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In graphene, charged defects break the electron-hole symmetry and can even give rise to 

exotic collapse states when the defect charge exceeds a critical value which is proportional to 

the Fermi velocity. In this work, we investigate the electronic properties of twisted bilayer 

graphene (tBLG) with charged defects using tight-binding calculations. Like monolayer 

graphene, tBLG exhibits linear bands near the Fermi level but with a dramatically reduced 

Fermi velocity near the magic angle (approximately 1.1°). This suggests that the critical value 

of the defect charge in magic-angle tBLG should also be very small. We find that charged 

defects give rise to significant changes in the low-energy electronic structure of tBLG. 

Depending on the defect position in the moiré unit cell, it is possible to open a band gap or to 

induce an additional flattening of the low-energy valence and conduction bands. Our 

calculations suggest that the collapse states of the two monolayers hybridize in the twisted 

bilayer. However, their in-plane localization remains largely unaffected by the presence of the 

additional twisted layer because of the different length scales of the moiré lattice and the 
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monolayer collapse state wavefunctions. These predictions can be tested in scanning 

tunnelling spectroscopy experiments. 

1. Introduction 

Since the experimental discovery of correlated insulator states and unconventional 

superconductivity in magic-angle twisted bilayer graphene (tBLG),[1,2] there has been 

significant interest in understanding the electronic properties of this system.[3–22] The low-

energy electronic structure of tBLG is characterized by a set of four bands, which become 

extremely flat as the twist angle approaches the magic angle of approximately 1.1°. [23–29]  Near 

the K and K’ points of the moiré Brillouin zone, these bands exhibit a linear dispersion – similar 

to monolayer graphene – but with a dramatically reduced Fermi velocity. [23–25,30,31] 

To date, most experimental and theoretical works have focused on understanding the 

properties of pristine tBLG, but it is well known that defects play an important role in real 

devices that exploit the properties of two-dimensional (2D) materials.[11,32] In particular, 

impurities that donate electrons or holes can be used to control the concentration of charge 

carriers.[33–39] Once ionized, these impurities act as Coulomb scatterers and reduce the charge 

carrier mobility.[40]  Recently, charged defects in tBLG have been investigated by Larson et 

al.[41] using ab initio density-functional theory (DFT). They showed that intercalated lithium 

atoms reside in regions of AA-stacking in the moiré unit cell and act as electron donors. 

Interestingly, they also found that the intercalation gives rise to a slight deformation of the 

band structure. However, only relatively large twist angles (7.34°and 2.45°) were studied[42,43] 

and this motivates our study of charged defects in tBLG near the magic angle. 

Charged defects have been extensively studied in monolayer graphene.[44–47] As 

electrons in graphene obey a Dirac equation like relativistic particles (but with the Fermi 

velocity of graphene replacing the speed of light), their response to a charged defect depends 

sensitively on the magnitude of the defect charge. Specifically, it has been found that there is 

a critical value of the defect charge, given by 𝑍𝑐 = 𝜖𝑣𝐹/2 (in atomic units), where 𝜖 is the 

effective dielectric constant (containing both the internal screening in the graphene and the 

external screening due to the substrate) and 𝑣𝐹 is the Fermi velocity. [48,49] When the defect 
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charge is smaller than 𝑍𝑐, the system is in the so-called subcritical regime characterized by a 

broken electron-hole symmetry. When the system is in the supercritical regime, i.e., when the 

defect charge exceeds 𝑍𝑐, a novel collapse state is formed which gives rise to a resonance in 

the local density of states in the vicinity of the defect.[33,47,50] This state represents the 

quantization of a semiclassical trajectory in which the electron spirals inwards towards the 

defect before spiraling back outwards and coupling to a hole that propagates away from the 

defect.  

While it has proven extremely difficult to observe collapse states in relativistic systems, the 

realization of these states is much easier in graphene. As the Fermi velocity of graphene is 

much smaller than the speed of light, the critical defect charge for graphene on a hexagonal 

boron nitride substrate is on the order of unity (compared to 𝑍𝑐 ∼ 170 for relativistic particles 

in vacuum). Indeed, collapse states were first observed by Wang et al.[47] who created defects 

with a controllable charge by assembling Ca atom dimers on graphene. For defects containing 

three or more dimers, they observed the emergence of a peak in the scanning tunneling 

spectrum near the defect which was interpreted as the signature of a collapse state. Later, a 

collapse state was also observed near charged vacancies by Mao and coworkers[37]. Wang et 

al.[33] were able to induce a so-called frustrated supercritical collapse state in graphene by 

assembling a chain of molecules with subcritical charges.  

