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LOCAL WELL-POSEDNESS OF UNSTEADY POTENTIAL FLOWS

NEAR A SPACE CORNER OF RIGHT ANGLE

BEIXIANG FANG, WEI XIANG, AND FENG XIAO

Abstract. In this paper we are concerned with the local well-posedness of the

unsteady potential flows near a space corner of right angle, which could be for-

mulated as an initial-boundary value problem of a hyperbolic equation of second

order in a cornered-space domain. The corner singularity is the key difficulty

in establishing the local well-posedness of the problem. Moreover, the boundary

conditions on both edges of the corner angle are of Neumann-type and fail to

satisfy the linear stability condition, which makes it more difficult to establish a

priori estimates on the boundary terms in the analysis. In this paper, extension

methods will be updated to deal with the corner singularity, and, based on a key

observation that the boundary operators are co-normal, new techniques will be

developed to control the boundary terms.
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1. Introduction

In this paper we are concerned with the local existence of the unsteady inviscid

compressible flows near a corner of right angle. Physically, compressible flows near

corners can be observed easily and continuously. However, within the best extent

of our knowledge, the mathematical analysis for such phenomena is far away from

satisfied. In this paper, we are going to study this problem and trying to establish a

mathematical theory on the local well-posedness of the unsteady potential flow near

a 2-D corner of right angle.

In this paper, the inviscid compressible flow is assumed to be isentropic and

irrotational such that its motion can be governed by the following 2-D unsteady

potential flow equations:
{

∂tρ+ div(ρ∇Φ) = 0 (Conservation of mass)

∂tΦ+ 1
2
|∇Φ|2 + ı(ρ) = B0 (Bernoulli’s law)

(1.1)

where ∇ := (∂x1
, ∂x2

)⊤ is the gradient operator with respect to the spatial variable

x := (x1, x2) and t is the time variable. Moreover, ρ is the density, and Φ is the

velocity potential, i.e., the gradient ∇Φ is the fluid velocity. The fluid is assumed

to be a polytropic gas such that the enthalpy ı(ρ) =
ργ−1 − 1

γ − 1
, where γ > 1 is the

adiabatic exponent. Finally, c =
√

ργ−1 is the sonic speed, and B0 is the Bernoulli’s

constant.

The Bernoulli’s law, the second equation of (1.1), implies that the density ρ can

be expressed as a function with respect to (∂tΦ,∇Φ):

ρ = ̺(∂tΦ,∇Φ; γ, B0) := (1 + (γ − 1)(B0 − ∂tΦ−
1

2
|∇Φ|2))

1

γ−1 . (1.2)

Substituting (1.2) into the first equation of (1.1), we deduce that the velocity po-

tential function Φ satisfies the following equation of second order:

∂ttΦ + 2

2∑

i=1

∂xi
Φ∂txi

Φ−

2∑

i,j=1

(δijc
2 − ∂xi

Φ∂xi
)∂xixj

Φ = 0, (1.3)

where δij is the Kronecker delta. Let a00 := 1 and

aij = aji := −c2δij + ∂xi
Φ∂xj

Φ, for i, j ≥ 1, (1.4)

a0j = aj0 := ∂xj
Φ, for j = 1, 2. (1.5)

Then equation (1.3) can be denoted by

2∑

i,j=0

aij∂xixj
Φ = 0. (1.6)
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It is well-known that, as ρ 6= 0, namely, vacuum does not appear in the flow, the

equation (1.3) ( or (1.6) ) is of hyperbolic type.
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Figure 1. A cornered-space domain with slightly curved boundaries.

Let Γw1
and Γw2

be two curves defined as

Γw1
= {(x1, x2) ∈ R

2; x1 = W1(x2), x2 > 0},

Γw2
= {(x1, x2) ∈ R

2; x1 > 0, x2 = W2(x1)}.

The following two assumptions will be imposed on these two curves:

(A1) Γw1
∩ Γw2

= {(0, 0)}.

(A2) W ′
i(0) = W

′′

i (0) = W
′′′

i (0) = 0 for i = 1, 2, here and after the superscripts ′,
′′ and ′′′ stand for the derivative of corresponding variable of the first, second

and the third order.

Obviously, Γw1
and Γw2

are perpendicular to each other at the origin (0, 0). Denote

the cornered-space domain (see Figure 1) bounded by Γw1
and Γw2

by D, i.e.,

D := {x ∈ R
2 : x1 >W1(x2) and x2 >W2(x1)}.

The fluid is confined in D, and the velocity potential function Φ satisfies the

following slip boundary conditions on the boundaries Γw1
and Γw2

:

∂x1
Φ−W ′

1(x2)∂x2
Φ = 0, on Γw1

, (1.7)

∂x2
Φ−W ′

2(x1)∂x2
Φ = 0, on Γw2

. (1.8)

When t = 0, the state of the fluid is given such that the velocity potential function

Φ is equipped with the initial conditions:

Φ(0,x) = Φ0(x) and ∂tΦ(0,x) = Φ1(x), x ∈ D. (1.9)

Thus, to show the local existence of the potential flow in the cornered-space

domain D, one needs to prove the local well-posedness of the initial-boundary value

problem (1.6), (1.7), (1.8), and (1.9). Since the equation (1.6) is of hyperbolic type
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which enjoys the property of finite speed of propagation, one may further assume

that Γw1
and Γw2

are small perturbation of straight lines, and the initial conditions

(1.9) describe small perturbation of the state of the flow near the corner (0, 0).

Since Φ satisfies both (1.7) and (1.8) at the corner point (0, 0), one immediately

obtains that ∇Φ(t, 0, 0) = (0, 0) and the flow is static. Let the density ρ0 at the

corner point (0, 0) be

ρ0 := ̺(0, 0, 0; γ, B0) = (1 + (γ − 1)B0)
1

γ−1 .

Moreover, let

Γ̄w1
:= {(x1, x2) ∈ R

2; x1 = W1(x2) ≡ 0, x2 > 0},

Γ̄w2
:= {(x1, x2) ∈ R

2; x1 > 0, x2 = W2(x1) ≡ 0, },

and the domain be bounded by them (see Figure 2)

D := {x ∈ R
2 : x1 > 0 and x2 > 0}.

It is obvious that

(Φ(t,x), ρ̄(t,x)) := (0, ρ0)

is a steady solution to the unsteady potential flow equations (1.1). It can be further

verified that Φ(t,x) is a steady solution to equation (1.3) in D, satisfying the slip

boundary conditions on Γ̄w1
and Γ̄w2

.

Figure 2. A steady solution to (1.1)

Therefore, the initial-boundary value problem (1.6), (1.7), (1.8), and (1.9) for

generic smooth initial and boundary data can be reduced to the stability problem

for the steady solution Φ(t,x) under small perturbation of the boundary and the

initial data.

Problem 1: Suppose Γw1
and Γw2

and the initial data (Φ0(x),Φ1(x)) satisfy the

following conditions:

• The boundaries Γw1
and Γw2

satisfy assumptions (A1) and (A2). Moreover,

Γw1
and Γw2

are small perturbations of the straight boundaries Γw1
and Γw2

,
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respectively such that W1(x2) and W2(x1), as well as their derivatives, are

close to zero.

• The initial data are small perturbations of Φ(t,x), i.e., (Φ0(x),Φ1(x)) is close

to (0, 0).

Does there exist a unique local classical solution Φ(t,x) to the equation (1.3) in the

cornered-space domain D with initial-boundary conditions (1.7)-(1.9), which is still

close to Φ(t,x)?

This paper is devoted to investigating Problem 1 and will give a positive answer

by proving Theorem 2.1, which is the main theorem of this paper. The key difficulty

is the corner singularity on the boundary and one needs to analyse the behaviour

of the solution near the corner point. To the best of our knowledge, up to now, a

general theory on well-posedness of initial-boundary value problems of hyperbolic

systems on non-smooth domains is not available. Nevertheless, there are progresses

toward this issue. In [32, 33], Osher gives ill-posed examples of initial-boundary

value problems of hyperbolic equations on a non-smooth domain, which shows the

complexity of such problems. There are also well-posed results on domains with

corners. In particular, as the corner angle is sufficiently small, in [20, 21] Godin

derives local well-posedness of smooth solutions for two dimensional Euler system

in bounded domains with finite corner points. As the corner is a right angle, under

certain symmetry assumptions, Gazzola-Secchi obtains the well-posedness of Euler

equations in rectangular cylinders in [17] and Yuan establishes the stability of normal

shocks in 2-D flat nozzles for two dimensional unsteady Euler system in [36]. Both

in [17] and [36], the symmetry assumptions play an essential role such that extension

techniques can be employed to reduced the problem near the corner into an initial-

boundary value problem on a domain with smooth boundaries. By developing new

techniques based on the extension method, it is established in [18] by Fang-Huang-

Xiang-Xiao and in [19] by Fang-Xiang-Xiao the local dynamic stability of steady

normal shock solutions for unsteady potential flows under small perturbation of the

physical boundary without the symmetry assumptions in [17] and [36].

It turns out that the ideas and techniques developed in [18,19] help to deal with the

difficulties brought by the corner singularity in Problem 1. While new difficulties

arise because the boundary conditions on both edges of the corner angle do not

satisfy the linear stability conditions, which hold on the shock front, one of the

edges of the corner angle, in [18,19]. This fact makes it difficult to establish a priori

estimates on the boundary trace of the highest order derivatives of the solution and

the techniques in [18, 19] and [31] do not work. New techniques will be developed
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in this paper to control the boundary terms, based on a key observation that the

boundary operators are co-normal (see (ii) in lemma 2.1).

It is well-known that in general unsteady flows governed by quasilinear hyperbolic

systems of conservation laws will formulate singularities in finite time and nonlinear

waves such as shocks, rarefaction waves, contact discontinuities, etc. may occur.

Thanks to continuous efforts of many mathematicians, there have been systematic

theory for one space dimensional cases, see [6,16,34] and the references cited therein.

For multidimensional problems, important progresses have also been made in the

past decades. Dynamical stability of the elementary nonlinear waves have been es-

tablished in, for instance, [1,2,13–15,29–31] by employing the well-established math-

ematical theory for initial-boundary value problems of hyperbolic systems on smooth

domains. There are also progresses on self-similar solutions for important physical

phenomena such as shock reflections, supersonic flows onto a wedge, interaction be-

tween the elementary nonlinear waves, etc. See, for instance, [3,4,7–12,24,26,27,37].

See also [17–21, 28, 35, 36] for the studies on multidimensional problems on non-

smooth domains.

The remainder of this paper is organized as follows. In section 2, the initial

boundary value problem in the cornered-space domain D is reformulated to a new

one with straight boundaries by introducing coordinate transformations. Under the

transformations, certain coefficients vanish on the boundary of the space domain

such that extension technique can be employed. Moreover, the boundary opera-

tors remain co-normal. Section 3 is devoted to the well-posedness of the linearized

problem. The extension techniques will be employed to establish the existence of

the solution in H2 spaces, similar as in [18, 19]. In order to carry out the nonlinear

iteration, H2 regularity is not sufficient and the solution of the linearized problem

should enjoy higher order regularity. However, the regularity of the coefficients of

the equation in the extended domain is not sufficient to establish higher order a pri-

ori estimates, so they have to be established directly in the cornered-space domain.

In section 4, based on the observation that the boundary operators are co-normal,

new techniques will be developed to establish the higher order estimates, in partic-

ular, the estimates of the highest order derivatives of the solution on the boundary.

In section 5, a classical iteration scheme will be carried out which converges to the

local solution of the reformulated nonlinear initial-boundary value problem in the

cornered-space domain.
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2. Coordinate transformation and main result

In this section, we will introduce two coordinate transformations T1 and T2, under

which the boundaries Γw1
and Γw2

are straightened and the extension technique can

be used to solve the initial boundary value problem in new coordinate system. First

we introduce the following transformation to straighten Γw2

T1 :







y0 = t,

y1 = −x1 −
∫ x1

0
W ′2

2 (τ)dτ − (x2 −W2(x1))W
′
2(x1),

y2 = x2 −W2(x1).

(2.1)

Define Φ̃(y0, y1, y2) := Φ(t, x1, x2). Then one has

∂tΦ(t, x1, x2) = ∂y0Φ̃(y0, y1, y2), (2.2)

∂x1
Φ(t, x1, x2) = (−1− (x2 −W2(x1))W

′′
2 (x1))∂y1Φ̃(y0, y1, y2)

−W ′
2(x1)∂y2Φ̃(y0, y1, y2), (2.3)

∂x2
Φ(t, x1, x2) = −W ′

2(x1)∂y1Φ̃(y0, y1, y2) + ∂y2Φ̃(y0, y1, y2). (2.4)

Let (y0,y) := (y0, y1, y2) be the time-spatial variables in new coordinate system,

then one has

J :=
∂(y0,y)

∂(t,x)
=







1 0 0

0 −1− (x2 −W2(x1))W
′′
2 (x1) −W ′

2(x1)

0 −W ′
2(x1) 1






.

When W2(x1) and its derivatives are sufficiently small, T1 is invertible. We assume

T
−1
1 :







t = y0,

x1 = u(y1, y2),

x2 = y2 +W2(u(y1, y2)),

(2.5)

where u(y1, y2) is the expression of x1 in (y0,y)-coordinate determined by T1. From

now on, for the shortness, we omit the dependence of varibles of W1(x2) and W2(x1)

and always keep in mind that W1 is a function of x2 and W2 is a function of x1. By

direct calculation, one has

D2Φ = J⊤D2
y
Φ̃J− {((x2 −W2)W

′′′
2 −W ′

2W
′′
2 )Φ̃y1 +W ′′

2 Φ̃y2}e
⊤
1 e1

−W ′′
2 Φ̃y1e

⊤
1 e2 −W ′′

2 Φ̃y1e
⊤
2 e1.
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where e1 = (0, 1, 0) ∈ R
3 and e2 = (0, 0, 1) ∈ R

3. Let A :=
(
aij
)

3×3
, then one has

2∑

i,j=0

aij∂xixj
Φ = Trace(A⊤D2Φ)

= Trace(J⊤AJD2
y
Φ̃)− a11{((x2 −W2)W

′′′
2 −W ′

2W
′′
2 )∂y1Φ̃ +W ′′

2 ∂y1Φ̃}

− 2a12W
′′
2 ∂y1Φ̃

=

2∑

i,j=0

ãij∂yiyjΦ̃− (a11((x2 −W2)W
′′′
2 −W ′

2W
′′
2 ) + 2a12W

′′
2 )∂y1Φ̃

− a11W
′′
2 ∂y2Φ̃,

where ãij is the (i, j)-th entry of J⊤AJ such that

ãij =

2∑

k,ℓ=0

JkiakℓJℓj.

By direct calculation, we have

ã00 = 1, (2.6)

ã02 = ã20 = −W ′
2Φx1

+ Φx2
, (2.7)

ã22 = a11W
′2
2 − 2a21W

′
2 + a22, (2.8)

ã01 = ã10 = −a01(1 + (x2 −W2)W
′′
2 )− a02W

′
2, (2.9)

ã12 = ã21 = a11(1 + (x2 −W2)W
′′
2 )W

′
2 − a12(1 + (x2 −W2)W

′′
2 )

− a22W
′
2 + a21W

′2
2 , (2.10)

ã11 = a11(1 + (x2 −W2)W
′′
2 )

2 + a21(−W ′
2)(−1 − (x2 −W2)W

′′
2 )

−W ′
2(−a12(1 + (x2 −W2)W

′′
2 )−W ′

2a22). (2.11)

It is clear that boundary Γw2
becomes {y2 = 0} in the (y0,y)-coordinate. Let

F (y1, y2) := x1(y1, y2)−W1(x2(y1, y2)).

Then one has F (0, 0) = 0, and in (y0,y)-coordinate, the boundary Γw1
can be

expressed as F (y1, y2) = 0. By direct calculation, one has

∂F

∂y1
6= 0,

provided that the perturbations W1 and W2 are sufficiently small. Then by the

implicit function theorem, F (y1, y2) = 0 determines a function y1 = σ(y2) with

σ(0) = 0. Hence the boundary Γw1
in the y-coordinate can be expressed as y1 =

σ(y2). Therefore, under the transformation T1, the space domain D is converted
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= { > , > } = { < , > 0}

Figure 3. Coordinate transformation T1

to

D1 = {(y1, y2) ∈ R
2; y1 < σ(y2), y2 > 0},

with boundary ∂D1 = Γ̃1 ∪ Γ̃2, where

Γ̃1 := {(y1, y2) ∈ R
2; y1 = σ(y2), y2 > 0},

Γ̃2 := {(y1, y2) ∈ R
2; y1 < 0, y2 = 0}.

By straightforward calculation, we find that the slip boundary conditions become

(−1 − y2W
′′
2 +W ′

1W
′
2)∂y1Φ̃− (W ′

1 +W ′
2)∂y2Φ̃ = 0, on Γ̃1, (2.12)

∂y2Φ̃ = 0, on Γ̃2. (2.13)

The initial conditions in the (y0,y)-coordinates are

Φ̃(0, y1, y2) = Φ0(u, y2 +W2(u)), (2.14)

∂y0Φ̃(0, y1, y2) = Φ1(u, y2 +W2(u)). (2.15)

Next, we straighten Γ1 by introducing the following coordinate transformation:

T2 :







z0 = y0,

z1 = −y1 + σ(y2),

z2 = y2.

(2.16)

Then one has

x1 = u(−z1 + σ(z2), z2),

x2 = W2(u(−z1 + σ(z2), z2)) + z2,

where u = u(y1, y2) is the expression of x1 in (y0,y)-coordinate determined by T1,

as in (2.5). Under transformation T2, the space domain D1 is mapped to

Ω := {(z1, z2) ∈ R
2; z1 > 0, z2 > 0},
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= { < , > 0} = { > 0, > 0}

Figure 4. Coordinate transformation T2.

with boundary ∂Ω = Γ1 ∪ Γ2, where

Γ1 := {(z1, z2) ∈ R
2; z1 = 0, z2 > 0},

Γ2 := {(z1, z2) ∈ R
2; z1 > 0, z2 = 0}.

