivity current. The confined electrolyte

flows with the mean velocity U and has the mean current density J.

II. GENERAL THEORY

We consider an 1:1 aqueous electrolyte solution of a dy-

namic viscosity η and permittivity ε in contact with a charged

nanotube of radius R as sketched in Fig. 1. The local num-

ber density (per unit volume) of cations and anions are n+
and n−, respectively, and, therefore, the charge densities at

each point are ρ± = en±, where e is the elementary positive

charge. Defining n∞ as the number density in the bulk one

can write for the Boltzmann distribution of density n±(r) =
n∞ exp(∓φ(r)), where φ(r) = eΦ(r)/(kBT ) is the dimension-

less electrostatic potential, where kB is the Boltzmann con-

stant, T is a temperature of the system.

The cylindrical system (z,r) of coordinates is defined, such

that z coincides with the axis of the nanotube, and r is the

radial axis. The surface of nanotube is thus located at r = R

and we denote its potential as Φs and a charge density as σ .

Without loss of generality, the surface charges are taken as

cations (σ is positive).

A. Onsager relations

In the general case, the nanotube subject to a pressure gra-

dient ∂z p and an electric field E in the z direction. Thus the

flow inside the nanotube satisfies the Stokes equation, which

includes an electrostatic body force Eρ

η∇2u = ∂z p+Eρ , (1)

where ∇2 = ∂ 2
r + r−1∂r for the cylindrical geometry, u(r) is

the fluid velocity and ρ is the total charge density at each point

r. It follows from the Poisson equation that

Eρ =−E
ε∇2Φ

4π
. (2)

Note that CGS (Gaussian) electrostatic units are used through-

out our paper. However, by expressing all characteristic

lengths in terms of the introduced below Bjerrum and Debye

lengths we will obtain the results that are independent of any

specific system of units.
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If the bulk reservoir represents a 1:1 salt solution of con-

centration c∞, then

Eρ =−E
εkBT ∇2φ

4πe
=−eE∇2φ

4πℓB

, (3)

where ℓB =
e2

εkBT
is the Bjerrum length. Note that ℓB of water

is equal to about 0.7 nm for room temperature.

Consequently, Eq.(1) can be rewritten as

η∇2u = ∂z p+
eE

4πℓB

∇2φ (4)

We assume weak field, so that in steady state φ(r) is inde-

pendent on the fluid flow and satisfies the nonlinear Poisson-

Boltzmann equation

∇2φ =
1

r

d

dr

(

r
dφ

dr

)

= λ−2
D sinhφ (5)

where λD =(8πℓBn∞)
−1/2

is the Debye screening length of an

electrolyte solution. Note that by analysing the experimental

data it is more convenient to use the concentration c∞[mol/L],
which is related to n∞[m

−3] as n∞ = NA ×103 × c∞, where NA

is Avogadro’s number. We also recall that a useful formula for

1:1 electrolyte is [44]

λD[nm] =
0.305[nm]√
c∞[mol/L]

, (6)

so that upon increasing c∞ from 10−7 (in pure water, where the

ionic strength is due to the dissociating H+ and OH− ions) to

10−1 mol/L the screening length is reduced from about 1 µm

down to ca. 1 nm.

To integrate Eq.(5) we impose two electrostatic boundary

conditions. The first condition always reflects the symmetry

of the channel φ ′|r=0 = 0, where ′ denotes d/dr. The second

condition is applied at the walls and can be either that of a

constant surface potential (conductors) or of a constant sur-

face charge density (insulators). Here we limit ourselves by

the constant charge condition, which can be formulated as

φ ′|r=R =
2

ℓGC

, (7)

where ℓGC =
e

2πσℓB

is the Gouy-Chapman length. For high

surface charges, say σ ≃ 36 mC/m2, the Gouy-Chapman

length is small, ℓGC ≃ 1 nm. However, σ ≃ 0.73 mC/m2 gives

ℓGC ≃ 50 nm.

The linearity of Eq.(4) implies that its solution represents

the decoupled and superimposed contribution of the pressure-

driven and electro-osmotic flows

u =−mh∂z p+meE, (8)

where mh and me are the functions of r that depend on elec-

trostatic and electro-hydrodynamic boundary conditions at the

solid wall. Below we refer these functions to as hydrodynamic

and electro-osmotic mobilities. Note that the first term in (8)

is taken with minus to provide positive mh when ∂z p < 0. As

we will see below, a sign of me depends on the sign of the

surface charge (potential).

It is convenient to use the average values of variables, U =
u, Mh =mh, and Me =me. For any variable f its average value

across the cross-section of the cylindrical nanotube is given by

f =
2

R2

R
∫

0

r f dr. (9)

Formally the above considerations are equivalent to the

statement that in the linear response regime, the transport of

water and ions through the nanotube can be then expressed in

terms of mobility matrix M :

(

U

J

)

=

(

Mh Me

Me K

)(

−∂z p

E

)

= M

(

−∂z p

E

)

(10)

where J [A/m2] is the mean current density

J = j+ Jσ , (11)

and K [S/m] is the mean conductivity of the channel. The

first term in (11) is associated with the transport of the dif-

fuse cations and anions inside the nanotube that generates the

local density of current j = j+ + j−. The second term re-

flects the contribution of the surface current jσ emerging due

to adsorbed mobile ions that are located at the ring of perime-

ter 2πR. Therefore, this surface averaged contribution to the

mean current density is given by Jσ = 2 jσ/R.

As a side note, in experiment one usually measure the con-

ductance G [S]. For a nanotube of length L

G = K
πR2

L
(12)

A 2× 2 mobility matrix M is expected to be positive def-

inite and symmetric (with equal off-diagonal coefficients), as

assumed in (10), by analogy with Onsager’s relations in (bulk)

non-equilibrium thermodynamics. The consequence of the

symmetry is so-called electrohydrodynamic coupling

J

−∂z p
|E=0 =

U

E
|−∂z p=0. (13)

The mobility matrix M fully characterizes electrokinetic

phenomena in the nanotubes and, once its elements are

known, Eq.(10) can be used to find, without tedious calcu-

lations, the liquid flows and currents that are generated by any

combination of two applied forces.