In this paper, we study the behaviour of charged defects in twisted bilayer graphene 

near the magic angle. As the Fermi velocity approaches zero near the magic angle, one might 

naively expect that the critical defect charge 𝑍𝑐 = 𝜖𝑣𝐹/2 also becomes very small, suggesting 

that even a defect with a small charge could induce a collapse state in this system. To address 

this question, we carry out atomistic tight-binding calculations of tBLG with a charged defect 

near the magic angle. The defect is modelled as a point charge which induces a Coulomb 

potential that acts on the electrons in tBLG. We observe that the charged defect gives rise to 

significant changes in the flat bands that depend sensitively on the position of the defect in 

the moiré unit cell. However, we do not observe signatures of a collapse state in the flat band 

manifold. To understand this finding, we analyze the evolution of the collapse state of a 

graphene monolayer as the hopping to the second (twisted) graphene layer is turned on. We 

find that the collapse states on both monolayers hybridize as a result of interlayer hopping. 
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Surprisingly, the hybridized states remain highly localized in tBLG (which is why they do not 

affect the flat band manifold), but their splitting destroys the associated peak in the local 

density of states. These predictions can be tested in scanning tunnelling spectroscopy 

experiments.  

 

2. Methods 

We studied graphene supercells and commensurate tBLG moiré unit cells containing a 

single charged defect modelled as a point charge. Because of periodic boundary conditions, 

this means that a periodic superlattice of charged defects is formed. The moiré unit cells were 

constructed by rotating the top graphene sheet of an AA-stacked bilayer anticlockwise around 

an axis perpendicular to the graphene sheets that intersects a carbon atom in each layer. The 

moiré lattice vectors (𝒕1, 𝒕2) of tBLG are given by 𝒕1 = 𝑛𝒂𝟏 + 𝑚𝒂2; 𝒕2 = −𝑚𝒂𝟏 +

(𝑛 + 𝑚)𝒂2, where 𝒂𝟏 =  𝑎/2(√3, −1) and 𝒂𝟐 =  𝑎/2(√3, 1) are the graphene lattice vectors 

(with a = 2.46 Å denoting the graphene lattice constant) and 𝑛 and 𝑚 are integers. To describe 

atomic relaxations in tBLG,[51] we employ the approximation from Refs. [30,31,52,53] where the 

interlayer distance 𝑑 is expressed as  

𝑑(𝜹)  =  𝑑0  +  2𝑑1 ∑ cos (𝒂𝒊 ⋅ 𝜹),

3

𝑖=1

(1) 

where 𝒂𝟑 =  −𝒂1 − 𝒂2 and 𝜹 denotes in-plane atomic position relative to the center 

of the AA region. Moreover, 𝑑0 = 1
3⁄ (𝑑AA + 2𝑑𝐴B) and 𝑑1 = 1

9⁄ (𝑑AA − 2𝑑AB) with dAB = 

3.35 Å being the interlayer distance in the AB-stacked regions and dAA = 3.60 Å being the 

maximum interlayer spacing in AA regions.  

 

To calculate the electronic structure, we employed an atomistic tight-binding 

approach.[54] The tight-binding Hamiltonian is given by 
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Ĥ = ∑ 𝜀𝑖𝑐̂𝑖
†𝑐̂𝑖

𝑖

+ ∑ 𝑡(𝒓𝑖 − 𝒓𝑗)𝑐̂𝑖
†𝑐̂𝑗

𝑖𝑗

 +  ℎ. 𝑐. , (2) 

where 𝜀𝑖  denotes the on-site energy of the pz-orbital on atom i and 𝑐̂𝑖
†(𝑐̂𝑖) creates (annihilates) 

an electron in this orbital. Here, the spin label is left implicit. The hopping parameter between 

atoms i and j is denoted by 𝑡(𝒓𝑖 − 𝒓𝑗) and is given by the Slater-Koster approximation[55] 

