
Achieving one-dimensionality with attractive fermions

F. Chevy1, ∗ and G. Orso2, †
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In this article we discuss the accuracy of effective one-dimensional theories used to describe the
behavior of ultracold atomic ensembles confined in quantum wires by a harmonic trap. We derive
within a fully many-body approach the effective Hamiltonian describing this class of systems and
we calculate the beyond-mean field corrections to the energy of the ground state arising from virtual
transitions towards excited state of the confining potential. We find that, due to the Pauli principle,
effective finite-range corrections are one of magnitude larger than effective three-body interactions.
By comparing to exact solutions of the purely 1D problem, we conclude that a 1D effective theory
provides a good description of the ground state of the system for a rather large range of interaction
parameters.

I. INTRODUCTION

Among quantum technologies, quantum simulation
aims at finding the properties of complex Hamiltonians
by engineering experimental systems whose dynamics can
be described as precisely as possible by the problem un-
der study [1, 2]. Within this program, ultracold atoms
have been used in the past decade to solve Bertsch’s
many-body X-challenge on the structure of strongly cor-
related quantum patter [3], or to emulate lattice models
[4].

In this context the control of the experimental param-
eters is paramount to the success of the quantum simula-
tion program and in this article we discuss the feasibility
of the simulation of low dimensional systems using ul-
tracold systems. Experimentally, low-dimensionality can
be achieved by strongly compressing particles along one
or two dimensions. When the energy of the particles is
lower than the distance between the ground state and the
first excited state of the trapping potential, the dynamics
is frozen along these directions and we can consider the
system as being kinematically 1D or 2D.

In this article, we focus on one-dimensional fermionic
systems. These systems are accessible experimentally us-
ing cold atoms and have been used in recent years to
study a large array of phenomena, such as their ther-
modynamic properties [5] or pairing close to confinement
induced resonances [6]. Their phase diagram in the pres-
ence of some spin-imbalance [7–11], or even in large spin
systems [12] was explored. Their structure factor has
been characterized [13] and spin-charge separation was
observed [14]. More importantly for our purpose here,
their properties can be calculated exactly using Bethe
Ansatz [15] and these solutions can be used as a reli-
able benchmarks to quantify deviations from true one-
dimensionality in a realistic experimental system.

The mechanism leading to a low-dimensional regime is
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however not necessarily valid for strongly correlated sys-
tems. As pointed out in earlier works, virtual transitions
towards excited states of the confining potential can mod-
ify the effective interactions between particles by giving
rise to emergent few-body interactions [16–19] and even
modify the phase diagram of the system [20–22]. This de-
parture from pure one-dimensionality is potentially more
pronounced for fermions that are intrinsically stable close
to Feshbach resonances.

By considering first the transverse size of the cloud, we
show in Sec. III that for repulsive interactions of arbi-
trary strength, the Yang-Gaudin regime can be achieved
as long as the density is small enough. By contrast, we
show for strongly attractive systems that the occupation
of excited states remain finite even for vanishingly small
densities and that true one-dimensionality can therefore
never be achieved in this regime. In the following sec-
tions, we focus on the weakly attractive limit where Yang-
Gaudin’s limit can be achieved. Using Schrieffer-Wolff’s
approach [23], we derive the many-body effective Hamil-
tonian describing the low-energy physics of fermions in
a quantum wire (Sec. IV). We recover effective three-
body interactions found in previous works on quasi-1D
few-body physics and we use them to calculate the first
beyond-mean-field corrections to the energy of the many-
body system. We conclude that even for rather large
Fermi energy, the corrections to the Yang-Gaudin Hamil-
tonian remain small.

II. THE YANG-GAUDIN HAMILTONIAN

The Yang-Gaudin Hamiltonian [24, 25] is one of
the simplest models introduced in quantum many-body
physics. It describes an ensemble of one-dimensional spin
1/2 fermions with contact interactions and is expressed
as

HYG =
∑
i,σ

p2
σ,i

2m
+ g1D

∑
i,j

δ(z↑,i − z↓,j). (1)
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Here, m is the mass of the particles, pσ,i and zσ,i are re-
spectively the momentum and the positions of the ith
particle carrying a spin σ =l and g1D is a coupling
constant that can be expressed using a so-called 1D-
scattering length a1D defined by g1D = −2~2/ma1D.

