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1.1 Introduction

Active systems transform energy from their environment into some form of work. The
whole living world, but also virtually all human made machines, belong to this class
of systems. Active matter, in turn, is composed of many such individual active units,
essentially identical, which all individually perform some work and interact with each
other. At the macroscopic level, these intrinsically out of equilibrium materials are
prone to develop new and interesting macroscopic physics (Vicsek and Zafeiris, 2012;
Bechinger et al., 2016; Fodor and Marchetti, 2018).

Identifying the phases of a material, and their properties, given the knowledge of its
elementary constituents, is the realm of statistical physics, which has been extremely
successful in doing so for systems at equilibrium. As emphasized in J. Kurchan’s chap-
ter in the present series, this success is the result of the conjunction of two independent
sets of properties, namely “being at equilibrium”, which is related to some form of time
reversal symmetry, and “being macroscopic”, which often guarantees well behaved self-
averaging properties. In the case of active matter, the time reversal symmetry is broken
at the microscopic level, and, for sure, principles of equilibrium statistical physics do
not hold. On the contrary, there is no reason why macroscopically well defined states
would not exist, hence the motivation for predicting them from minimal rules; a quest
which has attracted the attention of a growing community of physicists, chemists and
engineers.

To proceed further, we need to be more specific about the type of active material
we have in mind. Looking for symmetries and conserved quantities (see. table 1.1) is a
good way to classify the systems we are interested in. Standard materials are composed
of molecules, the dynamics of which, prescribed by some Hamiltonian, conserves the
number of particles, the energy and the momenta. It is clear that in active materials
energy is dissipated at the level of each individual units and is therefore not conserved.
In the following, we shall focus on the case where the work performed by the individ-
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Equilibrium  Wet Active Matter Dry Active Matter

Number of Particles v v v
Energy v X X
Momentum v v X

Table 1.1 Conserved (v') and non-conserved (X) quantities in Dry vs Wet Active Matter as
compared with Equilibrium systems. In this chapter we shall only consider dry active matter.

ual units ensures them self-propulsion, that is each unit gains or loses momentum, by
exerting forces on its environment. This environment can be a solid substrate, which
directly serves as a source or sink of momentum, or a suspending fluid. In the later
case, if the self-propelled particles and the fluid are away from any supporting walls,
the momentum of the suspension including the fluid and the particles is conserved.
Note that it is not the case if the fluid, in turn, exerts forces on a wall, which then
takes the role of the substrate. In short, in the presence of a substrate the momentum
is not conserved and one talks about dry active matter wether there is a solvent or
not; in the absence of substrate, the momentum of the set of self-propelled particles
is again not conserved, but the one of the suspension, as a whole, is. One then talks
about wet active matter.

There are also symmetries associated with the self-propulsion of the particles. Con-
sider a reference frame attached to the particle. The three main classes of motion are
isotropic, directional and polar. In the isotropic case, the particle motion has no pre-
ferred direction; this is typically the case of granular media. In the polar case, the par-
ticle motion develops along one particular orientation in the reference frame attached
to the particle, and in a particular direction along this orientation : the front/back
symmetry is broken; this is the case of most animals. In the directional case, the mo-
tion has a preferred orientation, but the front/back symmetry is preserved.

In the present chapter, we shall concentrate on polar and dry active materials.
The fluid phases of such materials exhibit two distinctive phenomenologies, which are
specifically active, in the sense that none of them could take place at equilibrium.

First, when the interactions promote alignment of the velocities, a transition is
observed from an isotropic dilute fluid, where particles move in all directions in a
disordered way, to a long range ordered phase, where particles all move coherently in
a given direction. This Transition to Collective Motion (TCM) has been first investi-
gated in an effective model, the so-called Vicsek model (Vicsek et al., 1995). In this
model, point particles move at constant speed and align their velocities when they
encounter. The transition is controlled by the noise level and the density of particles.
The transition is discontinuous and takes place via the nucleation of elongated prop-
agating bands (Chaté et al., 2008; Solon and Tailleur, 2013) (see also Hugues Chaté’s
chapter in the present series). At large scale, the physics of the polar phase is de-
scribed by an hydrodynamics theory either derived from conservation and symmetry
arguments (Toner and Tu, 1998; Toner and Tu, 1995) (see also John Toner’s chapter in
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the present series), or explicitly following kinetic theory (Bertin et al., 2006; Peshkov
et al., 2014).

Second, when the interactions lead to an effective decrease of the particle velocities
with increasing local density, a condensation transition — akin to the equilibrium gas-
liquid transition — takes place, although the interactions are purely repulsive. This is
the so-called Motility Induced Phase Separation (MIPS) (Cates and Tailleur, 2015).

In the past two decades, experimentalists have motorized virtually all soft matter
systems, from actin filaments (Schaller et al., 2010) and microtubules (Sanchez et al.,
2012) to grains (Deseigne et al., 2010; Kumar et al., 2014), droplets (Thutupalli et al.,
2011; Izri et al., 2014) and colloids (Palacci et al., 2010; Bricard et al., 2013; Buttinoni
et al., 2013; Palacci et al., 2013; Yan et al., 2016). A number of collective behaviors
have been reported, among which the formation of clusters of particles, moving col-
lectively or not, coarsening or not. Only in some cases (Schaller et al., 2010; Deseigne
et al., 2010; Bricard et al., 2013) a clear transition to collective motion takes place. In
all such experimental systems the interactions have many possible different origins, in-
cluding steric repulsion, hydrodynamics, electrostatic and chemical coupling. In large
group of animals, where collective motions are also observed, even more complex inter-
actions, including social rules, may play an important role. Hence a central question
of interest : for a given experimental system, with a well characterized microscopic
dynamics, what is the expected large scale dynamics?

Answering such a question is in general a hard task, for a number of different reasons:

e As already emphasized, there is no equilibrium-like first principle, such as free
energy minimization, to guide our intuition.

e Mapping the experimental parameters onto the parameters of the microscopic but
effective models is often not possible.

e In principle both MIPS and TCM can take place, eventually competing, depend-
ing on the experimental parameters. There is yet no unified theory, even at the
effective level, to describe such a situation.

e A number of experimental factors, which have been deliberately omitted in the
effective models, could end up being relevant and modify the whole scenario.

The purpose of this chapter is to illustrate the above considerations using two
well controlled experimental system of dry active matter, in which a transition to
collective motion has been reported. In both cases we shall describe the microscopic
dynamics of their individual components as well as their large scale physics. This
will allow us to discuss how, and to what extent, the latter can be inferred from
the microscopic rules. The first experimental system has been introduced in (Bricard
et al., 2013). It consists in a system of micron-size colloidal rollers, which interact
through hydrodynamics and electrostatic interactions. For a given set of experimental
parameters, the rolling speed remains constant, and the interactions only reorient the
particles. We will see that it is then possible to obtain quantitative predictions for
the observed large scale dynamics, using kinetic theory. We will discuss the role the



4  Collective Motion in Active Materials : Model Experiments

long range hydrodynamics interaction could play. The second experimental system has
been introduced in (Deseigne et al., 2010). It is composed of vibrated granular disks,
which have been designed in such a way that they perform persistent random walk. At
first sight this system looks simpler. The disks interact by essentially elastic collisions,
which are not expected to induce steric alignment. We shall see however that alignment
does take place because of a natural coupling between the disk velocity and the disk
orientation, which are in this case, two distinct degrees of freedom at the particle level.
We shall then show explicitly how to compute the aligning properties of such a system
and discuss how they compare to the effective alignment rule introduced in the Vicsek
model. The chapter makes an extensive use of the works presented in (Bricard et al.,
2013), — especially the supplementary material — as well as in (Weber et al., 2013)
and (Nguyen Thu Lam et al., 2015b; Nguyen Thu Lam et al., 2015a). Here, we shall
concentrate on the theoretical discussion, simply summarizing the main experimental
observations. The reader is invited to refer to the above references for details about
the experimental set up and procedures.