𝑡(𝒓) = 𝑉𝑝𝑝𝜎(𝒓) (
𝒓 ⋅ 𝒆𝒛

|𝒓|
)
2

+ 𝑉𝑝𝑝𝜋(𝒓) (1 −  [
𝒓 ⋅ 𝒆𝒛

|𝒓|
]
2

) , (3) 

where 𝑉𝑝𝑝𝜎(𝒓) = 𝑉𝑝𝑝𝜎
0  exp{𝑞𝜎(1 −

|𝒓|

d𝐴𝐵
)}𝛩(𝑅𝑐  −  |𝒓|) and 𝑉𝑝𝑝𝜋(𝒓) = 𝑉𝑝𝑝𝜋

0  exp{𝑞𝜋(1 −

|𝒓|

𝑎
)}𝛩(𝑅𝑐  −  |𝒓|). The parameters we used are as follows: 𝑉𝑝𝑝𝜎

0  = 0.48 eV, Vppπ = −2.7 eV, 𝑎 = 

1.42 Å (carbon-carbon bond length), 𝑞𝜎  = 7.43 and 𝑞𝜋  = 3.14.[30,31] Hopping parameters 

between carbon atoms whose distance is larger than the cutoff 𝑅𝑐  = 10 Å were neglected.[56] 

The onsite energy of an electron in a pz-orbital in the presence of a charged defect with 

charge 𝑞 is given by 

𝜀𝑖 = −
ⅇ𝑞̃

4𝜋𝜖0|𝒓𝑖 −𝒓0|
, (4) 

where 𝒓𝑖  is the position of atom i, 𝒓0 is the location of the charged defect, 𝑞̃ = 𝑞/𝜖 is the 

effective (screened) charge of the defect and ⅇ is the proton charge. Here, we assume that the 

potential created by the defect is Coulomb-like, with all screening processes (both external 

and internal) being captured through an effective dielectric constant 𝜖. The typical value of 𝜖 

for tBLG encapsulated in h-BN sheets is ~10.[57,58] A more rigorous approach would be to 

calculate the screened defect potential using the random phase approximation (RPA)[58] or to 

use a screened interaction that models the presence of metallic gates.[58,59] 

In principle, charged defects can reside at a large variety of inequivalent positions in 

the moiré unit cell of tBLG. They can intercalate between the layers[41] or adsorb on the 

surface. Here, we focus on the intercalated charged defects and study the electronic structure 

for different high-symmetry positions in the moiré unit cell (we have found that the electronic 

structure of adsorbed and intercalated charged defects is very similar, see Supporting 
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Information Figure S1). In particular, we consider the defect to be located at the center of the 

AA, AB and bridge regions (br), shown schematically in Figure 1. We focus on twist angles that 

are sufficiently small such that the defect potential decays significantly within a single moiré 

unit cell.  

 

 

3. RESULTS and DISCUSSION 

Effect of charged defects on the flat bands 

We first discuss the dependence of the flat band manifold on the position of the charged 

defect in the moiré unit cell. If one places the charged intercalant at the center of the AA 

region, no symmetries are broken. Therefore, the band structure still exhibits a Dirac cone at 

the K and K′ points, as shown in Figure 2 (a) – (c) for a twist angle of 1.54° for a negatively 

charged defect. As the magnitude of the effective defect charge increases, the Dirac cone at 

the K-point shifts up in energy relative to the states at . Conversely, for a positively charged 

defect, the states at the K-point shift downwards relative to the states at the -point (see 

Figure 1 Top: Schematic depiction of tBLG with the potential due to a charged defect (with charge q). Bottom: 
different high-symmetry stacking regions (AA, br, AB) that exist in the moiré unit cell of tBLG. 
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Supporting Information Figure S2). For 𝑞̃ =  −0.1, the low-energy conduction bands are 

extremely flat. For 𝑞̃ =  −0.15, the dispersion of the lowest conduction band is qualitatively 

different and exhibits a negative curvature near , similar to the highest energy valence bands 

near . Similar observations were reported in Ref. [41] for a Li atom intercalated in tBLG for 

twist angles of 7.34° and 2.45°. 