The ground state of the Yang-Gaudin Hamiltonian
can be found analytically using Bethe’s Ansatz [15].
For attractive interactions and in the absence of spin-
imbalance, this exact solution amounts to solving numer-
ically the integral equation for the spectral function

σ(λ) =
1

π
− 1

π

∫ B

−B

1

1 + (λ− λ′)2
σ(λ′)dλ′, (2)

where B is a positive quantity, which is related to the
total particle density n by

na1D = 4

∫ B

−B
σ(λ)dλ. (3)

The ground state energy per unit of length is given by

EYG

L
=

4~2

ma3
1D

∫ B

−B

(
2λ2 − 1

2

)
σ(λ)dλ. (4)

On a dimensional ground, the solutions of these equa-
tions are characterized by a single dimensionless param-
eter γ = −2/na1D that compares the kinetic and inter-
action energies of the system. γ = 0 corresponds to a
non-interacting system while |γ| → ∞ corresponds to a
strongly interacting regime. For negative γ, this corre-
sponds to a “fermionized” gas of bosonic dimers with a
binding energy εb1D = ~2/ma2

1D.
In this article we focus on weakly attractive systems.

This limit is singular using Bethe’s Ansatz approach,
leading to contradictory claims about the behaviour of
beyond mean-field corrections [15, 26, 27]. We will then
rather proceed with a direct perturbative expansion us-
ing Rayleigh-Schrödinger’s formalism, that will also be
more easily amenable to the study of quasi-1D systems.
Using second order perturbation theory, we readily see
that the energy of an ensemble of spin 1/2 fermions is
given by

EYG =E0 + g1D
nN

4

+
g2

1D

L2

∑
|qσ|<kF
|pσ|>kF

p↑+p↓=q↑+q↓

m

~2(q2 − p2)
+ ...., (5)

where E0 = NEF /3 is the energy of the non-interacting
system, kF = nπ/2 is the Fermi wave vector, pσ and
qσ are the momenta of the particles and holes of spin
σ created by the interaction and q = (q↑ − q↓)/2 and
p = (p↑ − p↓)/2 are their relative momenta. The sum
appearing in the first beyond-mean-field contribution can
be calculated analytically and we obtain
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FIG. 1: Energy of an attractive quasi-1D Fermi gas in the
weakly attractive limit. The dots correspond to the exact so-
lution the true 1D system using Bethe Ansatz’s solution (Eq.
4). The dashed line is the asymptotic solution incorporat-
ing the first beyond mean-field correction. We see that the
agreement extends up to |γ| . 1.

EYG '
NEF

3

[
1 +

6γ

π2
− γ2

π2

]
. (6)

The above result is analytical in density and is identi-
cal to the one previously reported in [28] using a direct
asymptotic expansion of the Bethe-Ansatz solution. In
particular, we do not find the logarithmic contribution
initially predicted by Krivnov and Ovchinnikov [27].

In Fig. 1, we compare the second-order expansion (6),
(solid line), to the exact result obtained using the Bethe-
Ansatz (dot symbols). We see that they both agree in a
rather broad parameter regime |γ| . 1.

III. QUANTUM-SIMULATION OF
YANG-GAUDIN’S HAMILTONIAN

Experimentally, effective low dimensional physics is
achieved by confining very strongly an ensemble of par-
ticles in one, two or three dimensions. When the typical
single particle energies (ie chemical potential, temper-
ature) are much smaller than the energy between the
ground state and the first excited state of the trapping
potential, it is usually assumed that the dynamics along
the confined directions is frozen and that the system be-
comes effectively one- or two-dimensional, depending on
the number of frozen directions [29]. This mechanism
is used in condensed matter physics, for instance at the
junction between N- and P-doped semi-conductors in or-
der to realize 2D-electron gases. In cold atoms, 1D and
2D vapours have been realized using optical trapping or
magnetic trapping at the surface of atom chips.

In the ultracold regime, the de Broglie wave-length of
the atoms is much larger than the range of the inter-
atomic potential. As a consequence, interactions in free
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space can be accurately modeled using a zero-range con-
tact potential characterized by a 3D scattering length
a3D. One would then naively expect that the low-energy
physics in confined geometry would be described by a YG
Hamiltonian, with a coupling constant g1D depending on
a3D and the trap parameters.