Define Φ̂(z0, z1, z2) := Φ̃(y0, y1, y2). Then Φ̂(z0, z1, z2) satisfies

2∑

i,j=0

αij∂zizj Φ̂ +

2∑

i=0

αi∂ziΦ̂ = 0,

where

α00 = ã00 = 1, (2.17)

α11 = ã11 − σ′(y2)ã12 − σ′(y2)ã21 + (σ′)2(y2)ã22, (2.18)

α22 = ã22, (2.19)

α02 = α20 = ã02, (2.20)

α21 = α12 = ã22σ
′(y2)− ã21, (2.21)

α01 = α10 = ã02σ
′(y2)− ã10, (2.22)

and

α0 = 0, (2.23)

α1 = a11((x2 −W2)W
′′′
2 −W ′

2W
′′
2 ) + 2a12W

′′
2 , (2.24)

α2 = −a11W
′′
2 . (2.25)

Boundary conditions (2.12) and (2.13) become

b̄1(z1, z2)∂z1Φ̂ + b̄2(z1, z2)∂z2Φ̂ = 0, on Γ1, (2.26)

∂z2Φ̂ = 0, on Γ2, (2.27)
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where

b̄1(z1, z2) = p(z1, z2) + (W ′
2(x1) +W ′

1(x2))σ
′(z2) +W ′

1(x2)W
′
2(x1), (2.28)

b̄2(z1, z2) = W ′
1(x2(z1, z2)) +W ′

2(x1(z1, z2)), (2.29)

with

p(z1, z2) = −1 − z2W
′′
2 (x1(z1, z2)).

Initial conditions (1.9) become

Φ̂(0, z1, z2) = Φ̂0(z1, z2), (2.30)

∂z0Φ̂(0, z1, z2) = Φ̂1(z1, z2), (2.31)

where

Φ̂0(z1, z2) := Φ̃0(u(z1 + σ(z2)),W2(u(z1 + σ(z2))),

Φ̂1(z1, z2) := Φ̃1(u(z1 + σ(z2)),W2(u(z1 + σ(z2))).

Let Γ0 := {0}×Ω and ΩT := (0, T )×Ω, where T is any positive real number. We

summarize the mathematical problem as follows:






αij∂zizj Φ̂ + αi∂ziΦ̂ = 0, in ΩT ,

G(∂z1Φ̂, ∂z2Φ̂;W
′
1,W

′
2,W

′′
2 , σ

′) = 0, on Γ1,

∂z2Φ̂ = 0, on Γ2,

Φ̂(0, z1, z2) = Φ̂0(z1, z2), ∂z0Φ̂(0, z1, z2) = Φ̂1(z1, z2), on Γ0,

(2.32)

where

G(∂z1Φ̂, ∂z2Φ̂;W
′
1,W

′
2,W

′′
2 , σ

′) := b̄1(z1, z2)∂z1Φ̂ + b̄2(z1, z2)∂z2Φ̂.

The initial data Φ̂0 and Φ̂1 are defined in (2.30) and (2.31), respectively and at the

background state, one has

(
αij

)

3×3
=







1 0 0

0 −ργ−1
0 0

0 0 −ργ−1
0






. (2.33)

Lemma 2.1. The coefficients of the initial boundary value problem (2.32) have the

following properties:

(i) α02 = α20 and α12 = α21 vanish on Γ2, namely, for i = 0, 1,

αi2(z0, z1, 0) = α2i(z0, z1, 0) = 0.
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(ii) The boundary operator of (2.32) is “co-normal”, i.e., the vector (α10, α11, α12) ∈

R
3 is parallel to (0, b̄1, b̄2) ∈ R

3 on Γ1, where b̄1 and b̄2 are the coefficients of

the boundary conditions on Γ1 in (2.32).

(iii) It holds that

b̄2(0, 0) = ∂z2 b̄2(0, 0) = ∂z2z2 b̄2(0, 0). (2.34)

Proof. (i): By the formula of ã02 in (2.7) and the slip boundary conditon (1.8), one

has ã02 = ã20 = 0 on Γ2. Then (2.20) implies α02 = α20 = 0 on Γ2. By (2.10) and

the slip boundary condition (1.8), one has

ã12|z2=0 = ∂x1
Φ(W ′

2∂x1
Φ− ∂x2

Φ) +W ′
2∂x2

Φ(W ′
2∂x1

Φ− ∂x2
Φ) = 0. (2.35)

Differentiating with respect to y2 on both sides of x1(σ(y2), y2) = W1(x2(σ(y2), y2)),

one deduces

σ′(y2) =
p(x1, x2)W

′
1(x2(σ(y2), y2))−W ′

2(x1(σ(y2), y2))

1−W ′
1W

′
2

,

where

p(x1, x2) := −1− (x2 −W2)W
′′
2 .

By assumption (A2) and the facts that σ(0) = 0, T1 mapps the origin in x-

coordinate to the origin in y-coordinate, and T1 is invertible, one has

σ′(0) =
−W ′

1(x2(σ(0), 0))−W ′
2(x1(σ(0), 0))

1−W ′
1(x2(σ(0), 0))W

′
2(x1(σ(0), 0)

= 0.

Combining (2.21), (2.35), and the fact that σ′(0) = 0, one deduces that α12 = α21 =

0 on Γ2 (equivalently on Γ̃2). By assumption (A2), it is obvious that b̄2 = 0 on Γ2.

(ii) : By the formulas of ã10, ã20, and σ
′(y2), we obtain

−ã10 + σ′ã20 = −p∂x1
Φ+ ∂x2

ΦW ′
2 − σ′W ′

2∂x1
Φ + σ′∂x2

Φ

= −(p + σ′W ′
2)∂x1

Φ+ (W ′
2 + σ′)∂x2

Φ. (2.36)

But it is easy to verify that

W ′
2 + σ′

−p− σ′W ′
2

= −
W ′

1

1
.

By the slip boundary condition on Γw1
, one has −ã10 + σ′ã20 = 0 on Γ1, which

implies α01 = α10 = 0 on Γ1 by (2.22). By the formulas of α11 and α12 = α21 in

(2.18) and (2.21), one can deduce that

α12

α11

∣
∣
∣
z1=0

=
W ′

1 +W ′
2

p+W ′
1W

′
2 + σ′(W ′

1 +W ′
2)

=
b̄2
b̄1
. (2.37)
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In fact, we have

(ã11 − σ′ã12)|y1σ(y2)

= c2(−p2 −W ′2
2 − pσ′W ′

2 − σ′W ′
2) + (∂x1

Φ)2(p2 + pσ′W ′
2)

+ (∂x2
Φ)2(W ′2

2 + σ′W ′
2) + ∂x1

Φ∂x2
Φ(−2pW ′

2 − pσ′ − σ′W ′2
2 )

= c2(−p2 −W ′2
2 − pσ′W ′

2 − σ′W ′
2)

+ ∂x1
Φ(p2 + pσ′W ′

2)(∂x1
Φ−W ′

1∂x2
Φ)

−
(W ′2

2 + σ′W ′
2)

W ′
1

∂x2
Φ(∂x1

Φ−W ′
1∂x2

Φ)

= c2(−p2 −W ′2
2 − pσ′W ′

2 − σ′W ′
2), (2.38)

where in the last equality, we have used the slip boundary condition (1.7). By direct

calculation, one also has

(−ã12 + σ′ã22)|y1=σ(y2) = −c2(pW ′
2 +W ′

2 + σ′W ′2
2 + σ′).

Thus one has

ã11 − σã12
ã22σ′ − ã12

∣
∣
∣
∣
z1=0

=
p2 +W ′2

2 + pσ′W ′
2 + σ′W ′

2

pW ′
2 +W ′

2 + σ′W ′2
2 + σ′

=
p+W ′

1W
′
2

W ′
1 +W ′

2

.

Then by the formula of α11 in (2.18) and the formula of α12 in (2.21), we obtain

α11

α12

∣
∣
∣
∣
z1=0

=
ã11 − σã12
ã22σ′ − ã12

∣
∣
∣
∣
z1=0

+ σ′

=
p+W ′

1W
′
2

W ′
1 +W ′

2

+ σ′ =
b̄1
b̄2
.

Hence one has
α12

α11

∣
∣
∣
∣
z1=0

=
b̄2
b̄1
.

(iii): It is clear that both T1 and T2 are invertible and T1 ◦ T2 maps the orgin

in the x-coordinate to the origin in the z-coordinate, where z := (z1, z2) is the

spatial variable in new coordinate under transformation T2. So by (2.29) and the

assumption (A2) on the perturbations in section 1, it is easy to see that (2.34) holds.

This completes the proof of this lemma. �

In z-coordinate, Problem 1 can be reformulated as the following problem:

Problem 2: Does there exsit a unique local classical solution to problem (2.32),

when (W1,W2) are small perturbations of (W1,W2) = (0, 0) and the initial data

(Φ̂0(z1, z2), Φ̂1(z1, z2)) are small perturbations of (0, 0)?
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Since coordinate transformations T1 and T2 are invertible when the perturbations

are small, Problem 1 and Problem 2 are equivalent. The main theorem of the

paper is as follows, which gives a positive answer to Problem 2.

Theorem 2.1. Suppose the perturbed solid walls satisfy the three assumptions (A1)

and (A2) in section 1. Then there exists a constant ǫ > 0 such that if

‖Φ̂0‖H4(Ω) + ‖Φ̂1‖H3(Ω) + ‖(W1,W2)‖W 6,∞(R+) ≤ ǫ, (2.39)

and Φ̂0 and Φ̂1 satisfy the compatibility conditions up to order 2 and are compactly

supported in some neighbours of the origin, then there exist two constants η0 ≥ 1

and T0 > 0 such that the nonlinear problem (2.32) admits a unique smooth solution

Φ̂ ∈ H4(ΩT0
), satisfying

‖e−ηz0Φ̂‖H4(ΩT ) ≤ Cǫ (2.40)

for η ≥ η0 and T ≤ T0, where C = C(ρ0, γ, η0, T0) is a positive constant.

Remark 2.1. The compatibility conditions mentioned in Theorem 2.1 come from

the requirement that the initial-boundary data of problem (2.32) should be consistent.

More precisely, by initial conditions in (2.32) and the first equation of (2.32), we

know that at z0 = 0,

DβΦ̂ = DβΦ̂0, ∂z0D
βΦ̂ = DβΦ̂1

and

∂2z0D
βΦ̂ = −Dβ(

1

α00
(

2∑

i=0

αi∂ziΦ̂ +

2∑

(i,j)6=(0,0)

αij∂zizj Φ̂)),

where Dβ = ∂β1

z1
∂β2

z2
is the spatial derivatives and β = (β1, β2) is the multi-index

corresponds to spatial derivative. Then by the induction on k ( i.e., assume we have

already known the expression of ∂m+1
z0

DβΦ̂ at z0 = 0 for all m ≤ k.) and by taking

derivative Dβ∂kz0 on equation (2.32)1, we will have the expression of ∂k+2
z0

DβΦ̂ at

z0 = 0. We omit the details for the shortness. Then we have the expression of DλΦ̂

at z0 = 0 for all multi-index λ = (λ0, λ1, λ2). Let

Φλ := DλΦ̂
∣
∣
z0=0

. (2.41)

On the other hand, since we have two boundary conditions in (2.32), for any (k0, k1, k2) ∈

N
3, we have

D(k0,0,k2)





2∑

i=1

b̄i∂ziΦ̂



 = 0 on Γ1,

D(k0,k1,0)∂z2Φ̂ = 0 on Γ2.
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Let z0 = 0 and plug (2.41) into the two identities above for all integers k0 + k1 ≤ s

and k0+k2 ≤ s. Then we can obtain the identities that the initial and boundary data

must satisfy for all integers k0 + k1 ≤ s and k0 + k2 ≤ s. These identities are called

the compatibility conditions up to order s. In this paper, the compatibility conditions

up to order two are required, i.e., s = 2.

3. The linearized problem (I): existence of the solution in H2(ΩT )

In order to establish the local well-posedness of the nonlinear initial-boundary

value problem, the classical iteration scheme will be carried out. Then the unique

existence of the solutions to the linearized problem (3.1) as well as the a priori

estimates of the solution are needed to establish the convergence of the iteration.

However, there is no general theory which could be employed, because of the presence

of a corner singularity on the boundary of the space domain. Therefore, we have to

establish a well-posedness theorem on the unique existence and a priori estimates

of the solution for the linearized problem, which will be done in this and the next

section. In this section, the extension techniques will be employed to establish

the existence of the solution in H2(ΩT ). Similar as in [18, 19], the regularity of

the coefficients in the extended domain is not sufficient to establish higher order

estimates of the solution. Therefore, one have to establish the estimates for the

higher order derivatives of the solution directly in the cornered space domain, which

will be done in the next section.

3.1. The main theorem on the linearized problem. Let us consider following

initial-boundary value problem:






Lϕ = f, in ΩT ,

Bϕ = 0, on Γ1,

∂z2ϕ = 0, on Γ2,

ϕ(0, z1, z2) = ϕ0, on Γ0,

∂z0ϕ(0, z1, z2) = ϕ1(z1, z2), on Γ0,

(3.1)

where

L :=
2∑

i,j=0

rij(z0, z1, z2)∂ij and B := b1(z1, z2)∂1 + b2(z1, z2)∂2,

∂i := ∂zi , and ∂ij = ∂zizj . The coefficients of L and B satisfy
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(i) L is a hyperbolic differential operator of second order. rij = rij(z0, z1, z2)

are smooth functions and r00 ≡ 1. bi are smooth functions with respect to

z1 and z2 but do not depend on z0.

(ii) There exist an integer s0 ≥ 3, and constants δ > 0 and r̄ij (0 ≤ i, j ≤ 2),

such that

sup
0≤z0≤T

‖Dα(rij − r̄ij)‖L2(Ω) < δ for all |α| ≤ s0,

where r̄00 = 1, r̄11 = r̄22 < 0, and r̄ij = 0 for i 6= j. We also require that

|∂ℓ+1
z2

b1|+ |∂ℓz2b2| ≤ Cδ for ℓ = 0, 1, 2.

(iii) r12 = r21 = r20 = r02 = 0 on the boundary Γ2 and ∂kz2b2(0, 0) = 0 for

k = 0, 1, 2.

(iv) The following identities hold on Γ1:

r12
r11

=
b2
b1

and r01 = r10 = 0.

Remark 3.1. The compatibility conditions up to order s of problem (3.1) can be

defined in the same way as done in remark 2.1.

Then we have the following proposition.

Proposition 3.1. There exists δ∗ > 0 such that if assumptions (i)− (iv) holds for

δ ≤ δ∗, and if ϕ0 and ϕ1 satisfy the compatibility conditions up to order 2, problem

(3.1) admits a smooth solution ϕ ∈ H4(ΩT ) and there exists a constant η0, such that

for any T > 0 and η ≥ η0, it holds that
∑

|α|≤4

η‖e−ηz0Dαϕ‖2L2(ΩT ) + e−2ηT ‖Dαϕ(T, ·)‖2L2(Ω)

.
1

η

∑

|α|≤3

‖e−ηz0L(Dαϕ)‖2L2(ΩT ) + ‖e−ηz0f‖2H3(ΩT )

+ ‖f |t=0‖
2
H2(Ω) + ‖ϕ0‖

2
H4(Ω) + ‖ϕ1‖

2
H3(Ω). (3.2)

Without loss of generality, we assume (ϕ0, ϕ1) = (0, 0) in the following two sections

below. Otherwise, one can reduce problem (3.1) into a problem with homogeneous

initial data by introducing auxiliary functions.

The proof of Proposition 3.1 will be separated into two parts. One is the unique

existence of the solution in H2(ΩT ), which will be established in this section. The

other is the a priori estimates of higher order derivatives, which will be done in the

next section.

To establish the unique existence of the solution, we are motivated to apply the

extension techniques by observing the boundary condition on Γ2 as well as the
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properties of the coefficients enjoyed, such that the well-established theory for initial-

boundary value problems of hyperbolic equations can be employed. We are going

to show the following lemma in this section, which establishes the well-posedness of

problem (3.1) in H2(ΩT ).

Lemma 3.1. There exists δ1 > 0 such that if assumptions (i)− (iv) hold for δ ≤ δ1,

problem (3.1) admits a solution ϕ ∈ H2(ΩT ) and there exists a constant η1, such

that for any T > 0 and η ≥ η1,
∑

|α|≤2

η‖e−ηz0Dαϕ‖2L2(ΩT ) + e−2ηT ‖Dαϕ(T, ·)‖2L2(Ω)

.
1

η

∑

|α|≤1

‖e−ηz0L(Dαϕ)‖2L2(ΩT ) + ‖e−ηz0f‖2H1(ΩT ) + ‖f |t=0‖
2
L2(Ω). (3.3)

As mentioned previously, the H2 solvability of the linearized problem is not suffi-

cient to yield smooth solutions of the nonlinear problem by carrying out nonlinear

iteration. Therefore, we have to deduce higher order a priori estimate of the so-

lution derived in lemma 3.1. However, one can easily check that the regularity of

the coefficients of the equation in the extended domain is not sufficient to establish

the needed higher order estimates. Hence, we shall go back to the cornered-space

domain to establish the higher order estimates, and the following lemma will be

proved in the next section.

Lemma 3.2. There exists δ2 > 0 such that if assumptions (i)− (iv) hold for δ ≤ δ2,

then there exists a constant η2 > 1 such that for any T > 0 and η ≥ η2, the H
2(ΩT )

solution of problem (3.1) satisfies
∑

|α|≤4

η‖e−ηz0Dαϕ‖2L2(ΩT ) + e−2ηT ‖Dαϕ(T, ·)‖2L2(Ω)

.
1

η

∑

|α|≤3

‖e−ηz0L(Dαϕ)‖2L2(ΩT ) + ‖e−ηz0f‖2H3(ΩT ) + ‖f |t=0‖
2
H2(Ω). (3.4)

Proof of Proposition 3.1.

Combining lemma 3.1 and lemma 3.2, one can easily prove Proposition 3.1. In

fact, by lemma 3.1 and lemma 3.2, it is easy to see that when δ < δ∗ := min(δ1, δ2),

problem (3.1) admits a smooth solution in H4(ΩT ) and it satisfies the estimate

given in proposition 3.1 for η ≥ η0 := max(η1, η2), where (δ1, η1) and (δ2, η2) are the

constants obtained in lemma 3.1 and lemma 3.2, respectively.