However, it is by no means not obvious that by imposing

appropriate for hydrophobic surfaces electro-hydrodynamic

boundary conditions, Eq.(10) will necessarily hold. More pre-

cisely, the equality of off-diagonal elements Me is still an as-

sumption that should be proven for a situation when the fluid

velocity at r = R satisfies [31]

u|r=R = b

(

−∂ru|r=R +
(1− µ)eE

2πηℓBℓGC

)

(14)
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The parameter µ is the fraction of immobile surface charges

that can vary from 0 for fully mobile charges to 1 in the case

when all adsorbed ions are fixed. The hydrodynamic slip

length b in (14) can be of the order of several tens of nanome-

ters [21–24], but not much more. In our calculations we use

b = 10 nm. However, our discussion will also include a larger

value of b = 100 nm reported in experiment [24].

To prove the consistency of Eq.(14) with the Onsager re-

lations we have to calculate the coefficients of the mobility

matrix. In doing so it is convenient to set one of two possible

driving forces to zero.

B. Coefficients of the mobility matrix M

1. Pressure-driven flow

If E = 0, Eq. (10) reduces to

(

U

J

)

=

(

Mh Me

Me K

)(

−∂z p

0

)

=−∂z p

(

Mh

Me,

)

(15)

i.e. U = −Mh∂z p (Poiseuille’s law), and J = −Me∂z p. In

other words, an applied pressure gradient induces not only a

hydrodynamic flow, but also an electric current, which is tra-

ditionally termed a streaming current.

Local mobilities can be obtained by integrating Eq. (4)

without an electric body force. The boundary condition (14)

reduces to a classical hydrodynamic slip boundary condition,

and second condition is naturally ∂ru(r)|r=0 = 0. This gives

for a velocity of the pressure-driven flow

u =− R2

4η

[

1− r2

R2
+

2b

R

]

∂z p (16)

The local and mean hydrodynamic mobilities are, therefore,

mh =
R2

4η

[

1− r2

R2
+

2b

R

]

, Mh =
R2

8η

(

1+
4b

R

)

(17)

The local densities of current due to diffuse ions are j± =
±en±u with u given by (16). Consequently,

j± =±2en∞

R2

∫ R

0
re∓φ udr (18)

Summing up these functions and using the Poisson-

Boltzmann equation (5), we conclude that the contribution of

the diffuse ions to the density of current can be obtained by

taking the integral

j =−4en∞λ 2
D

R2

∫ R

0
ru∇2φdr (19)

Performing (twice) standard integration by parts we then ob-

tain

j =− e

4πηℓB

∂z p

[

φ −φs −
2b

ℓGC

]

(20)

If the adsorbed mobile ions are transferred along the wall

with the slip velocity of liquid u(R) = − bR

2η
∂z p, then they

generate the surface current density

jσ = σ(1− µ)u(R) =−e(1− µ)bR

4πηℓGCℓB

∂z p, (21)

whence

Jσ =− e(1− µ)b

2πηℓGCℓB

∂z p (22)

Substituting Eqs.(20) and (22) into (11) we derive for the

mean streaming current density

J =− e

4πηℓB

(

φ −φs −
2µb

ℓGC

)

∂z p (23)

The corresponding mean electro-osmotic mobility is

Me =
e

4πηℓB

(

φ −φs −
2µb

ℓGC

)

=− e

4πηℓB

ζ (24)

The new dimensionless parameter ζ introduced above can

be termed a (dimensionless) electro-hydrodynamic or zeta po-

tential

ζ = ζ0 +∆ζ , (25)

where

ζ0 = φs −φ (26)

is expected for a hydrophilic nanotube and associated with the

(sensitive to amount of added salt) electrostatic contribution,

and

∆ζ =
2µb

ℓGC

(27)

is associated with the slip-driven contribution that does not

depend on the salt concentration.

Note that if we postulate the no-slip boundary condition

(b = 0) and assume that the capillary is infinitely thick (which

is equivalent to φ → 0), Eq. (25) predicts that ζ must be equal

to the surface potential. However, in the case of slippery nan-

otubes the situation is more complicated and ζ does not solely

reflect φs, but also depends on the finite average potential in

the nanotube and on the charged wall slippage properties. We

shall return to this issue later.

2. Electro-osmotic flow

If ∂z p = 0, one can reduce Eq. (10) to

(

U

J

)

=

(

Mh Me

Me K

)(

0

E

)

= E

(

Me

K

)

, (28)

which indicates that an applied electric field E induces both

an electro-osmotic flow with the average velocity U = MeE
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and an electric current of mean density J = KE (Ohm’s law).

This current is referred below to as a conductivity current.

The electro-osmotic velocity is obtained by integrating

Eq. (4) with prescribed boundary conditions (of symmetry and

Eq.(14))

u =
eE

4πηℓB

[

φ −φs −
2µb

ℓGC

]

, (29)

whence the local electro-osmotic mobility is

me =
e

4πηℓB

[

φ −φs −
2µb

ℓGC

]

(30)

and consequently, Me is again expressed by Eq.(24). This re-

sult provides a proof of Onsager relations (10) if boundary

condition (14) are applied. We stress, however, that to satisfy

the Onsager relations the condition (21) for the surface current

density should necessary supplement Eq.(14).

The mean density of the emerging conductivity current is

given by Eq.(11), but besides a convective transfer with the

fluid velocity that is now described by Eq.(29), ions migrate

under an applied field, i.e. they also move relative to a fluid.

The velocity of diffuse ions is thus U± = u±m±E , where

u is the velocity of the electro-osmotic flow given by (29) and

m± is the (electrophoretic) mobility of ions. To keep calcula-

tions as transparent as possible we set m± = m = e/(6πηR),
where R is the hydrodynamic radius of both cations and an-

ions (in calculations below we will use R = 0.3 nm). In such

a definition m is treated as equal to the ion mobility at zero

ionic strength and we neglect its the possible (weak with our

parameters) reduction on increasing n∞ (see Appendix A). If

so,

j± =±2en∞

R2

∫ R

0
e∓φ (u±m±E)rdr (31)

and consequently

j =
4en∞

R2

∫ R

0
r

(

−usinhφ +
eE

6πηR
coshφ

)

dr, (32)

which is equivalent to

j = K∞E

[

−3λ 2
DR

ℓBR2

∫ R

0
me∇2φrdr+ coshφ

]

, (33)

where

K∞ =
e2n∞

3πηR
, (34)

is the conductivity of the bulk electrolyte solution.