Let’s consider a quasi-1D system described by the
Hamiltonian

H =
∑
i

p2
σ,i

2m
+
∑
i,σ

mω2
⊥

2
(x2
σ,i + y2

σ,i) +
∑
i,j

V (r↑,i − r↓,j)

(7)
where V is the 3D interparticle interaction potential.
Let’s note E the energy of the ground-state. Assuming
that the dynamics is indeed frozen in the (x, y) plane, E
can be written as

E = N~ω⊥ + EYG, (8)

where EYG is the ground state energy of the YG model
with a 1D scattering length expressed in terms of a3D and
`⊥ =

√
~/mω⊥. In the case of the two-body problem, the

value of a1D was calculated in [30] and we have in this
case:

a1D = −`⊥
2

(
`⊥
a3D

+ ζ(1/2)

)
, (9)

where ζ is Riemann’s Zeta function. The transverse
size of the cloud can be deduced from E using Hellman-
Feynman’s theorem. We have indeed:

〈ρ2〉 =
2

Nm

∂E

∂ω2
⊥
, (10)

where ρ2 = x2 +y2. Since EYG depends implicitly on ω⊥
through a1D, we have

〈ρ2〉 = `2⊥ +
1

N

∂a1D

∂`⊥

∂EYG

∂a1D
(11)

The first term corresponds to the size of the ground
state and in the second term we recognize the so-called
Tan-contact parameter [31, 32]. We can consider the
system as effectively 1D if 〈ρ2〉 stays close to `2⊥ (note
that, paradoxically, compressing the transverse size be-
low `2⊥ does not improve one-dimensionality. Indeed, due
to Heisenberg’s uncertainty relations, this implies that
additional transverse energy is stored as kinetic energy).

In the weakly interacting limit, we can use Eq. (6) to
evaluate EYG within the mean-field approximation. In
this case, the transverse size of the system is given by

〈ρ2〉 ' `2⊥
(

1− `2⊥
a2

1D

∂a1D

∂`⊥
n`⊥

)
. (12)

Interestingly, we see that when the density is small the
correction to the non-interacting case can also be made

arbitrary small thanks to the n`⊥ contribution. In other
words, In the mean-field regime, the transverse radius is
consistent with a frozen motion in the transverse direc-
tion as long as the Fermi energy EF = ~2(nπ)2/8m is
sufficiently small compared to ~ω⊥ as expected from the
naive interpretation of the quasi-1D regime.

Let’s now consider the strongly attractive limit (cor-
responding to a large γ). In this case, the 1D system is
a gas of bosonic dimers and EYG is dominated by their
binding energies, ie

EYG ' −
N~2

2ma2
1D

. (13)

We then obtain

〈ρ2〉 = `2⊥

(
1− `3⊥

2a3
1D

∂a1D

∂`⊥

)
. (14)

We see that in this case, the correction becomes density
independent and as a consequence, a finite amount of en-
ergy remains stored in the transverse degrees of freedom,
even when EF � ~ω⊥. Close to the confinement-induced
resonance where a1D vanishes, the correction even di-
verges. We conclude from this argument that the quasi-
1D approximation is no longer valid when the system
approaches the resonant a3D/`⊥ →∞, and beyond.

The origin of this breakdown was outlined in past ref-
erences [20–22]: when entering the strongly attractive
regime, the molecule binding energy becomes larger than
~ω⊥. As a consequence their internal structure is no
longer affected by the transverse confining potential and
becomes identical to that of molecules in free space. This
phenomenon is more dramatically illustrated by the fact
that in a quasi-1D geometry, there is a bound state for
any value on the 3D scattering length, even when a1D is
negative, which contradicts the fact that for a purely 1D
system, bound state exist only for positive a1D.

IV. EFFECTIVE HAMILTONIAN FOR
QUASI-1D FERMIONS

Since Yang-Gaudin’s Hamiltonian ceases to apply for
strong interactions, we focus on the weakly interacting
regime and we explore its accuracy within a perturbative
approach. According to Fig. (1), a calculation to sec-
ond order in perturbation theory should be valid up to
γ ' 1. Interactions give rise to both “intraband” pro-
cesses, where all particles stay in the transverse ground
state of the trapping potential, and “interband” colli-
sions where one or more particles are virtually excited
towards an excited state of the confining potential. It
is well known that these virtual processes give rise to
effective few-body interactions [19] that we calculate in
a many-body context using the Schrieffer-Wolff’s (SW)
approach [23]. The many-body Hamiltonian describing
an ensemble of spin-1/2 fermionic atoms confined by a
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transverse external potential is given by

H = H0 +Hint, (15)

In this expression, H0 is the free particle Hamiltonian.
In a second-quantized form, we write it as

H0 =
∑
α,σ

ε(k, α)a†σkαaσkα (16)

where σ is the spin index, k is the momentum in the
z direction and α = (n,mz) labels the transverse state:
n is the quantum number associated with the energy of
the transverse motion and ~mz is the angular momentum
along z. For a harmonic confinement, mz ∈ {−n,−n +
2, ...n− 2, n} and ε(k, α) = ~2k2/2m+ ~ω⊥(n+ 1).
Hint describes the two-body interactions and is given

by

Hint =
g3D

L

∑
k1+k2=
k3+k4

(α1α2α3α4)

χα1α2α3α4
a†↑k1α1

a↑k2α2
a†↓k3α3

a↓k4α4
,

(17)
where g3D = 4π~2a3D/m is the bare coupling constant
and the matrix elements χα1α2α3α4

are defined as

χα1α2α3α4
=

∫
d2ρψα1

(ρ)∗ψα2
(ρ)ψ∗α3

(ρ)ψα4
(ρ), (18)

with ψα(ρ) being the wave function associated with the
eigenstate α of the transverse motion.