Hence, in order to prove Proposition 3.1, it suffices to show that lemma 3.1 and

lemma 3.2 hold. In this section, we will give a proof to lemma 3.1 and the proof of

lemma 3.2 is postponed to section 4.
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3.2. The proof of Lemma 3.1. It is difficult to solve problem (3.1) in the cornered-

space domain Ω directly, so we introduce an extended problem first. Precisely, one

extends r20, r02, r12, r21, and b2 oddly with respect to {z2 = 0}. Taking r02 for

example, we define

Er02 :=

{

r02(z0, z1, z2), when z2 > 0,

−r02(z0, z1,−z2), when z2 < 0.
(3.5)

Other coefficients and the right hand side term f is extended evenly with respect to

{z2 = 0}. Thanks to assumptions (ii) and (iii), all the extended coefficients are still

in W 1,∞(Ω̃T ), where Ω̃T := [0, T ]× R+ × R. For the notational simplicity, we omit

the “E” in all extended functions, the extended vertical boundary is still denoted by

Γ1 and the initial space domain in still denoted by Γ0. We try to obtain a solution

to (3.1) by solving the following initial boundary value problem:






Lϕ = f, in Ω̃T ,

Bϕ = 0, on Γ1,

ϕ(0, z1, z2) = 0, on Γ0,

∂z0ϕ(0, z1, z2) = 0, on Γ0.

(3.6)

Proof. The proof of lemma 3.1 is divided into three steps. In the first two steps,

we establish the energy estimate of the solutions to (3.6) up to the second order.

Then in the third step, we investigate a regularized problem associated to (3.6) by

mollifying its coefficients via the convolution with respect to z2 (since the extended

coefficients are non-smooth only in the z2 direction) with the one dimensional clas-

sical Friedrichs mollifier ρǫ and derives its uniform-in-ǫ estimate up to the second

order. Then by applying the result in [22] (or [23]) to the regularized problem, one

derives a unique solution ϕǫ to the regularized problem for each ǫ > 0. Owing to

the uniform-in-ǫ second order estimate of ϕǫ, one deduces an H2(ΩT )-solution to

the extended problem (3.6) by taking the limit ǫ → 0+ in the regularized problem

and it still satisfies the second order estimate. Then by the properties of the ex-

tended coefficients and the uniqueness of the solution (the uniqueness is guaranteed

by the second order energy inequality), one can show that the unique solution to

the extended linear problem (3.6) is actually a solution to the linear problem (3.1).

Step 1. In this step, we will deduce the first order energy estimate of the solution

to problem (3.6). Multiplying 2e−2ηz0∂z0ϕ on both sides of equation in (3.6), we have

2e−2ηz0LϕQϕ =∂i(e
−2ηz0rij∂jϕ∂0ϕ) + ∂j(e

−2ηz0rij∂iϕ∂0ϕ) + e−2ηz0P (Dϕ)

− ∂0(e
−2ηz0rij∂iϕ∂jϕ) + 2ηe−2ηz0(2r0j∂jϕ∂0ϕ− rij∂iϕ∂jϕ),
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where P (Dϕ) is a quadratic polynomial with respect to Dϕ. Clearly we have

P (Dϕ) ≤ C|Dϕ|2. Integrating the identity over Ω̃T with z := (z0, z1, z2), we obtain

∫

Ω̃T

2e−2ηz0LϕQϕdz=

[∫

Ω̃

e−2ηz0H0dz1dz2

]z0=T

z0=0

−

∫ T

0

∫

R

e−2ηz0H1|z1=0dz2dz0

+

∫

Ω̃T

e−2ηz0P (Dϕ)dz + 2η

∫

Ω̃T

e−2ηz0H0dz, (3.7)

where for ξ = (ξ0, ξ1, ξ2) ∈ R
3, we define

H0(ξ) := 2

2∑

i,k=0

ri0ξiQkξk −Q0

2∑

i,j=0

rijξiξj, (3.8)

H1(ξ) := 2

2∑

i,k=0

ri1ξiQkξk −Q1

2∑

i,j=0

rijξiξj. (3.9)

At the background state, one has

H0(Dϕ) = 2∂0ϕ

2∑

k=0

Qk∂kϕ−Q0(r11|∂1ϕ|
2 + r22|∂2ϕ|

2 + |∂0ϕ|
2)

= (Dϕ)M(Dϕ)⊤, (3.10)

where

M =







Q0 Q1 Q2

Q1 −r11Q0 0

Q2 0 −r22Q0






.

Select (Q0, Q1, Q2) properly such that






Q0 > 0,

−Q2
0r11 −Q2

1 > 0,

r22Q
2
1Q0 +Q3

0r11r22 + r11Q0Q
2
2 > 0,

(3.11)

i.e., such that M is positive definite. In view of assumption (i), we just need to let






Q0 > 0,

Q2
0 >

Q2
1

−r11
,

Q2
0 >

−Q2
1r22 −Q2

2r11
r11r22

.

(3.12)

It is easy to see from (3.12) that Q1 and Q2 can be arbitrary. Then H0 ≥ C1|Dϕ|
2

for some positive constant C1. On the other hand, it is easy to see H0 ≤ C2|Dϕ|
2
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due to assumption (i). By assumption (iv), on the vertical boundary Γ1, we have

H1 = 2

2∑

k=0

Qk∂kϕ(r11∂1ϕ+ r12∂2ϕ)−Q1

2∑

i,j=0

rij∂iϕ∂jϕ

= 2

2∑

k=0

Qk∂kϕ(
r11
b1

Bϕ)−Q1

2∑

i,j=0

rij∂iϕ∂jϕ

= 0. (3.13)

In the last equality above, we used the condition Bϕ = 0 on Γ1 and set Q1 = 0.

Hence we have

η

∫

Ω̃T

e−2ηz0 |Dϕ|2dz +

∫

Ω̃

e−2ηT |Dϕ|2dz1dz2

≤ C

∫

Ω̃T

e−2ηz0((qη + 1)|Dϕ|2 +
1

qη
|Lϕ|2)dz. (3.14)

Let q = 1/(2C) and η ≥ 4, then we obtain

η

∫

Ω̃T

e−2ηz0 |Dϕ|2dz +

∫

Ω̃

e−2ηT |Dϕ|2dz1dz2 ≤ C
1

η

∫

Ω̃T

e−2ηz0 |Lϕ|2dz. (3.15)

Step 2. In this step, we will establish the second order estimate of the solutions

based on the first order estimate derived in step 1. Clearly, ∂z0ϕ satisfies






L(∂z0ϕ) = −[∂z0 ,L]ϕ+ ∂z0f, in Ω̃T ,

B(∂z0ϕ) = 0, on Γ1,

∂z0ϕ(z0, z1, z2) = 0, on Γ0,

∂2z0ϕ(z0, z1, z2) = F |z0=0, on Γ0.

(3.16)

where

F = f −
∑

(i,j)6=(0,0)

rij∂ijϕ−

2∑

i=0

ri∂iϕ = f.

It is easy to see that ‖F |z0=0‖
2
L2(Ω̃)

= ‖f |z0=0‖L2(Ω̃). By the same argument as done

in the first step, we deduce that ∂z0ϕ satisfies

η‖e−ηz0D∂z0ϕ‖
2
L2(Ω̃T )

+ e−2ηT ‖D∂z0ϕ(T, ·)‖
2
L2(Ω̃)

≤ C(
1

η
‖L(∂z0ϕ)‖

2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

). (3.17)



UNSTEADY POTENTIAL FLOWS NEAR A CORNER 21

Then we proceed to estimate ∂z2ϕ. It is clear that ∂z2ϕ satisfies






L(∂z2ϕ) = −[∂z2 ,L]ϕ+ ∂z2f, in Ω̃T ,

B(∂z2ϕ) = −[∂z2 ,B]ϕ, on Γ1,

∂z2ϕ = 0, on Γ0,

∂z0(∂z2ϕ) = 0 , on Γ0.

(3.18)

Multiplying 2e−2ηz0∂z0z2ϕ on both sides of (3.18)1 and integrating by parts over

ΩT , we have
∫ −2ηz0

Ω̃T

L(∂z2ϕ)∂z0∂z2ϕdz =− 2

∫ T

0

∫

R

e−2ηz0∂z0z2ϕ
r11
b1

B(∂z2ϕ)dz2dz0|z1=0

+ 2η

∫

Ω̃T

e−2ηz0H0dz +

[∫

Ω̃

e−2ηtH0dz1dz2

]z0=T

z0=0

+

∫

Ω̃T

e−2ηz0P1(D∂z2ϕ)dz, (3.19)

where H0 = |∂z0∂z2ϕ|
2 − r11|∂z1∂z2ϕ|

2 − r22|∂z2∂z2ϕ|
2 and P1 is a new quadratic

polynomial with respect to D∂z2ϕ. Since the coefficients are in W 1,∞(Ω̃T ), it is easy

to see that |P1(D∂z2ϕ)| ≤ C|D∂z2ϕ|.

In order to complete the estimate, we need to deal with the boundary term care-

fully. Firstly, with the help of the boundary condition Bϕ = 0 on Γ1, one has

B∂z2ϕ = −(∂z2b1∂z1 + ∂z2b2∂z2)ϕ. Then for i = 1, 2, by assumptions (i), (iii), and

(iv), and the Gauss theorem

2

∫ T

0

∫

R

e−2ηz0(
r11
b1
∂z2bi∂ziϕ · ∂z0z2ϕ)|z1=0dz2dz0

= −2

∫

Ω̃T

∂z1(e
−2ηz0

r11
b1
∂z2bi∂ziϕ∂z0z2ϕ)dz

= −2

∫

Ω̃T

e−2ηz0(∂z1(
r11
b1
∂z2bi)∂ziϕ∂z0z2ϕ+

r11
b1
∂z2bi(∂z1ziϕ∂z0z2ϕ+ ∂ziϕ∂z0z1z2ϕ))

.

∫ T

0

e−2ηz0(‖∂z0ϕ‖
2
H1(Ω̃)

+ ‖ϕ‖2
H2(Ω̃)

)dz0 +

∫

Ω̃T

e−2ηz0
r11
b1
∂z2bi∂ziϕ∂z0z1z2ϕdz

≤ C

∫ T

0

e−2ηz0(‖∂z0ϕ‖
2
H1(Ω̃)

+ ‖ϕ‖2
H2(Ω̃)

)dz0 +

∫

Ω̃T

∂z0(e
−2ηz0

r22
b1
∂z2bi∂ziϕ∂z1z2ϕ)dz

+ 2η

∫

Ω̃T

e−2ηz0
r22
b1
∂z2bi∂ziϕ∂z1z2ϕdz −

∫

Ω̃T

e−2ηz0
r22
b1
∂z2bi∂z0ziϕ∂z1z2ϕdz

−

∫

Ω̃T

e−2ηz0∂z0(
r22
b1
∂z2bi)∂ziϕ∂z1z2ϕdz
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.

∫ T

0

e−2ηz0(‖∂z0ϕ‖
2
H1(Ω̃)

+ ‖ϕ‖2
H2(Ω̃)

)dz0

+ δ(η

∫ T

0

e−2ηz0‖ϕ‖2
H2(Ω̃)

dz0 + e−2ηT ‖ϕ|z0=T‖
2
H2(Ω̃)

). (3.20)

It follows from assumptions (i) and (iv) that H0 ≥ C|D∂z2ϕ|
2. Then in view of

(3.19) and (3.20), by the Cauchy inequality, we deduce that

η

∫

Ω̃T

e−2ηz0 |D∂z2ϕ|
2dz + e−2ηT

∫

Ω̃

|D∂z2ϕ|z0=T |
2dz1dz2

≤ C

(
∫

Ω̃T

e−2ηz0((ǫη + 1)|D∂z2ϕ|
2 +

1

ǫη
|L∂z2ϕ|

2)dz + ‖ϕ0‖
2
H2(Ω̃)

+ ‖ϕ1‖
2
H1(Ω̃)

+

∫ T

0

e−2ηz0(‖∂z0ϕ‖
2
H1(Ω̃)

+ ‖ϕ‖2
H2(Ω̃)

)dz0

+ δ(η

∫ T

0

e−2ηz0‖ϕ‖2
H2(Ω̃)

dz0 + e−2ηT ‖ϕ|z0=T‖
2
H2(Ω̃)

). (3.21)

Finally, it follows from the second order equation (3.6)1 that

∂z1z1ϕ =
1

r11



Lϕ−
∑

(i,j)6=(1,1)

rij∂ijϕ



 .

Therefore, by (3.15), (3.17) and (3.21),

η

∫

Ω̃T

e−2ηz0 |∂z1z1ϕ|
2dz + e−2ηT

∫

Ω̃

|∂z1z1ϕ|z0=T |
2dz1dz2

.
∑

i=0,2

(

η

∫

Ω̃T

e−2ηz0 |D∂ziϕ|
2dz + e−2ηT

∫

Ω̃

|D∂ziϕ|z0=T |
2dz1dz2

)

+ η

∫

Ω̃T

e−2ηz0 |Dϕ|2dz + e−2ηT

∫

Ω̃

|Dϕ|z0=T |
2dz1dz2

+ η

∫

Ω̃T

e−2ηz0 |Lϕ|2dz + e−2ηT

∫

Ω̃

|Lϕ|z0=T |
2dz1dz2

. (
1

η
‖e−ηz0Lϕ‖2

L2(Ω̃T )
+

1

η
‖e−ηz0L(∂z0ϕ)‖

2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

)

+

∫

Ω̃T

e−2ηz0((qη + 1)|D∂z2ϕ|
2 +

1

qη
|L∂z2ϕ|

2)dz

+

∫ T

0

e−2ηz0(‖∂z0ϕ‖
2
H1(Ω̃)

+ ‖ϕ‖2
H2(Ω̃)

)dz0 + δη

∫ T

0

e−2ηz0‖ϕ‖2
H2(Ω̃)

dz0

+ δe−2ηT ‖ϕ|z0=T‖
2
H2(Ω̃)

+ η

∫

Ω̃T

e−2ηz0 |Lϕ|2dz + e−2ηT

∫

Ω̃

|Lϕ|z0=T |
2dz1dz2. (3.22)
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In order to control the last two terms in (3.22), by conducting integration by

parts with respect to z0 to the integral
∫

Ω̃T
e−2ηz0 |v|2dz, we introduce the following

inequality

η

∫

Ω̃T

e−2ηz0 |v|2dz + e−2ηT

∫

Ω̃

|v|z0=T |
2dz1dz2

≤
1

η

∫

Ω̃T

e−2ηz0 |∂z0v|
2dz + ‖v|z0=0‖

2
L2(Ω̃)

. (3.23)

Therefore,

η

∫

Ω̃T

e−2ηz0 |Lϕ|2dz + e−2ηT

∫

Ω̃

|Lϕ|z0=T |
2dz1dz2

≤
1

η

∫

Ω̃T

e−2ηz0 |∂z0(Lϕ)|
2dz + ‖f |z0=0‖

2
L2(Ω̃)

.
1

η

∫

Ω̃T

e−2ηz0 |L(∂z0ϕ)|
2dz +

1

η

∑

|α|≤2

‖e−ηz0Dαϕ‖2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

. (3.24)

Then (3.22) and (3.24) imply

η

∫

Ω̃T

e−2ηz0 |∂z1z1ϕ|
2dz + e−2ηT

∫

Ω̃

|∂z1z1ϕ|z0=T |
2dz1dz2

.
1

η

∫

Ω̃T

e−2ηz0
∑

|α|≤1

|L(Dαϕ)|2dz +

∫

Ω̃T

e−2ηz0((qη + 1)|D∂z2ϕ|
2 +

1

qη
|L∂z2ϕ|

2)dz

+

∫ T

0

e−2ηz0(Cδ‖ϕ‖2
H2(Ω̃)

+ ‖∂z0ϕ‖
2
H1(Ω̃)

)dz0 +
1

η

∑

|α|≤2

‖e−ηz0Dαϕ‖2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

. (3.25)

Since D∂z0ϕ, D∂z2ϕ and ∂z1z1ϕ cover all second order derivatives, by adding (3.15),

(3.21) and (3.25) together, letting q > 0, δ > 0 and 1
η
be properly small, we deduce

∑

|α|≤2

η‖e−ηz0Dαϕ‖2
L2(Ω̃T )

+ e−2ηT ‖Dαϕ|z0=T‖
2
L2(Ω̃)

.
1

η

∑

|α|≤1

‖e−ηz0L(Dαϕ)‖2
L2(Ω̃T )

+ ‖Lϕ|z0=0‖
2
L2(Ω̃)

. (3.26)

Since the coefficients of L are bounded, by (3.26), it holds for η large enough that
∑

|α|≤2

η‖e−ηz0Dαϕ‖2
L2(Ω̃T )

+ e−2ηT ‖Dαϕ|z0=T‖
2
L2(Ω̃)

.
1

η

∑

|α|≤1

‖e−ηz0Dαf‖2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

. (3.27)
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Step 3. In this step, we will apply Theorem 1 in [22] (or Theorem 1 in [23])

to derive the existence of an H2(Ω̃T )-solution to the extended problem, then by

the property of the extended coefficients, one shows that the solution is indeed a

solution to problem (3.1). In order to apply [22, Theorem 1] (or [23, Theorem 1]),

we consider a regularized problem associated to (3.6). For ǫ > 0, let ρǫ be the one

dimensional Friedrichs mollifier, i.e., ρǫ(s) =
1
ǫ
η
(
s
ǫ

)
, where

η(s) =

{

K · exp(− 1
1−|s|2

), |s| < 1,

0, |s| ≥ 1,
(3.28)

such that
∫

R
η(s)ds = 1. Define Lǫ and Bǫ as

Lǫ :=

2∑

i,j=0

r̃ǫij∂ij , Bǫ :=

2∑

i=1

b̃ǫi∂i, (3.29)

where

r̃ǫij(z0, z1, z2) =

(
rij
r11

)ǫ

(z0, z1, z2) :=

∫

R

(
rij
r11

)

(z0, z1, s)ρǫ(z2 − s)ds)

and

b̃ǫi(z1, z2) =

(
bi
b1

)ǫ

(z1, z2) :=

∫

R

(
bi
b1

)

(z1, s)ρǫ(z2 − s)ds.

Before going on, we present following lemma, which gives the properties of the

coefficients of the regularized problem.

Lemma 3.3. Under assumptions (i)-(iv), we have:

(1). r̃ǫ12, r̃
ǫ
21, r̃

ǫ
02, r̃

ǫ
20 and b̃ǫ2(0, z2) are odd functions with respect to z2, and the

other coefficients are even functions with respect to z2.