1.2 Colloidal Rollers

The system consists in spherical colloidal particles, which self propel on solid surfaces
and are sensitive to the orientation of their neighbors. The self-propulsion results from
an electro-hydrodynamic phenomenon referred to as the Quincke rotation (Quincke,
1896). As we shall see below in more details, when an electric field is applied to an
insulating sphere immersed in a conducting fluid, the charge distribution at the sphere
surface is unstable to infinitesimal fluctuations above a critical field amplitude £ > Eq.
This spontaneous symmetry breaking results in a net electrostatic torque on the sphere,
which thus rotates at a constant speed around a random direction transverse to the
electric field. When the sphere lies on a rigid surface, this spinning motion turns into
self-propulsion. The electric and hydrodynamic interactions rule the alignment and
repulsion between the rolling colloids.

1.2.1 Experimental set up and major observations

The authors (Bricard et al., 2013) used PMMA beads of radius a = 2.5 um diluted in an
AOT ionic surfactant solution in hexadecane oil, filling the gap between two conduct-
ing glass slides. Once the particles are sedimented, they apply an electric field F, and
indeed observed the high-speed rolling motion of the colloids (vg ~ 10 — 10%a/s). The
motion of the rollers is confined to race-track channels of width 500 um < W < 5mm,
by adding a patterned insulating film at the surface of the upper transparent electrodes.

When their area fraction ¢ is small, the population of rollers behave as a gaseous
phase (fig 1.1-a). All the particles move in random directions at the same speed. When
the area fraction is increased above a critical value ¢., collective motion emerges spon-
taneously: a macroscopic fraction of the population moves in a coherent fashion along
the same direction. For area fraction greater but close to ¢., the system phase sepa-
rates into an homogeneous isotropic phase and a denser polar phase, which typically
consists in a single macroscopic band that propagates at a constant velocity cpang ~ vo
(fig 1.1-b). The density within the band ¢(s,t), where s denotes the spatial coordinate
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Fig. 1.1 Transition to collective motion in a system of rolling colloids, when
increasing the area fraction ¢o: (a) At low ¢ an isotropic gas is observed. (b) Above a
critical ¢., polar motion develops in the form of a macroscopic band (c¢) At even larger ¢o,
one observes an homogeneous polar phase. (d) Modulus of the average polarization Ilp, as a
function of the area fraction ¢g.

along the track, sharply increases at the front and decays exponentially to a constant
value which is very close to the critical volume fraction ¢, irrespective of the system
size. The local polarization II(s,t), defined as the modulus of the averaged orientation
of the velocities, is maximal at the front and decays continuously to 0 along the band.
Quantitatively, it is observed that ¢(s,t) and II(s,t) are related by:

o(s,t)

regardless of the particle velocity, and of the mean volume fraction. Further increasing
the area fraction an homogeneous band-less polar state develops, with the the en-
tire population of rollers cruising coherently along the same direction and II(s,t) ~ 1
(fig 1.1-c).

H(s,t):(l (bc) (1.1)

These observations are very much reminiscent of the transition to collective motion
reported in the Vicsek model (Vicsek et al., 1995; Chaté et al., 2008; Solon and Tailleur,
2013). However, one specificity of the ordered polar phase obtained in the Vicseck
model is the presence of anomalously large density fluctuations. Such fluctuations are
also predicted at the level of the large-scale hydrodynamics theory (Toner and Tu,
1998; Toner and Tu, 1995). Visual inspection of the polar phase of colloidal rollers
does not provide any evidence of such density fluctuations. As a matter of fact, their
first quantitative analysis concluded to their absence (Bricard et al., 2013); it is only
recently, that it was shown that they are indeed present, conducting new experiments
with larger statistics and weaker confinement (Geyer et al., 2018).

1.2.2 Microscopic dynamics : rolling mechanism and interactions

The first step in analyzing theoretically this system, is to describe the self-propulsion
mechanism and the interactions among the colloids. We shall recast here the main
arguments of the derivation, which is provided in full details in the Supplementary
Materials of (Bricard et al., 2013).
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Fig. 1.2 Self propulsion mechanism: (a) An isolated solid and isolating sphere in an

unbounded conducting liquid can undergo Quincke rotation, when an external electric field of
amplitude Ey > E¢ is applied. (b) Electric charges accumulate at the particle-liquid interface
and result in a dipolar surface distribution. (¢) A small rotational perturbation advects the
charges located in the viscous layer and thereby tilts the dipole ]3, thereby inducing a net
electric torque T which amplifies the initial perturbation. (d) When laying on a iso-potential
surface, the latter couples rotational and translational motion, allowing propulsion. It also
disturbs the electric field. The dominant contribution to the image charge distribution is the
symmetric dipole P*.

Rolling mechanism. The Quincke rotation arises from the interplay between interfa-
cial electrodynamics and the particle motion in a viscous fluid (see fig. 1.2). Let us
consider an insulating and impermeable sphere of radius a located at 7 = 0. Here,
for simplicity, we assume that the particle and the surrounding liquid share the same
dielectric permittivity € and the liquid has a conductivity o. An uniform DC electric
field Ey % is applied along the z-direction. Due to the conductivity discontinuity, a
non-uniform charge distribution arises close to the interface. Assuming the thickness
of the charge layer is much smaller than the particle radius a, it can be modeled by a
surface-charge distribution deduced from the continuity relation: gs = e(E' - EP)-#|,—q,
where E! (resp. Ep) stands for the electrostatic field inside the liquid (resp. the par-
ticle). The surface charge conservation equation reads 9 gs + Vs §é = 0, where Vy is
the surface divergence operator, and j, is the surface current. If the particle rotates
with an angular velomty Q, both ohmic conduction and charge advection contribute
to the surface current: j, = oE + s Q x af. The charge-conservation equation can fi-
nally be recast into a dynamical equation for the first moment of the dipolar charge
distribution P:

ap

- 1
<= * PZ—*QTFEOCL Eo+QxP, (1.2)

~n~

where 7 = ‘23—; is the so-called Maxwell-Wagner time. When no rotation occurs, the

dipole P relaxes towards a stationary value and orients along —Ej in a time 7 due
to the finite conductivity of the solution. However, as the particle rotates, charge
advection competes with the spontaneous relaxation, and could in principle result in
a dipole orientation making a finite > angle with the external field Eo. The particle then
experiences a net electric torque T° = : P x Ey and a net force F® = < (P V)EO7
which vanishes in a uniform external field. Neglecting the inertia of the sphere the
translation velocity ¥ and the rotation speed € are linearly related to F® and T°
through a mobility matrix M.:
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Ly aF* . wel 0
( G | = M- e with M = 0 1) (1.3)
and p; = (6mna®)™t and p, = (87na®)™!, where 7 is the liquid viscosity and I is

the identity matrix. Note that M is diagonal in an unbounded fluid only. Egs. (1.2)

and (1.3) together fully capture the particle dynamics. When the external field Fy

-1/2
exceeds the threshold value Fq = [27rea3,uT7'] / , the trivial non-rotating solution

is unstable against rotational perturbations and the dynamics bifurcates towards a
solution describing a steady rotation at angular velocity

0- ! (EO)Z (1.4

Eq

The rotation axis can be any direction perpendicular to E, as the symmetry is spon-
taneously broken. In short, any infinitesimal perturbation results in an electrostatic
torque. When the external field exceeds a threshold value Eq, this torque is large
enough to advect the charges despite the stabilizing mechanism provided by the finite
conductivity of the solution. The advection amplifies the initial perturbation until the
viscous torque balances the electric torque. When the stationary state is reached, the
particle steadily rotates at {2 around an axis perpendicular to Ey, the direction of
which is set by the initial perturbation only.