To implement the Schrieffer-Wolff scheme, we write
Hint = H1 + H2, where H1 and H2 correspond to
intra- and interband processes, ie to contributions of
(α1, α2, α3, α4) = (0, 0, 0, 0) and (α1, α2, α3, α4) 6=
(0, 0, 0, 0) respectively.

Since H2 is responsible to virtual interband transitions,
we treat it perturbatively within SW approach. Lets de-
fine H̃ = H0 + H2. In the SW scheme we look for a
canonical transformation H̃ ′ = exp(S)H̃ exp(−S) with

generator S such that H̃ ′ becomes diagonal to first order
in H2. This amounts to requiring

[H0, S] = H2, (19)

yielding

H̃ ′ = H0 +
1

2
[S,H2] +O(g3

3D), (20)

showing that the correction to the Hamiltonian H̃ is
quadratic in the coupling constant as S is linear in g3D.
The total Hamiltonian in the rotated basis is then given
by

H ′ = eSHe−S = H̃ ′ + eSH1e
−S = Heff +O(g3

3D), (21)

where

Heff = H0 +H1 +
1

2
[S,H2] + [S,H1] (22)

is the perturbative effective Hamiltonian of the system
that we are looking for. Notice that for S = 0, the ef-
fective Hamiltonian reduces to the Yang-Gaudin model,
since H0 +H1 = HYG.

In order to write Heff explicitly in second quantization
form, we need to find a representation of the generator
S in terms of the fermionic field operators. Since H0

and H2 are, respectively, quadratic and quartic in those
fields, it is easy to see that Eq. (19) can only be satisfied
if S is a quartic operator of the form

S =
g3D

L

∑
k1,k2,k3,k4

(α1,α2,α3,α4)6=
(0,0,0,0)

f({ki, αi})a†↑k1α1
a†↓k3α3

a↓k4α4
a↑k2α2

,

(23)
where f({ki, αi}) is an unknown function of the four ax-
ial momenta ki and the four discrete indices αi for the
motion along the transverse directions. Notice that the
term with all αi = 0 in Eq.(23 does not mix with the
excited states of the confining potential and therefore
cannot contribute to the generator S (otherwise [H0, S]
would also contain a similar term, which is instead absent
in H2, thus violating Eq.(19)).

In order to determine the function f , we substitute
Eq.(23) into Eq.(19) and use the anticommutation rela-

tions {a†σkα, aσ′pα′} = δσσ′δkpδαα′ , {aσkα, aσ′pα′} = 0.
This yields

f({ki, αi}) =
χα1α2α3α4

δk1+k3,k2+k4

ε(k1, α1) + ε(k3, α3)− ε(k2, α2)− ε(k4, α4)
.

(24)

The effective Hamiltonian can then be calculated by
substituting Eq.s (23) and (24) in Eq. (22), and by
evaluating the two commutators. The details of the
derivation are given in Appendix A. In particular, since
we are interested on the 1D effective theory describing
atoms in the ground state of the harmonic oscillator, we
consider only creation and annihilation operators with
α = 0. This implies that [S,H1] does not contribute
to the effective model while the contribution from the
commutator [S,H2] can be recast as a sum of two parts,
[S,H2]/2 = H ′2 +H ′′2 . The first part describes two-body
interactions (containing only four creation and annihila-
tion operators) and is given by

H ′2 =
g2

3D

2L2

∑
k1+k3

=
p2+p4

(F (k1, k3)+F (p2, p4)) a†↑k10a
†
↓k30a↓p40a↑p20,

(25)
with

F (k1, k3) =
∑
k2,k4
α2α4

f({ki, αi})χα20α40. (26)

The second part corresponds to emergent three-body in-
teractions (containing products of six operators) and can
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be written as

H ′′2 =
g2

3D

2L2

∑
k1+k3+p3

=
p2+p4+k4

[
(G(k1, k3, k4) +G(p2, p3, p4))×

a†↑k10a
†
↓k30a

†
↓p30a↓p40a↓k40a↑p20 + (↑↔↓)

]
,

(27)

with

G(k1, k3, k4) =
∑
k2α2

f({ki, αi})χα2000. (28)

V. EFFECTIVE TWO-BODY INTERACTIONS

By construction, H ′′2 in Eq. (27) does not contribute
to the two-body sector. We reorganize the effective two-
body interaction at low energy as H1 + H ′2 = U ′ + U ′′

with

U ′ =
g̃1D

L

∑
k1+k2=p1+p2

a†↑k10a
†
↓k20a↓p20a↑p10, (29)

where the effective 1D coupling constant is given by

g̃1D = g3Dχ0000

− g2
3D

L

∑
k2+k4=0
α1α2

χ2
0α10α2

~2k22
2m +

~2k24
2m + ~ω⊥(nα2

+ nα4
)
.