Substituting expression (30) for me and integrating twice by

parts we obtain

j = K∞E

[

coshφ +
3λ 2

DR(φ ′)2

2ℓB
+

12µbλ 2
DR

Rℓ2
GCℓB

]

(35)

The adsorbed mobile ions generate the density of current

jσ = σ(1− µ)[u(R)+mE]

=
(1− µ)e

2πℓGCℓB

(

− eE

2πηℓB

µb

ℓGC

+
eE

6πηR

)

, (36)

where we have substituted u(R) = − eEµb

2πηℓBℓGC

. Standard

manipulations lead to

Jσ = K∞E

(

4λ 2
D(1− µ)

ℓGC

− 12R(1− µ)λ 2
Dµb

ℓ2
GCℓB

)

(37)

Summing up Eqs.(35) and (37) we find the mean density of

the conductivity current J, and then by dividing it by E obtain

the expression for the mean conductivity

K = K∞

[

coshφ +
3λ 2

DR(φ ′)2

2ℓB

+
4ℓDu

R

(

3Rµ2b

ℓGCℓB

+ 1− µ

)

]

,

(38)

where we use another electrostatic length scale

ℓDu =
λ 2

D

ℓGC

(39)

termed the Dukhin length. Note that ℓDu can be larger than

any conceivable Debye length. For example, the values of

λD = 50 nm and ℓGC = 2 nm lead to ℓDu = 1.25 µm, which

for a nanotube of R = 10 nm gives ℓDu/R = 125.

It is convenient to divide the mean conductivity of the chan-

nel given by (38) into a “no-slip” conductivity K0 expected for

hydrophilic channels, and slip-driven contribution ∆K:

K = K0 +∆K, (40)

where

K0 = K∞

[

3λ 2
DR(φ ′)2

2ℓB

+ coshφ

]

, (41)

and

∆K = K∞
4ℓDu

R

[

3µ2b

ℓGC

R

ℓB

+ 1− µ

]

. (42)

Equation (41) is equivalent to the formula for K0 of a plate-

parallel channel [35]. However, now (φ ′)2 and coshφ should

be calculated for a cylindrical geometry. The form of Eq.(42)

is identical to that for ∆K of a plate-parallel channel [35]. The

only difference is that Eq.(42) includes the nanotube radius R

instead of the channel thickness.

III. APPROXIMATE SOLUTIONS

In the previous section we have proven the Onsager rela-

tions and obtained the general equations for the mean electro-

osmotic mobility and the mean conductivity of the nanotube.

In order to employ them a detailed information concerning

mean electrostatic parameters, such as φ , coshφ , etc, is re-

quired. The derivation of equations that determine them is

given in Appendix B.
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A. Electro-osmotic mobility and zeta potential

From Eq. (24) it follows that to calculate the electro-

osmotic mobility it is enough to find the zeta potential, which

incorporates all geometry and electrostatic parameters of the

problem.

For a thick cylinder, Eq.(B4) for φs of isolated surface re-

mains accurate. Substituting this equation into (26) and mak-

ing the additional assumption that φ ≃ 0 one obtains

ζ0 ≃ 2arsinh(
λD

ℓGC

) (43)

An approximate ζ0 given by Eq.(43) may slightly overesti-

mate the exact value since in the cylinder of finite R the av-

erage potential does not vanish in the general case (see Ap-

pendix B). For weakly charged surface Eq.(43) reduces to

ζ0 ≃
2λD

ℓGC

(44)

All together, ζ0 of a thick cylinder always depends on salt

concentration, and is approximately equal to φs.

In the thin-channel regime, substituting (B13) and (B14)

into Eq.(26) we derive

ζ0 ≃
R

2ℓGC

(45)

Thus, ζ0 of a thin nanotube is not equal to φs given by (B13)

and depends only on the surface charge and the nanotube ra-

dius. Importantly, the zeta potential of a thin hydrophilic

cylinder does not depend on the salt concentration, although

φs given by (B13) reduces on increasing c∞.

The additional slip-driven contribution ∆ζ in Eq.(25) does

not depend on salt and is of the same form for a cylinder of any

thickness and is given by Eq.(27). It is instructive to calculate

the relative enhancement of zeta potential ζ/ζ0 = 1+∆ζ/ζ0

due to slippage. Say, straightforward calculations give for a

thick cylinder

ζ

ζ0

≃ 1+
µb

ℓGC arsinh(
λD

ℓGC

)

(46)

When the nanotube is weakly charged, Eq. (46) reduces to

ζ

ζ0
≃ 1+

µb

λD
, (47)

which indicates that an enhancement of zeta potential can be-

come very large at high salt.

For a thin cylinder

ζ

ζ0

≃ 1+
4µb

R
(48)

is defined only by the ratio µb/R and does not depend on salt.

To give an idea on possible zeta potential enhancement, with

µb = 100 nm and R = 10 nm, we get ca. 40 times amplifica-

tion!

B. Conductivity

The substitution of Eqs.(B9) and (B10) into Eq. (41) allows

one to immediately obtain an expression for electrical conduc-

tivity in the thick hydrophilic cylinder

K0 ≃ K∞

[

1+
4λD

R

(
√

1+
ℓDu

ℓGC

− 1

)

(

1+
3R

ℓB

)

]

. (49)

In the thin-channel regime, coshφ and (φ ′)2 are given by

Eqs.(B16) and (B15), respectively. Substituting them to (41)

we derive

K0 ≃ K∞





√

1+

(

4ℓDu

R

)2

− 2ℓDu

ℓGC

(

1− 3R

2ℓB

)



 , (50)

where the first term is of the leading-order. The signifi-

cant deviations from the bulk conductivity are expected when

ℓDu/R ≥ 1. In this case K0 does not depend on c∞:

K0 ≃ K∞
4ℓDu

R
(51)

In other words, the salt dependence of K0 should demonstrate

a conductivity plateau in dilute solutions.

In the case of hydrophobic channels the conductivity can be

obtained from Eq. (40), i.e. by summing up the corresponding

K0 and ∆K given by (42). The conductivity amplification due

to slippage, K/K0 = 1+∆K/K0, can then be easily found. For

example, if ℓDu/R ≥ 1 and λD/ℓGC is small enough, i.e. in the

thin channel regime, it follows from Eq. (51) that

K

K0

≃ 3µ2b

ℓGC

R

ℓB

+ 2− µ , (52)

indicating that the enhancement compared to a hydrophilic

nanotube can be very large, a few tens of times, provided

ℓGC is small (highly charged surfaces) and adsorbed charges

are immobile (µ = 1). Interestingly, K/K0 = 2 when µ = 0,

i.e. with fully mobile surface charges the mean conductivity

remains enhanced compared to that in hydrophilic nanotube.