In an unbounded fluid and a uniform electric field, the particle experiences no net
force and thus have no translational velocity. To achieve propulsion of the spherical
particle, the basic idea is to let it roll on a plane surface. The presence of such a surface
modifies both the mechanical and the electrostatic equations introduced above. From
the mechanical point of view, the presence of the surface is accounted for by a modified
mobility matrix. Its main feature, as compared to the unbounded fluid case, is that
it now contains off-diagonal terms, which couple rotational and translational motion:
they are responsible for the rolling motion. The mobility coefficients are also modified
and can be computed in the context of the lubrication hypothesis. The surface at z = 0
does not only modify the hydrodynamics of the fluid, but also disturbs the electric
field. Indeed, the particle lies on the lower electrode, which is an equipotential surface.
This is taken into account by considering an electric image charge distribution in the
region z < 0, which is dominated by a dipole P =P, ;- PH at z = —a, as sketched in
Fig. 1.2(d). It follows from the symmetry of the real charges and of the image charges
with respect to the equipotential plane, that the surface induces no tangential force
F ”c, and no perpendicular torque 7 = 0 on the sphere. However, as opposed to the
case of the classical Quincke setup, the particle experiences an external electric field
which is not uniform. It includes here a correction d E* induced by the image charges.
One can show that at leading order in |6E *|/ Eo, the relation between the polarization,
the electric torque and the electric force is not affected by the substrate. As a result
the equations of motion of an isolated sphere lying on a planar electrode reads

- € . 2,
U=-—afiEy P, (1.5)
€0
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where fi; is the modified translational mobility. The particle steadily rolls on the elec-
trode at a velocity ¥, which points in the direction opposite to the parallel component
of the electric polarization. When Ey > Eq, the rolling speed vy = || is proportional
to the in-plane component of P, and is given by

2

[l E

v = (0) -1 (1.6)
MUy T EQ

It is important to note that, since the rolling motion results from a spontaneous
symmetry breaking, there is no intrinsic orientation of the particle. This situation
is different from that of Janus particles, for which an orientation is imprinted in the
particle and thus is a degree of freedom correlated to, but different from the the velocity
orientation. Note that the present situation is closer to the effective description chosen
in the Vicsek model.

Interactions. The rollers are coupled by electrostatic and hydrodynamic interactions.
Their surface-charge distribution induces a field disturbance 6 E (7,t) which may alter
the polarization, and the velocity, of the surrounding particles. Moreover, as it moves
a roller induces a nontrivial fluid motion around it. Therefore, all the rollers are ad-
vected by a flow field 4 (#,t) resulting from the motion of their neighbors.

To derive these interactions, one first needs to compute the rollers dynamics in
heterogeneous electric and hydrodynamic fields following the same spirit as what we
did when introducing the bottom wall. One finds again a dynamical equation for P,
complemented by a mechanical equation that relates the velocity of the particle to
the forces and torques acting on it. For a dilute system, one shows that despite the
interactions, P,, Pj and the norm of the velocity relax towards their unperturbed value
over the timescale 7. In a dilute population of interacting rollers all the particles propel
themselves at the same speed. However, as anticipated the orientations of the particles
are now coupled, and evolve on much longer timescales ~ /¢, where ¢ quantifies the
amplitude of the field perturbations. At leading order in e this slow orientational
dynamics takes a rather simple form

A W
dt 06,

—RpU; 11” + ,LLEiiji . (SE”] (1.7)

where pp, and pg are respectively the hydrodynamics and electric mobilities. In short,
the roller experiences a torque induced by the flow field until its velocity aligns with
). Similarly, the second term accounts for the electrostatic coupling: it causes the
roller velocity to align with —6E‘H.

The next step is to derive explicitly the disturbance fields (5EH (7,t) and ) (74,1)
induced by all the other rollers j # i. The electric field induced by a particle j originates
from the dipole I3j and its electrostatic image 13;. It has two contributions, which are
displayed on figure (1.3)-left. A first contribution is proportional to P, and induces
a repulsive interaction: it favors a roller velocity ¥; pointing in the direction opposite
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Electrostatic Hydrodynamics

Fig. 1.3 Electrostatic and Hydrodynamics interactions: A particle rolling in direction
13 creates a perturbative electric field. A radial part (proportional to P,) results in a repulsive
effect, which does not depend on the orientation of the particle. An additional contribu-
tion (proportional to Pj) breaks the rotational symmetry and yields a position-dependent
interaction. The rolling particle also creates a perturbative flow field. At distances smaller
than the channel height, the central roller induces a radial shear with anisotropic amplitude,
which globally promotes alignment. At distances much larger than the channel height, the
non-screened resulting flow has a dipolar symmetry.

to ;u The second contribution is proportional to P, and it possibly results in align-

ment or anti-alignment with 5]-, depending on the relative positions between the two
rollers. At distance larger than the separation distance H between the two electrodes,
all the electrostatic couplings are exponentially screened over a characteristic length
H/m. Note that the electrostatic repulsion prevents the formation of dense regions of
colloids. This justifies a posteriori the dilute limit treatment of the problem. The flow
field created by a rolling particle is expressed in terms of point-wise hydrodynamic sin-
gularities. Over distances smaller than the channel height H, a Quincke roller is akin
to a rotlet near a no-slip wall: the particle is a point-wise torque-source. At long dis-
tances, unlike electrostatic screening, mass conservation gives rise to a non-vanishing
flow having the form of a two-dimensional source dipole. The corresponding stream-
lines are plotted in Fig. (1.3)-right. At short distances, the hydrodynamic interactions
promote the alignment of the roller velocities. In addition, long-range hydrodynamic
interactions that algebraically decay as 72 have a dipolar symmetry. They can either
cause alignment or anti-alignment, depending on the relative positions between the
rollers.

Equations of motion. Assuming that both electrostatic and hydrodynamic interac-
tions are pairwise additive, the above results can be summarized in a compact form.
The particle ¢ moves at constant velocity vy on the surface, and undergoes a slow
orientational dynamics:

T =UOZ§¢
10
L)

(1.8)
0;

ZHeff(ﬁ-Fpﬁmf)j)

R

(1.9)
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The interaction potential H.g takes the form:
Hett (7, pi,Dj) = A(r) pj - pi + B(r) 7 pi+ C(r) p; - (277 - 1) - p; (1.10)

where the coefficients have complex expressions, deduced from well identified micro-
scopic parameters (see Supp. Mat in (Bricard et al., 2013) for the exact expressions).