(30)

Strictly speaking, this sum is divergent (see appendix B).
This is a consequence of the zero-range potential approx-
imation that is notoriously known to be singular. The di-
vergence can be cured by the introduction of a UV-cutoff
and by considering g3D as a running coupling constant
that vanishes when the cutoff goes to zero. If properly
performed, this regularization procedure recovers the ex-
act result derived in [30]. Here, we wil take g̃1D as given
and we will use it to renormalize all diverging quantities
appearing in forthcoming calculations.

The remaining part of the two body interaction is given
by

U ′′ =
g2

3D

2L2

∑
k1+k3=p2+p4

(F (k1, k3) + F (p2, p4)− 2F (0, 0))

× a†↑k10a
†
↓k30a↓p40a↑p20

(31)

and describes finite-range/momentum-dependent correc-
tions to the two-body interactions. Note that contrary
to H̃ ′1, this term has a well-defined UV limit.

VI. EFFECTIVE THREE-BODY INTERACTION

Let’s consider now the low-energy behaviour of the
three-body interaction term H ′′2 . When taking k1,3,4 =
p2,3,4 = 0 in Eq. (27), the exchange of k3 and p3 on
the one hand, and k4 and p4 on the other hand lead to
a cancellation of H ′′2 . This is a departure from previous
results on bosonic systems [16–18] where the three-body
coupling constant is momentum independent. Indeed,
let’s consider a generic three-body interaction

U3b =
∑

k1+k3+p3
=

p2+p4+k4

[
K({ki, pj})×

a†↑k10a
†
↓k30a

†
↓p30a↓p40a↓k40a↑p20 + (↑↔↓)

] (32)

If we expand the function K to second order in momen-
tum, we readily see that the lowest order term yielding a
nonzero contribution because of fermionic exchange is

K ∝ (k3 − p3)(k4 − p4). (33)

This result can also be recovered directly by calculating
the low momentum asymptotic behaviour of Eq. (28).
For this, we take k1 = p2 = 0 in G and then expand it to
first order in k3,4 and p3,4. We then obtain

H ′′2 = −~2a2
3D

4mL2
Li1/2(1/4)

∑
k1+k3+p3

=
p2+p4+k4

[
(k3 − p3)(k4 − p4)×

a†↑k10a
†
↓k30a

†
↓p30a↓p40a↓k40a↑p20 + (↑↔↓)

]
(34)

where Lis(z) =
∑∞
n=1 z

n/ns is the polylog function and
where with have used Appendix B to calculate the sum
over α2.

VII. GROUND STATE ENERGY

Let us now calculate the interaction-induced correction
to the ground state energy of the effective Hamiltonian
(22) and verify that we recover the same result by apply-
ing perturbation theory to the original Hamiltonian H.
The noninteracting ground state of the system is given
by the product of the Fermi seas of the two spin compo-
nents, |FS〉 = |FS↑〉|FS↓〉, where

|FSσ〉 =
∏

|k|<kFσ

a†σk0|〉, (35)

where |〉 represents the vacuum state and kFσ are the
Fermi momentum of the spin component σ =↑, ↓.

Since the two-body and three-body terms of the ef-
fective Hamiltonian arising from the commutator [H,S2]
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are proportional to g2
3D, we treat them within first order

perturbation theory.
Making use of the identities

〈FSσ|a†σk10aσp20|FSσ〉 = Θ(kFσ − |k1|)δk1p2
〈FSσ|a†σk30a

†
σp30aσp40aσk40|FSσ〉 = Θ(kFσ − |k4|)

×Θ(kFσ − |p4|)(δp3p4δk3k4 − δp3k4δk3p4),

(36)

we obtain

〈FS|1
2

[S,H2]|FS〉 =
g2

3D

L2

[ ∑
|k1|<kF↑
|k3|<kF↓

F (k1, k3)

−
∑

|k1|<kF↑
|k3|,|k4|<kF↓

G(k1, k3, k4)−
∑

|k1|,|k2|<kF↑
|k3|<kF↓

G(k1, k3, k2)

+
∑

|k1|<kF↑
|k3|,|p4|<kF↓

G(k1, k3, k3) +
∑

|k1||p1|<kF↑
|k3|<kF↓

G(k1, k3, k1)

]
.