Interestingly, these band distortions are remarkably similar to those obtained from 

Hartree theory calculations of doped tBLG without charged defects. [8,10,60,61,19,62,32] The flat 

band states near K and K′ are localized in the AA regions of the moiré unit cell.[63] Therefore, 

when electrons or holes are added into the lowest-energy flat band states, the charge density 

in the AA regions changes, creating a localized charge density similar to that of a charged 

defect. This causes a large change in the Hartree potential. When electrons are added 

(removed), the Hartree potential is positive (negative) in the AA regions. As the states at the 

edge of the Brillouin zone (e.g., at K/K’ and M) are localized on the AA regions [see Supporting 

Information Figure S3 (b) and (d)], these states are pushed to higher (lower) energies. In 

contrast, states near the center of the Brillouin zone are localized on the AB/BA regions, and 

their energies do not change significantly upon doping. This difference in the response of the 

states at the center and the corners of the Brillouin zone explains the strong band 

deformations that are observed upon doping or adding a charged defect in the AA 

regions.[19,60,61] 

In contrast, when the defect is placed at the center of the AB regions of the moiré unit 

cell, a gap opens at the K and K′ points, and the Dirac cone is destroyed (see Figure 2 (d) – (f) 

at a twist angle of 1.54°). With increasing defect charge, this gap widens. We can understand 

this gap opening from an analysis of the flat-band Wannier functions.[12,53,64] These Wannier 

functions are centered on the AB and BA regions of the moiré unit cell, which can be thought 

of as the two sublattices of the moiré flat bands, similar to the A and B sublattices of graphene. 

Therefore, upon placing a defect on one of the sublattices, the sublattice symmetry is broken 

which protects the Dirac cone at K/K’ and a gap is opened. 
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In addition to the gap opening, we also observe some distortions of the flat bands. As 

𝑞̃ increases, the states near  increase in energy relative to the states at K/K’.  As the states 

near  are localized in the AB and BA regions of the moiré unit cell, the potential of the charged 

defect couples more strongly to these states than to the states at K and K’. It is interesting to 

note that the band deformations are less pronounced compared to the case when the defect 

is placed in the AA regions. This is a consequence of the lower degree of localization of the 

states near  compared to those at K/K’. 

Figure 2 Electronic band structure of twisted bilayer graphene (with a twist angle of 1.54°) with an intercalated 
charged defect at the center of the (a)−(c) AA, (d)-(f) AB, and (f)-(h) bridge (br) regions. For each region three 
different 𝑞̃ values (-0.05, -0.10, and -0.15) are considered and, for reference, the band structure for 𝑞̃ = 0 is 
also included in light grey color. The zero of energy (indicated by the horizontal black dashed lines) is set to 
the energy of the Dirac point or the center of the band gap in each case. 
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Finally, tBLG with a defect in the center of the bridge regions does not exhibit Dirac 

points at K and K’, see Figure 2 (g)-(h). However, the system is metallic as a band from the 

valence manifold of tBLG crosses a band from the conduction manifold along the  to K line, 

see Figure 2 (h). 

Another variable which can be tuned in tBLG is the twist angle. In Figure 3, we show 

the evolution of the band structure of undoped tBLG with a charged defect with 𝑞̃ =  −0.1 in 

the AA region as the twist angle is reduced (see Supporting Information Figure S4 for AB and 

br regions). As discussed above, this system exhibits extremely flat conduction bands at low 

energies for a twist angle of 1.54°, see Figure 3 (a). Upon decreasing the twist angle towards 

the magic angle, the effect of the defect becomes more pronounced and the states at K are 

pushed up so much that the sign of the curvature of the lowest conduction band near  

changes, see Figure 3 (b). Very close to the magic angle, at a twist angle of 1.05°, the flat bands 

are again strongly distorted by the defect potential, and the gap between the flat bands and 

the remote bands becomes very small, see Figure 3 (c). Again, these findings are reminiscent 

of the band structure of doped tBLG as the twist angle approaches the magic angle.[5,65] 

 

Figure 3 Electronic band structures of twisted bilayer graphene with an intercalated charged defect (𝑞̃ = −0.1) 
at the AA region for three twist angles: (a) 1.54°, (b) 1.30°, and (c) 1.05°. The band structure without the 
defect is shown in light grey for comparison. The zero of energy (indicated by the horizontal black dashed 
lines) is defined as the Dirac point energy. 
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Collapse states in graphene and their fate in tBLG 

Before discussing the existence of a collapse state in tBLG, we first revisit the collapse states 

in monolayer graphene from a band structure perspective. 