(2). There exists a positive contant C, independent on ǫ, such that

∥
∥
∥r̃ǫij

∥
∥
∥
L∞(Ω̃T )

≤ Cδ +

∣
∣
∣
∣

r̄ij
r̄11

∣
∣
∣
∣
,
∥
∥
∥Dr̃ǫij

∥
∥
∥
L∞(Ω̃T )

≤ Cδ,

and ∥
∥
∥b̃ǫi

∥
∥
∥
W 1,∞(Ω̃)

≤ Cδ,
∥
∥
∥∂2z2 b̃

ǫ
2(0, ·)

∥
∥
∥
L∞

≤ Cδ.

(3). b̃ǫ2(0, 0) = 0 and ∂z2 b̃
ǫ
2(0, 0) = 0.

(4). Bǫ is co-normal to Lǫ, i.e.,
(
r10
r11

)ǫ

|z1=0 = 0 and

(
r12
r11

)ǫ

|z1=0 =

(
b2
b1

)ǫ

|z1=0.

With this lemma, it is not difficult to show lemma 3.1 and the proof of this lemma

is delayed to the end of this subsection.
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Now we consider 





Lǫϕǫ = f ǫ, in Ω̃T ,

Bǫϕǫ = 0, on Γ1,

ϕǫ(0, z1, z2) = 0, on Γ0,

∂z0ϕ
ǫ(0, z1, z2) = 0, on Γ0,

(3.30)

where

f ǫ(z0, z1, z2) =

(
f

r11

)ǫ

(z0, z1, z2) :=

∫

R

(
f

r11

)

(z0, z1, s)ρǫ(z2 − s)ds.

Armed with lemma 3.3, one can immediately obtain the uniform-in-ǫ second order

estimate of ϕǫ by repeating the process in the first two steps. In fact, one has
∑

|α|≤2

η‖e−ηz0Dαϕǫ‖2
L2(Ω̃T )

+ e−2ηT ‖Dαϕǫ|z0=T‖
2
L2(Ω̃)

≤ C
1

η

∑

|α|≤1

‖e−ηz0Dαf ǫ‖2
L2(Ω̃T )

+ ‖f ǫ|z0=0‖
2
L2(Ω̃)

. (3.31)

Clearly one has
∥
∥
∥
∥
∥

(
F

r11

)ǫ

(z0, ·)

∥
∥
∥
∥
∥

2

L2(Ω̃)

=

∫

Ω̃

∣
∣
∣
∣
∣

(
F

r11

)ǫ

(z0, z1, z2)

∣
∣
∣
∣
∣

2

dz1dz2

=

∫

Ω̃

∣
∣
∣
∣

∫

R

F

r11
(z0, z1, s)ρǫ(z2 − s)ds

∣
∣
∣
∣

2

dz1dz2

≤

∫

Ω̃

(
∫

R

∣
∣
∣
∣

F

r11

∣
∣
∣
∣

2

(z0, z1, s)ρǫ(z2 − s)ds

)(∫

R

ρǫ(z2 − s)ds

)

dz1dz2

≤

∥
∥
∥
∥

1

r11

∥
∥
∥
∥

2

L∞(Ω̃T )

·

∫

Ω̃

[(∫

R

ρǫ(z2 − s)dz2

)

|F|2(z0, z1, s)dz1

]

ds

≤ C

∫

Ω̃

|F|2(z0, z1, s)dz1ds = C‖F(z0, ·)‖
2
L2(Ω̃)

, (3.32)

where the constant C depends on ρ0 and γ, but not on ǫ. Similarly one has
∥
∥
∥
∥
∥
D

(
F

r11

)ǫ

(z0, ·)

∥
∥
∥
∥
∥
L2(Ω̃)

≤ C
(∥
∥F(z0, ·)

∥
∥
2

L2(Ω̃)
+ ‖DF(z0, ·)‖

2
L2(Ω̃)

)

. (3.33)

Combining the above estimates and lemma 3.3, we deduce that
∑

|α|≤2

η‖e−ηz0Dαϕǫ‖2
L2(Ω̃T )

+ e−2ηT ‖Dαϕǫ|z0=T‖
2
L2(Ω̃)
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≤ C
1

η

∑

|α|≤1

‖e−ηz0Dαf‖2
L2(Ω̃T )

+ ‖f |z0=0‖
2
L2(Ω̃)

. (3.34)

By [22, Theorem 1] (or [23, Theorem 1]), lemma 3.3, and inequality (3.34), one

concludes that for each ǫ > 0, there exists a solution ϕǫ to problem (3.30) satisfying

the uniform estimate (3.34). Hence there exists a subsequence {ϕǫj}ǫj>0 converging

to a function ϕ weakly in H2(Ω̃T ). By lemma 3.3 and the uniform estimate (3.34),

one can pass the limit ǫ → 0+ in problem (3.30), which implies ϕ solves problem

(3.6) in the weak sense and it also satisfies estimate (3.34). By our extension, it is

not difficult to see that ϕ(z0, z1,−z2) is also a solution to problem (3.6). It follows

from the uniqueness of the extended problem (3.6) that

ϕ(z0, z1, z2) = ϕ(z0, z1,−z2)

for all (z0, z1, z2) ∈ Ω̃T . Differentiating on both sides of the above identity then

letting z2 = 0, one deduces that ∂z2ϕ(z0.z1, 0) = 0. This reveals that ϕ is indeed a

solution to problem (3.1). �

Proof of lemma 3.3.

Proof. (1) They are true due to the constructions of r̃ǫij ’s and b̃
ǫ
i and the property of

the mollifier. For example, for r̃ǫ12, one has

r̃ǫ12(z0, z1,−z2) =

∫

R

r12
r11

(z0, z1,−z2 − τ)ρǫ(τ)dτ

= −

∫

R

r12
r11

(z0, z1, z2 + τ)ρǫ(−τ)dτ

= −

∫

R

r12
r11

(z0, z1, s)ρǫ(z2 − s)ds

= −r̃ǫ12(z0, z1, z2), (3.35)

where in the second equality, we have used the oddness of r12, and the evenness of

r11 and ρǫ, and in the last equality, the changing of variable is used. The properties

of the other coefficients can be derived by similar arguments. Since the argument is

similar and standard, we omit the details here.

(2) By assumption (ii), properties (1) from the modified coefficients, and the

properties of the mollifier, one has

‖r̃ǫij‖L∞(Ω̃T ) =

∥
∥
∥
∥
∥

(
rij
r11

)ǫ
∥
∥
∥
∥
∥
L∞(Ω̃T )

≤

∥
∥
∥
∥
∥

(
rij
r11

)ǫ

−
r̄ij
r̄11

∥
∥
∥
∥
∥
L∞(Ω̃T )

+

∣
∣
∣
∣

r̄ij
r̄11

∣
∣
∣
∣

=

∥
∥
∥
∥
∥

(
rij
r11

−
r̄ij
r̄11

)ǫ
∥
∥
∥
∥
∥
L∞(Ω̃T )

+

∣
∣
∣
∣

r̄ij
r̄11

∣
∣
∣
∣
.
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It is clear that
∥
∥
∥
∥
∥

(
rij
r11

−
r̄ij
r̄11

)ǫ
∥
∥
∥
∥
∥
L∞(Ω̃T )

≤

∥
∥
∥
∥

rij
r11

−
r̄ij
r̄11

∥
∥
∥
∥
L∞(ΩT )

=

∥
∥
∥
∥

(rij − r̄ij)r̄11 − r̄ij(r11 − r̄11)

r11r̄11

∥
∥
∥
∥
L∞(ΩT )

≤

∥
∥
∥
∥

(rij − r̄ij)

r11

∥
∥
∥
∥
L∞(ΩT )

+

∣
∣
∣
∣

r̄ij
r̄11

∣
∣
∣
∣
·

∥
∥
∥
∥

(r11 − r̄11)

r11

∥
∥
∥
∥
L∞(ΩT )

≤ Cδ. (3.36)

We also have

∥
∥
∥Dr̃ǫij

∥
∥
∥
L∞(Ω̃T )

=

∥
∥
∥
∥
∥

(

D
rij
r11

)ǫ
∥
∥
∥
∥
∥
L∞(Ω̃T )

=

∥
∥
∥
∥
∥

(

D
rij
r11

)ǫ
∥
∥
∥
∥
∥
L∞(ΩT )

≤

∥
∥
∥
∥
∥
D

(
rij
r11

)
∥
∥
∥
∥
∥
L∞(ΩT )

.

It is easy to see that
∥
∥
∥
∥
∥
D

(
rij
r11

)
∥
∥
∥
∥
∥
L∞(ΩT )

=

∥
∥
∥
∥

1

r11
Drij −

rij
r211

Dr11

∥
∥
∥
∥
L∞(ΩT )

≤

∥
∥
∥
∥

1

r11

∥
∥
∥
∥
L∞(ΩT )

·
∥
∥rij − r̄ij

∥
∥
W 1,∞(ΩT )

+

∥
∥
∥
∥

rij
r211

∥
∥
∥
∥
L∞(ΩT )

· ‖r11 − r̄11‖W 1,∞(ΩT )

≤ Cδ. (3.37)

Similarly, one can deduce that
∥
∥
∥
∥
∥

(
bi
b1

)ǫ
∥
∥
∥
∥
∥
W 1,∞(Ω̃T )

≤ Cδ.

In fact, since b2(0, 0) = ∂2z2b2(0, 0) = 0, the twice differentiable function of b2(0, z2)

is bounded at z2 = 0. Hence |∂z2b
ǫ
2(0, z2)| ≤ Cδ for all z2.

We remark that the positive constant C in the above inequalities only depends

on ρ0 and γ, but is independent on ǫ.

(3) By the definition of b̃ǫ2, the oddness of
b2
b1

and the eveness of ρǫ, one has

b̃ǫ2(0, 0) =

∫

R

(
b2
b1

)

(0, τ)ρǫ(−τ)dτ

= −

∫

R

(
b2
b1

)

(0,−τ)ρǫ(τ)dτ
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= −

∫

R

(
b2
b1

)

(0, z2 − τ)ρǫ(τ)dτ
∣
∣
∣
z2=0

= −b̃ǫ2(0, 0), (3.38)

which implies b̃ǫ2(0, 0) = 0. Then

∂z2 b̃
ǫ
2(0, 0) =

1

ǫ

∫

R

(
b2
b1

)

(0, τ)
∂η

∂z2

(
z2 − τ

ǫ

)

dτ
∣
∣
∣
z2=0

= −
1

ǫ

∫

R

(
b2
b1

)

(0, τ)
∂η

∂z2

(
τ − z2
ǫ

)

dτ
∣
∣
∣
z2=0

=
1

ǫ

∫

R

(
b2
b1

)

(0, τ)
∂η

∂τ

(
τ − z2
ǫ

)

dτ
∣
∣
∣
z2=0

= −
1

ǫ

∫

R

∂

∂τ

(
b2
b1

)

(0, τ)η

(
τ − z2
ǫ

)

dτ
∣
∣
∣
z2=0

= −
1

ǫ

∫

R

∂

∂τ

(
b2
b1

)

(0, τ)η

(
z2 − τ

ǫ

)

dτ
∣
∣
∣
z2=0

=
1

ǫ

∫

R

(
b2
b1

)

(0, τ)
∂η

∂τ

(
z2 − τ

ǫ

)

dτ
∣
∣
∣
z2=0

= −
1

ǫ

∫

R

(
b2
b1

)

(0, τ)
∂η

∂z2

(
z2 − τ

ǫ

)

dτ
∣
∣
∣
z2=0

= −∂z2 b̃
ǫ
2(0, 0). (3.39)

Hence we deduce that ∂z2 b̃
ǫ
2(0, 0) = 0.

(4) This is an easy consequence of the following fact by lemma 2.1:
(
r10
r11

)

|z1=0 = 0 and

(
r12
r11

)

|z1=0 =

(
b2
b1

)

|z1=0.

�

4. The linearized problem (II): Higher order estimates

It is clear that the H2(ΩT )-solution of the linearized problem obtained in section

3 is not sufficient to yield a smooth solution to the nonlinear problem by nonlinear

iteration method. Hence, in order to deduce the existence of smooth solutions of

the nonlinear problem, one has to establish higher order the a priori estimate of

the solution of the linearized problem derived in section 3. However, since the

regularity of the coefficients of the equation in the extended domain is not sufficient

to establish higher order a priori estimates. One has to establish higher order

estimate in the cornered-space domain directly. But due to the violation of the

linear stability conditions of the boundary operator and the presence of the corner

singularity, it is difficult to derive higher order a priori estimate of the solutions, in
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particular, the estimate of the boundary terms. Based on the observation that the

boundary operators are co-normal and the vanishing properties of the coefficients

on the boundaries (see lemma 2.1 for details), one expresses the boundary terms in

terms of some commutators, which reduces the order of the derivatives contained

in the boundary terms. Then by the Gauss theorem and the trace theorem, the

estimates of boundary terms of the highest order derivatives of the solution can be

established.

In this section, we give a proof to lemma 3.2 by establishing the estimates of

the third and fourth order. Due to the corner singularity, the third and the fourth

order estimates cannot be derived by same manner, which is similar to the situation

in [18, 19]. Hence they will be deduced separately in the next two subsections.

4.1. Third order estimate of the solution. In this subsection, we establish the

third order estimate of the solution obtained in lemma 3.1. Since the boundary of

the space domain is not smooth, it is difficult for us to find multipliers such that the

boundary terms on both sides of the corner point have good sign, which is different

from the initial boundary value problems on smooth domains. By the properties of

the boundary operator B and the coefficients of the equation (see lemma 2.1), we

can find suitable multipliers such that the boundary terms can be expressed as some

commutators, so that the order of the derivative of the solution is reduced. Then

the boundary terms can be estimated by control the commutators, which can be

done by using the Gauss theorem and integrating by parts with respect to the time

derivative. The third order estimate is summarized as the following lemma:

Lemma 4.1. There exists δ3 > 0 such that if assumptions (i)− (iv) hold for δ ≤ δ3,

then there exists a constant η3 > 1 such that for any T > 0 and η ≥ η3, the H
2(ΩT )

solution of problem (3.1) satisfies
∑

|α|=3

η‖e−ηz0Dαϕ‖2L2(ΩT ) + e−2ηT ‖Dαϕ(T, ·)‖2L2(Ω)

.
1

η

∑

|α|≤2

‖e−ηz0L(Dαϕ)‖2L2(ΩT ) + ‖e−ηz0f‖2H2(ΩT ) + ‖f |t=0‖
2
H1(Ω). (4.1)

Proof. Since ∂z0 is tangential to both boundaries {z1 = 0} and {z2 = 0}, one can

apply (3.26) to ∂z0ϕ to obtain that
∑

|α|≤2

η‖e−ηz0Dα∂z0ϕ‖
2
L2(Ω̃T )

+ e−2ηT ‖Dα∂z0ϕ|z0=T‖
2
L2(Ω̃)

.
1

η

∑

|α|≤2

‖e−ηz0L(Dα∂z0ϕ)‖
2
L2(Ω̃T )

+ ‖L(∂z0ϕ)|z0=0‖
2
L2(Ω̃)

. (4.2)
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Next, we will consider the first order estimate of ∂2z2ϕ. It is clear that ∂
2
z2
ϕ satisfies







L(∂z2z2ϕ) = −[∂z2z2,L]ϕ+ ∂z2z2f, in Ω̃T ,

B(∂z2z2ϕ) = −[∂z2z2,B]ϕ, on Γ1,

∂2z2ϕ = 0, on Γ0

∂z0(∂
2
z2
ϕ) = 0, on Γ0.

(4.3)

Via the equation and ∂z2ϕ|z2=0 = 0, we can further derive the boundary condition

for ∂z2z2ϕ on {z2 = 0} as

∂z2(∂z2z2ϕ) =
1

r22
(L − r00∂

2
z0
− 2r02∂z0∂z2 − 2r12∂z1∂z2 − r11∂

2
z1
)∂z2ϕ.

As required in assumption (iii), we have r12 = r02 on {z2 = 0}. Moreover,

(∂2z0∂z2ϕ, ∂z0z1z2ϕ, ∂
2
z1
∂z2ϕ, ∂z0z2ϕ, ∂z1z2ϕ) vanishes on {z2 = 0}, since ∂z2ϕ|z2=0 = 0.

As a result, we obtain

∂3z2ϕ =
1

r22
L(∂z2ϕ) on {z2 = 0}. (4.4)

Multiplying 2e−2ηz0∂z0∂
2
z2
ϕ on both sides of (4.3), and integrating by parts over ΩT ,

one has

2

∫

ΩT

e−2ηz0L(∂2z2ϕ)∂z0∂
2
z2
ϕdz=

[∫

Ω

e−2ηz0H0dz1dz2

]z0=T

z0=0

−

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

+

∫

ΩT

e−2ηz0P2(Dϕ)dz + 2η

∫

ΩT

e−2ηz0H0dz

− 2

∫ T

0

r22e
−2ηz0∂z0∂

2
z2
ϕ∂3z2ϕ|z2=0dz1dz0 (4.5)

where

H0 = |∂z0∂
2
z2
ϕ|2 − r11|∂z1∂

2
z2
ϕ|2 − r22|∂

3
z2
ϕ|2,

H1 = 2((r11∂z1 + r12∂z2)∂
2
z2
ϕ)∂z0∂

2
z2
ϕ, (4.6)

and P2(D∂
2
z2
ϕ) is a quadratic polynomial in D∂2z2ϕ with bounded coefficients. By

assumptions (i) and (ii), it is easy to see that H0 ≥ C|D∂2z2ϕ|
2 for some positive

constant C. Hence we deduce that

η

∫

ΩT

e−2ηz0 |D∂2z2ϕ|
2dz + e−2ηT

∫

Ω

|D∂2z2ϕ|z0=T |
2dz1z2

.