(37)

Notice that the rhs of Eq. (37) contains terms, where
two of the arguments of the function G become identical.
From Eq.(28) we see that in this case the function reduces
to a constant

G(k1, k3, k3) =
∑
m2 6=0

−|χ0m200|2

m2~ω
. (38)

Next, we turn to the correction δE to the ground state
energy due to H1. Since this term is linear in g3D, we
will use second order perturbation theory

δE = 〈FS|H1|FS〉+
∑
n

|〈n|H1|FS〉|2

EFS − En
, (39)

where EFS is the energy of the Fermi sea and |n〉 is a
generic excited eigenstate of H0, which is coupled to the
ground state by H1. From Eq.(36) we find that the cor-
rection linear in g3D is given by

〈FS|H1|FS〉 =
g3D

L
χ0000

∑
|k1|<kF↑
|p3|<kF↓

=
g3D

L
χ0000N↑N↓,

(40)
which corresponds to the mean field.

The relevant excited states in the rhs of Eq.
(39) correspond to particle-hole excitations |n〉 =

a†↑k10a
†
↓k30a↓k40a↑k20|FS〉, with the initial states k2, k4

being inside the respective Fermi surfaces, |k2| <
kF↑, |k4| < kF↓, while the final states k1, k3 are scattered
outside them, |k1| > kF↑, |k3| > kF↓. From Eq.(36) we
then find

〈n|H1|FS〉 =
g3D

L
χ0000δk1+k3,k2+k4 . (41)

The change in the kinetic energy of the system brought by
the excitation, appearing in the second order correction
in Eq.(39), is given by

En − EFS =
~2k2

1

2m
+

~2k2
3

2m
− ~2k2

2

2m
− ~2k2

4

2m
. (42)

Finally, we write down the perturbative expansion
E = EFS + 〈FS|[S,H2]/2|FS〉 + δE for the ground
state energy for a system of equal spin populations,
N↑ = N↓ = N/2, corresponding to kF↑ = kF↓ = kF /2.
Making use of Eq.s (A2)-(A3), together with Eq.s (37)-
(42), we find

E = EFS +
g3D

4L
χ0000N

2 − g2
3D

L2

∑
|k1|,|k3|>kF
|k2|,|k4|<kF

χ2
0000δk1+k3,k2+k4

~2k21
2m +

~2k23
2m −

~2k22
2m −

~2k24
2m

+
g2

3D

L2

∑
|k1|,|k3|<kF

∑
k2,k4

(nα2
,nα4

)6=(0,0)

|χ0α20α4
|2δk1+k3,k2+k4

~2k21
2m +

~2k23
2m −

~2k22
2m −

~2k24
2m − (nα2 + nα4)~ω

− 2
g2

3D

L2

∑
|k1|<kF
|k3|,|k4|<kF

∑
k2,nα2 6=0

|χ0m200|2δk1+k3,k2+k4

~2k21
2m +

~2k23
2m −

~2k22
2m −

~2k24
2m − nα2

~ω
− g2

3DN
3

4L2

∑
nα2 6=0

|χ0m200|2

nα2~ω

(43)

The second sum appearing in the rhs of Eq. (43) is
divergent. Following the prescription outlined in Sec. V,
this singularity can be cured by noting that its struc-
ture is similar to the one of the divergent term of the

two-body effective coupling constant g̃1D. Indeed, the
first three terms of the energy are similar to Eq. (5) for
a purely 1D system with a coupling constant constant
g1D = g3Dχ0000/L. We can recover the same energy,
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but with the true coupling constant g̃1D by adding and subtracting the missing divergent term. We then have

E = EYG(g̃1D) +
g2

3D

L2

∑
|k1|,|k3|<kF
k2+k4=k1+k3
(α2,α4) 6=(0,0)

[
|χ0α20α4

|2
~2k13
m − ~2k224

m − (nα2
+ nα4

)~ω
+

|χ0α20α4
|2

~2k224
m + (nα2

+ nα4
)~ω

]

− 2
g2

3D

L2

∑
|k1|<kF
|k3|,|k4|<kF
k2+k4=k1+k3

α2 6=0

[
|χ0α200|2

~2k213
m − ~2k224

m − nα2~ω
+
|χ0α200|2

nα2
~ω

] (44)

where EYG(g̃1D) is the second order expansion of the en-
ergy of a 1D system with a coupling constant g̃1D given
by Eq. (30) and kij = (ki− kj)/2 is the relative momen-
tum of the pair.