We recall that in this situation the electro-osmotic flow is the

same as in a hydrophilic nanotube.

IV. RESULTS AND DISCUSSION

In order to assess the validity of the above analysis, we per-

form a numerical resolution of Eq.(5) complemented by the

boundary condition (7) following the numerical approach de-

veloped by Bader and Asche. Once φ and corresponding av-

erage functions are found numerically (see Appendix A), the

streaming and conductivity currents, zeta potential and mean

conductivity can be obtained using the expressions derived in

Sec. II and Sec. III. All results in this Section are obtained for

nanotubes of R = 10 nm.
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A. Streaming current

Figure 2 shows the streaming current as a function of ap-

plied pressure gradient. The calculations are made for sev-

eral hydrophobic nanotubes of the same radius R = 10 nm,

surface charge and slip length, but different µ , computed for

two concentrations of salt, c∞ = 10−5 mol/L and c∞ = 10−1

mol/L which corresponds to λD ≃ 100 nm and 1 nm, i.e. to

the regimes of thin and thick cylinder. The fixed ℓGC = 5 nm

corresponds to a surface charge density σ ≃ 7.3 mC/m2. The

response is always linear, and the slope of the straight lines is

invoked to find the electro-osmotic mobility Me that depends

on c∞. The computed data show that for nanotubes of the same

µ a larger J is observed at lower concentration, but a four or-

ders of magnitude increase in c∞ reduce the streaming current

only slightly. However, on reducing µ from 0.75 down to 0.25

the streaming current is significantly suppressed. Once Me is

known, we can determine the value of ζ . Calculations from

Eq. (24) show that the numerical results (from top to bottom)

in Fig. 2 correspond to ζ ≃ 4.7,4.2 and 2.2. Also included

in Fig. 2 are the streaming currents calculated analytically us-

ing ζ given by (25) with ζ0 obtained for the thin and thick

cylinder limits (Eqs.(43) and (45)). We see that with these

parameters Eq. (43) provides an excellent fit to numerical re-

sults, but Eq. (45) slightly overestimates the results. It must

be remembered that this is a first-order calculation only, and

given the simplifications made we do not expect it to be very

accurate.

0.0 0.2 0.4 0.6 0.8 1.0
−∂zp× 108, Pa/m

0

2

4

6

J
,
A
/m

2

FIG. 2. Streaming current density J vs. pressure drop ∂z p computed

for hydrophobic cylinders of R = 10 nm, b = 10 nm and ℓGC = 5

nm. The solid line shows numerical results obtained using µ = 0.75

and c∞ = 10−5 mol/L. The dashed line is computed for µ = 0.75 and

c∞ = 10−1 mol/L. The dash-dotted line is computed for c∞ = 10−5

mol/L and µ = 0.25. Circles and squares show calculations using ζ0

given by Eqs.(43) and (45), respectively.

We now turn to zeta potential of nanotubes. The main issue

we address is how to enhance ζ by generating a slip velocity

at the surface and by tuning the salt concentration. Figure 3

includes ζ computed as a function of c∞. Note that varying c∞

from 10−6 to 10−1 mol/L is equivalent to the range of R/λD

from 0.032 to 10.3. In this calculations we keep ℓGC = 5 nm

fixed, so that φs varies with salt, but the ratio b/ℓGC = 2 re-

mains constant, i.e. independent on c∞. The computed φs is

10−6 10−5 10−4 10−3 10−2 10−1

c∞, mol/L

100

101

ζ

FIG. 3. Zeta potential as a function of c∞ computed for cylindrical

channels of R = 10 nm, ℓGC = 5 nm, b = 10 nm using µ = 0.5 (solid

curve) and 0 (dashed curve). The surface potential φs is shown by

dash-dotted curve. Filled circles show ζ calculated using ζ0 pre-

dicted by Eq.(43), open circles are calculated using ζ0 given by

Eq.(B8). Squares are obtained using ζ0 calculated from Eq.(45).

also included in Fig. 3. It can be seen that on increasing c∞

it reduces, but never becomes small. The calculations of ζ
are made using µ = 0.5 and 0. As discussed above, in the

latter case of fully mobile surface charges ζ = ζ0, although

the hydrodynamic slip length is finite. For the thin nanotubes

ζ does not depend on salt and takes its maximal (constant)

value. When nanotubes become thick, ζ begins to decrease

with c∞. It can be seen that when µ = 0 the surface potential

is always larger than ζ = ζ0, but at µ = 0.5 the zeta poten-

tial is significantly amplified by hydrodynamic slippage and in

the sufficiently concentrated solutions ζ dramatically exceeds

φs. The numerical data are compared with the analytical cal-

culations in which ζ0 is evaluated using Eqs.(43) (thick nan-

otubes, c∞ ≃ 10−1 mol/L) or (45) (thin nanotubes, c∞ ≤ 10−2

mol/L). The fits are quite good, but there is some discrepancy.

The analytical equations overestimate the exact numerical re-

sults, which is the consequence of an assumption φ ≃ 0 (see

Sec. III A). Similar fits for thick nanotubes made using a next

order approximation, Eq.(B8), would make an improvement

to the fit, but slightly underestimate the numerical results.

The amplification of the zeta potential relative to ζ0 is il-

lustrated in Fig. 4, where the data are reproduced from Fig. 3.

With these parameters ζ of the hydrophobic channel is am-

plified in ca. 3.5 times in dilute solutions, where λD ≥ R.

