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1.1 Introduction

Active systems transform energy from their environment into some form of work. The
whole living world, but also virtually all human made machines, belong to this class
of systems. Active matter, in turn, is composed of many such individual active units,
essentially identical, which all individually perform some work and interact with each
other. At the macroscopic level, these intrinsically out of equilibrium materials are
prone to develop new and interesting macroscopic physics (Vicsek and Zafeiris, 2012;
Bechinger et al., 2016; Fodor and Marchetti, 2018).

Identifying the phases of a material, and their properties, given the knowledge of its
elementary constituents, is the realm of statistical physics, which has been extremely
successful in doing so for systems at equilibrium. As emphasized in J. Kurchan’s chap-
ter in the present series, this success is the result of the conjunction of two independent
sets of properties, namely “being at equilibrium”, which is related to some form of time
reversal symmetry, and “being macroscopic”, which often guarantees well behaved self-
averaging properties. In the case of active matter, the time reversal symmetry is broken
at the microscopic level, and, for sure, principles of equilibrium statistical physics do
not hold. On the contrary, there is no reason why macroscopically well defined states
would not exist, hence the motivation for predicting them from minimal rules; a quest
which has attracted the attention of a growing community of physicists, chemists and
engineers.

To proceed further, we need to be more specific about the type of active material
we have in mind. Looking for symmetries and conserved quantities (see. table 1.1) is a
good way to classify the systems we are interested in. Standard materials are composed
of molecules, the dynamics of which, prescribed by some Hamiltonian, conserves the
number of particles, the energy and the momenta. It is clear that in active materials
energy is dissipated at the level of each individual units and is therefore not conserved.
In the following, we shall focus on the case where the work performed by the individ-
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Equilibrium Wet Active Matter Dry Active Matter
Number of Particles 3 3 3
Energy 3 7 7
Momentum 3 3 7

Table 1.1 Conserved (3) and non-conserved (7) quantities in Dry vs Wet Active Matter as

compared with Equilibrium systems. In this chapter we shall only consider dry active matter.

ual units ensures them self-propulsion, that is each unit gains or loses momentum, by
exerting forces on its environment. This environment can be a solid substrate, which
directly serves as a source or sink of momentum, or a suspending fluid. In the later
case, if the self-propelled particles and the fluid are away from any supporting walls,
the momentum of the suspension including the fluid and the particles is conserved.
Note that it is not the case if the fluid, in turn, exerts forces on a wall, which then
takes the role of the substrate. In short, in the presence of a substrate the momentum
is not conserved and one talks about dry active matter wether there is a solvent or
not; in the absence of substrate, the momentum of the set of self-propelled particles
is again not conserved, but the one of the suspension, as a whole, is. One then talks
about wet active matter.

There are also symmetries associated with the self-propulsion of the particles. Con-
sider a reference frame attached to the particle. The three main classes of motion are
isotropic, directional and polar. In the isotropic case, the particle motion has no pre-
ferred direction; this is typically the case of granular media. In the polar case, the par-
ticle motion develops along one particular orientation in the reference frame attached
to the particle, and in a particular direction along this orientation : the front/back
symmetry is broken; this is the case of most animals. In the directional case, the mo-
tion has a preferred orientation, but the front/back symmetry is preserved.

In the present chapter, we shall concentrate on polar and dry active materials.
The fluid phases of such materials exhibit two distinctive phenomenologies, which are
specifically active, in the sense that none of them could take place at equilibrium.

First, when the interactions promote alignment of the velocities, a transition is
observed from an isotropic dilute fluid, where particles move in all directions in a
disordered way, to a long range ordered phase, where particles all move coherently in
a given direction. This Transition to Collective Motion (TCM) has been first investi-
gated in an effective model, the so-called Vicsek model (Vicsek et al., 1995). In this
model, point particles move at constant speed and align their velocities when they
encounter. The transition is controlled by the noise level and the density of particles.
The transition is discontinuous and takes place via the nucleation of elongated prop-
agating bands (Chaté et al., 2008; Solon and Tailleur, 2013) (see also Hugues Chaté’s
chapter in the present series). At large scale, the physics of the polar phase is de-
scribed by an hydrodynamics theory either derived from conservation and symmetry
arguments (Toner and Tu, 1998; Toner and Tu, 1995) (see also John Toner’s chapter in
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the present series), or explicitly following kinetic theory (Bertin et al., 2006; Peshkov
et al., 2014).