The term A(r) describes the alignment interaction. It arises both from the short-
distance hydrodynamic interactions and from part of the electrostatic couplings. The
coefficient B(r) is positive, and corresponds to the electrostatic repulsive coupling.
The last term C'(r) combines electric and hydrodynamic interactions. A(r) and B(r)
are finite-range interactions, being screened on a distance set by the channel height.
Conversely, C(r) contains the unscreened dipolar hydrodynamic coupling. It is truly
long-ranged since it algebraically decays like r~2 in two dimensions. Note however,
that its strength is small compared to the short-range hydrodynamic effect, since it is
proportional to a/H « 1.

It is important to note that the interactions are far more complex than the align-
ment rules defined in the Vicsek model, for which, in the absence of noise, the incoming
velocities fully align. The fact that more complex aligning interactions observed here
lead to the same macroscopic dynamics is far from obvious. On one hand the sym-
metries of the microscopic dynamics are identical; on the other hand the short range
repulsive and the long range dipolar interactions could in principle be relevant too,
and impact the large scale dynamics.

1.2.3 Deriving the large-scale hydrodynamics

In order to discuss the relevance of the several interaction terms, one needs to derive
the large scale dynamics from the microscopic rules using kinetic theory. We shall here
only present the main steps of the procedure, which are as usual :

e Obtain the evolution equation for the N particles probability density, from the
dynamical equations;

e Integrate out all but one particles, in order to derive the evolution equation for
the 1 particle probability density. This requires closing the associated hierarchy
of equations.

e Define the large scale fields, which are moments of this distribution. One should
keep only slowly varying fields, that is those associated either to conserved quan-
tities or to the slow modes associated with broken symmetries

e Compute the evolution equation for these fields and close them with constitutive
laws.

First, a noise term /2D, ;(t), where &;(t) is a Gaussian white noise with zero mean
and unit variance, is added to Eq. (1.9) in order to account for rotational diffusion.
The resulting 2N coupled Langevin equations (1.8)—(1.9) are then transformed into a
Fokker-Planck equation for the N-particle distribution function w") (F1., TN, 01, ..., 0N, 1),
By integrating over IV — 1 particle positions and directions, one obtains the time evo-
lution of the one-particle density W™ (7,6,t):



Colloidal Rollers 11

OHen(F—17,0,0")
00

atq/ﬁ)woﬁ-w(lulaa f a7 de’ (770,60, t)-D, 939D =0,
" (1.11)
which depends on the two-point distribution function W) (7,7 6,6’ t). This is the
first equation of an infinite hierarchy, which couples the n-point distribution ¥ to
the (n + 1)-point distribution U+ This hierarchy of equations, must be closed,
by postulating a relation between ¥ and ¥(1). Here we assume that the two-body
correlations cancel over a distance as small as one particle diameter and include steric
exclusion effects between the colloids:

0 if |7 - 7| < 2a

1.12
O (70, ) TD (0, ¢) if [F -] > 2a (1.12)

v (77 60,0't) = {

We thereby obtain from Eq. (1.11) a closed equation for the one-particle distribution
function.

Second, one considers the three hydrodynamic fields:

1
Area fraction: 6(F\t) = — / a9 v (,0,1) (1.13)
ma
- ’/Ta2 -
Velocity polarization: II(7,t) = 5 f 46 pu M (7,6, 1) (1.14)
) ra? e 1
Nematic order tensor: Q(7,t) = Y / dé (ﬁﬁ— 5]) D (7.6,0). (1.15)

By integrating Eq. (1.11), closed by Eq. (1.12), over 8, one immediately recovers the
particle-number conservation law:

Dy +voV - (¢I1) = 0 (1.16)

Taking the first angular moment of Eq. (1.11) similarly couples the time evolution
of II to the nematic order tensor (). We thereby generate a new hierarchy of equa-
tions which couples each moment of the distribution function to higher-order moments.

The third and final steps thus consist in identifying one more closure assumption.
It is important to understand that the closure assumption depends on the phase we
want to describe. Indeed, it amounts to make some hypothesis on the shape of the
angular distribution of the particles, which one expects to be very different in the
isotropic phase and in the fully polarized phase.

(i) Close to the instability threshold of the disordered state, one can use a Ginzburg-
Landau-type expansion as introduced in (Bertin et al., 2009) and further developed
in (Peshkov et al., 2014) (see also Hugues Chaté’s chapter in the present series). Also
assuming that the nematic order parameter Q relaxes faster than the two other hy-
drodynamics fields, one ends up with a close hydrodynamic equation for the velocity
polarization II [Eq. (S29) of (Bricard et al., 2013)] coupled to the continuity equa-
tion (1.16).
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(ii) Far in the polar phase, it is necessary to introduce another closure approxima-
tion. In this highly polarized phase, one expects the angular probability distribution
to be sharply peaked around the direction of collective motion. In this case, a simple
assumption is to approximate it by the wrapped normal distribution. This ” Gaussian”
like Ansatz imposes the following relation Q=T?TI1-1 H4 I. With this new closure re-
lation, neglecting higher-order terms in 7, one again obtams from Eqgs. (1.11)—(1.12)
an hydrodynamics equation for the velocity polarization II | [Eq. (S38) of (Bricard
et al., 2013)] coupled to the continuity equation (1.16).

1.2.4 Predictions and comparison to experiment

We first discuss the transition to collective motion. Looking for homogeneous phases,
one can drop space derivatives in the hydrodynamics equations. Close to threshold,
the hydrodynamics equations then reduce to ¢(7,t) = ¢o and

7O = (v po - 7D, ) T - 2112)10, (1.17)

2D

where a = [ ,dr A(r)Z;, accounts for the alignment interactions. It readily follows
from the cubic form of the r.h.s that the system undergoes a mean-field continuous
phase transition to a polar state as ¢y exceeds the critical area fraction ¢, = Tg

As the observed transition is not continuous, something else must take place. Indeed,
one can perform the linear stability analysis of the homogeneous phases. As expected,
the isotropic state is linearly stable for ¢g < ¢. and unstable for ¢y > ¢.. What
is more uncommon, is that the homogeneous weakly polarized state obtained for ¢q
slightly larger than ¢, is also linearly unstable against compression fluctuations. Hence
all homogeneous phases are linearly unstable at the onset of collective motion. This
situation is exactly that of the Vicsek model. In such a situation, the system converges
to a non linear solution, here the propagating bands. It is difficult to derive analytically
the shape of band-density profiles. However, the particle-number conservation provides
a relation between the local density and the local polarization field when density
excitations propagate steadily. Looking for propagative solutions of the form ¢ = ¢(x -
Chandat), I = II(x - cbandt)sﬁ and integrating Eq. (1.16) over the transverse direction

leads to the relation
Cband ¢oo
II(s) = ( ) (1.18)
¢(s)
where the integration constant ¢, is the area fraction far away from the band. This is
precisely the relation (1.1) observed experimentally. Note that it does not depend on

any closure scheme at the hydrodynamic level, because it derives from the continuity
equation.