Since the corrections are proportional to g2
3D, they will

scale as γ2. We can write the full energy as

E = EYG(g̃1D)
[
1− (A2b +A3b)γ2

]
, (45)

where the first term comes from finite range corrections
and the second one from three-body interactions. The
sum appearing in Eq. (44) can be calculated analytically
in the quasi-1D limit EF � ~ω⊥ (see appendix B) and
we have

A2b '
ζ(3/2)

2π3

(
EF
~ω⊥

)3/2

(46)

A3b '
8

π4
Li2(1/4)

(
EF
~ω⊥

)2

(47)

where ζ is Riemann’s zeta function and where Lis(z) is a
polylog function as before . These asymptotic behaviours
are compared to numerical calculations in Fig. 2. The
approximate result provides an accurate value for A3b,2b,
even for EF ' ~ω⊥ in the case of two-body interactions.
We also note that the two body-contribution always dom-
inate its three-body counterpart. Finally, even when for
EF ' ~ω⊥, both A2b and A3b do not exceed ' 5× 10−2,
which suggests that virtual transitions affect only weakly
the first beyond-mean-field corrections to the energy.

VIII. DISCUSSION

In this article we have calculated derived the effective
many-body Hamiltonian describing a quasi-1D cloud of
spin 1/2 fermions. We have calculated the first beyond
mean-field corrections to the energy of a cloud of spin
1/2 fermions confined in a quantum wire. Our work ex-
tend to the fermionic many-body regime previous results
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FIG. 2: Contributions of 2 and 3-body effective interactions
to the first beyond-mean-field corrections. Blue circles: 2
body contribution, Blue solid line: asymptotic expression
(46). Red triangle: three body contribution A3b. Red dashed
line: asymptotic expression (47).

on the few-body bosonic problem in quasi 1D. We have
shown that, even for Fermi energies close to ~ω⊥ the
corrections due to virtual transitions towards transverse
excited states are rather small up to γ ' 1 where our
calculation provides an accurate estimate for the energy.
This means that experiments using cold atoms in quan-
tum wires provide an accurate description of the ground
state of Yang-Gaudin’s Hamiltonian that the most im-
portant source of discrepancy with pure one-dimensional
physics will most likely be the occupation of transverse
excited states due to the finite temperature of the sys-
tem. It would then be interesting to connect our work to
high temperatures results obtained using Virial expan-
sion [33].

Even though the Yang-Gaudin provides a good descrip-
tion of the weakly-interacting regime, we have shown
that it fails in the strongly attractive limit. In future
work we will therefore extend our calculation to the non-
perturbative limit to explore the breakdown of the 1D
effective regime. Another intriguing research direction
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would be to generalize our results to quasi-2D systems
where puzzling results showing deviations between ex-
periments and 2D theories have been reported in [34].
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Appendix A: Derivation of the effective Hamiltonian

We provide below the second quantization expression
of the effective Hamiltonian Heff obtained via the SW

transformation. To this end, we substitute the explicit
form of the generator S, given in Eq.s (23) and (24),
into Eq.(22) and evaluate the two commutators [S,H1]
and [S,H2]. The action of each commutator can be writ-
ten as a sum of two parts: the first part contains all
contributions with products of four field operators and
therefore renormalizes two-body interactions, while the
second part gathers all contributions with products of
six field operators, thus describing effective three-body
interactions. For the commutator involving H2, an ex-
plicit calculation yields

1

2
[S,H2] =

g2
3D

2L2

[ ∑
k1+k3=p2+p4
α1,α3,β2,β4

[
F β2β4
α1α3

(k1, k3) + F̄α1α3

β2β4
(p2, p4)

]
a†↑k1α1

a†↓k3α3
a↓p4β4

a↑p2β2

+
∑

k1+k3+p3=p2+p4+k4
α1,α3,α4,β2,β3,β4

[
Gβ2β3β4
α1α3α4

(k1, k3, k4) + Ḡα1α3α4

β2β4β3
(p2, p4, p3)

] (
a†↑k1α1

a†↓k3α3
a†↓p3β3

a↓p4β4
a↓k4α4

a↑p2α2
+ (↑↔↓)

)]
,

(A1)

where the overbar stands for complex conjugation and
we have introduced the functions

F β2β4
α1α3

(k1, k3) =
∑

k2k4α2α4

f({ki, αi})χα2β2α4β4
(A2)

Gβ2β3β4
α1α3α4

(k1, k3, k4) =
∑
k2α2

f({ki, αi})χα2β2β3β4
. (A3)