Second, when the interactions lead to an effective decrease of the particle velocities
with increasing local density, a condensation transition – akin to the equilibrium gas-
liquid transition – takes place, although the interactions are purely repulsive. This is
the so-called Motility Induced Phase Separation (MIPS) (Cates and Tailleur, 2015).

In the past two decades, experimentalists have motorized virtually all soft matter
systems, from actin filaments (Schaller et al., 2010) and microtubules (Sanchez et al.,
2012) to grains (Deseigne et al., 2010; Kumar et al., 2014), droplets (Thutupalli et al.,
2011; Izri et al., 2014) and colloids (Palacci et al., 2010; Bricard et al., 2013; Buttinoni
et al., 2013; Palacci et al., 2013; Yan et al., 2016). A number of collective behaviors
have been reported, among which the formation of clusters of particles, moving col-
lectively or not, coarsening or not. Only in some cases (Schaller et al., 2010; Deseigne
et al., 2010; Bricard et al., 2013) a clear transition to collective motion takes place. In
all such experimental systems the interactions have many possible different origins, in-
cluding steric repulsion, hydrodynamics, electrostatic and chemical coupling. In large
group of animals, where collective motions are also observed, even more complex inter-
actions, including social rules, may play an important role. Hence a central question
of interest : for a given experimental system, with a well characterized microscopic
dynamics, what is the expected large scale dynamics?

Answering such a question is in general a hard task, for a number of different reasons:

● As already emphasized, there is no equilibrium-like first principle, such as free
energy minimization, to guide our intuition.

● Mapping the experimental parameters onto the parameters of the microscopic but
effective models is often not possible.

● In principle both MIPS and TCM can take place, eventually competing, depend-
ing on the experimental parameters. There is yet no unified theory, even at the
effective level, to describe such a situation.

● A number of experimental factors, which have been deliberately omitted in the
effective models, could end up being relevant and modify the whole scenario.

The purpose of this chapter is to illustrate the above considerations using two
well controlled experimental system of dry active matter, in which a transition to
collective motion has been reported. In both cases we shall describe the microscopic
dynamics of their individual components as well as their large scale physics. This
will allow us to discuss how, and to what extent, the latter can be inferred from
the microscopic rules. The first experimental system has been introduced in (Bricard
et al., 2013). It consists in a system of micron-size colloidal rollers, which interact
through hydrodynamics and electrostatic interactions. For a given set of experimental
parameters, the rolling speed remains constant, and the interactions only reorient the
particles. We will see that it is then possible to obtain quantitative predictions for
the observed large scale dynamics, using kinetic theory. We will discuss the role the
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long range hydrodynamics interaction could play. The second experimental system has
been introduced in (Deseigne et al., 2010). It is composed of vibrated granular disks,
which have been designed in such a way that they perform persistent random walk. At
first sight this system looks simpler. The disks interact by essentially elastic collisions,
which are not expected to induce steric alignment. We shall see however that alignment
does take place because of a natural coupling between the disk velocity and the disk
orientation, which are in this case, two distinct degrees of freedom at the particle level.
We shall then show explicitly how to compute the aligning properties of such a system
and discuss how they compare to the effective alignment rule introduced in the Vicsek
model. The chapter makes an extensive use of the works presented in (Bricard et al.,
2013), – especially the supplementary material – as well as in (Weber et al., 2013)
and (Nguyen Thu Lam et al., 2015b; Nguyen Thu Lam et al., 2015a). Here, we shall
concentrate on the theoretical discussion, simply summarizing the main experimental
observations. The reader is invited to refer to the above references for details about
the experimental set up and procedures.

1.2 Colloidal Rollers

The system consists in spherical colloidal particles, which self propel on solid surfaces
and are sensitive to the orientation of their neighbors. The self-propulsion results from
an electro-hydrodynamic phenomenon referred to as the Quincke rotation (Quincke,
1896). As we shall see below in more details, when an electric field is applied to an
insulating sphere immersed in a conducting fluid, the charge distribution at the sphere
surface is unstable to infinitesimal fluctuations above a critical field amplitude E > EQ.
This spontaneous symmetry breaking results in a net electrostatic torque on the sphere,
which thus rotates at a constant speed around a random direction transverse to the
electric field. When the sphere lies on a rigid surface, this spinning motion turns into
self-propulsion. The electric and hydrodynamic interactions rule the alignment and
repulsion between the rolling colloids.