∫

ΩT

e−2ηz0(qη + 1)|D∂2z2ϕ|
2 +

1

qη
|L(∂2z2ϕ|

2)dz

+

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0 +

∫ T

0

r22e
−2ηz0∂z0∂

2
z2
ϕ∂3z2ϕ|z2=0dz1dz0. (4.7)
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Next, we are forced to control the boundary terms on the right hand-side of the above

inequality. Employing assumption (iv) and the boundary condition that Bϕ = 0 on

{z1 = 0}, one arrives at

−H1|z1=0 = −2r11((∂z1 +
r12
r11

∂z2)∂
2
z2
ϕ)∂z0∂

2
z2
ϕ

= −
2r11
b1

(b1∂z1∂
2
z2
ϕ+ b2∂z2∂

2
z2
ϕ)∂z0∂

2
z2
ϕ

=
2r11
b1

([∂2z2 ,B]ϕ)∂z0∂
2
z2
ϕ

=
2r11
b1

∂z0∂
2
z2
ϕ(2(∂z2b1)∂z1z2ϕ+ 2(∂z2b2)∂

2
z2
ϕ

+ (∂2z2b1)∂z1ϕ+ (∂2z2b2)∂z2ϕ). (4.8)

Therefore, by the Gauss theorem we have
∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

= −

∫

ΩT

∂z1(e
−2ηz0

2r22
b1

([∂2z2 ,B]ϕ)∂z0∂
2
z2
ϕ)dz

= −

∫

ΩT

e−2ηz0(∂z1

(
2r22
b1

)

([∂2z2 ,B]ϕ)∂z0∂
2
z2
ϕ) +

r22
b1
∂z1([∂

2
z2
,B]ϕ)∂z0∂

2
z2
ϕdz

−

∫

ΩT

e−2ηz0
r22
b1

([∂2z2 ,B]ϕ)∂z0z1∂
2
z2
ϕdz

≤ Cδ

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H2(Ω) + ‖ϕ(z0, ·)‖

2
H3(Ω)dz0

−

∫

ΩT

e−2ηz0
r22
b1

([∂2z2 ,B]ϕ)∂z0z1∂
2
z2
ϕdz

≤ Cδ

∫ T

0

e−2ηz0(‖ϕ(z0, ·)‖
2
H3(Ω) + ‖∂z0ϕ(z0, ·)‖

2
H2(Ω)dz0 +K,

where

K = −

∫

ΩT

∂z0(e
−2ηz0

r22
b1

([∂2z2 ,B]ϕ)∂z1∂
2
z2
ϕ)dz

− 2η

∫

ΩT

e−2ηz0
r22
b1

([∂2z2 ,B]ϕ)∂z1∂
2
z2
ϕ) +

∫

ΩT

e−2ηz0∂z0(
r22
b1

)([∂2z2 ,B]ϕ)∂z1∂
2
z2
ϕdz

+

∫

ΩT

e−2ηz0
r22
b1
∂z0([∂

2
z2
,B]ϕ)∂z1∂

2
z2
ϕdz. (4.9)

By assumptions (i), (ii), and (iv) and (4.8), we have

|K| . δ((η + 1)

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H3(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H3(Ω))
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+ δ

∫ T

0

e−2ηz0(‖∂z0ϕ(z0, ·)‖
2
H2(Ω) + ‖ϕ(z0, ·)‖

2
H3(Ω))dz0. (4.10)

Hence we obtain
∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

∣
∣
∣
∣
∣

. δ((η + 1)

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H3(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H3(Ω))

+ δ

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H2(Ω)dz0. (4.11)

Now we turn to estimate the last term in (4.5), which is the boundary term on

{z2 = 0}. With the aid of (4.4) and the Gauss theorem, one has

−2

∫ T

0

∫

R+

e−2ηz0r22(∂z0∂
2
z2
ϕ∂3z2ϕ)|z2=0dz0dz1

= −2

∫ T

0

e−2ηz0∂z0∂
2
z2
ϕL(∂z2ϕ)dz0dz1

= 2

∫

ΩT

∂z2(e
−2ηz0∂z0∂

2
z2
ϕL(∂z2ϕ))dzdz0

= 2

∫

ΩT

e−2ηz0(∂z0∂
3
z2
ϕL(∂z2ϕ) + ∂z0∂

2
z2
ϕ∂z2L(∂z2ϕ))dzdz0

:= R1 +R2. (4.12)

Via integration by parts with respect to z0, we have

|R1| =

∣
∣
∣
∣
∣
2

∫

ΩT

∂z0(e
−2ηz0∂3z2ϕL(∂z2ϕ)) + e−2ηz0(2η∂3z2ϕL(∂z2ϕ)− ∂3z2ϕ∂z0L(∂z2ϕ) dz

∣
∣
∣
∣
∣

≤ 2e−2ηT

∫

Ω

(|∂3z2ϕL(∂z2ϕ))|z0=T |dz1dz2 + 2

∫

Ω

(|∂3z2ϕL(∂z2ϕ))|z0=0|dz1dz2

+ 4η

∫

ΩT

e−2ηz0 |∂3z2ϕL(∂z2ϕ)|dz + 2

∫

ΩT

e−2ηz0 |∂3z2ϕ∂z0L(∂z2ϕ)|dz

. e−2ηT

∫

Ω

(q|∂3z2ϕ|z0=T |
2 +

1

q
|L(∂z2ϕ)|z0=T |

2)dz1z2 + ‖ϕ0‖
2
H3(Ω) + ‖ϕ1‖

2
H2(Ω)

+ ‖∂z2f |z0=0‖
2
L2(Ω) + 2η

∫

ΩT

e−2ηz0(q|∂3z2ϕ|
2 +

1

q
|L(∂z2ϕ)|

2)dz

+

∫

ΩT

e−2ηz0(qη|∂3z2ϕ|
2 +

1

qη
|∂z0L(∂z2ϕ)|

2)dz (4.13)

By (3.23) and the fact that the coefficients of L are W 1,∞(ΩT ) functions, we obtain

η

∫

ΩT

e−2ηz0 |L(∂z2ϕ)|
2dz + e−2ηT

∫

Ω

|L(∂z2ϕ)|z0=T |
2dz1dz2
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≤
1

η

∫

ΩT

e−2ηz0 |∂z0L(∂z2ϕ)|
2dz + ‖L(∂z2ϕ)|z0=0‖

2
L2(Ω)

.
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2 + |L(∂z0z2ϕ)|
2)dz + ‖∂z2f |z0=0‖

2
L2(Ω). (4.14)

Combining above two inequalities, we are led to

|R1| . q(η

∫

ΩT

e−2ηz0 |∂3z2ϕ|
2dz + e−2ηT

∫

Ω

|∂3z2ϕ|z0=T |
2dz1dz2)

+
1

q
(
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2 + |L(∂z0z2ϕ)|
2)dz + ‖∂z2f |z0=0‖

2
L2(Ω))

+ ‖∂z2f |z0=0‖
2
L2(Ω). (4.15)

Now we proceed to the estimate of R2. In fact, one has

|R2| ≤ 2

∫

ΩT

e−2ηz0 |∂z0∂
2
z2
ϕ∂z2L(∂z2ϕ)|dz

≤

∫

ΩT

e−2ηz0(qη|∂z0∂
2
z2
ϕ|2 +

1

qη
|∂z2L(∂z2ϕ)|

2)dz

≤

∫

ΩT

e−2ηz0(qη|∂z0∂
2
z2
ϕ|2 +

1

qη
(|L(∂2z2ϕ)|

2 +
∑

|α|≤3

|Dαϕ|2))dz. (4.16)

Then inequality (4.16) together with (4.7), (4.11), (4.12), and (4.15) yields the

following estimate

η

∫

ΩT

e−2ηz0 |D∂2z2ϕ|
2dz + e−2ηT

∫

Ω

|D∂2z2ϕ|z0=T |
2dz1z2

.

∫

ΩT

e−2ηz0(qη + 1)|D∂2z2ϕ|
2 +

1

qη
|L(∂2z2ϕ|

2)dz

+ δ((η + 1)

∫

ΩT

e−2ηz0‖ϕ(z0, ·)‖
2
H3(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H3(Ω))

+ δ

∫

ΩT

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H2(Ω)

+ q(η

∫

ΩT

e−2ηz0(|∂3z2ϕ|
2 + |∂z0∂

2
z2
ϕ|2)dz + e−2ηT

∫

Ω

|∂3z2ϕ|z0=T |
2dz1dz2)

+
1

q
(
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2 + |L(∂z0z2ϕ)|
2 + |L(∂2z2ϕ)|

2)dz + ‖∂z2f |z0=0‖
2
L2(Ω))

+ ‖∂z2f |z0=0‖
2
L2(Ω). (4.17)

Note that

∂2z1∂z2ϕ =
1

r11
(L(∂z2ϕ)−

∑

(i,j)6=(1,1)

rij∂ij∂z2ϕ), (4.18)
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∂3z1ϕ =
1

r11
(L(∂z1ϕ)−

∑

(i,j)6=(1,1)

rij∂ij∂z1ϕ). (4.19)

So if we select q and δ properly small and then η appropriately large, the third order

derivatives on the right hand-side of the inequality above can be absorbed by the

left hand-side terms. Therefore,

η

∫

ΩT

e−2ηz0(|∂2z1∂z2ϕ|
2 + |∂3z1ϕ|

2)dz + e−2ηT

∫

Ω

(|∂2z1∂z2ϕ|
2 + |∂3z1ϕ|

2)dz1dz2

. η

∫

ΩT

e−2ηz0 |D∂2z2ϕ|
2dz + e−2ηT

∫

Ω

|D∂2z2ϕ|
2dz1dz2

+
∑

|α|≤2

(η

∫

ΩT

e−2ηz0 |Dα∂z0ϕ|
2dz + e−2ηT

∫

Ω

|Dα∂z0ϕ|
2dz1dz2)

+
∑

|α|≤2

(η

∫

ΩT

e−2ηz0 |Dαϕ|2dz + e−2ηT

∫

Ω

|Dαϕ|2dz1dz2)

+

2∑

i=1

(η

∫

ΩT

e−2ηz0 |L(∂ziϕ)|
2dz + e−2ηT

∫

Ω

|L(∂ziϕ)|
2dz1dz2). (4.20)

Then it follows from (3.23) that

2∑

i=1

(η

∫

ΩT

e−2ηz0 |L(∂ziϕ)|
2dz + e−2ηT

∫

Ω

|L(∂ziϕ)|
2dz1dz2)

≤
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2 +
2∑

i=1

|L(∂ziz0ϕ)|
2)dz +

2∑

i=1

‖∂zif |z0=0‖
2
L2(Ω). (4.21)

Substituting (4.2), (4.17) and (4.21) into (4.20), one has

η

∫

ΩT

e−2ηz0(|∂2z1∂z2ϕ|
2 + |∂3z1ϕ|

2)dz + e−2ηT

∫

Ω

(|∂2z1∂z2ϕ|
2 + |∂3z1ϕ|

2)dz1dz2

.

∫

ΩT

e−2ηz0(qη + 1)|D∂2z2ϕ|
2 +

1

qη
|L(∂2z2ϕ|

2)dz

+ δ((η + 1)

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H3(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H3(Ω))

+ δ

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H2(Ω)dz0

+ q(η

∫

ΩT

e−2ηz0(|∂3z2ϕ|
2 + |∂z0∂

2
z2
ϕ|2)dz + e−2ηT

∫

Ω

|∂3z2ϕ|z0=T |
2dz1dz2)

+
1

q
(
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2 + |L(∂z0z2ϕ)|
2 + |L(∂2z2ϕ)|

2)dz + ‖∂z2f |z0=0‖
2
L2(Ω))
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+
1

η

∑

|α|≤2

‖e−ηz0L(Dαϕ)‖2
L2(Ω̃T )

+
∑

|α|≤1

‖Dαf |z0=0‖
2
L2(Ω̃)

+
1

η

∫

ΩT

e−2ηz0(
∑

|α|≤3

|Dαϕ|2)dz. (4.22)

To this end, we are ready to conclude the third order estimate. Adding (3.27), (4.2),

(4.17) and (4.22) together, letting q and δ be properly small and η be appropriately

large, we deduce that

∑

|α|≤3

(

η

∫

ΩT

e−2ηz0 |Dαϕ|2dz + e−2ηT

∫

Ω

|Dαϕ|z0=T |
2dz1z2

)

.
1

η

∑

|α|≤2

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dz +
∑

|α|≤1

‖Dαf |z0=0‖
2
L2(Ω). (4.23)

�

4.2. Fourth order estimate of the solution. In this subsection, we establish

the fourth order estimate of the solution obtained in lemma 3.1. For the fourth or-

der estimate, since the normal derivative of the solution contained in the boundary

term is one order higher than the one contained in the boundary term of third order

estimate, the representations of the boundary terms as the commutators are insuf-

ficient to derive the desired estimate. Hence more careful analysis and computation

is needed to establish the fourth order estimate. We summarize the fourth order

estimate as the following lemma:

Lemma 4.2. There exists δ4 > 0 such that if assumptions (i)− (iv) hold for δ ≤ δ4,

then there exists a constant η4 > 1 such that for any T > 0 and η ≥ η4, the H
2(ΩT )

solution of problem (3.1) satisfies
∑

|α|=4

η‖e−ηz0Dαϕ‖2L2(ΩT ) + e−2ηT ‖Dαϕ(T, ·)‖2L2(Ω)

.
1

η

∑

|α|≤3

‖e−ηz0L(Dαϕ)‖2L2(ΩT ) + ‖e−ηz0f‖2H3(ΩT ) + ‖f |t=0‖
2
H2(Ω). (4.24)

Proof. Since ∂z0 is tangential to both boundaries, applying the third order estimation

(4.23) to ∂z0ϕ, one has

∑

|α|≤3

(

η

∫

ΩT

e−2ηz0 |Dα∂z0ϕ|
2dz + e−2ηT

∫

Ω

|Dα∂z0ϕ|z0=T |
2dz1z2

)

.
1

η

∑

|α|≤2

∫

ΩT

e−2ηz0 |L(Dα∂z0ϕ)|
2dz +

∑

|α|≤2

‖Dαf |z0=0‖
2
L2(Ω). (4.25)



36 BEIXIANG FANG, WEI XIANG, AND FENG XIAO

Next, we will firstly derive the first order estimate of ∂3z2ϕ, i.e., the estimate ofD∂3z2ϕ.

Then by the equation, we are able to control the other fourth order derivatives. It

is easy to verify that ∂3z2ϕ satisfies






L(∂3z2ϕ) = −[∂3z2 ,L]ϕ+ ∂3z2f, in ΩT ,

B(∂3z2ϕ) = −[∂3z2 ,B]ϕ, on Γ1,

∂3z2ϕ = 0, on Γ0,

∂z0(∂
3
z2
ϕ) = 0, on Γ0.

(4.26)

Multiplying 2e−2ηz0∂z0∂
3
z2
ϕ on both sides of (4.26)1, and integrating by parts over

ΩT , one has

2

∫

ΩT

e−2ηz0L(∂3z2ϕ)∂z0∂
3
z2
ϕdz

=

[∫

Ω

e−2ηz0H0dz1dz2

]z0=T

z0=0

+ 2η

∫

ΩT

e−2ηz0H0dz −

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

− 2

∫ T

0

∫

R+

e−2ηz0(r22∂z0∂
3
z2
ϕ∂4z2ϕ)|z2=0dz1dz0 +

∫

ΩT

e−2ηz0P3(Dϕ)dz (4.27)

where

H0 = |∂z0∂
3
z2
ϕ|2 − r11|∂z1∂

3
z2
ϕ|2 − r22|∂

4
z2
ϕ|2, (4.28)

H1 = 2(r11∂z1∂
3
z2
ϕ+ r12∂

4
z2
ϕ)∂z0∂

3
z2
ϕ, (4.29)

and P3(D∂
3
z2
ϕ) is a quadratic polynomial in D∂3z2ϕ with bounded coefficients. As-

sumptions (i) and (ii) imply that

H0 ≥ C|D∂3z2ϕ|
2 and |P3(Dϕ)| ≤ C|D∂3z2ϕ|

2. (4.30)

Hence by the Cauchy inequality, one has

η

∫

ΩT

e−2ηz0 |D∂3z2ϕ|
2dz + e−2ηT

∫

Ω

|D∂3z2ϕ|z0=T |
2dz1dz2

.

∫

ΩT

e−2ηz0((qη + 1)|D∂3z2ϕ|
2 +

1

qη
|L(∂3z2ϕ)|

2)dz +

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

+ 2

∫ T

0

∫

R+

e−2ηz0r22∂z0∂
3
z2
ϕ∂4z2ϕ|z2=0dz1dz0. (4.31)

By assumption (iii), we obtain

H1|z1=0 = 2r11(∂z1∂
3
z2
ϕ+

r12
r11

∂4z2ϕ)∂z0∂
3
z2
ϕ

= 2
r22
b1
∂z0∂

3
z2
ϕ{b1∂z1 + b2∂z2}∂

3
z2
ϕ
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= 2
r22
b1
∂z0∂

3
z2
ϕB∂3z2ϕ

= −2
r22
b1
∂z0∂

3
z2
ϕ([∂3z2 ,B]ϕ)

= −2
r22
b1
∂z0∂

3
z2
ϕ

2∑

k=0

(∂k+1
z2

b1∂z1∂
2−k
z2

ϕ+ ∂k+1
z2

b2∂
3−k
z2

ϕ), (4.32)

where [∂3z2 ,B] is the commutator and we have used the boundary condition that

Bϕ|z1=0 = 0 in the forth equality. For k = 0, 1, 2, by the Gauss theorem, we deduce

that
∣
∣
∣
∣
∣

∫ T

0

e−2ηz0
r22
b1
∂z0∂

3
z2
ϕ(∂k+1

z2
b1)∂z1∂

2−k
z2

ϕ|z1=0dz2dz0

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

ΩT

∂z1(e
−2ηz0

r22
b1
∂z0∂

3
z2
ϕ(∂k+1

z2
b1)∂z1∂

2−k
z2

ϕ)dz

∣
∣
∣
∣
∣

≤ δ

∫

ΩT

e−2ηz0(‖∂z0ϕ(z0, ·)‖
2
H3(Ω) + ‖ϕ(z0, ·)‖

2
H4(Ω))dz0

+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0
r22
b1
∂k+1
z2

b1∂z0z1∂
3
z2
ϕ∂z1∂

2−k
z2

ϕdz

∣
∣
∣
∣
∣

= δ

∫

ΩT

e−2ηz0(‖∂z0ϕ(z0, ·)‖
2
H3(Ω) + ‖ϕ(z0, ·)‖

2
H4(Ω))dz0 +A. (4.33)

By integrating by parts with respect to z0, one has for k = 0, 1, 2 that

A ≤

∣
∣
∣
∣
∣

∫

ΩT

∂z0(e
−2ηz0

r22
b1
∂k+1
z2

b1∂z1∂
3
z2
ϕ∂z1∂

2−k
z2

ϕ)dz

∣
∣
∣
∣
∣

+ 2η

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0
r22
b1
∂k+1
z2

b1∂z1∂
3
z2
ϕ∂z1∂

2−k
z2

ϕdz

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0(
r22
b1
∂k+1
z2

b1)∂z1∂
3
z2
ϕ∂z1∂

2−k
z2

ϕdz

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0
r22
b1
∂k+1
z2

b1∂z1∂
3
z2
ϕ∂z0z1∂

2−k
z2

ϕdz

∣
∣
∣
∣
∣

. δe−2ηT ‖ϕ(T, ·)‖2H4(Ω) + δ(η + 1)