 

In Figure 4 (a)−(d), we show the LDOS of an 80 × 80 graphene supercell with a charged 

adsorbate as function of energy for two distances (5.11 nm and 16.33 nm) from the defect for 

different effective defect charges. The charged defect is placed directly above a carbon atom 

in the center of supercell at a distance of 0.5Å above the graphene plane. The LDOS of 

graphene has a characteristic V-shape at low energies.[66] For small effective defect charges 

Figure 4  (a)−(d) Local density of states of an 80 × 80 monolayer graphene supercell with a charged adsorbate 
for two distances from the defect and for four different values of the effective defect charge. Red arrows 
indicate the peak due to the collapse state. (e)−(h) Corresponding electronic band structures with the bands 
that give rise to the collapse state circled in red. The zero of energy is referenced to the energy of the Dirac 
point. 
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(see Figure 4 (a) for an effective charge of 𝑞̃ = −0.1), the LDOS is not significantly altered by 

the presence of the defect. As the effective defect charge is increased, an additional peak 

corresponding to a collapse state emerges in the LDOS, as highlighted by the red arrows. For 

a negatively charged defect, the peak appears on the valence side at an energy of 

approximately 100 meV below the Dirac point. Moreover, at slightly more negative energies 

than the peak, a pronounced dip in the LDOS can be observed, see Figure 4 (c). At energies 

above the Dirac point, the LDOS near the defect is reduced compared to its value far away 

from the defect and also exhibits a clear electron-hole asymmetry.[67] For a positively charged 

defect, we find a similar behaviour but with the important difference that the collapse state 

peak is located at energies above the Dirac point (see Supporting Information Figure S5). 

These observations are well known from previous studies of charged defects in monolayer 

graphene.[34,47]  

Next, we analyze the origin of the LDOS peak in terms of the band structure of the 80 

× 80 supercell with a charged defect. For a periodic superlattice of charged defects on 

graphene, the band structure is an experimental observable and can be accessed, for example,  

through angle-resolved photoemission spectroscopy.[68] In Figure 4 (e)−(h), we show the band 

structures corresponding to the LDOS plots in Figure 4 (a)−(d). We note that the details of the 

band structure depend on the choice of supercell. For the 80 × 80 supercell that we studied, 

the Dirac cone is mapped onto the K-point of the mini Brillouin zone. For small effective defect 

charges, such as 𝑞̃ =  −0.1, we do not observe any significant changes in the band structure. 

As the magnitude of the effective defect charge is increased to 𝑞̃ = -0.2 or -0.3, the bands with 

energies of approximately −100 meV flatten between K and  (indicated by the red circles), 

giving rise to the peak in the LDOS. This critical value of the defect charge is consistent with 

the analytical result 𝑍𝑐 =
𝑣𝐹

2
≈ 0.25 for a graphene sheet in vacuum. As the defect charge 

increases even more, these bands become even flatter and move to higher energies. 

Interestingly, a second Dirac cone emerges below the flat bands which gives rise to the dip in 

the LDOS beyond the collapse state peak. For a positively charged defect, this secondary Dirac 

cone emerges above the flat collapse-state bands (see Supporting Information Figure S5).  

Next, we study the fate of the collapse state in tBLG. Figure 5 shows the evolution of the band 

structure of 1.54° tBLG with a charged intercalant with 𝑞̃ = −0.30 in the AA region (results for 
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charged defects in the AB and br regions are shown in the Supporting Information, see Figure 

S6) as the hopping between the two graphene layers is gradually “turned on” (see Supporting 

Information Figure S7 for the same analysis for tBLG without a charged defect). This is 

achieved by scaling the Slater-Koster parameter 𝑉𝑝𝑝𝜎
0 , which controls the strength of interlayer 

hopping, by a parameter 𝛼 that ranges from 0 to 1. For 𝛼 = 0, the band structure is very similar 

to that of the 80 × 80 graphene supercell, see Figure 5(a), with only small differences arising 

from the (non-zero, but small) 𝑉𝑝𝑝𝜋
0  hoppings between the layers. As 𝛼 increases, the band 

structure undergoes significant changes. In particular, the Fermi velocity decreases and the 

flat bands corresponding to the collapse state (at approximately -190 meV in Figure 5(a) and 

circled in green) split and become dispersive in the regions between K and . As the inter-layer 

hopping is further increased, the splitting of the collapse state bands increases and the lower 

pair crosses a deeper-lying band (circled in orange in Figure 5(a)-(d)).  