In more concentrated solutions (of small λD) ζ/ζ0 begins to

rapidly augment with c∞ to larger values. It is instructive to

compare these results with a calculation of ζ/φs, also included

in Fig. 4. This ratio increases with c∞ strictly monotonically

and is always lower than ζ/ζ0. When c∞ ≤ 10−3 mol/L, ζ/φs

is smaller than unity, but then ζ exceeds φs. This is especially

well seen in Fig. 3. Also included in Fig. 4 are the theoretical

results for ζ/ζ0 obtained from Eqs.(47) and (48). The theo-

retical predictions provide a good qualitative agreement with

the numerical data, but show smaller amplification of the zeta

potential. An obvious explanation for this discrepancy is the

neglected average potential of the nanotube. Indeed, Eq.(B8)

that takes into account a non-zero φ for the high concentration

branch in Fig. 4 provides a better match to the numerical data.
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10−6 10−5 10−4 10−3 10−2 10−1

c∞, mol/L

0

2

4

6
ζ
/ζ

0
,
ζ
/φ

s

FIG. 4. ζ/ζ0 (solid curve) and ζ/φs (dashed curve) computed as a

function of c∞ for cylindrical channels of R = 10 nm, ℓGC = 5 nm,

b = 10 nm, and µ = 0.5. Filled circles and squares are obtained from

(47) and (48), respectively. Filled triangles show ζ/ζ0 calculated

using ζ0 given by (B8). Filled circles and squares are calculations of

ζ/φs with φs obtained from (B4) and (B13).

0 2 4 6 8 10
E, kV/m

0

2

4

J
,
k
A
/m

2

FIG. 5. Conductivity current density J vs. electric field E computed

for the same nanotubes and c∞ as in Fig. 2. Symbols show J calcu-

lated using Ohm’s law with K given by Eq.(40) and ∆K determined

from (42). The circles correspond to K0 calculated from (49). The

squares are calculations using K0 given by (50).

If similar fits are made to a ζ/φs curve, as shown in Fig. 4, it

is found that the agreement of analytical theory that invokes

Eqs.(B4) and (B13) for φs with numerical results is very good.

B. Electrical conductivity

Next, we turn to the mean conductivity of the channel K.

Figure 5 shows a current-voltage response (J −E) computed

for the same nanotubes and electrolyte concentrations as in

Fig. 2. The numerical examples show that J is largest for

c∞ = 10−1 mol/L. The mean electric current density computed

using c∞ = 10−5 mol/L is ca. an order of magnitude smaller.

The slope of the J−E straight line is invoked to find the con-

ductivity K at given c∞. Therefore, we conclude that numeri-

cal data at c∞ = 10−5 mol/L shows conductivity that is an or-

der of magnitude smaller than this computed using c∞ = 10−1

mol/L. Meantime, the bulk conductivity is four order of mag-

nitude smaller as follows from Eq.(34). These numerical data

are compared with the above theoretical results. The mean

10−6 10−5 10−4 10−3 10−2 10−1

c∞, mol/L

101

103

105

K
0
/K

∞

FIG. 6. K0/K∞ as a function of c∞ computed for nanotubes of R= 10

nm, using ℓGC = 1 and 50 nm (from top to bottom). Circles show cal-

culations using K0 calculated from Eq.(49). Filled and open squares

are obtained using K0 from Eqs.(50) and (51). The big triangles mark

the points of ℓDu/R = 1.

conductivity of the nanotube is calculated from Eq.(40). To

calculate K0 in this equation in the case of c∞ = 10−1 mol/L

we use Eq.(49) since λD/R is small. The calculation of K0

at c∞ = 10−5, where λD/R is large, are performed using (50).

For both concentrations to obtain ∆K we, of course, employ

Eq.(42). Once K is known, J can be found employing Ohm’s

law. Theoretical results are included in Fig. 5. It can be seen

that the numerical data sets are very well fitted by analytical

equations.

To examine the significance of deviations from the bulk

conductivity more closely, in Fig. 6 we plot K0/K∞ as a func-

tion of c∞. The calculations are made using ℓGC = 1 and 50

nm. The conductivity of hydrophilic nanotubes, K0, can be

very large (nearly five orders of magnitude larger than K∞)

if it is highly charged (ℓGC = 1 nm), but even for ℓGC = 50

nm we observe ca. three orders of magnitude enhancement,

provided that an electrolyte solution is extremely dilute. On

increasing c∞ (reducing λD and ℓDu), K0/K∞ first decays lin-

early in this log-log plot indicating that K0/K∞ ∝ c−1
∞ . How-

ever, on increasing c∞ further K0/K∞ begins to reduce weaker

(down to 1). We have marked with triangles the points of

ℓDu/R = 1 and one can see that this branch for both curves

occurs in the vicinity of these points. The upper curve that

corresponds to a highly charged cylinder is well fitted using

K0 given by Eq.(49) indicating that the nanotube effectively

behaves as thick even when λD/R is large. The curve for the

weakly charged nanotube is well described using K0 calcu-

lated from Eq.(50) when c∞ is below 10−4 mol/L. The use of

(51) makes practically no difference to the fit, as expected. At

concentrations c∞ ≥ 10−3 mol/L the weakly charged nanotube

is effectively thick and the numerical data are well fitted if K0

given by (49) is employed.

The mean conductivity of the nanotubes can be amplified

by the slippage effect. This is illustrated in Fig. 7, where

the amplification of the mean conductivity is calculated using

µ = 0.5 (a half of surface charges is mobile) and a moderate

slip length b = 10 nm. For these examples we use ℓGC = 1

and 50 nm, the same as in Fig. 6. It can be seen, that for

low concentrations (ℓDu/R ≥ 1) the conductivity amplifica-
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10−6 10−5 10−4 10−3 10−2 10−1

c∞, mol/L

1

2

3
K
/K

0

FIG. 7. The conductivity amplification K/K0 as a function of c∞

obtained for the same nanotubes as in Fig. 6, but with b = 10 nm,

and µ = 0.5. Filled symbols are obtained using K0 from Fig. 6 and K

calculated from (40). Open squares show calculations from Eq.(52).

The big triangles mark the points of ℓDu/R = 1.

tion due to slip, K/K0, is independent on salt and takes its

largest value. For a highly charged nanotube (ℓGC = 1 nm)

the slippage increase the conductivity by a factor of ca. 3, but

for a weakly charged cylinder the enhancement is low with

these papameters. When ℓDu/R becomes smaller than unity,

the value of K/K0 decreases with salt. It is well seen that for a

curve calculated using ℓGC = 50 nm K ≃ K0 when c∞ ≥ 10−2

mol/L. In other words, there is no conductivity amplification

due to slippage. However, a highly charged nanotube (ℓGC = 1

nm) shows the enhancement of the mean conductivity in ca.