Turning to the polar liquid phase, we now investigate the linear stability of ho-
mogeneous polar phases, with respect to spatial fluctuations, for densities ¢y > @..
The compression mode, which was unstable close to the transition is stabilized by
the electrostatic repulsion at higher densities. Physically the electrostatic repulsion,
impedes the formation of highly concentrated regions. Fluctuations having the form
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of bend modes are exponentially amplified by the hydrodynamics long range interac-
tion. However, as obviously expected transverse confinement eliminates this instability.
Also remember that the amplitude of this interactions scales as a/H <« 1. Finally, the
fastest rate, which corresponds to a pure splay mode, is negative: splay fluctuations
are stabilized by the long-range hydrodynamic interactions. This last results allows us
to discuss the presence or absence of giant density fluctuations. Giant density fluctu-
ations are a consequence of the splay mode instability. From the present result, we
should thus conclude that they are suppressed, as indeed first reported in (Bricard
et al., 2013). However the previous conclusion is valid in the limit of small wave vec-
tors gH <« 1. At distances smaller than H, the long-range dipolar interactions, that
govern the density fluctuations at large scales, are subdominant. As a consequence,
deviations from the above prediction are expected below a crossover length ¢, which
depends on the numerical values of the respective amplitude of the different interac-
tion terms. This presumably explains why, indications of the giant density fluctuations
could be captured in (Geyer et al., 2018).

1.2.5 Discussion

Altogether the experimental results together with their theoretical analysis establish
that colloidal rollers self-assemble into a prototypical polar active fluid. In the present
case one can conclude that the complexity of the microscopic interactions, as com-
pared to their simplistic effective formulation in the Vicsek model, does not play a
significant role. Establishing this statement however required a complete analysis of
the microscopic interactions, at least in term of symmetries, an explicit derivation of
the hydrodynamics equations, under a number of assumptions, and a linear stability
analysis of the steady state solutions. In particular we saw that a careful study of the
impact of the long range hydrodynamics interaction on the splay mode instability was
necessary to decide about the presence of the giant density fluctuations.

The ability of polar active fluids to support sound modes, regardless of whether
the dynamics of their microscopic units is overdamped, is one of the most remarkable
theoretical predictions for active fluids with broken rotational symmetry (Toner and
Tu, 1995; Toner and Tu, 1998; Toner et al., 2005). In their recent study (Geyer et al.,
2018), the authors have provided an experimental demonstration of this counterintu-
itive prediction, and establish a generic method to measure the material constants of
active fluids from their sound spectrum.

It is truly remarkable to have obtained in a real experimental system such a clear
realization of the physics described by the Vicsek model at the effective level. We
personally believe that the two ingredients at the root of this observation are (i) that
the speed of the rolling colloids is amazingly constant, wether the particles interact or
not; (i) that the particles interact without colliding. The dynamics thus reduces to a
slow dynamics of the velocity orientation, which is precisely what the Vicsek model
describes.
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1.3 Granular Walkers

The system consists in millimeter-sized disks with a built-in oriented axis. When vi-
brated the disks perform a persistent random walk. The collisions on the other hand
are strictly isotropic. Although there is no obvious source of alignment, large-scale col-
lective streams were reported in collections of approximately a thousand disks moving
on a carefully vibrated plate (Deseigne et al., 2010; Deseigne et al., 2012). In order
to bypass the inherent difficulties of the experimental setup (limited number of disks,
limited size of the vibrated plate, limited range of control parameters), a model for
the motion and collisions of the polar disks was proposed (Weber et al., 2013), which
accounts quantitatively for the experimental properties at the single and pair interac-
tion level and agrees well with observations at the collective level. The phase diagram
of this model shares important similarities with that of the Vicsek model : for large
noise and low density one observes a disordered gas, for low noise and large density an
homogeneous polar phase sets in. At the transition, solitary polar bands propagate in
a disordered surrounding phase. The main question raised by this system is the origin
of the microscopic alignment. Once it will be identified, we will discuss how it differs
from the Vicsek one and the consequences, if any, at the macroscopic level.

1.3.1 Experimental set up and major observations

The polar particles are micro-machined copper-beryllium discs (diameter d = 4 mm)
with an off-center tip and a glued rubber skate located at diametrically opposite posi-
tions. These two ”legs”, with different mechanical response, endow the particles with
a polar axis (i’ = (cos ¢%,sin ¢*)). Of total height h = 2.0 mm, the discs are sandwiched
between two thick glass plates separated by a gap of H = 2.4 mm (see Fig.1.4-a). Under
proper vibration, the discs perform a persistent random walk, the persistence length
of which is set by the vibration parameters (Fig.1.4-b). Here we use a sinusoidal vibra-
tion of frequency f = 95 Hz and relative acceleration to gravity I' = a(27f)?/g = 2.4.
Particle trajectories are tracked within a circular region of interest (ROI) of diame-
ter 20d, where the long-time averaged density field is homogeneous. For large enough
vibration amplitude, I' > 1, individual velocities 9;(t) = (7 (¢t + 70) — 7:(t)) /70 have a
well-defined most probable or mean value vy ~ 3d/s , which depends only slightly
on I'. The local displacements of the particles are overwhelmingly taking place along
n;(t), their instantaneous polarity. The orientation angle diffuses, with an angular dif-
fusion constant Dy, which increases fast and linearly with I'. As a result, the persistence
length of an isolated polar particles £ ~ 15d for I' = 2.4 and decreases with increasing T'.

Turning now to the collective dynamics of typically N = 1000 particles and a pack-
ing fraction ¢ ~ 0.40, the authors (Deseigne et al., 2010) report that at low I" values,
for which the directed motion of the polar particles is most persistent, they observe
large-scale collective motion, with jets and swirls as large as the system size. (Fig.1.4-c)
Here because the boundary conditions are not periodic, the collective motion observed
is not sustained at all times. Large moving clusters form, then breakdown, etc. The
orientational order is characterized by the modulus of the average velocity-defined
polarity U(t) = |(u;(t))| where ;(t) is the unit vector along 9;(¢t) and the average is
over all particles inside the ROI at time ¢. The times series of the order parameter ¥
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Fig. 1.4 Transition to collective motion in a system of self-propelled walkers: (a)
Sketch of a walker : a hard metallic disc with an off-center tip and a glued rubber skate located
at diametrically opposite positions; the velocity ¢ is in general not perfectly aligned with the
polarity 7. (b) Under proper vibration the walker performs a persistent random walk. (c) A
thousand of such discs interacting through collisions develop large scale collective motions.
(d) In silico mimicking the experimental system allows to explore the full phase diagram, with
~ the noise amplitude and ¢ the area fraction: (gray square = disordered phase; red triangles
= homogeneous polar ordered phase; blue bullet = polar bands; green bullets = inverse polar
bands). (e) Snapshot of the polar phase obtained with periodic boundary condition in a
system of N = 1000 particles (inset : order parameter as a function of v; v = 1 corresponds
to the experimental conditions). (f) Snapshot of a polar band state in a very large system
(L =200).

presents strong variations, but can take a rather well-defined order one value for long
periods of time. At high T" values (large noise) no large-scale ordering is found. The
study of the spatial and temporal correlation functions further confirm the onset of
large scale collective motion.