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H4(Ω)dz0

+ δ

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H3(Ω)dz0, (4.34)
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where in the last inequality, we have used assumption (iv). By the same argument,

we can also obtain
∣
∣
∣
∣
∣

∫ T

0

e−2ηz0
r22
b1
∂z0∂

3
z2
ϕ(∂k+1

z2
b2)∂z1∂

3−k
z2

ϕ|z1=0dz2dz0

∣
∣
∣
∣

. δe−2ηT ‖ϕ(T, ·)‖2H4(Ω) + δ(η + 1)

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H4(Ω)dz0

+ δ

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H3(Ω)dz0. (4.35)

By estimates (4.32)-(4.35), we deduce
∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0H1|z1=0dz2dz0

∣
∣
∣
∣

. δ

(

η

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H4(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H4(Ω)

)

+ δ

∫ T

0

e−2ηz0(‖ϕ(z0, ·)‖
2
H3(Ω) + ‖∂z0ϕ(z0, ·)‖

2
H3(Ω))dz0. (4.36)

We still need to control the boundary term on boundary {z2 = 0} in (4.31). By the

equation and the properties of the coefficients, we know

r22∂
4
z2
ϕ|z2=0 = {L − r00∂

2
z0
− 2r01∂z0z1 − r11∂

2
z1
}∂2z2ϕ, (4.37)

∂zi∂
3
z2
ϕ|z2=0 =

1

r22
L(∂ziz2ϕ) (i = 0, 1). (4.38)

∂3z2ϕ|z2=0 =
1

r22
L(∂z2ϕ). (4.39)

Therefore,
∫ T

0

∫

R+

e−2ηz0r22∂z0∂
3
z2
ϕ∂4z2ϕ|z2=0dz1dz0

=

∫ T

0

∫

R+

e−2ηz0∂z0∂
3
z2
ϕ({L − r00∂

2
z0
− 2r01∂z0z1 − r11∂

2
z1
−

2∑

i=0

ri∂zi}∂
2
z2
ϕ)dz1dz0

:= I1 + I2 + I3 + I4 + I5. (4.40)

For I1, by the Gauss theorem, one has

|I1| =

∣
∣
∣
∣
∣

∫

ΩT

∂z2(e
−2ηz0∂z0∂

3
z2
ϕL∂2z2ϕ)dz

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0∂
3
z2
ϕ∂z2(L∂

2
z2
ϕ)dz

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0∂
4
z2
ϕL(∂2z2ϕ)dz

∣
∣
∣
∣
∣
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.

∫ T

0

e−2ηz0(
1

qη
‖∂z2L(∂

2
z2
ϕ)(z0, ·)‖

2
L2(Ω) + qη‖∂z0ϕ(z0, ·)‖

2
H3(Ω))dz0

+

∣
∣
∣
∣
∣

∫

ΩT

∂z0(e
−2ηz0∂4z2ϕL(∂

2
z2
ϕ)) + e−2ηz0(2η∂4z2ϕL(∂

2
z2
ϕ)− ∂4z2ϕ∂z0L(∂

2
z2
ϕ))dz

∣
∣
∣
∣
∣

.

∫ T

0

e−2ηz0(
1

qη
‖∂z2L(∂

2
z2
ϕ)(z0, ·)‖

2
L2(Ω) + qη‖∂z0ϕ(z0, ·)‖

2
H3(Ω))dz0

+ e−2ηT

(

q‖∂4z2ϕ(T, ·)‖
2
L2(Ω) +

1

q
‖L(∂2z2ϕ)(T, ·)‖

2
L2(Ω)

)

+ η

∫ T

0

e−2ηz0q‖∂4z2ϕ(z0)‖
2
L2(Ω) +

1

q
‖L∂2z2ϕ(z0)‖

2
L2(Ω)dz0 + ‖D2f |t=0‖

2
L2(Ω)

+

∫ T

0

e−2ηz0(
1

qη
‖∂z0L(∂

2
z2
ϕ)(z0, ·)‖

2
L2(Ω) + qη‖ϕ(z0, ·)‖

2
H4(Ω))dz0. (4.41)

By the boundedness of the coefficients of L, we know that
∫ T

0

e−2ηz0(‖∂z2L(∂
2
z2
ϕ)‖2L2(Ω) + ‖∂z0L(∂

2
z2
ϕ)‖2L2(Ω))dz0

.

∫ T

0

e−2ηz0




∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω) +

∑

|α|≤3

‖L(Dαϕ)(z0, ·)‖
2
L2(Ω)



 dz0. (4.42)

With the help of (3.23), one gets

η

∫ T

0

e−2ηz0‖L∂2z2ϕ‖
2
L2(Ω)dz0 + e−2ηT ‖L(∂2z2ϕ)(T, ·)‖

2
L2(Ω)

≤
1

η

∫ T

0

e−2ηz0‖∂z0L(∂
2
z2
ϕ)‖2L2(Ω)dz0 + ‖L(∂2z2ϕ)|z0=0‖

2
L2(Ω)

.
1

η

∫ T

0

e−2ηz0(‖L(∂z0∂
2
z2
ϕ)‖2L2(Ω) +

∑

|α|≤4

‖Dαϕ‖2L2(Ω))dz0

+ ‖∂2z2f |z0=0‖
2
L2(Ω). (4.43)

Combining (4.41), (4.42) and (4.43), we deduce that

|I1| . q



η

∫

ΩT

e−2ηz0
∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT

∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω)





+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω) +

∑

|α|≤3

‖L(Dαϕ)(z0, ·)‖
2
L2(Ω)



 dz0

+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤3

‖L(Dαϕ)(z0, ·)‖
2
L2(Ω) +

∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)



 dz0
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+
1

q
‖∂2z2f |z0=0‖

2
L2(Ω). (4.44)

Since both I2 and I3 contain the time derivative ∂z0 , by the argument similar to the

one used for I1, we obtain

|I2|+ |I3|

. q



η

∫

ΩT

e−2ηz0
∑

|α|≤4

‖Dαϕ‖2L2(Ω)dz0 + e−2ηT
∑

|α|≤4

‖Dαϕ(T, ·, ·)‖2L2(Ω)





+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤4

‖Dαϕ(z0)‖
2
L2(Ω) +

∑

|α|≤3

‖L(Dαϕ)(z0)‖
2
L2(Ω)



 dz0

+
1

qη

∫

ΩT

e−2ηz0




∑

|α|≤3

‖L(Dαϕ)‖2L2(Ω) +
∑

|α|≤4

‖Dαϕ‖2L2(Ω)



 dz0

+
1

q
‖∂2z2f |z0=0‖

2
L2(Ω). (4.45)

To estimate I4, we can not directly use Gauss theorem and then integration by part

with respect to z0, since ∂
2
z1
∂2z2ϕ does not contain the time derivative ∂z0 . Instead,

we integrate with respect to z1, since ∂z1 is also tangential to Γ2. Actually, one has

|I4| ≤

∣
∣
∣
∣
∣

∫ T

0

∫

R+

∂z1

(

e−2ηz0
r11
r22

L(∂z0z2ϕ)∂z1∂
2
z2
ϕ

)

dz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

I4,1

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0
r11
r22

∂z1(L∂z0z2ϕ)∂z1∂
2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

I4,2

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0∂z1

(
r11
r22

)

∂z0∂
3
z2
ϕ∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
I4,3

. (4.46)

By Cauchy inequality and the trace theorem, it is easy to see that

I4,1 =

∣
∣
∣
∣
∣

∫ T

0

e−2ηz0(
r11
r22

)∂z0∂
3
z2
ϕ∂z1∂

2
z2
ϕ(z0, 0, 0)dz0

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ T

0

e−2ηz0(
r11
b1r

2
22

)(∂z0∂
3
z2
ϕ)B(∂2z2ϕ)(z0, 0, 0)dz0

∣
∣
∣
∣
∣
. (4.47)
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where in the second equality, we have used b2(0, 0) = 0. It is clear that

B(∂2z2ϕ) = 2(∂z2b1∂z1z2ϕ+ ∂z2b2∂z2z2ϕ) + ∂z2z2b1∂z1ϕ+ ∂z2z2b2∂z2ϕ. (4.48)

From the boundary conditions

Bϕ|z1=0 = 0, ∂z2ϕ|z2=0 = 0, and b2(0, 0) = 0,

one can see that

∂z1z2ϕ(z0, 0, 0) = 0 and ∂z1ϕ(z0, 0, 0) = 0. (4.49)

Combining (4.48) and (4.49), one has

B(∂2z2ϕ)(z0, 0, 0) = 2∂z2b2(0, 0)∂z2z2ϕ(z0, 0, 0).

By assumption (iii), we conclude that B(∂2z2ϕ)(z0, 0, 0) = 0. Hence we have I4,1 = 0.

Noticing that ∂z2ϕ and its tangential derivatives vanish on {z2 = 0}, we have

L(∂z0z2ϕ)|z2=0 =
{
−[∂z0 ,L]∂z2ϕ+ ∂z0(L(∂z2ϕ))

}
∣
∣
∣
z2=0

= −((2(∂z0r02)∂z0∂z2 + 2(∂z0r12)∂z1z2 + (∂z0r22)∂
2
z2
))∂z2ϕ)|z2=0

− ∂z0r2∂z2z2ϕ|z2=0 + ∂z0(L(∂z2ϕ))|z2=0. (4.50)

So by integrating by part with respect to z0 and recalling (4.38) and (4.39), we have

I4,2 ≤

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r02)∂z0∂

2
z2
ϕ+ (∂z0r02)∂z0z1∂

2
z2
ϕ
)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J1

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r12)∂z1∂

2
z2
ϕ+ (∂z0r12)∂

2
z1
∂2z2ϕ

)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J2

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r22)∂

3
z2
ϕ+ (∂z0r22)∂z1∂

3
z2
ϕ
)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J3

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r2)∂

2
z2
ϕ+ (∂z0r2)∂z1∂

2
z2
ϕ
)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J4

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
∂z0z1L(∂z2ϕ

)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J5

. (4.51)
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We estimate Ji term by term. By the Gauss theorem, it is clear that

J1 =

∣
∣
∣
∣
∣

∫

ΩT

∂z2

(

2e−2ηz0
r11
r22

(
(∂z0z1r02)∂z0∂

2
z2
ϕ+ (∂z0r02)∂z0z1∂

2
z2
ϕ
)
∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫

ΩT

∂z2

(

2e−2ηz0
r11
r22

(∂z0z1r02)∂z0∂
2
z2
ϕ∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J1,1

+

∣
∣
∣
∣
∣

∫

ΩT

∂z2

(

2e−2ηz0
r11
r22

(∂z0r02)∂z0z1∂
2
z2
ϕ∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J1,2

. (4.52)

By simple calculation we have

J1,1 ≤

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0∂z2

(
r11
r22

)

(∂z0z1r02)∂z0∂
2
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0
r11
r22

(∂z0z1z2r02)∂z0∂
2
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0
r11
r22

(∂z0z1r02)∂z0∂
3
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0
r11
r22

(∂z0z1r02)∂z0∂
2
z2
ϕ∂z1∂

3
z2
ϕdzdz0

∣
∣
∣
∣
∣
.

By the Hölder’s inequality, one has

J1,1 .

∫ T

0

e−2ηz0‖∂z0z1r02(z0, ·)‖L2‖∂z0∂
2
z2
ϕ(z0, ·)‖L4‖∂z1∂

2
z2
ϕ(z0, ·)‖L4dz0

+

∫ T

0

e−2ηz0‖∂z0z1z2r02(z0, ·)‖L2‖∂z0∂
2
z2
ϕ(z0, ·)‖L4‖∂z1∂

2
z2
ϕ(z0, ·)‖L4dz0

+

∫ T

0

e−2ηz0‖∂z0z1r02(z0, ·)‖L4‖∂z0∂
3
z2
ϕ(z0, ·)‖L2‖∂z1∂

2
z2
ϕ(z0, ·)‖L4dz0

+

∫ T

0

e−2ηz0‖∂z0z1r02(z0, ·)‖L2‖∂z0∂
2
z2
ϕ(z0, ·)‖L4‖∂z1∂

3
z2
ϕ(z0, ·)‖L2dz0.

. δ

∫ T

0

e−2ηz0
(

‖∂z0ϕ(z0, ·)‖
2
H3(Ω) + ‖ϕ(z0, ·)‖

2
H4(Ω)

)

dz0, (4.53)

where in the last inequality, we have used the Sobolev embedding H1(Ω) →֒ L4(Ω)

and assumption (ii). Similarly, one deduces that

J1,2 . δ

∫ T

0

e−2ηz0
(

‖∂z0ϕ(z0, ·)‖
2
H3(Ω) + ‖ϕ(z0, ·)‖

2
H4(Ω)

)

dz0
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+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0r02∂z0z1∂
3
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 0
1,2

. (4.54)

Integrating by part with respect to z0, one has

J 0
1,2 .

∣
∣
∣
∣
∣

∫

ΩT

∂z0
(
e−2ηz0∂z0r02∂z1∂

3
z2
ϕ∂z1∂

2
z2
ϕ
)
dzdz0

∣
∣
∣
∣
∣

+ η

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0r02∂z1∂
3
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂z0r02∂z1∂
3
z2
ϕ∂z0z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

ΩT

e−2ηz0∂2z0r02∂z1∂
3
z2
ϕ∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣
.

By the Cauchy inequality, one deduces

J 0
1,2 . e−2ηT

(

q‖∂z1∂
3
z2
ϕ(T, ·)‖2L2(Ω) +

1

q
‖∂z1∂

2
z2
ϕ(T, ·)‖2L2(Ω)

)

+ ‖ϕ0‖
2
H4(Ω)

+ η

(
∫ T

0

e−2ηz0

(

q‖∂z1∂
3
z2
ϕ(z0, ·)‖

2
L2(Ω) +

1

q
‖∂z1∂

2
z2
ϕ(z0, ·)‖

2
L2(Ω)

)

dz0

)

+

∫ T

0

e−2ηz0
(

‖∂z1∂
3
z2
(z0, ·)‖

2
L2(Ω) + ‖∂z0z1∂

2
z2
ϕ(z0, ·)‖

2
L2(Ω)

)

dz0

+ δ

∫ T

0

‖∂z1∂
3
z2
ϕ(z0, ·)‖

2
L2(Ω) + ‖∂z1∂

2
z2
ϕ(z0, ·)‖

2
L2(Ω)dz0. (4.55)

Combining (4.52)-(4.55), we obtain

J1 . (δ + 1)

∫ T

0

e−2ηz0
(

‖∂z0ϕ(z0, ·)‖
2
H3(Ω) + ‖ϕ(z0, ·)‖

2
H4(Ω)

)

dz0

+ (qη + 1)

∫ T

0

‖∂z1∂
3
z2
ϕ(z0, ·)‖

2
L2dz0 + qe−2ηT ‖∂z1∂

3
z2
ϕ(T, ·)‖2L2(Ω)

+
1

q

(

η

∫ T

0

‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L2dz0 + e−2ηT ‖∂z1∂

2
z2
ϕ(T, ·)‖2L2(Ω)

)

. (4.56)

For J2, we have

J2 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r12)∂z1∂

2
z2
ϕ + (∂z0r12)∂

2
z1
∂2z2ϕ

)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣
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.

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(∂z0z1r12)∂z1∂
2
z2
ϕ∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J2,1

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(∂z0r12)∂
2
z1
∂2z2ϕ∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J2,2

. (4.57)

By the Gauss theorem and assumption (ii), it is not difficult to deduce that

J2,1 =

∣
∣
∣
∣
∣

∫

ΩT

∂z2

(

2e−2ηz0
r11
r22

(∂z0z1r12)∂z1∂
2
z2
ϕ∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣

.

∫ T

0

e−2ηz0‖∂z0z1r12(z0, ·)‖L4(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1z2r12(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1r12(z0, ·)‖L4(Ω)‖∂z1∂
3
z2
ϕ(z0, ·)‖L2(Ω)‖∂z1∂

2
z2
ϕ(z0, ·)‖L4(Ω)dz0

. δ

∫ T

0

e−2ηz0‖∂z1∂
3
z2
ϕ(z0, ·)‖

2
H1(Ω)dz0, (4.58)

where the Sobolev embedding H1(Ω) →֒ L4(Ω) is used in the last inequality. For

J2,2, one has

J2,2 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0
r11
r22

(∂z0r12)∂z1

(∣
∣∂z1∂

2
z2
ϕ
∣
∣2
)

dz1dz0

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫ T

0

∫

R+

∂z1

(

e−2ηz0
r11
r22

(∂z0r12)
∣
∣∂z1∂

2
z2
ϕ
∣
∣
2
)

dz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 1
2,2

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0∂z1

(
r11
r22

)

(∂z0r12)
∣
∣∂z1∂

2
z2
ϕ
∣
∣2 dz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 2
2,2

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0
r11
r22

(∂z0z1r12)
∣
∣∂z1∂

2
z2
ϕ
∣
∣
2
dz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 3
2,2

. (4.59)

We claim J 1
2,2 = 0. Indeed, applying ∂2z2 to the boundary condition Bϕ(z0, 0, z2) = 0

and letting z2 = 0, one has

b1∂z1∂
2
z2
ϕ(z0, 0, 0) = (B∂2z2ϕ)(z0, 0, 0)− b2∂

3
z2
ϕ(z0, 0, 0). (4.60)
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By (4.48), (4.49), and assumption (iii), it is clear that (B∂2z2ϕ)(z0, 0, 0) = 0, b2(0, 0) =

0, and b1(0, 0) = −1 6= 0. This together with (4.60) imply that ∂z1∂
2
z2
ϕ(z0, 0, 0) = 0,

hence our claim holds. For J 2
2,2, by the trace theorem and assumptions (i) and (ii),

one obtains

J 2
2,2 .