1.2.1 Experimental set up and major observations

The authors (Bricard et al., 2013) used PMMA beads of radius a = 2.5µm diluted in an
AOT ionic surfactant solution in hexadecane oil, filling the gap between two conduct-
ing glass slides. Once the particles are sedimented, they apply an electric field E, and
indeed observed the high-speed rolling motion of the colloids (v0 ≃ 102 − 103a/s). The
motion of the rollers is confined to race-track channels of width 500µm <W < 5 mm,
by adding a patterned insulating film at the surface of the upper transparent electrodes.

When their area fraction φ0 is small, the population of rollers behave as a gaseous
phase (fig 1.1-a). All the particles move in random directions at the same speed. When
the area fraction is increased above a critical value φc, collective motion emerges spon-
taneously: a macroscopic fraction of the population moves in a coherent fashion along
the same direction. For area fraction greater but close to φc, the system phase sepa-
rates into an homogeneous isotropic phase and a denser polar phase, which typically
consists in a single macroscopic band that propagates at a constant velocity cband ≃ v0

(fig 1.1-b). The density within the band φ(s, t), where s denotes the spatial coordinate
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Fig. 1.1 Transition to collective motion in a system of rolling colloids, when

increasing the area fraction φ0: (a) At low φ0 an isotropic gas is observed. (b) Above a

critical φc, polar motion develops in the form of a macroscopic band (c) At even larger φ0,

one observes an homogeneous polar phase. (d) Modulus of the average polarization Π0, as a

function of the area fraction φ0.

along the track, sharply increases at the front and decays exponentially to a constant
value which is very close to the critical volume fraction φc irrespective of the system
size. The local polarization Π(s, t), defined as the modulus of the averaged orientation
of the velocities, is maximal at the front and decays continuously to 0 along the band.
Quantitatively, it is observed that φ(s, t) and Π(s, t) are related by:

Π(s, t) = (1 −
φc

φ(s, t)
) (1.1)

regardless of the particle velocity, and of the mean volume fraction. Further increasing
the area fraction an homogeneous band-less polar state develops, with the the en-
tire population of rollers cruising coherently along the same direction and Π(s, t) ∼ 1
(fig 1.1-c).

These observations are very much reminiscent of the transition to collective motion
reported in the Vicsek model (Vicsek et al., 1995; Chaté et al., 2008; Solon and Tailleur,
2013). However, one specificity of the ordered polar phase obtained in the Vicseck
model is the presence of anomalously large density fluctuations. Such fluctuations are
also predicted at the level of the large-scale hydrodynamics theory (Toner and Tu,
1998; Toner and Tu, 1995). Visual inspection of the polar phase of colloidal rollers
does not provide any evidence of such density fluctuations. As a matter of fact, their
first quantitative analysis concluded to their absence (Bricard et al., 2013); it is only
recently, that it was shown that they are indeed present, conducting new experiments
with larger statistics and weaker confinement (Geyer et al., 2018).

1.2.2 Microscopic dynamics : rolling mechanism and interactions

The first step in analyzing theoretically this system, is to describe the self-propulsion
mechanism and the interactions among the colloids. We shall recast here the main
arguments of the derivation, which is provided in full details in the Supplementary
Materials of (Bricard et al., 2013).
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SUPPLEMENTARY INFORMATION
doi:10.1038/nature12673

Supplementary methods

Here, we provide a comprehensive description of the theoretical model outlined in the main text, which
accounts of the large-scale properties of a population of colloidal rollers. For sake of clarity, this document is
written in a self-consistent fashion, all the notations and definitions of the main text are explicitly re-defined.
It is organized as follows: In section I we introduce a microscopic model that accounts for the motion of
a single colloidal roller moving on a solid surface. Then, in section II we model the two-body interactions
between colloidal rollers. We show that the combination of the electrostatic and the hydrodynamic couplings
take the form of an effective potential Heff that couples the orientation of the rollers. In section III, the latter
microscopic model is coarse-grained following a kinetic theory framework. We focus first on weakly polarized
states, for which we establish the dynamics of the local density φ(r, t), and of the local polarization field Π(r, t)

in section IV. This model accounts for a mean-field transition to collective motion. The linear stability of
the homogeneous polar phase is questioned, and the existence of unstable compression modes is shown to be
consistent with the formation of a band state. This stationary band state is characterized by the constitutive
relation between the local density and the local polarization. Finally, we consider the large-scale dynamics of
the polar-liquid phases in section V. Our main result is the explanation for the suppression of the giant density
fluctuations by long-ranged hydrodynamic interactions.