To further understand the interplay between collapse states and the moiré potential, 

we analyze the wavefunctions of the relevant states at  for several values of 𝛼 (see Figure 5 

bottom panel). Inspection of the wavefunctions for 𝛼 = 0 reveals that the collapse states are 

strongly localized in the vicinity of the charged defect, while the states below the collapse 

states are delocalized over the AB and br regions. For 𝛼 = 0.25, the collapse state bands split, 

but the in-plane localization of the corresponding wavefunctions does not change significantly 

compared to 𝛼 = 0. However, interlayer hopping results in a coupling of the monolayer 

collapse states which gives rise to the observed energy splitting. As 𝛼 is further increased, the 

splitting of the hybridized collapse states further increases and the lower-lying collapse-state 

bands eventually cross the deeper-lying bands (see Figure 5(c) and (d)). While the formation 

of hybridized collapse states gives rise to a significant energy splitting at , symmetry requires 

that the collapse state bands remain degenerate at K and K’. As a consequence, the localized 

collapse state bands acquire a significant dispersion along the  to K/K’ direction. 
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Finally, Figure 6(a) shows the local density of states of twisted bilayer graphene with 

and without a charged defect at a distance of 2.93 nm, along the diagonal of the cell, away 

from the defect site. Even without a charged defect (𝑞̃ = 0), the LDOS exhibit a series of peaks 

arising from van Hove singularities of the different minibands. When the defect charge is 

increased to  𝑞̃ = −0.1, we observe that features in the LDOS are shifted and peak intensities 

are changed. For example, the peak near +25 meV significantly increases because of band 

flattening induced by the defect. For a defect charge which is above the critical value for 

Figure 5 (Top panel) Evolution of the electronic band structure of twisted bilayer graphene (twist angle of 1.54°) 
with an intercalated charged defect (𝑞̃ = -0.30) at the AA region as the interlayer hopping (described by 𝑉𝑝𝑝𝜎 

which is multiplied by a scaling factor 𝛼 ranging from 0 to 1) is turned on. (Bottom panels) The square 
modulus of the wavefunctions enclosed in the circle indicated in the top panel. Note that the square modulus 
of all the degenerate states in each circle are summed up. Green circles denote localized collapse states and 
orange circles denote delocalized states of remote bands.  



 

14 

 

monolayer graphene (𝑞̃ = −0.3), more dramatic changes in the LDOS can be observed. In 

particular, the peaks at positive energies become more prominent and shift to lower energies. 

Importantly, we do not observe a signature of collapse states in the LDOS. Such signatures are 

expected to occur at negative energies: as shown in Figure 5 (d), the higher-lying set of bands 

with collapse state character have an energy of -100 meV at Γ, but there is no corresponding 

peak in the LDOS. As discussed above, this is a consequence of the dispersion acquired by the 

collapse state bands arising from interlayer hybridization.  

 

 

4. Conclusion 

We have studied the electronic structure of twisted bilayer graphene with a charged 

defect near the magic angle. In contrast to the naïve expectation that the strongly reduced 

Figure 6 The local densities of states (LDOS) for tBLG with 1.54° twist angle for effective charges of 0.0, -0.10 and 
-0.30, intercalated at the AA region. The LDOS is calculated at a distance 2.93 nm away from the defect using 
31 × 31 × 1 regular k-grid. The zero of energy is referenced to the energy of the Dirac point. 
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Fermi velocity in tBLG results in a very small value of the critical defect charge for inducing 

collapse states in the flat band manifold, we find that the charged defect only induces 

deformations of the flat bands which depend sensitively on the position of the defect in the 

moiré unit cell. For example, we observe an additional flattening of the flat bands that is 

reminiscent of the band structure of the doped system without defects for charged defects at 

the center of AA regions. This finding suggests that it is possible to control electronic phases 

of twisted bilayer graphene through defect engineering. We also analyze the fate of the 

monolayer collapse state in twisted bilayer graphene and find that the monolayer collapse 

states hybridize with an associated energy splitting at the −point of the moiré Brillouin zone, 

but remain highly localized in the in-plane directions. Despite their localized character, the 

collapse state does not induce a peak in the local density of states as a result of the significant 

dispersion of this state throughout the Brillouin zone. These predictions can be tested in 

scanning tunneling microscopy and spectroscopy experiments.  

5. DATA AVAILABILITY 

The data to reproduce the plots and findings within this paper are available from the 

corresponding author upon reasonable request. 
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