In order to extend the observation range of the system, in terms of size and pa-
rameter values, a mathematical model for the motion and collisions of the polar disks
was proposed (Weber et al., 2013). Rather than modeling the full three-dimensional
dynamics, the model describes the effective two-dimensional motion of the discs. As
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compared to the most common Active Brownian Particles (ABP), the main new fea-
tures of the model, dictated by the experimental system, is twofold: (i) the dynamics
of the particle’s intrinsic polarity with respect to their velocity is explicitly described,
and (ii) no explicit alignment rules are employed, but collisions are explicitly modeled.
Particle 4 is subject to a noisy acceleration along its polarity axis 7i’ (with anisotropic,
intrinsic, “active” noise, respecting the particle’s polar symmetry), balanced by an
effective linear friction term along its velocity ©% = %fi, with # denoting the particle’s
coordinates. Particles i and j with |#*~#7| < d, where d is the particle diameter, interact
by means of a pairwise, inelastic, repulsive interaction force F%/. Furthermore, when

al = (Tji, ﬁz) the angle between velocity and polarity, is nonzero, frictional interactions
with the vibrating plate are observed to induce a torque on the particle. More pre-
cisely, when o, is acute, 71’ rotates towards ¥, while for |ai| > /2, ! rotates towards
—#*. The model thus reads:

d . , 4 , ey

ﬁfﬂ = [Fo+mln’ +mnt - o+ FX, (1.19)
J

d s i

aqb = ( sina’sign(cosa') + g (1.20)

where Fy, the propulsive force amplitude, and 3, the damping coefficient, are constants
giving rise to a stationary speed v = Fy/3. ¢' is the orientation of the unit vector 7’
and ¢ characterizes the strength of the coupling between polarity and velocity. 7’ is a
unit vector perpendicular to 7, n)|,1,¢ represent Gaussian and wrapped Gaussian dis-
tributed white noises with zero mean, and D), , denotes the corresponding diffusion
constant.

The numerical values of the coefficient of the model are first fixed by exploring
the statistical properties of the one particle dynamics, namely its translational and
angular diffusion properties, as well as the dynamical correlations between ¥ and 7.
Lastly the restitution coefficient € is obtained by fitting the statistics of two-body col-
lisions. The model provides a fair description of the experiment, also at the collective
level. Finally simulating the model with periodic boundary conditions, varying only
the noise level and the packing fraction, a phase diagram akin to the Vicsek one was
obtained, thereby establishing the first evidence of truly long range collective motion
in an experimentalo-silico system of self-propelled particles Fig.1.4-d-e-f).

We however note two features distinct from the standard Vicsek case: (i) at large
packing fraction and low noise, the authors report the existence of ”inverse polar
bands”, where a dilute disordered region propagates within the polar phase; such
"inverse polar bands” have never been reported in the Vicsek model; (ii) no polar
bands could be observed when transitioning from the disordered to the polar phase,
for packing fractions ¢ > 0.6. The absence of polar bands in the transitional regime
between the disordered state and the fully polar state might just be a finite-size effect;
however, for the existing band, we note that the longitudinal density profile around
¢ =~ 0.6 turns out to be rather flat, with an overall rather low order (as low as (1) ~ 0.2
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for ¢ =0.6 and v = 1.4). These bands may thus be of different nature from the Vicsek-
like, sharp, well-ordered bands found at low ¢, and could cease to exist asymptotically
at a packing fraction below the rise of jamming and crystallization effects.

1.3.2 Microscopic dynamics : reorientation mechanism

In order to discuss the relation of the above observations with the Vicsek scenario,
one first needs to understand the origin of the alignment: since the particles are discs,
it is not expected to arise from steric interactions; it therefore must have a dynamical
origin. In order to simplify the discussion let us first introduce the dimensionless and
noiseless version of the above model:

7i = Ui, (1.21)

ToU; = My = U + . £ijs (1.22)
;

Tty = (7 X 0) x i, (1.23)

where for simplicity, we consider that the torque in eq. 1.23 always aligns 9; towards
;. Let us stress the presence of this torque is the key ingredient of the model and
that it is a generic term for dry active systems. Even for a non chiral self-propulsion,
namely when the propulsion mechanism is mirror-symmetric with respect to the body
axis 7;, a torque acting on the particle is allowed by symmetries as soon as 9; is not
aligned with 7;. The mutual relaxation towards each other causes the two vectors to
converge against a common stationary direction, where ¥; = von;. Here, vo = Fy/f8
denotes the final speed of the isolated particle. The mass m of the particles, their
diameter d, and d/vg, being respectively the units of mass, length and time, one has
Ty = 7%1210 and 7, = 1/¢. When a particle starts with given 9; # #;, the trajectory
depends on both parameters 7, and 7,. It turns out, however, that the final direction
of the particle depends on these parameters mostly through their ratio a = == (not to

be confused with the angle «...), which can be understood as the persistenz:e of the
polarity vector 7i. When « < 1, then 7 aligns very fast and is practically always parallel
to U. Conversely when « > 1, then 7 dictates the orientation of . Quite remarkably
the experiments conducted with the vibrated polar disks seem to work in the crossover
between these limits, a ~ 1 (Weber et al., 2013).

The dynamical origin of the alignment is summarized on figure 1.5-(a) and (b).
Let’s consider first the simpler case of the collision of a self-propelled disc with a wall.
Before the collision, |5 = vy and @ || 7. On the contrary, right after the collision, the
velocity has reoriented according to the collision rule, while 7 remains unchanged.
During the mutual relaxation of ¥ and 7i, the trajectory is bended by the active force,
pointing in the direction of 7i, leading to an asymptotic common direction, which makes
a smaller angle with the wall than the incoming direction, hence the alignment of the
trajectory with the wall. Note that if « is large, the trajectory can also induce a new
collision with the wall. Considering now the collision between two self-propelled discs,
the situation is complicated by the fact that not all collisions are as simple as the one
with the wall. In general they will depend on the impact parameter of the collision.
The next step is therefore to consider all possible scattering events and somehow add
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Fig. 1.5 Dynamical alignment of self-propelled discs: (a) When a particle starts with
given ¥; # 7,;, the mutual relaxation towards each other causes the two vectors to converge
against a common stationary direction, which mostly depends on a = :—’:, which can be
understood as the persistence of the polarity vector 7i. (three trajectories with different initial
conditions, for a = 0.5). (b) Trajectory of a particle following an elastic collision with a wall:
for a finite «, the mutual reorientation of ¥; and 7; leads to an alignment of the trajectory
with the wall. (¢) Description of a scattering event. P is the total momentum in the system.
Two particles incoming with momenta p; and ps exit the scattering event with momenta p}
and p5. The scattering event ends when all relaxation processes have taken place, namely
the speeds have relaxed to vg and ¥; || 7;. (d) The alignment within the scattering event is

positive if pdp > 0.

their contribution to the global alignment.

Before doing so, let us mention, that on top of the deterministic equations (1.21-
1.23), one can add some angular noise distributed normally with zero mean and an
angular diffusion constant D.

1.3.3 Alignment rooted in the non conservation of momentum

In this section, we shall derive a general setting to compute the average alignment for
a system of self-propelled particles interacting by pairs. A published version of this
discussion can be found in (Nguyen Thu Lam et al., 2015a) and further details in the
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supp. mat. of the arXiv https://lanl.arxiv.org/pdf/1410.4520v2.