I. FROM QUINCKE ROTATION TO SELF-PROPULSION: THE SINGLE ROLLER DYNAMICS

A. Quincke rotation: uniform electric field, quiescent fluid

Before discussing the key role played by the solid surface, we briefly recall the main ingredients which
originate the Quincke rotation of an isolated particle embedded in a quiescent and unbounded liquid [27].

This electro-hydrodynamic effect arises from the interplay between interfacial electrodynamics and the par-
ticle motion in a viscous fluid. Let us consider an insulating sphere of radius a located at r = 0, possibly
rotating at the angular velocity Ω. We note ϵp the dielectric permittivity of the particle. It is surrounded by a
conducting liquid with a conductivity σ and a permittivity ϵl. The solid particle is assumed to be impermeable.
As the charge carriers in the liquid are ions, the sphere is a perfect insulator. A uniform DC electric field E0 ẑ

is applied along the z-direction as sketched in Fig. S1. After a transient regime, the electric charge relaxes to
zero in the bulk. However, the charge distribution is not uniform at the the liquid-particle interface. Due to
the conductivity and permittivity discontinuity, a non-uniform charge distribution arises close to the interface.

����� ������

Figure S1 – An isolated solid sphere in an unbounded conducting liquid. When an external electric field E0 is applied,
the particle can undergo Quincke rotation.
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Figure S2 – Emergence of Quincke rotation. A– Electric charges accumulate at the particle-liquid interface and result
in a dipolar surface distribution. B– A small rotational perturbation tilts the dipole P, thereby inducing a net electric
torque Te which amplifies the initial perturbation.

The thickness of the charge layer is assumed to be much smaller than the particle radius a. Therefore it can
be modeled by a surface-charge distribution deduced from the continuity relation: qs = (ϵlE

l − ϵpE
p) · r̂|r=a,

where El (resp. Ep) stands for the electrostatic field inside the liquid (resp. the particle). Using the Maxwell’s
equations, it can be readily shown that the surface charge distribution is dipolar. It is thus described by its first
moment P ≡

∫
d2s qsr̂s. To establish how P depends on E0, we use the surface-charge conservation equation

∂t qs + ∇s · js = 0, where ∇s ≡ (I− r̂r̂) · ∇ is the surface divergence operator, and js is the surface current. Due
to the possible rotation of the particle, both ohmic conduction and charge advection contribute to the surface
current: js = σE + qs Ω × ar̂. After some elementary algebra, the charge-conservation equation can be recast
into a dynamical equation for the dipole moment P [27, 28]:

dP

dt
+

1

τ
P = −1

τ
2πϵ0a

3E0 + Ω ×
(
P − 4πϵ0a

3χ∞E0

)
(S1)

where χ∞ ≡ ϵp −ϵl

ϵp +2ϵl
and τ ≡ ϵp +2ϵl

2σl
is the so-called Maxwell-Wagner time. It is convenient to distinguish two

contributions to the overall polarization vector: P ≡ Pϵ + Pσ. The "static" contribution, Pϵ ≡ 4πϵ0a
3χ∞E0

arises from the dielectric polarization, due to the permittivity discontinuity at the interface. The dynamic
contribution Pσ results from the transport of the charges in the solution. When no rotation occurs, the dipole
P relaxes towards a stationary value and orients along −E0 in a time τ due to the finite conductivity of the
solution. However, as the particle rotates, charge advection competes with the spontaneous relaxation, and
could in principle result in a dipole orientation making a finite angle with the external field E0.

More quantitatively, we now show that the surface charge distribution can spontaneously break a rotational
symmetry and therefore induce the steady rotation of the insulating sphere. In order to do so, we need an
extra equation that is the angular momentum conservation. Since the particle carries surface charges, it may
experience a net electric force Fe and an electric torque Te. The net interfacial electric stress is the jump of
the Maxwell stress tensor across the interface: r̂ ·

[
TM

l − TM
p
]

r=a
, where TM ≡ ϵEE − 1

2ϵE2I. Integrating
over the surface, we obtain the torque Te = ϵl

ϵ0
P × E0 and the net force Fe = ϵl

ϵ0
(P · ∇)E0, which vanishes in

a uniform external field. Having colloidal systems in mind, we ignore the inertia of the sphere. Therefore the
translation velocity v and the rotation speed Ω are linearly related to Fe and Te through a mobility matrix
M: (