2 times even when c∞ = 10−1 mol/L. The results of theoret-

ical calculations are also shown in Fig. 7. The theoretical

data for K0 of Fig. 6 are reproduced and summed up with ∆K

given by (42) to obtain K. Calculated values of K/K0 fit very

well the numerical curves. We have also verified Eq.(52). As

predicted, it represents a sensible approximation for K/K0 if

ℓDu/R ≥ 1 and λD/ℓGC ≤ 1. Indeed, the plateau branch of the

numerical curve obtained using ℓGC = 50 nm is well fitted by

Eq.(52).

V. CONCLUSION

We have presented a theory describing the transport of ions

in hydrophobic nanotubes with the constant surface charge

density. The electro-hydrodynamicboundary condition [31] is

imposed at the hydrophobic wall, which assumes that the sur-

face demonstates a hydrodynamic slippage and some portion

of the adsorbed surface charges can migrate relative to fluid

by reacting to the applied electric field (but not to the hydro-

dynamic tangential stress). Numerical solutions are presented

and fully validate our analysis. These results are directly rele-

vant for enhanced streaming and conductivity currents in car-

bon and boron nitride nanotubes, which are currently the area

of very active research, as well as for conventional nanoporous

membranes.

The main results of our work can be summarized as fol-

lows. We have proven that when the electro-hydrodynamic

boundary condition is applied the Onsager relations hold pro-

vided the adsorbed surface ions are transferred in a pressure-

driven flow with the slip velocity of liquid. Namely, we have

derived general expressions for elements of the 2×2 mobility

matrix, Eq.(10), and demonstrated that the off-diagonal coeffi-

cients are equal if the electro-hydrodynamic boundary condi-

tion, Eq.(14), is imposed and provided Eq.(21) is valid. These

expressions include some mean electrostatic functions, which

we have calculated analytically for two specific regimes (of

thin and thick nanotubes). Importantly, these regimes are de-

fined not by just λD/R, but also controlled by the value of

λD/ℓGC, i.e. effective charge of the walls. We have then de-

rived simple analytical approximations for the electro-osmotic

mobility and mean conductivity in these two regimes. Our re-

sults show that qualitative features of the electrosmotic mobil-

ity and conductivity curves for cylinders are the same as for

slits, but there is some important quantitative difference due to

different expressions for electrostatic functions. We have also

given a novel interpretation of the zeta potential of nanotubes.

Our results open strategies to tune the ion transport in nan-

otubes via a modification of their walls and, vice versa, to

probe surface properties by measuring the streaming or con-

ductivity currents. Our quantitative results can be improved

by performing more accurate calculations of the central (axis)

potential. This remains a challenging mathematical problem

and a subject of future research. Other fruitful directions

would be to extend the results for so-called charge regulation

surfaces and for systems, where both pressure drop and elec-

tric field are applied simultaneously. The latter calculations

are now straightforward and can be done by using the proven

Onsager relations.
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Appendix A: Mobility of ions in dilute 1:1 electrolyte solutions

In general case, the electrophoretic mobility of ions reduces

with the concentration of salt. If R ≪ λD, the mobilities

of monovalent ions can be approximately described by the

Hückel formula [45]

m ≃ e

6πηR

(

1− R

λD

)

(A1)

Using (6) this can be rewritten as

m ≃ e

6πηR

(

1− R
√

c∞

0.305

)

(A2)
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This expression shows that the mobility at infinite dilution

represents its upper possible limit. The deviations from this

ideal mobilty in dilute solutions do not depend on the ion ra-

dius and scale with c
1/2
∞ . Thus, Eq.(A2) is functionally equiv-

alent to the Kohlrausch empirical model [46].

It follows from (A2) that at c∞ = 10−2 mol/L the decrease

in the mobilities of ions of R = 0.3 nm compared to those at

an infinite dilution is less than 10%. Concequently for solu-

tions of c∞ ≤ 10−2 mol/L (where R/λD is small), this effect

can safely be neglected. At larger concentrations the analysis

based on an upper limit of ion mobilities becomes quite ap-

proximate. Nevertheless, it provides us with some guidance.

As a side note, at our largest concentration c∞ = 10−1 mol/L

the use of Eq.(A1) would also represent too rough an approx-

imation since R/λD ≃ 0.3.

Appendix B: Derivation of electrostatic equations

Expressions for the mean osmotic pressure coshφ and for

the mean square derivative of the electrostatic potential (φ ′)2,

which is the measure of the electrostatic field energy (per unit

area), can be derived similar to [35]. First integration of Eq.(5)

from the axis (r = 0) to an arbitrary r gives

λ 2
D

(

dφ

dr

)2

= 2coshφ − 4

r2

∫ r

0
r coshφdr (B1)

Applying boundary condition (7) then yields

coshφ = coshφs −
2ℓDu

ℓGC

. (B2)

The expression (B2) is exact and valid for any channel thick-

ness and surface charge/potential. In Fig. 8 we present numer-

ical solutions to validate Eq.(B2) and illustrate the variation of

coshφ in response to λD/ℓGC and λD/R.

Note that from (5) and (7) it follows that

sinhφ =
4ℓDu

R
(B3)

1. Thick channel

For a single wall or an infinitely large cylinder the relation

between the surface potential and charge is given by the Gra-

hame equation

φs = 2arsinh

(

λD

ℓGC

)

(B4)

In Fig. 9 we plot φs as a function of λD/ℓGC. It can be seen

that Eq.(B4) remains very accurate for a thick channel and

even when λD/R = O(1) provided λD/ℓGC is large.

Substituting (B4) into (B2) one obtains coshφ = 1, which is

equivalent to φ = 0 and (φ ′)2 = 0. However, this result holds

only if R → ∞. The data presented in Fig. 8 show that coshφ

0 5 10 15 20
λD/ℓGC

100

101

102

co
sh

φ

FIG. 8. coshφ as a function of λD/ℓGC computed for cylindrical

channels of R = 10 nm with fixed λD = 100 nm (solid curve), λD =
10 (dashed curve), and λD = 1 (dash-dotted curve). The dotted line

indicates coshφ = 1. Circles show predictions of Eq.(B2). Squares

are obtained using Eqs.(B9) and (B15).
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λD/ℓGC

0.0

2.5

5.0

7.5

φ
s

FIG. 9. Surface potential, φs, as a function of λD/ℓGC calculated

numerically using R/λD ≃ 0.1, 1, and 10 (from top to bottom). Filled

and open circles show calculations from Eqs. (B4) and (B13).

is well above unity at finite λD/ℓGC, even for a thick channel,

indicating that φ 6= 0.