Particle velocities at equilibrium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-propelled particle reaches its
intrinsic steady velocity vg, set by the competition between propelling and dissipation
mechanisms. In the low-density limit, this transient lasts much less than the mean free
flight time, and one can safely assume that particles have a constant speed vy. For
spatially homogeneous states, the one-particle distribution thus reduces to the density
probability f(6,t) of having a particle with velocity voé(6) at time ¢, where é(6) is the
unit vector of polar angle #. This distribution evolves according to self-diffusion events
and binary scattering events. A scattering event, as pictured schematically on Fig. 1.5-
(¢), is specified by the incoming angles 61 and 6, of the two particles or, equivalently,
by the incoming half-angle 6 = Arg(ei91+ei92) and the incoming angular separation
A = 60,-05. Additional scattering parameters, such as the impact parameter, or some
collisional noise, may be needed and are collectively noted as (. A scattering event
changes the momentum sum of the involved two particles by an amount dp, which
depends a priori on all scattering parameters #, A and (. The average momentum
of all N particles in the system changes in this event from P into P/, concluding
that N (P’ - ]3) = ¢p. In the same way, a self-diffusion event changes the momentum
of a particle at 6; by an amount N (P’ — P) = 6paig(01,7) = R,p - p, where R, p is
the rotation of p = 3(91) by an angle n. The self-diffusion process is characterized
by the probability density P,(n) for a particle with angle #; to jump to angle 6; +
7. Assuming molecular chaos and averaging these two balance equations over the
statistics of scattering and self-diffusion events taking place in a small time interval,
one obtains the evolution equation by taking the continuous time limit:

% = At (I)}hﬁ[(sﬁdiff(ela 77)] + A q’j"cat[(sﬁ(g; A, C)], (1.24)

where
(I)?iff[,,_]:fO%d&fann(n)f(Gl,t)(...), (1.25)
@;cat[...]:[Og”cw[:omfch(M)f(el,t)f(ez,t)<...). (1.26)

In the right hand side of Eq. (1.24), the first term comes from the self-diffusion process,
which happens at a characteristic rate Agig. The second term comes from the binary
scattering process. In its integrand, a scattering event with scattering parameters 61,
05 and ( is assumed to happen at a rate proportional to both f(61,t) and f(62,t); this
comes from the molecular chaos hypothesis. The proportionality factor is AK (A, (),
the scattering rate of such an event. Note that it does not depend on 6 as a result
of global rotational invariance. As a convention, we have chosen to normalize K such
that i f_: dA [d¢K(A,¢) = 1. The prefactor A thus gives the characteristic scale of
the scattering rate. If one considers interacting disks with diameter dy at a number
density p, a scattering event is entirely described by 61, 65 and the impact parameter b
(thus, [d(¢= [_‘ﬁ’o db). By using the construction of the Boltzmann cylinder, one finds
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for the scattering rate AK(A,b) = pug|sin %| Importantly, it is proportional to the
density and does not depend on the impact parameter.

Equation (1.24) gives the evolution of the vectorial order parameter P. Now, in
order to get the evolution of ¢ = |P|, we go to polar coordinates P = 1) é(0p) and
project Eq. (1.24) on the radial direction é(@p). In the absence of chirality, P keeps
its angular direction, so that one can set Op(t) = 0. As for the binary scattering term,
we find for the projection @jfat[éﬁ] é(0p) = @?Cat[(ﬁ- 6p) cos ). For the self-diffusion
term, we can compute the integral explicitly and obtain )\diﬁ‘q)(}iff[(sﬁdiﬂ‘] = —D1), where
the self-diffusion constant is given by

D = g (1 - f dn P,(n) cos 77) > 0. (1.27)
Altogether, the radial component of Eq. (1.24) reads:

dw scat| (5 — )
a = \O% [(p-ép) 0089] — D). (1.28)
This evolution equation is derived from Eq. (1.24) with the only additional assumption

that the system is not chiral. We keep this assumption in what follows.

As usual, the kinetic equation (1.36) is of no use if the angular distribution f(6,t) is
unknown. The strategy consists in introducing an Ansatz for the distribution, assuming
that the time-dependence is implicitly given by ¥ (t):

f(@,t) = Tw(t)(e) (1.29)

where Y., (8) for all 0 < ¢ <1 is a family of angular distribution functions. Without
further specifying the shape of the distribution family Y, one readily obtains a close
equation for the order parameter v (t)

di

5 ~ @) - Dy, (1.30)
with T dA
P) = @ulp-dpeosd] = [ 5= [dCK@.O9(w.0)5-05.  (13D)
and

g, A) = 27”[2” A0y (0+ AJ2) Ty (6 - AJ2) cosd (1.32)
’ 2005% 0 v v )

Finally, we now specialize to the wrapped Gaussian or von Mises angular distribution,
which is a generalization of the Gaussian on a periodic interval and the simplest
distribution to describe fluctuations around a given orientation; it is given by

6/1(11}) cos 6

Tol0) = o ety

(1.33)
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where ) )
In(z) = — f 8 e°°? cosnd (1.34)
2w Jo

are the order n modified Bessel function of the first kind and K (v) is obtained from
the inversion of the implicit relation 22:3 = 1. The integrations over df in Eq. (1.32)
can be performed explicitly to obtain

_ k(y)  N(2K(%)cos 5)
900:8) = 3D 2n(@)eosd (1:3)

Egs. (1.30), (1.31) and (1.35) provide an explicit solution for the homogeneous dynam-
ics of the order parameter.

At this stage, one can compute the steady state of ¢ by injecting Eq. (1.35) into
the r.h.s. of Eq. (1.30), and equating the latter to zero. One trivial solution is the
isotropic state, of which we now discuss the stability by expanding, up to order >

%% = (11— DN - €, (1.36)
with
o= (5 05),. (137)
£:= ((%—COSA)ﬁ-&ﬁ)O, (1.38)
1 T A
(o ::i[l ab [ aa fsin S]r v, ). (1.39)

Altogether, the above calculation confirms our intuition that - §p is truly the relevant
quantity to evaluate alignment in a system of self-propelled particles with binary
interaction, provided that the density is low enough to ensure complete relaxation
between successive scattering events.

1.3.4 Vicsek vs. self-propelled disks alignment

We shall now apply the above method to three different model systems. The motiva-
tion is to investigate how the local alignment rules affect the global aligning properties.
We shall thus consider Hard Discs with Vicsek aligning rules, with inelastic collision,
and with the rules identified above for the walkers. In the first one, which we call the
Vicsek Hard Discs (VHD) model, the continuous time noiseless dynamics is that of
hard discs moving ballistically at constant speed vy and interacting with the Vicsek
rules when they collide; the scattering parameter is the collision noise amplitude o.
The second case is that of Self Propelled Inelastic Hard Discs (SPIHD); the scattering
parameter is the restitution coefficient e € [0 — 1]. Between collisions, the velocity @; of
particle i relaxes to ©; = 7;/|0;| on a timescale 7. Here it is very clear that the collision
conserves momentum, while the scattering event does not. The third case is that of the
Walking Hard Discs (WHD) described by Egs. (1.21-1.23); the scattering parameters
are a and 7.
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The results are summarized in Fig 1.6, with columns (a),(b),(c) respectively de-
scribing the three models VHD, SPTHD, WHD. The first line provides information
about the aligning property of the scattering event. The alignment function, [ d¢p- 07,
which depends only on the incoming angular separation A, summarizes the micro-
scopic dynamics averaged over the “internal” degrees of freedom of the scattering.
Consider first the VHD case, for which the “internal” degrees of freedom of the scat-
tering is the collision noise. It is easy to see that p-dp = |p|(cosn; + cosne — |p|),
where [p| = 2 cos %. The integration over the collision noises is performed using [ d¢ =
[ dnidna P (1) P(n2), with P(n) a gaussian distribution of zero mean and variance .
One obtains the alignment function

deﬁ~5ﬁ:2COS%(26702/2—2008%). (1.40)

For o = 0 it is always positive, all collisions align on average; for o = oo it is always
negative, there is no alignment on average. At intermediate o, collision with a large,
respectively small, incoming angle separation A align, respectively dis-align. For the
SPIHD and WHD models, the alignment functions |, D ép are computed numerically
by simulating many binary scattering events at some fixed incoming angular separa-
tion A, varying the impact parameter b and are plotted on Fig. (1.6)-bl-cl. A central
observation is that the alignment functions of these two models share important simi-
larities, while they differ strongly from the VHD case. Indeed the Vicsek aligning rule
is such that for large A, it aligns the velocities as long as the noise remains finite;
however for pairs of particles with velocities that are already well aligned (small A),
the noise dis-align them with high probability. Physical collisions between discs, and
convex object in general, provide very different aligning rules. Consider for instance
the case of the SPIHD displayed on Fig (1.6)-b1l. Small incoming A favors alignment,
and large A lead to dis-alignment. This is exactly the opposite physics.