1
a v

Ω

)
≡ M ·

(
aFe

Te

)
(S2)

In an unbounded fluid, M is diagonal and has the form M =

(
µtI 0

0 µrI

)
, where µt = (6πηa3)−1 and

µr = (8πηa3)−1 in a liquid of viscosity η. Eqs. (S1) and (S2) together fully capture the particle dynamics.
When χ∞ + 1

2 > 0and when the external field E0 exceeds the threshold value EQ =
[
4πϵla

3(χ∞ + 1
2 )µrτ

]−1/2,
two stationary states are found from Eqs. (S1) and (S2). A first non-rotating solution is unstable against
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µtI 0

0 µrI

)
, where µt = (6πηa3)−1 and
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Figure S3 – A Quincke rotating particle rolling on a plane conducting surface. A– The surface couples rotational and
translational motion, allowing propulsion. It also disturbs the electric field. The dominant contribution to the image
charge distribution is the symmetric dipole P⋆. B– In the plane of the surface, the direction of the translation velocity
is defined by the angle θ.

where we considered the classical Quincke setup, the particle experiences an external electric field which is not
uniform. It includes here a correction δE⋆ induced by the image charges. From the steady solution of the
Quincke rotation in an infinite fluid, we can calculate the unperturbed dipole P in the absence of the surface,
and then evaluate the disturbance field due to the surface. Whithin our experimental conditions, E0 < 3EQ

and χ∞ ≪ 1
2 [28]. Therefore, the correction δE⋆ is much smaller that the magnitude of the unperturbed field:

|δE⋆|/E0 ∼0.01. At leading order in |δE⋆|/E0, the dynamics of the electric polarization is written in a form
that is more complex than Eq. (S1):

dPσ
z

dt
+

1

τ
P σ

z =
ϵl

ϵ0
µrE0P

σ
∥

2 −1

τ
4πϵ0a

3

(
χ∞ +

1

2

)
E0 (S6)

dPσ
∥

dt
+

1

τ
P σ

∥ = −ϵl

ϵ0
µrE0P

σ
z Pσ

∥ (S7)

dθ

dt
= 0 (S8)

where θ defines the direction of the in-plane component of the polarization, Fig. S3B. The relation between the
polarization, the electric torque and the electric force is not affected by the substrate. In addition, it is worth
noting that the surface induces no tangential force Fe

∥, and no perpendicular torque T e
z = 0 on the sphere. This

is a rigorous results that does not depend on the specifics of the experiments. It holds at all order in |δE⋆|/E0 as
it only follows from the symmetry of the real charges and of the image charges with respect to the equipotential
plane. Combing now Eqs. (S1) and (S4) we infer the equations of motion of an isolated sphere lying on a planar
electrode:

v= −ϵl

ϵ0
aµ̃tE0 Pσ

∥ (S9)

This is the first main result of this supplementary document: The particle steadily rolls on the electrode at a
velocity v, which points in the direction opposite to the electric polarization. When E0 > EQ, the rolling speed
v0 ≡|v| is proportional to the in-plane component of P, and is given by

v0 =
aµ̃t

µrτ

√(
E0

EQ

)2

−1 (S10)

The variations of the roller velocity that we measured are in excellent agreement with the above prediction as
shown in Fig. 1c main text. As our theory does not involve any phenomenological parameter, we can provide
an estimate of both the Quincke threshold and the intrinsic velocity scale of the rollers. We have a = 2.4µm,
η ∼2 mPa· s− 1, ϵl ∼2ϵ0 and τ ∼1 ms [28]. So using the expressions below Eq. (S2), we find EQ ∼106 V · m− 1

which is consistent with the value deduced from the best fit which yields EQ = 1.6 106 V · m− 1. The mobility
coefficients weakly depends on the thickness of the lubrication layer underneath the roller, which is assumed

(a) (b) (c) (d)

Fig. 1.2 Self propulsion mechanism: (a) An isolated solid and isolating sphere in an

unbounded conducting liquid can undergo Quincke rotation, when an external electric field of

amplitude E0 > EQ is applied. (b) Electric charges accumulate at the particle-liquid interface

and result in a dipolar surface distribution. (c) A small rotational perturbation advects the

charges located in the viscous layer and thereby tilts the dipole P⃗ , thereby inducing a net

electric torque T⃗ e which amplifies the initial perturbation. (d) When laying on a iso-potential

surface, the latter couples rotational and translational motion, allowing propulsion. It also

disturbs the electric field. The dominant contribution to the image charge distribution is the

symmetric dipole P⃗ ⋆.