∫ T

0

e−2ηz0‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
H1(Ω)dz0. (4.61)

By the Gauss theorem, the Sobolev embedding theorem, and assumption (ii), we

deduce that

J 3
2,2 =

∫

ΩT

∂z2

(

e−2ηz0
r11
r22

∂z0z1r12
∣
∣∂z1∂

2
z2
ϕ
∣
∣2
)

dzdz0

.

∫ T

0

e−2ηz0‖∂z0z1r12(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1z2r12(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1r12(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖L4(Ω)‖∂z1∂

3
z2
ϕ(z0, ·)‖L2(Ω)dz0

. δ

∫ T

0

e−2ηz0‖∂z1∂
2
z2
(z0, ·)‖

2
H1(Ω)dz0. (4.62)

Hence we conclude that

J2 . (δ + 1)

∫ T

0

e−2ηz0‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
H1(Ω)dz0. (4.63)

For J3, one has

J3 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r22)∂

3
z2
ϕ+ (∂z0r22)∂z1∂

3
z2
ϕ
)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(∂z0z1r22)∂
3
z2
ϕ∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J3,1

+

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0(∂z0r22)∂z1∂
3
z2
ϕ∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J3,2

. (4.64)

By the Gauss theorem and the Hölder inequality, it is not difficult to see that

J3,1 .

∫ T

0

e−2ηz0‖∂z0z1r22(z0, ·)‖L2(Ω)‖∂
3
z2
ϕ(z0, ·)‖L4(Ω)‖∂z1∂

2
z2
ϕ(z0, ·)‖L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1z2r22(z0, ·)‖L2(Ω)‖∂
3
z2
ϕ(z0, ·)‖L4(Ω)‖∂z1∂

2
z2
ϕ(z0, ·)‖L4(Ω)dz0
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+

∫ T

0

e−2ηz0‖∂z0z1r22(z0, ·)‖L2(Ω)‖∂
4
z2
ϕ(z0, ·)‖L2(Ω)‖∂z1∂

2
z2
ϕ(z0, ·)‖L4(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z0z1r22(z0, ·)‖L2(Ω)‖∂
3
z2
ϕ(z0, ·)‖L4(Ω)‖∂z1∂

3
z2
ϕ(z0, ·)‖L2(Ω)dz0

. δ

∫ T

0

e−2ηz0
(

‖∂3z2ϕ(z0, ·)‖
2
H1(Ω) + ‖∂z1∂

2
z2
ϕ(z0, ·)‖

2
H1(Ω)

)

dz0. (4.65)

For J3,2, the Gauss theorem cannot be used directly, since it contains fourth order

derivative ∂z1∂
3
z2
ϕ on boundary {z2 = 0}. Therefore, we use (4.38) to replace ∂z1∂

3
z2
ϕ

in J3,2 and then apply the trace theorem and the Cauchy inequality to derive the

estimate. In fact, one has

J3,2 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
∂z0r22
r22

L(∂z1z2ϕ)∂z1∂
2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

.

∫ T

0

e−2ηz0‖∂z0z2r22(z0, ·)‖L4(Ω)‖L(∂z1z2ϕ)(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖L2(Ω)dz0

+

∫ T

0

e−2ηz0‖L(∂z1z2ϕ)(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖L2(Ω)dz0

+

∫ T

0

e−2ηz0‖∂z2L(∂z1z2ϕ)(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖L2(Ω)dz0

+

∫ T

0

e−2ηz0‖L(∂z1z2ϕ)(z0, ·)‖L2(Ω)‖∂z1∂
3
z2
ϕ(z0, ·)‖L2(Ω)dz0.

By the Cauchy inequality and assumption (ii), we have

J3,2 . (δ + 1)

∫ T

0

e−2ηz0
(
‖∂z0ϕ(z0, ·)‖H3(Ω) + ‖∂2z0ϕ(z0, ·)‖H2(Ω)

)
‖ϕ(z0, ·)‖H4(Ω)dz0

+

∫ T

0

e−2ηz0

(

qη‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L2(Ω) +

1

qη
‖∂z2L(∂z1z2ϕ)(z0, ·)‖

2

)

dz0

.

(

δ + 1 + qη +
1

qη

)
∑

|α|≤4

∫ T

0

e−2ηz0‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0

+
1

qη

∑

|α|≤3

∫ T

0

e−2ηz0L(Dαϕ)(z0, ·)‖
2dz0. (4.66)

Combining (4.64)-(4.66), one deduces that

J3 .

(

δ + 1 + qη +
1

qη

)
∑

|α|≤4

∫ T

0

e−2ηz0‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0

+
1

qη

∑

|α|≤3

∫ T

0

e−2ηz0‖L(Dαϕ)(z0, ·)‖
2
L2(Ω)dz0. (4.67)
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Noticing that J4 contains no derivatives higer than third order, it can be estimated

easily by the Gauss theorem, the trace theorem, and assumption (ii). In fact, we

have

J4 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
(∂z0z1r2)∂

2
z2
ϕ+ (∂z0r2)∂z1∂

2
z2
ϕ
)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

. (δ + 1)
∑

|α|≤4

∫ T

0

e−2ηz0‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0. (4.68)

For J5, by the Gauss theorem, one has

J5 =

∣
∣
∣
∣
∣

∫ T

0

∫

R+

2e−2ηz0
r11
r22

(
∂z0z1L(∂z2ϕ

)
∂z1∂

2
z2
ϕdz1dz0

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

ΩT

∂z2

(

2e−2ηz0
r11
r22

(
∂z0z1L(∂z2ϕ

)
∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0∂z2

(
r11
r22

)
(
∂z0z1L(∂z2ϕ)

)
∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J5,1

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0

(
r11
r22

)
(
∂z0z1z2L(∂z2ϕ)

)
∂z1∂

2
z2
ϕdzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J5,2

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0

(
r11
r22

)
(
∂z0z1L(∂z2ϕ)

)
∂z1∂

3
z2
ϕdzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸
J5,3

. (4.69)

By the Hölder inequality, one has

J5,1 .

∫ T

0

e−2ηz0‖(∂z0z1L(∂z2ϕ))(z0, ·)‖L2(Ω)‖∂z1∂
2
z2
ϕ(z0, ·)‖L2(Ω)dz0

. (δ + 1 + qη)

∫ T

0

e−2ηz0
∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0

+
1

qη

∫ T

0

e−2ηz0‖L(∂z0z1z2ϕ)(z0, ·)‖
2
L2(Ω)dz0. (4.70)

where we have used assumption (ii) and the following fact:

∂zkzℓ(L∂z2ϕ) = (∂zkL)∂zℓz2ϕ+ (∂zℓL)∂zkz2ϕ+ (∂zkzℓL)∂z2ϕ+ L(∂zkzℓz2ϕ), (4.71)
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where

∂zkL :=

2∑

i,j=0

∂zkrij∂zizj , (4.72)

∂zkzℓL :=
2∑

i,j=0

∂zkzℓrij∂zizj . (4.73)

Integrating by parts with respect to z0, we have

J5,2 ≤

∣
∣
∣
∣
∣
∣

∫

ΩT

∂z0

(

2e−2ηz0

(
r11
r22

)
(
∂z1z2L(∂z2ϕ)

)
∂z1∂

2
z2
ϕ

)

dzdz0

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 1
5,2

+ 2η

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0

(
r11
r22

)
(
∂z1z2L(∂z2ϕ)∂z1∂

2
z2
ϕ
)
dzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 2
5,2

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0∂z0

(
r11
r22

)
(
∂z1z2L(∂z2ϕ)∂z1∂

2
z2
ϕ
)
dzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 3
5,2

+

∣
∣
∣
∣
∣

∫

ΩT

2e−2ηz0

(
r11
r22

)
(
∂z1z2L(∂z2ϕ)∂z0z1∂

2
z2
ϕ
)
dzdz0

∣
∣
∣
∣
∣

︸ ︷︷ ︸

J 4
5,2

. (4.74)

It is clear that

J 1
5,2 . e−2ηT

∫

Ω

∣
∣
∣∂z1z2L(∂z2ϕ)∂z1∂

2
z2
ϕ
∣
∣
z0=T

∣
∣
∣ dz + ‖f |z0=0‖

2
H3(Ω)

. e−2ηT



(q + δ)
∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω) +
1

q
‖∂z1∂

2
z2
(T, ·)‖2





+ e−2ηT

(

qη2‖∂z1∂
2
z2
ϕ(T, ·)‖2L2(Ω) +

1

qη2
‖L(∂z1∂

2
z2
ϕ)(T, ·)‖2L2(Ω)

)

+ ‖f |z0=0‖
2
H3(Ω)

. e−2ηT



(q + δ)
∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω) +
1

qη2
‖L(∂z1∂

2
z2
ϕ)(T, ·)‖2L2(Ω)





+

(

qη +
1

qη

)∫ T

0

e−2ηz0‖∂z0z1∂
2
z2
ϕ(z0, ·)‖

2
L2(Ω)dz0

+ ‖f |z0=0‖
2
H3(Ω). (4.75)
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In the above estimates, the Cauchy inequality and inequality (3.23) are empoyed,

and δ comes from the L4-norm (which can be bounded by the H1-norm) of D2rij .

By a similar argument, we can also deduce that

J 2
5,2 . η

∫ T

0

e−2ηz0

(
1

qη2
‖L(∂z1∂

2
z2
ϕ)(z0, ·)‖

2 + qη2‖∂z1∂
2
z2
ϕ(z0, ·)‖

2
L2(Ω)

)

dz0

+ η

∫ T

0




1

q
‖∂z1∂

2
z2
ϕ(z0, ·)‖

2
L2(Ω) + (q + δ)

∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)



 dz0

.

∫ T

0

e−2ηz0




1

qη
‖L(∂z1∂

2
z2
ϕ)(z0, ·)‖

2
L2(Ω) + η(q + δ)

∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)



 dz0

+
1

qη

∫ T

0

e−2ηz0
∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0. (4.76)

By the Cauchy inequality, it is not difficult to see that

J 3
5,2 + J 4

5,2

.

∫ T

0

e−2ηz0

(
1

qη
‖L(∂z1∂

2
z2
ϕ)(z0, ·)‖

2
L2(Ω) + qη‖∂z0z1∂

2
z2
ϕ(z0, ·)‖

2
L2(Ω)

)

dz0.

+ δ

∫ T

0

e−2ηz0
∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0. (4.77)

Combining (4.74)-(4.77), we are able to conclude that

J5 .
1

qη

∫ T

0

e−2ηz0
∑

|α|≤3

‖L(Dαϕ)(z0, ·)‖
2
L2(Ω)dz0

+

(

δ + (q + δ)η +
1

qη
+ 1

)∫ T

0

e−2ηz0
∑

|α|≤4

‖Dαϕ(z0, ·)‖
2
L2(Ω)dz0

+ e−2ηT



(q + δ)
∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω) +
1

qη2
‖L(∂z1∂

2
z2
ϕ)(T, ·)‖2L2(Ω)‖

2





+

(

qη +
1

qη

)∫ T

0

e−2ηz0‖∂z0z1∂
2
z2
ϕ(z0, ·)‖

2
L2(Ω)dz0 + ‖f |z0=0‖

2
H3(Ω). (4.78)

Collecting the estimates of J1, · · · ,J5, we obtain the estimate of I4,2:

I4,2 .
1

qη

∑

|α|≤3

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 + (
1

qη
+ qη)

∑

|α|≤4

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0

+ ‖f |z0=0‖
2
H3(Ω) + (1 + qη2)‖ϕ0‖

2
H4(Ω) + ‖ϕ1‖

2
H3(Ω)
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+
1

qη2
e−2ηT



‖ϕ(T, ·)‖2H4(Ω) +
∑

|α|≤3

‖L(Dα)ϕ(T, ·)‖2L2(Ω)





+ qe−2ηT ‖ϕ(T, ·)‖2H4(Ω). (4.79)

For I4,3, via (4.38), the trace theorem, and the Cauchy inequality, one has

I4,3 .

∫ T

0

e−2ηz0

(
1

qη
‖L(∂z0z2ϕ)‖

2
H1(Ω) + qη‖∂z1∂

2
z2
ϕ‖2H1(Ω)

)

dz0

.
1

qη

∑

|α|≤3

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 +

(
1

qη
+ qη

)
∑

|α|≤4

‖e−2ηz0Dαϕ‖2L2(ΩT ).

(4.80)

Now the sum of the estimate of I4,1, I4,2, and I4,3 yields

|I4| .
1

qη

∑

|α|≤3

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0

+ (
1

qη
+ (q + δ)η + δ + 1)

∑

|α|≤4

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0

+ e−2ηT



(q + δ)‖ϕ(T, ·)‖2H4(Ω) +
1

qη2

∑

|α|≤3

‖L(Dαϕ)(T, ·)‖2L2(Ω)





+ ‖f |z0=0‖
2
H3(Ω). (4.81)

For I5, by (4.38) and the trace theorem

|I5| =

∣
∣
∣
∣
∣
∣

−

∫ T

0

∫

R+

e−2ηz0∂z0∂
3
z2
ϕ

2∑

i=0

ri∂zi∂
2
z2
ϕdz1dz0

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫ T

0

∫

R+

e−2ηz0
1

r22
L(∂z0z2ϕ)

2∑

i=0

ri∂zi∂
2
z2
ϕdz1dz0

∣
∣
∣
∣
∣
∣

.

∫ T

0

e−2ηz0

(
1

qη
‖L∂z0z2ϕ(z0, ·)‖

2
H1(Ω) + qη‖ϕ(z0, ·)‖

2
H4(Ω)

)

dz0

+

∫ T

0

e−2ηz0‖∂z0ϕ(z0, ·)‖
2
H3(Ω)dz0

.

∫ T

0

e−2ηz0
1

qη




∑

|α|≤4

‖Dαϕ‖2L2(Ω) +
∑

|α|≤3

‖L(Dαϕ)‖2L2(Ω)



 dz0

+ (qη + 1)
∑

|α|≤4

∫ T

0

e−2ηz0‖Dαϕ‖2L2(Ω)dz0, (4.82)
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where in the first inequality, we have used the Cauchy inequality. Gathering the

estimates of I1, I2, · · · , I5, we finally have
∫ T

0

∫

R+

e−2ηz0r22∂z0∂
3
z2
ϕ∂4z2ϕ|z2=0dz1dz0

. q



η

∫ T

0

e−2ηz0
∑

|α|≤4

‖Dαϕ‖2L2(Ω)dz0 + e−2ηT
∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω)





+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤4

‖Dαϕ(z0)‖
2
L2(Ω) +

∑

|α|≤3

‖L(Dαϕ)(z0)‖
2
L2(Ω)



 dz0

+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤3

‖L(Dαϕ)‖2L2(Ω) +
∑

|α|≤4

‖Dαϕ‖2L2(Ω)



 dz0

+
1

qη2
e−2ηT



‖ϕ(T, ·)‖2H4(Ω) +
∑

|α|≤3

‖L(Dαϕ)(T, ·)‖2L2(Ω)





+ qe−2ηT ‖ϕ(T, ·)‖2H4(Ω) +
1

q
‖∂2z2f |z0=0‖

2
L2(Ω)). (4.83)

By (4.31), (4.36), and (4.83), we obtain the estimate of D∂3z2ϕ, i.e.,

η

∫

ΩT

e−2ηz0 |D∂3z2ϕ|
2dzdz0 + e−2ηT

∫

Ω

|D∂3z2ϕ|z0=T |
2dz1dz2

. δ

(

η

∫ T

0

e−2ηz0‖ϕ(z0, ·)‖
2
H4(Ω)dz0 + e−2ηT ‖ϕ(T, ·)‖2H4(Ω)

)

+ δ

∫ T

0

e−2ηz0(‖ϕ(z0, ·)‖
2
H3(Ω) + ‖∂z0ϕ(z0, ·)‖

2
H3(Ω))dz0

+ (qη + 1)
∑

|α|≤4

∫ T

0

e−2ηz0‖Dαϕ‖2L2(Ω)dz0 + qe−2ηT
∑

|α|≤4

‖Dαϕ(T, ·)‖2L2(Ω)

+
1

qη

∫ T

0

e−2ηz0




∑

|α|≤4

‖Dαϕ(z0)‖
2
L2(Ω) +

∑

|α|≤3

‖L(Dαϕ)(z0)‖
2
L2(Ω)



 dz0

+
1

qη2
e−2ηT



‖ϕ(T, ·)‖2H4(Ω) +
∑

|α|≤3

‖L(Dαϕ)(T, ·)‖2L2(Ω)





+
1

q
‖∂2z2f |z0=0‖

2
L2(Ω). (4.84)
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By applying the equation,

|∂2z1∂
2
z2
ϕ| . |L(∂2z2ϕ)|+ |D∂3z2ϕ|+

∑

|α|≤3

|Dα∂z0ϕ|, (4.85)

|∂3z1∂z2ϕ| . |L(∂z1z2ϕ)|+ |∂2z1∂
2
z2
ϕ|+ |∂z1∂

3
z2
ϕ|+

∑

|α|≤3

|Dα∂z0ϕ|

. |L(∂z1z2ϕ)|+ |L(∂2z2ϕ)|+ |D∂3z2ϕ|+
∑

|α|≤3

|Dα∂z0ϕ|, (4.86)

|∂4z1ϕ| . |L(∂z1z2ϕ)|+ |L(∂2z2ϕ)|+ |L(∂2z1ϕ)|+ |D∂3z2ϕ|+
∑

|α|≤3

|Dα∂z0ϕ|. (4.87)

It is clear that ∂2z1∂
2
z2
ϕ can be bounded by the estimated terms, namely, the deriva-

tives of ∂z0ϕ and ∂z2ϕ, and the commutator. Then ∂3z1∂z2ϕ and ∂4z1ϕ can be also

bounded by the controlled terms. In fact, one has

η

∫

ΩT

e−2ηz0 |∂2z1∂
2
z2
ϕ|2dzdz0 + e−2ηT

∫

Ω

|∂2z1∂
2
z2
ϕ|z0=T |

2dz1dz2

+ η

∫

ΩT

e−2ηz0 |∂3z1∂z2ϕ|
2dzdz0 + e−2ηT

∫

Ω

|∂3z1∂z2ϕ|z0=T |
2dz1dz2

+ η

∫

ΩT

e−2ηz0 |∂4z1ϕ|
2dzdz0 + e−2ηT

∫

Ω

|∂4z1ϕ|z0=T |
2dz1dz2

.
∑

|α|≤2

(

η

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 + e−2ηT

∫

Ω

|L(Dαϕ)|z0=T |
2dz1dz2

)

+ η

∫

ΩT

e−2ηz0 |D∂3z2ϕ|
2dzdz0 + e−2ηT

∫

Ω

|D∂3z2ϕ|z0=T |
2dz1dz2

+
∑

|α|≤3

(

η

∫

ΩT

e−2ηz0 |Dα∂z0ϕ|
2dzdz0 + e−2ηT

∫

Ω

|Dzα∂z0ϕ|z0=T |
2dz1dz2

)

. (4.88)

By (3.23), we have

∑

|α|≤2

(

η

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 + e−2ηT

∫

Ω

|L(Dαϕ)|z0=T |
2dz1dz2

)

.
∑

|α|≤2

(

1

η

∫

ΩT

e−2ηz0 |∂z0L(D
αϕ)|2dzdz0 + ‖L(Dαϕ)|z0=0‖

2
L2(Ω)

)

.
∑

|α|≤3

1

η

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 +
∑

|α|≤4

1

η

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0. (4.89)

It is clear that the left hand sides of (4.25), (4.84), and (4.88) cover all the fourth

order derivatives of ϕ. Hence by adding up (4.25), (4.84), and (4.88), we obtain

a estimate of all the fourth order derivatives, but still with Dα∂z0ϕ, D∂
3
z2
ϕ and
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L(Dαϕ) (|α| ≤ 3) (which have already been estimated) on the right hand side of the

estimate. The resultant inequality is too long, so we omit to write it down. Then

we substitute the estimate of Dα∂z0ϕ (|α| ≤ 3) in (4.25), the estimate of D∂3z2ϕ in

(4.84), and the estimate in (4.89) into the right hand side of the resultant estimate.