We are now in position to discuss the impact of this important qualitative difference
on the large scale physics, as far as homogeneous phases are concerned. Computing the
coefficients 1 and & now simply consists in averaging this function against the kinetic
kernel K(A), including the geometric factor % —cos A, in the case of £&. The results
are plotted on lines (2) and (3) of Fig. (1.6). For the VHD case, i is negative at large
interaction noise ¢ and turns positive for small enough o. Similarly in the SPTHD
case, 1 is negative for large restitution coefficient e and turns positive for sufficiently
inelastic collisions (small e). The main difference is that in the VHD case £ is always
positive and the transition is continuous as confirmed on Fig. (1.6)-a4. This is not the
case in the SPIHD case. In particular £ < 0, at the transition where p = % =0 in the
absence of diffusion (red line). The transition is then discontinuous (Fig. (1.6)-a4). In-
terestingly, the presence of diffusion D > 0 shifts the transition towards more inelastic
systems, for which eventually £ becomes positive. There is therefore a first-order to
second order transition driven by the amplitude of diffusion. In the WHD case, for
a < 1, the situation is essentially identical to that of the SPTHD, the transition to col-
lective motion being driven by the persistence of the polarity orientation 7. For o > 1,
one observes (inset of Fig. (1.6)-c1) that the alignment function uniformly decreases
towards zero: the persistence of 71 is such that collisions do not alter it anymore and
alignment can not takes place. This explains the non monotonic p and ¢ dependence
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Fig. 1.6 Transition to collective motion of self-propelled discs: Columns (a),(b),(c)
respectively correspond to the models VHD, SPIHD and WHD. Line (1) : the alignment
| b ép as a function of the incoming separation angle A summarizes the microscopic dynam-
ics averaged over the “internal” degrees of freedom of the scattering. Line (2) : the linear
coefficient i as a function of the internal scattering parameter; the red lines indicate where it
cancels; the blue line indicate where - D/X = 0 for a finite value of D and density p = 1072,
(3) : The third order coefficient £ as a function of the internal scattering parameter; the red
and blue lines are reported from line (2). Line (4) : the order parameter (1), as a function of
the internal scattering parameter, in the absence of noise (D = 0).

on «.

1.3.5 Discussion

Altogether the above analysis has revealed that the collective aligning strength within
a system of self propelled particles is truly given by (;5 . (5;[5)0. We shall however stress
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that the above derivation considers the situation where scattering events are well sep-
arated, so that the incoming particles have a common speed vy, and fully relax their
dynamics before a new collision takes place. This amounts to a low density approxima-
tion. Indeed one can see in line (4) of Fig. (1.6), that increasing density from p = 1073
to 107! already leads to quantitative shifts of the transition. These density effects
are directly related to the renormalization of the coefficients p and € by the velocity
fluctuations. Tackling this question is a significantly hard problem that has not been
addressed yet.

We have also understood how purely dynamical alignment can take place and, in
particular, how it can lead to collective motion in a population of self-propelled discs,
with no steric source of alignment. On our way, we have seen that self-propelled hard
discs, the alignment of which comes from physical collisions, behave very differently
from their Vicsek counterpart in terms of alignment function, which in turn induces
very different transition scenario between homogeneous phases. Let us stress here that
this does not rule out the global Vicsek scenario, which at the end of the day, is
dominated by nucleation like processes of the propagative bands. This is indeed what
is also observed in the large scale simulations of the walking hard discs, as illustrated
on Fig. (1.4)-e. One still expects that the differences observed in the alignment function
may be significant when trying to compute the density effects we just mentioned. This
in turn could play an important role on the precise nature of the localized non linear
solution that are selected during the nucleation process. Here also is the frontier of the
present knowledge in this matter.

1.4 Perspectives

In this chapter, we have focused on the transition to collective motion (TCM) in di-
lute systems of self-propelled particles, belonging to the class of polar and dry active
matter. We have seen that for two very different systems, namely rolling colloids align-
ing through hydrodynamics interactions and walking discs aligning through dynamical
relaxation of their polarity, the Vicsek scenario globally holds. It was however shown
that such a conclusion can not be reached without a careful analysis of the relevance of
the microscopic interactions. In the case of the rolling colloids, the long range dipolar
hydrodynamics interactions could in principle suppress the giant density fluctuations
predicted in the polar phase, although in the experiment they are too weak to fully
destroy them. In the case of the walking grains, the structure of the hydrodynamics
equation at the level of the Landau terms is very different from the case of the Vicsek
model. It happens that the transition being governed by the coupling of the density
fluctuations to the polar ordering in a nucleation like process, this last difference is not
relevant for large system size. It remains however unclear wether it could become sig-
nificant in the long range hydrodynamics properties, when considering the non-linear
solutions.

Most theoretical results, discussed here, were obtain in the context of kinetic theory,
and in the low density limit. Apart from the renormalization of the hydrodynamics
coefficients by density and velocity fluctuations, there are good reasons to believe that
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density is a key control parameter in the physics of active matter, which does not only
set the amplitude of noise above which collective motion sets in.

First, we have mentioned in the introduction that, in the absence of alignment, a
Motility Induced Phase Separation takes place in systems of self-propelled particles
if the density induces a sufficiently strong slowing down of the typical velocity of the
particles. This slowing down is generically induced by the crowding of the dynamics
: the particles velocities decrease during their mutual interactions and the density is
such that the relaxation towards the nominal velocity vy does not have time to take
place. On one hand the same should hold in the presence of alignment. Then if the
alignment is dynamically related to vy, it could be enforced or suppressed. Conversely,
the alignment could prevent the particle from decreasing their velocity with density;
in such a case the MIPS would not take place. Apart from a few papers (Farrell et al.,
2012; Martin-Gémez et al., 2018), the question of the coupling between TCM and
MIPS remains largely unexplored.

Second, from the point of view of liquid state theory, how the activity alters the
structural properties of a liquid and in turn its relaxation properties is essentially
an open question, especially in the presence of alignment. Finally, at large enough
density, the active liquid is expected to eventually crystallize (Bialké et al., 2012;
Menzel and Lowen, 2013; Briand and Dauchot, 2016), or become glassy (Berthier
and Kurchan, 2013; Stuart et al., 2013; Berthier, 2014). The influence of activity on
the glass transition has been investigated and it was shown that it depends on the
stiffness of the interactions (Szamel et al., 2015; Berthier et al., 2017). These studies
were however conducted in the absence of alignment. How alignment contributes to
this picture is far from simple. One could have thought that at very high density, the
aligning processes would be destroyed by the high collision frequency. This is however
not the case as exemplified by the observation of fully aligned active crystals flowing
according to their boundary conditions (Briand et al., 2018).
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