Rolling mechanism. The Quincke rotation arises from the interplay between interfa-
cial electrodynamics and the particle motion in a viscous fluid (see fig. 1.2). Let us
consider an insulating and impermeable sphere of radius a located at r⃗ = 0⃗. Here,
for simplicity, we assume that the particle and the surrounding liquid share the same
dielectric permittivity ε and the liquid has a conductivity σ. An uniform DC electric
field E0

⃗̂z is applied along the z-direction. Due to the conductivity discontinuity, a
non-uniform charge distribution arises close to the interface. Assuming the thickness
of the charge layer is much smaller than the particle radius a, it can be modeled by a
surface-charge distribution deduced from the continuity relation: qs = ε(E⃗

l−E⃗p)⋅ ⃗̂r∣r=a,
where E⃗l (resp. E⃗p) stands for the electrostatic field inside the liquid (resp. the par-
ticle). The surface charge conservation equation reads ∂t qs + ∇s ⋅ j⃗s = 0, where ∇s is
the surface divergence operator, and j⃗s is the surface current. If the particle rotates
with an angular velocity Ω, both ohmic conduction and charge advection contribute
to the surface current: j⃗s = σE⃗ + qs Ω⃗ × a⃗̂r. The charge-conservation equation can fi-
nally be recast into a dynamical equation for the first moment of the dipolar charge
distribution P⃗ :

dP⃗

dt
+

1

τ
P⃗ = −

1

τ
2πε0a

3E⃗0 + Ω⃗ × P⃗ , (1.2)

where τ ≡ 3ε
2σ

is the so-called Maxwell-Wagner time. When no rotation occurs, the

dipole P⃗ relaxes towards a stationary value and orients along −E⃗0 in a time τ due
to the finite conductivity of the solution. However, as the particle rotates, charge
advection competes with the spontaneous relaxation, and could in principle result in
a dipole orientation making a finite angle with the external field E⃗0. The particle then
experiences a net electric torque T⃗ e = ε

ε0
P⃗ × E⃗0 and a net force F⃗ e = ε

ε0
(P⃗ ⋅ ∇)E⃗0,

which vanishes in a uniform external field. Neglecting the inertia of the sphere, the
translation velocity v⃗ and the rotation speed Ω⃗ are linearly related to F⃗ e and T⃗ e

through a mobility matrix M:
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(
1
a
v⃗

Ω⃗
) ≡M ⋅ (

aF⃗ e

T⃗ e ) with M = (
µtI 0
0 µrI

) , (1.3)

and µt = (6πηa3)−1 and µr = (8πηa3)−1, where η is the liquid viscosity and I is
the identity matrix. Note that M is diagonal in an unbounded fluid only. Eqs. (1.2)
and (1.3) together fully capture the particle dynamics. When the external field E⃗0

exceeds the threshold value EQ = [2πεa3µrτ]
−1/2

, the trivial non-rotating solution
is unstable against rotational perturbations and the dynamics bifurcates towards a
solution describing a steady rotation at angular velocity

Ω =
1

τ

¿
Á
ÁÀ

(
E0

EQ
)

2

− 1 (1.4)

The rotation axis can be any direction perpendicular to E⃗0 as the symmetry is spon-
taneously broken. In short, any infinitesimal perturbation results in an electrostatic
torque. When the external field exceeds a threshold value EQ, this torque is large
enough to advect the charges despite the stabilizing mechanism provided by the finite
conductivity of the solution. The advection amplifies the initial perturbation until the
viscous torque balances the electric torque. When the stationary state is reached, the
particle steadily rotates at Ω around an axis perpendicular to E⃗0, the direction of
which is set by the initial perturbation only.