The calculation of φ represents a challenge for a cylindrical

geometry and we leave this for a future research. However,

when the nanotube is weakly charged, φs ≤ 1, one can lin-

earize Eq. (5):

1

r

d

dr

(

r
dφ

dr

)

≃ λ−2
D φ (B5)

Integrating the above equation (B5) we obtain the potential

profile:

φ ≃ 2λD

ℓGC

I0(r/λD)

I1(R/λD)
, (B6)

where I0 and I1 are the modified Bessel functions. The average

potential is then

φ ≃ 4ℓDu

R
(B7)

It follows from (B4) that for weakly charged surfaces φs ≃
2λD/ℓGC. Using (26) we then obtain

ζ0 ≃
2λD

ℓGC

(

1− 2λD

R

)

(B8)
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λD/ℓGC

0

2
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6
φ

FIG. 10. φ as a function of R/λD computed for cylindrical channels

of R = 10 nm with fixed φs = 5 and 1 (from top to bottom). Squares

are obtained using Eq. (B14). Circles show predictions of linear the-

ory Eq. (B7).

The numerical data presented in Fig. 10 confirm the validity

of Eq.(B7) at λD/ℓGC ≤ 1 but show smaller φ than this theo-

retical prediction when λD/ℓGC becomes larger. A calculation

of the average potential and its effect on the zeta potential in

the case of a highly charged thick nanotube remains very dif-

ficult and well beyond the scope of this paper. Nevertheless,

we see that at large λD/ℓGC the surface potential (see Fig. 9)

is much higher than φ , so that the later can be neglected in the

first-order calculations. Clearly, given this simplification we

do not expect the calculations of the zeta potential to be very

accurate.

It is naturally to assume that corrections to coshφ and (φ ′)2

are proportional to the ratio of the EDL length to the channel

area. Performing similar to described in [35] calculations we

obtain

coshφ ≃ 1+
4λD

R

(
√

1+
ℓDu

ℓGC

− 1

)

, (B9)

and

(φ ′)2 ≃ 8

RλD

(
√

1+
ℓDu

ℓGC

− 1

)

, (B10)

Note that it follows then that these functions are related as

coshφ ≃ 1+
λ 2

D(φ
′)2

2
. (B11)

Calculations from (B9) are shown in Fig. 8. It can be seen

that Eq.(B9) gives a good match to the numerical data for thick

nanotubes, and can even be used when R ≃ λD.

2. Thin channel

In the thin channel limit, R/λD ≪ 1, the distribution of

a potential in the channel is approximately given by the

parabola [43]

φ(r) = φs +
sinhφs

4λ 2
D

(

r2 −R2
)

. (B12)

The relation between the surface potential and adsorbed

charge reads [43]:

φs = arsinh
4ℓDu

R
. (B13)

The calculations from Eq.(B13) are included in Fig. 9. It can

be seen that (B13) is accurate only when λD/ℓGC is small

enough.

It follows then that the average potential is given by

φ ≃ φs −
R2 sinhφs

8λ 2
D

≃ arsinh
4ℓDu

R
− R

2ℓGC

(B14)

The calculation from Eq.(B14) are compared with numer-

ical results in Fig. 10. The fit is quite good for λD/ℓGC ≤ 3,

but at larger λD/ℓGC there is some discrepancy, and the aver-

age potential is higher than predicted by Eq.(B14).

By direct integration of Eq. (B12) using (B2) and (B13) we

can easily derive

coshφ ≃

√

1+

(

4ℓDu

R

)2

− 2ℓDu

ℓGC

(B15)

and

(φ ′)2 ≃ 2

ℓ2
GC

(B16)

[1] R. B. Schoch, J. Han, and P. Renaud, Transport phenomena in

nanofluidics, Rev. Mod. Phys. 80, 839 (2008).

[2] L. Bocquet and E. Charlaix, Nanofluidics, from bulk to inter-

faces, Chem. Soc. Rev. 39, 1073 (2010).

[3] W. Sparreboom, A. van den Berg, and J. C. Eijkel, Principles

and applications of nanofluidic transport, Nature nanotechnol-

ogy 4, 713 (2009).

[4] H. Daiguji, Ion transport in nanofluidic channels, Chemical So-

ciety Reviews 39, 901 (2010).

[5] B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic

acid analysis, Nature nanotechnology 6, 615 (2011).

[6] K. Xiao, L. Jiang, and M. Antonietti, Ion transport in nanoflu-

idic devices for energy harvesting, Joule 3, 2364 (2019).

[7] Z. Hao, Q. Zhang, X. Xu, Q. Zhao, C. Wu, J. Liu, and H. Wang,

Nanochannels regulating ionic transport for boosting electro-

chemical energy storage and conversion: a review, Nanoscale

12, 15923 (2020).

[8] R. J. Hunter, Zeta Potential in Colloid Science: Principles and

Applications, Vol. 2 (Academic press, 2013).

[9] B. J. Kirby and E. F. Hasselbrink Jr, Zeta potential of microflu-



12

idic substrates: 1. Theory, experimental techniques, and effects

on separations, Electrophoresis 25, 187 (2004).

[10] S. Kamble, S. Agrawal, S. Cherumukkil, V. Sharma, R. V. Jasra,

and P. Munshi, Revisiting zeta potential, the key feature of inter-

facial phenomena, with applications and recent advancements,

ChemistrySelect 7, e202103084 (2022).

[11] D. Stein, M. Kruithof, and C. Dekker, Surface-charge-governed

ion transport in nanofluidic channels, Phys. Rev. Lett. 93,

035901 (2004).

[12] R. B. Schoch, H. van Lintel, and P. Renaud, Effect of the sur-

face charge on ion transport through nanoslits, Phys. Fluids 17,

100604 (2005).

[13] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T.

Purcell, and L. Bocquet, Giant osmotic energy conversion mea-

sured in a single transmembrane boron nitride nanotube, Nature

494, 455 (2013).