Next, one firtstly chooses q and δ properly small, then chooses η appropriately large,

one deduces that

∑

|α|≤|4

(

η

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0 + e−2ηT

∫

Ω

|Dαϕ|z0=T |
2dz1dz2

)

.
1

η2

∑

α|≤3

(

η

∫

ΩT

e−2ηz0 |L(Dαϕ)|2dzdz0 + e−2ηT

∫

Ω

|L(Dαϕ)|z0=T |
2dz1dz2

)

+ ‖f |z0 = 0‖2H3(Ω). (4.90)

�

Combining lemma 4.1 and lemma 4.2, it is easy to see that lemma 3.2 holds.

5. The nonlinear problem, proof of theorem 2.1

In this section, based on the well-posedness of linear problem (3.1) in Proposition

3.1, we will establish the existence of the non-linear problem by constructing an

iteration scheme. The iteration scheme admits an approximate sequence of the

solutions. Then by showing the sequence is bounded in the higher order norm and

contracted in the lower order norm, one shows that the sequence converges to the

desired solution. Hence theorem 2.1 is proved. First from Proposition 3.1, we have

the following theorem:

Theorem 5.1. Under assumptions (i)− (iv), there exists a smooth solution to (3.1)

and there exists a constant η̄ > 0, such that for η ≥ η̄ and any T > 0,

∑

|α|≤|4

(

η

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0 + e−2ηT

∫

Ω

|Dαϕ|z0=T |
2dz1dz2

)

.
1

η2

∑

|β|≤4

(

η

∫ T

0

e−2ηz0‖Dβf(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖Dβf(T, ·)‖2L2(Ω)

)

+ ‖f |z0 = 0‖2H3(Ω). (5.1)

Proof. Note that

L(Dαϕ) = −[Dα,L]ϕ+DαLϕ = −[Dα,L]ϕ+Dαf. (5.2)
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For the commutator [Dα,L]ϕ, it is clear that

[Dα,L]ϕ =

2∑

i,j=0

(
Dα(rij∂ijϕ)− rijD

α∂ijϕ
)
. (5.3)

By the Sobolev embedding theorem and assumption (ii), one has

‖[Dα,L]ϕ‖2L2(Ω) . ‖∂ijϕ‖
2
L∞(Ω) ·




∑

|β≤4|

‖DβΦ‖2L2(Ω)



 + ‖D∂ijϕ ·D3Φ‖2L2(Ω)

+ ‖D2∂ijϕ‖
2
L2(Ω) · ‖D

2Φ‖2L∞(Ω)

. δ(‖ϕ‖2H4(Ω) + ‖∂z0ϕ‖
2
H3(Ω) + ‖∂2z0ϕ‖

2
H2(Ω)) + ‖D∂ijϕ‖

2
L4(Ω) · ‖D

3Φ‖2L4(Ω)

. δ(‖ϕ‖2H4(Ω) + ‖∂z0ϕ‖
2
H3(Ω) + ‖∂2z0ϕ‖

2
H2(Ω)) + ‖D∂ijϕ‖

2
H1(Ω) · ‖D

3Φ‖2H1(Ω)

. δ(‖ϕ‖2H4(Ω) + ‖∂z0ϕ‖
2
H3(Ω) + ‖∂2z0ϕ‖

2
H2(Ω) + ‖∂3z0ϕ‖

2
H1(Ω))

. δ
∑

|β|≤4

‖Dβϕ‖2L2(Ω), (5.4)

where we have used the Hölder’s inequality in the second inequality. Hence,

η

∫ T

0

e−2ηz0‖[Dα,L]ϕ(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖[Dα,L]ϕ(T, ·)‖2L2(Ω)

≤ δ
∑

|β|≤4

(

η

∫ T

0

e−2ηz0‖Dβϕ(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖Dβϕ(T, ·)‖2L2(Ω)

)

. (5.5)

This together with (5.2) gives

η

∫ T

0

e−2ηz0‖L(Dαϕ)(z0, ·)‖L2(Ω)dz0 + e−2ηT ‖L(Dαϕ)(T, ·)‖L2(Ω)

. δ
∑

|β|≤4

(

η

∫ T

0

e−2ηz0‖Dβϕ(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖Dβϕ(T, ·)‖2L2(Ω)

)

+
∑

|β|≤3

(

η

∫ T

0

e−2ηz0‖Dβf(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖Dβf(T, ·)‖2L2(Ω)

)

. (5.6)

Therefore for properly small δ and appropriately large η, we deduce that

∑

|α|≤|4

(

η

∫

ΩT

e−2ηz0 |Dαϕ|2dzdz0 + e−2ηT

∫

Ω

|Dαϕ|z0=T |
2dz1dz2

)

.
1

η2

∑

|β|≤3

(

η

∫ T

0

e−2ηz0‖Dβf(z0, ·)‖
2
L2(Ω)dz0 + e−2ηT ‖Dβf(T, ·)‖2L2(Ω)

)

+ ‖f |z0 = 0‖2H3(Ω). (5.7)
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Lemma 5.1. For any smooth function v, we have

‖e−ηz0v‖2Hs(ΩT ) ≤
∑

|α|≤s

‖e−ηz0Dαv‖2L2(ΩT ) (5.8)

provided that ∂jz0v|z0=0 = 0 for j = 1, · · · , s− 1.

Proof. For T > 0, let

A(T ) =

∫

ΩT

e−2ηz0v2dz. (5.9)

Then one has

A(T ) = −
1

2η

∫

ΩT

(e−2ηz0)z0v
2dz

= −
1

2η

∫

ΩT

(e−2ηz0v2)z0 − e−2ηz02vvz0dz

≤ −
1

2η
e−2ηT

∫

Ω

v2dz1dz2 +
1

2η

∫

ΩT

e−2ηz0(ηv2 +
1

η
v2z0)dz

≤
1

2
A(T ) +

1

2η2

∫

ΩT

e−2ηz0v2z0dz. (5.10)

Hence we have

A(T ) ≤
1

η2

∫

ΩT

e−2ηz0v2z0dz. (5.11)

Now we show (5.8) by the induction on s. For s = 1,

‖e−ηz0v‖2H1(ΩT ) = η2‖e−ηz0v‖2L2(ΩT ) + ‖e−ηz0Dv‖2L2(ΩT )

≤ ‖e−ηz0vz0‖
2
L2(ΩT ) + ‖e−ηz0Dv‖2L2(ΩT )

≤
∑

|α|≤1

‖e−ηz0Dαv‖2L2(ΩT ). (5.12)

Now for k ∈ N, assume

‖e−ηz0v‖2Hk(ΩT ) ≤
∑

|α|≤k

‖e−ηz0Dαv‖2L2(ΩT ). (5.13)

We are going to show

‖e−ηz0v‖2Hk+1(ΩT ) ≤
∑

|α|≤k+1

‖e−ηz0Dαv‖2L2(ΩT ). (5.14)
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Repeating the process for estimate (5.11) above m times where |v|2 in A(T ) is

replaced by |Dnv|2, we have
∫ T

0

e−2ηt‖Dnv‖2L2(Ω)dt ≤ η−2m

∫ T

0

e−2ηt‖Dm+nv‖2L2(Ω)dt, (5.15)

provided that ∂ltv|t=0 = 0, l = 0, 1, 2, · · · , m+ n− 1. Note that

‖e−ηz0v‖2Hk+1(ΩT ) = ‖e−ηz0v‖2Hk(ΩT ) +
∑

|α|=k+1

‖Dα(e−ηtv)‖2L2(ΩT ) (5.16)

and
∑

|α|=k+1

‖Dα(e−ηtv)‖2L2(ΩT ) =
∑

l1+l2=k+1

‖(−η)l1e−ηtDl2v‖2L2(ΩT )

=
∑

l1+l2=k+1

(η)2l1‖e−ηtDl2v‖2L2(ΩT ). (5.17)

So by (5.15), we have
∑

l1+l2=k+1

(η)2l1‖e−ηtDl2v‖2L2(ΩT ) ≤
∑

l1+l2=k+1

‖e−ηtDl1+l2v‖2L2(ΩT )

=
∑

|α|=k+1

‖e−ηtDαv‖2L2(ΩT ). (5.18)

From (5.13), (5.16)–(5.18), we obtain (5.14). Therefore, we derive the estimate (5.8)

for any s ∈ N by the induction method. �

Let ψ(z0, z1, z2) =
∑3

k=0
ϕk

k!
zk0 , where ϕk = ∂kz0Φ̂|z0=0, i.e., ϕ0 = Φ̂0 and ϕ1 = Φ̂1

by the initial conditions in (2.32), and ϕk for k = 2 or 3 is defined by equation

(2.32)1 and the initial conditions. Then one defines a approximation sequence in the

following manner.

Let ϕ̃0 = 0 and suppose ϕ̃m is given. Then ϕ̃m+1 is defined as the solution to the

following initial boundary value problem:






L(ϕ̃m + ψ)ϕ̃m+1 = Fm, in ΩT ,

Bϕ̃m+1 = 0, on Γ1,

∂z2ϕ̃m+1 = 0, on Γ2,

ϕ̃m+1 = 0, ∂z0ϕ̃m+1 = 0, on Γ0,

(5.19)

where

L(Ψ′)Ψ′′ :=

2∑

i,j=0

αij(DΨ′)∂ijΨ
′′, (5.20)
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and

Fm = −L(ϕ̃m + ψ)ψ −

2∑

i=0

αi(ϕ̃m + ψ)∂ziϕ̃m. (5.21)

By the compatibility conditions, we have Bψ = 0 on Γ1 and ∂z2ψ = 0 on Γ2. Via

Theorem 5.1, the sequence {ϕ̃m}
∞
m=0 is well-defined. Now, we will show ϕ̃m converges

to some function ϕ̃, and then ϕ̃+ ψ is a solution to the non-linear problem (2.32).

Proposition 5.1 (Boundness in the higher order norm). There exist three constants

δ0 > 0, η0 ≥ 1, and T0 > 0 such that for η ≥ η0 and 0 < T ≤ T0, and for all n ≥ 0,

it holds that

‖e−ηz0ϕ̃n‖H4(ΩT ) + e−2ηT

4∑

k=0

sup
0≤z0≤T

‖∂kz0ϕ̃n(z0, ·)‖H4−k(Ω) ≤ δ0. (5.22)

Proof. We will prove it by the induction. It is easy to see (5.22) is true when n = 0,

since ǫ can be selected sufficiently small. Assume (5.22) holds for n = m ≥ 0. We

will show (5.22) holds for n = m+ 1. By (5.19) and Proposition 3.1, one has

‖e−ηz0ϕ̃m‖
2
H4(ΩT ) + e−2ηT

4∑

k=0

sup
0≤z0≤T

‖∂kz0ϕ̃m+1(z0, ·)‖H4−k(Ω)

≤
C

η2



‖e−ηz0Fm‖
2
H3(ΩT ) + e−2ηT

3∑

k=0

‖∂kz0Fm(T, ·)‖
2
H3−k(Ω)



 . (5.23)

By (5.21) and (5.22) holds for n = m, one has

‖e−ηz0Fm‖
2
H3(ΩT ) ≤ C ′‖e−ηz0ψ‖2H5(ΩT )e

2ηT
(

δ20 + ‖e−ηz0ψ‖2H5(ΩT )

)

+ C ′e2ηT δ20(δ
2
0 + ‖e−ηz0ψ‖2H5(ΩT )). (5.24)

Similarly for k = 0, 1, 2, 3, we have

‖∂kz0Fm(T, ·)‖
2
H3−k(Ω) ≤ C ′ǫ2e2ηT

(
Cδ20 + ǫ2

)
+ C ′e2ηT δ20(Cδ

2
0 + ǫ2). (5.25)

Select η0 ≥ 1 such that CC ′η−2
0 ≤ 1

8
and let T0 be small such that e2η0T0 ≤

2. Then for δ0 ≤
√

1
C
, one sets 0 < ǫ ≤ δ0 in Theorem 2.1 small such that

‖e−η0z0ψ(z0, ·)‖
2
H5(ΩT0

) ≤ δ20 . So it follows from (5.23)-(5.25) that,

‖e−ηz0ϕ̃m‖
2
H4(ΩT ) + e−2ηT

4∑

k=0

sup
0≤z0≤T

‖∂kz0ϕ̃m+1(z0, ·)‖H4−k(Ω) ≤ δ20 . (5.26)

�
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Let vm = ϕ̃m+1 − ϕ̃m for m ≥ 0, then vm satisfies the following initial boundary

value problem: 





L1(ϕ̃m + ψ)vm = Gm, in ΩT ,

Bvm = 0, on {z1 = 0},

∂z2vm = 0, on {z2 = 0},

vm = 0, ∂z0vm = 0, on {z0 = 0},

(5.27)

where

Gm = −[L(ϕ̃m + ψ)−L(ϕ̃m−1 + ψ)]ψ

− [α2(ϕ̃m + ψ)− α2(ϕ̃m−1 + ψ)]∂z2vm−1

− [L1(ϕ̃m + ψ)−L1(ϕ̃m−1 + ψ)]ϕ̃m. (5.28)

Proposition 5.2 (Contraction in the lower order norm). Under the same assump-

tions in Theorem 2.1, there exist two constants η∗ ≥ η0 and T∗ ≤ T0 such that, for

some σ ∈ (0, 1) for all m ≥ 1 and for η ≥ η∗ and T ≤ T∗, it holds that:

‖e−ηz0vm‖H1(ΩT ) + e−2ηT
1∑

k=0

sup
0≤z0≤T

‖∂kz0vm(z0, ·)‖H1−k(Ω)

≤ σ



‖e−ηz0vm−1‖H1(ΩT ) + e−2ηT

1∑

k=0

sup
0≤z0≤T

‖∂kz0vm−1(z0, ·)‖H1−k(Ω)



 . (5.29)

Proof. Note that

[L(ϕ̃m + ψ)−L(ϕ̃m−1 + ψ)]ϕ̃m

=
2∑

i,j=0

[αij(ϕ̃m + ψ)− αij(ϕ̃m−1 + ψ)]∂ijϕ̃m

=
3∑

i,j,k=0

(

∂kvm−1

∫ 1

0

∂αij

∂(∂kϕ̃)
(ϕ̃m−1 + ψ + θvm−1)dθ

)

∂ijϕ̃m.

So for η ≥ η0 and T ≤ T0, we have

‖e−ηz0 [L(ϕ̃m + ψ)− L(ϕ̃m−1 + ψ)]ϕ̃m‖L2(ΩT ) ≤ C(δ0)‖e
−ηz0vm−1‖H1(ΩT ). (5.30)

By a similar argument, we also derive that

‖[αi(ϕ̃m + ψ)− αi(ϕ̃m−1 + ψ)]∂z2vm−1‖L2(ΩT ) ≤ C(δ0)‖e
−ηz0vm−1‖H1(ΩT ) (5.31)

and

‖e−ηz0 [L(ϕ̃m + ψ)−L(ϕ̃m−1 + ψ)]ψ‖L2(ΩT ) ≤ C(δ0)‖e
−ηz0vm−1‖H1(ΩT ). (5.32)
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By (5.30)-(5.32) and the first order energy estimate (3.15), one has

‖e−ηz0vm‖H1(ΩT ) + e−2ηT

1∑

k=0

sup
0≤z0≤T

‖∂kz0vm(z0, ·)‖H1−k(Ω)

≤ C(δ0)η
−1‖e−ηz0vm−1‖H1(ΩT ). (5.33)

Choose η∗ ≥ η0 such that σ := C(δ0)η
−1
∗ < 1. Note that δ0 does not depend on the

weight η. Then select T∗ ≤ T0 such that e2η1T∗ ≤ 2, we obtain (5.29) for η ≥ η∗ and

T ≤ T∗. This completes the proof of this proposition. �

Now, we are ready to conclude this paper by showing the main theorem.

Proof of Theorem 2.1. Proposition 5.2 implies that {ϕ̃m}
∞
m is a Cauchy sequence.

Hence there exists a function ϕ̃ ∈ H1(ΩT ) such that for η ≥ η∗ and T ≤ T∗,

lim
m→∞



‖e−ηz0(ϕ̃m − ϕ̃)‖H1(ΩT ) + e−2ηT
1∑

k=0

‖∂kz0(ϕ̃m − ϕ̃)‖L∞(0,T ;H1−k(Ω))



 = 0.

Moreover, Proposition 5.1 implies that ϕ̃ ∈ H4(ΩT ). Hence by passing the limit

m → ∞ in the approximation problem (5.19), one deduces that ϕ̃ + ψ is a smooth

solution to the non-linear problem (2.1). Moreover, by (5.22) and the assumptions

in Theorem 2.1, one has ‖e−ηz0(ϕ̃ + ψ)‖H4(ΩT ) ≤ Cδ0, for η ≥ η∗ and T ≤ T∗. This

completes the proof of Theorem 2.1. �
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