In an unbounded fluid and a uniform electric field, the particle experiences no net
force and thus have no translational velocity. To achieve propulsion of the spherical
particle, the basic idea is to let it roll on a plane surface. The presence of such a surface
modifies both the mechanical and the electrostatic equations introduced above. From
the mechanical point of view, the presence of the surface is accounted for by a modified
mobility matrix. Its main feature, as compared to the unbounded fluid case, is that
it now contains off-diagonal terms, which couple rotational and translational motion:
they are responsible for the rolling motion. The mobility coefficients are also modified
and can be computed in the context of the lubrication hypothesis. The surface at z = 0
does not only modify the hydrodynamics of the fluid, but also disturbs the electric
field. Indeed, the particle lies on the lower electrode, which is an equipotential surface.
This is taken into account by considering an electric image charge distribution in the
region z < 0, which is dominated by a dipole P⃗ ⋆ = Pz ⃗̂z − P⃗∥ at z = −a, as sketched in
Fig. 1.2(d). It follows from the symmetry of the real charges and of the image charges
with respect to the equipotential plane, that the surface induces no tangential force
F⃗ e
∥
, and no perpendicular torque T e

z = 0 on the sphere. However, as opposed to the
case of the classical Quincke setup, the particle experiences an external electric field
which is not uniform. It includes here a correction δE⃗⋆ induced by the image charges.
One can show that at leading order in ∣δE⃗⋆∣/E0, the relation between the polarization,
the electric torque and the electric force is not affected by the substrate. As a result
the equations of motion of an isolated sphere lying on a planar electrode reads

v⃗ = −
ε

ε0
aµ̃tE0 P⃗∥, (1.5)
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where µ̃t is the modified translational mobility. The particle steadily rolls on the elec-
trode at a velocity v⃗, which points in the direction opposite to the parallel component
of the electric polarization. When E0 > EQ, the rolling speed v0 ≡ ∣v⃗∣ is proportional

to the in-plane component of P⃗ , and is given by

v0 =
aµ̃t
µrτ

¿
Á
ÁÀ

(
E0

EQ
)

2

− 1 (1.6)

It is important to note that, since the rolling motion results from a spontaneous
symmetry breaking, there is no intrinsic orientation of the particle. This situation
is different from that of Janus particles, for which an orientation is imprinted in the
particle and thus is a degree of freedom correlated to, but different from the the velocity
orientation. Note that the present situation is closer to the effective description chosen
in the Vicsek model.

Interactions. The rollers are coupled by electrostatic and hydrodynamic interactions.
Their surface-charge distribution induces a field disturbance δE⃗(r⃗, t) which may alter
the polarization, and the velocity, of the surrounding particles. Moreover, as it moves
a roller induces a nontrivial fluid motion around it. Therefore, all the rollers are ad-
vected by a flow field u⃗∥(r⃗, t) resulting from the motion of their neighbors.

To derive these interactions, one first needs to compute the rollers dynamics in
heterogeneous electric and hydrodynamic fields following the same spirit as what we
did when introducing the bottom wall. One finds again a dynamical equation for P⃗ ,
complemented by a mechanical equation that relates the velocity of the particle to
the forces and torques acting on it. For a dilute system, one shows that despite the
interactions, Pz, P∥ and the norm of the velocity relax towards their unperturbed value
over the timescale τ . In a dilute population of interacting rollers all the particles propel
themselves at the same speed. However, as anticipated the orientations of the particles
are now coupled, and evolve on much longer timescales ∼ τ/ε, where ε quantifies the
amplitude of the field perturbations. At leading order in ε this slow orientational
dynamics takes a rather simple form

dθ

dt
= −

∂

∂θi
[−µh ⃗̂vi ⋅ u⃗∥ + µE ⃗̂vi ⋅ δE⃗∥] (1.7)

where µh and µE are respectively the hydrodynamics and electric mobilities. In short,
the roller experiences a torque induced by the flow field until its velocity aligns with
u⃗∥. Similarly, the second term accounts for the electrostatic coupling: it causes the

roller velocity to align with −δE⃗∥.

The next step is to derive explicitly the disturbance fields δE⃗∥(r⃗i, t) and u⃗∥(r⃗i, t)
induced by all the other rollers j ≠ i. The electric field induced by a particle j originates
from the dipole P⃗j and its electrostatic image P⃗ ⋆

j . It has two contributions, which are
displayed on figure (1.3)-left. A first contribution is proportional to Pz and induces
a repulsive interaction: it favors a roller velocity v⃗i pointing in the direction opposite
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Figure S4 – Electrostatic interactions: a particle rolling in direction p̂ creates a perturbative electric field. The field
lines are plotted in the plane containing all the other particles, which tend to align in the opposite direction. A– A radial
part (proportional to Pz) results in a repulsive effect, which does not depend on the orientation of the particle. B– An
additional contribution (proportional to Pk) breaks the rotational symmetry and yields a position-dependent interaction.

term: when the direction of motion is perpendicular to the flow field, the particle experiences a torque which
promotes the reorientation along the local flow direction. The direction p̂ thus rotates until aligning with uk.
Similarly, the second term accounts for the electrostatic coupling: it causes the dipole P�

k to align with �Ek, and
therefore aligns v in the opposite direction, since (µ?