[14] S. Balme, F. Picaud, M. Manghi, J. Palmeri, M. Bechelany,

S. Cabello-Aguilar, A. Abou-Chaaya, P. Miele, E. Balanzat,

and J. M. Janot, Ionic transport through sub-10 nm diameter

hydrophobic high-aspect ratio nanopores: experiment, theory

and simulation, Sci. Rep. 5, 10135 (2015).

[15] H. Xie, T. Saito, and M. A. Hickner, Zeta potential of ion-

conductive membranes by streaming current measurements,

Langmuir 27, 4721 (2011).

[16] S. Salgin, U. Salgin, and N. Soyer, Streaming potential mea-

surements of polyethersulfone ultrafiltration membranes to de-

termine salt effects on membrane zeta potential, Int. J. Elec-

trochem. Sci 8, 4073 (2013).

[17] Y. Xie, L. Wang, M. Jin, Y. Wang, and J. Xue, Non-linear

streaming conductance in a single nanopore by addition of sur-

factants, Applied Physics Letters 104, 033108 (2014).

[18] S. Chen, H. Dong, and J. Yang, Surface potential/charge sensing

techniques and applications, Sensors 20, 1690 (2020).

[19] O. I. Vinogradova, Slippage of water over hydrophobic sur-

faces, Int. J. Miner. Process. 56, 31 (1999).

[20] O. I. Vinogradova and A. V. Belyaev, Wetting, roughness

and flow boundary conditions, J. Phys.: Condens. Matter 23,

184104 (2011).

[21] C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix,

Boundary slip on smooth hydrophobic surfaces: Intrinsic ef-

fects and possible artifacts, Phys. Rev. Lett. 94, 056102 (2005).

[22] O. I. Vinogradova and G. E. Yakubov, Dynamic effects on force

measurements. 2. Lubrication and the atomic force microscope,

Langmuir 19, 1227 (2003).

[23] L. Joly, C. Ybert, and L. Bocquet, Probing the nanohydrody-

namics at liquid-solid interfaces using thermal motion, Phys.

Rev. Lett. 96, 046101 (2006).

[24] O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, Di-

rect measurements of hydrophobic slipage using double-focus

fluorescence cross-correlation, Phys. Rev. Lett. 102, 118302

(2009).

[25] V. M. Muller, I. P. Sergeeva, V. D. Sobolev, and N. V. Chu-

raev, Boundary effects in the theory of electrokinetic phenom-

ena, Colloid J. USSR 48, 606 (1986).

[26] N. V. Churaev, J. Ralston, I. P. Sergeeva, and V. D. Sobolev,

Electrokinetic properties of methylated quartz capillaries, Adv.

Colloid Interface Sci. 96, 265 (2002).

[27] M. C. Audry, A. Piednoir, P. Joseph, and E. Charlaix, Ampli-

fication of electro-osmotic flows by wall slippage: Direct mea-

surements on OTS-surfaces, Faraday Discuss. 146, 113 (2010).

[28] S. Dehe, B. Rofman, M. Bercovici, and S. Hardt, Electro-

osmotic flow enhancement over superhydrophobic surfaces,

Physical Review Fluids 5, 053701 (2020).

[29] S. Levine, J. R. Marriott, and K. Robinson, Theory of elec-

trokinetic flow in a narrow parallel-plate channel, Journal of

the Chemical Society, Faraday Transactions 2: Molecular and

Chemical Physics 71, 1 (1975).

[30] D. Andelman, Soft condensed matter physics in molecular and

cell biology (CRC Press, Boca Raton, 2006) Chap. 6. Introduc-

tion to Electrostatics in Soft and Biological Matter, 1st ed.

[31] S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vino-

gradova, Electrohydrodynamics near hydrophobic surfaces,

Phys. Rev. Lett. 114, 118301 (2015).

[32] B. Grosjean, M.-L. Bocquet, and R. Vuilleumier, Versatile

electrification of two-dimensional nanomaterials in water, Nat.

Com. 10, 1656 (2019).

[33] T. Mouterde and L. Bocquet, Interfacial transport with mobile

surface charges and consequences for ionic transport in carbon

nanotubes, Eur. Phys. J. E 41, 148 (2018).

[34] E. Mangaud, M.-L. Bocquet, L. Bocquet, and B. Rotenberg,

Chemisorbed vs physisorbed surface charge and its impact on

electrokinetic transport: Carbon vs boron nitride surface, The

Journal of Chemical Physics 156, 044703 (2022).

[35] O. I. Vinogradova, E. F. Silkina, and E. S. Asmolov, Enhanced

transport of ions by tuning surface properties of the nanochan-

nel, Phys. Rev. E 104, 035107 (2021).

[36] C. L. Rice and R. Whitehead, Electrokinetic flow in a narrow

cylindrical capillary, J. Phys. Chem. 69, 4017 (1965).

[37] S. Levine, J. Marriott, G. Neale, and N. Epstein, Theory of

electrokinetic flow in fine cylindrical capillaries at high zeta-

potentials, Journal of Colloid and Interface Science 52, 136

(1975).

[38] P. M. Biesheuvel and M. Z. Bazant, Analysis of ionic conduc-

tance of carbon nanotubes, Phys. Rev. E 94, 050601 (2016).

[39] P. Peters, R. Van Roij, M. Z. Bazant, and P. Biesheuvel, Anal-

ysis of electrolyte transport through charged nanopores, Phys.

Rev. E 93, 053108 (2016).

[40] Y. Uematsu, R. R. Netz, L. Bocquet, and D. J. Bonthuis,

Crossover of the power-law exponent for carbon nanotube con-

ductivity as a function of salinity, The Journal of Physical

Chemistry B 122, 2992 (2018).

[41] J. Catalano, R. G. H. Lammertink, and P. M. Biesheuvel,

Theory of fluid slip in charged capillary nanopores,

arXiv:1603.09293 (2016).

[42] Y. Green, Ion transport in nanopores with highly overlapping

electric double layers, J. Chem. Phys. 154, 084705 (2021).

[43] E. F. Silkina, E. S. Asmolov, and O. I. Vinogradova,

Electro-osmotic flow in hydrophobic nanochannels,

Phys. Chem. Chem. Phys. 21, 23036 (2019).

[44] J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed.

(Academic Press, 2011).

[45] E. Huckel, Die Kataphorese der Kugel, Physikalische

Zeitschrift 25, 204 (1924).

[46] F. Kohlrausch, Ueber den stationären Temperaturzustand eines
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