A similar calculation for the commutator [S,H1] gives

[S,H1] =
g2

3D

L2

∑
k1+k3=p2+p4
(m1,m3)6=(0,0)

[
Rα1α3(k1, k3)a†↑k1α1

a†↓k3α3
a↓p40a↑p20 + R̄α1α3(k1, k3)a†↑p20a

†
↓p40a↓k3α3a↑k1α1

]

+
g2

3D

L2

∑
k1+k3+p3=p2+p4+k4

(α1,α3,α4)6=(0,0,0)

[
Tα1α3α4(k1, k3, k4)

(
a†↓k4α4

a†↓p40a↓p30a↓k3α3a↑k1α1 + (↑↔↓)
)]

, (A4)

where we have introduced the functions

Tα1α3α4
(k1, k3, k4) =

∑
k2

χα10α3α4
χ0000δk1+k3,k2+k4

× 1

ε(k1, α1) + ε(k3, α3)− ε(k2, 0)− ε(k4, α4)
(A5)

and

Rα1α3(k1, k3) =
∑
k4

Tα1α30(k1, k3, k4). (A6)
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Notice that the Hamiltonian correction in Eq.(A4) does
not contribute to the ground state energy of the system,
because it does not contain terms with all αi = 0.

Appendix B: Calculation of the sums appearing in
the two- and three-body effective interactions

When calculating the energy of the quasi-1D gas in Eq.
(44), two types of sums appear. Firstly, we have terms
involving χ0α00. This matrix element can be explicitly
written as

χ0α00 =

∫
d2ρψ0(ρ)3ψα(ρ).

where we have used the fact that the ground-state wave-
function ψ0 is real. Since the ground state of the 2D
harmonic oscillator is isotropic we first see that the func-
tion ψα must correspond to a null angular momentum.
In this case nα is necessarily even and we can then write,
using the general properties of the 2D harmonic oscillator

ψα(ρ) =
1√
πa⊥

Lnα/2(ρ2/a2
⊥)e−ρ

2/2a2⊥ ,

where Ln(x) is the Laguerre polynomial of order n.
Taking u = ρ2/a2

⊥, we have thus

χ0α00 =
1

πa2
⊥

∫
duLnα/2(u)e−2u =

1

2πa2
⊥

1

2nα/2
,

where we have used the value of the Laplace transform
of a Laguerre polynomial∫ ∞

0

due−suLn(u) =
1

s

(
s− 1

s

)n
.

Thanks to the exponential decay χ0α00, the associated
sum over α appearing in Eq. (44) converges.

The second type of sum has the general structure

A(z) =
∑
α1α2

|χ0α10α2 |2

z − ~ω⊥(nα1
+ nα2

)
(B1)

=
∑
α1α2

|〈α1α2|δ(ρ12)|00〉|2

z − ~ω⊥(nα1 + nα2)
. (B2)

with ρ12 = ρ1 − ρ2. Noting that the sum is actually a
completeness relation, this expression can be recast as

〈00|δ(ρ12)
1

z + 2~ω⊥ − h1 − h2
δ(ρ12)|00〉,

where hi is the transverse harmonic oscillator Hamilto-
nian describing the dynamics of particle i in the (x, y)
plane, up to a constant to set the ground state energy
at 0. Instead of describing the state of the system us-
ing the coordinates of the two particles, we can consider
the relative and center of mass degrees of freedom of the
pair of atoms. In this case the Hamitonian h1 + h2 can
be written as a sum of two harmonic oscillator hr and
hc associated respectively with the relation and center of
mass motion of the pair. They correspond to harmonic
oscillators of the same frequency ω⊥ and masses µ = m/2
and M = 2m. If we insert a completeness relation for the
new basis |αr, αc〉, we note that since δ(ρ12) acts only on
the relative motion, we do not have any contirbution of
the center of mass degrees of freedom and the sum can
be written as

A(z) =
∑
αr

|〈αr|δ(ρ12)|0〉|2

z − ~ω⊥nαr
=
∑
αr

|ψαr (0)ψ0(0)|2

z − ~ω⊥nαr

Since the sum depends only on the value of the wave-
function in ρ12 = 0, it means that only the zero-angular
momentum modes contribute. In this case, nαr is even

and ψαr (0) = 1/
√

2πa⊥. We finally have

A(z) =
1

(2π)2a4
⊥

∞∑
n=0

1

z − 2~ω⊥n

Strictly speaking, this sum is divergent. However, in
Eq. (44), we take the difference of two terms having the
same structure and compensating at large n. Note also
that in that equation, the sum over (α1, α2) excludes the
ground state, which amounts to starting the sum over n
at n = 1.
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