µr
�1) > 0. The last term stems from the field inhomogeneity.

Within our experimental conditions, it can be checked from the numerical values of the prefactors, that this
last term is subdominant, and we henceforth neglect its contribution.

We have just shown that when a roller feels weak heterogeneities in the electric field and in the flow field,
its propulsion speed is unchanged. Conversely, the slow orientational dynamics of the particles now explicitly
breaks rotational invariance. The roller is prone to align its velocity with the reverse local electric field and
with the local fluid velocity past the planar surface.

B. Equation of motion of a population of interacting rollers

We now exploit the above results to establish the equations of motion of a population of interacting rollers.
Eq. (S13) is correct regardless of the origin of the fields’ heterogeneities. Let us begin with a first important
remark: If one now consider a test particle moving in an electric and a flow field perturbed by its neighbors, we
readily infer that the speed of the test particle is unchanged. In a dilute population of interacting rollers all the
particles propel themselves at the same speed, which is again confirmed by the narrow velocity distributions
found experimentally both in the isotropic and in the polar-liquid phases, Fig. 1b and 4a in the main text.

To go beyond this result, we derive explicitly the forms of the electrostatic and of the hydrodynamic inter-
actions between the active colloids. We note ri(t) (resp. p̂i(t)) the position (resp. the orientation) of particle i.

1. Electrostatic interactions

We calculate the disturbance fields �Ek(ri, t) and uk(ri, t) induced by all the other rollers j 6= i. The electric
field induced by the particle j originates from the dipole Pj and its electrostatic image P?

j (Fig. S3A). Summing
these two contributions in a far-field expansion, we find

�E
(j)
k (ri, t) =

3

2⇡✏0r3
ij

"
a

rij
Pz r̂ij �

a2

r2
ij

Pk p̂j · (5r̂ij r̂ij � I) +O
 

a3

r3
ij

!#
(S14)

Figure S4 – Electrostatic interactions: a particle rolling in direction p̂ creates a perturbative electric field. The field
lines are plotted in the plane containing all the other particles, which tend to align in the opposite direction. A– A radial
part (proportional to Pz) results in a repulsive effect, which does not depend on the orientation of the particle. B– An
additional contribution (proportional to Pk) breaks the rotational symmetry and yields a position-dependent interaction.

term: when the direction of motion is perpendicular to the flow field, the particle experiences a torque which
promotes the reorientation along the local flow direction. The direction p̂ thus rotates until aligning with uk.
Similarly, the second term accounts for the electrostatic coupling: it causes the dipole P�

k to align with �Ek, and
therefore aligns v in the opposite direction, since (µ?

µr
�1) > 0. The last term stems from the field inhomogeneity.

Within our experimental conditions, it can be checked from the numerical values of the prefactors, that this
last term is subdominant, and we henceforth neglect its contribution.

We have just shown that when a roller feels weak heterogeneities in the electric field and in the flow field,
its propulsion speed is unchanged. Conversely, the slow orientational dynamics of the particles now explicitly
breaks rotational invariance. The roller is prone to align its velocity with the reverse local electric field and
with the local fluid velocity past the planar surface.

B. Equation of motion of a population of interacting rollers

We now exploit the above results to establish the equations of motion of a population of interacting rollers.
Eq. (S13) is correct regardless of the origin of the fields’ heterogeneities. Let us begin with a first important
remark: If one now consider a test particle moving in an electric and a flow field perturbed by its neighbors, we
readily infer that the speed of the test particle is unchanged. In a dilute population of interacting rollers all the
particles propel themselves at the same speed, which is again confirmed by the narrow velocity distributions
found experimentally both in the isotropic and in the polar-liquid phases, Fig. 1b and 4a in the main text.

To go beyond this result, we derive explicitly the forms of the electrostatic and of the hydrodynamic inter-
actions between the active colloids. We note ri(t) (resp. p̂i(t)) the position (resp. the orientation) of particle i.

1. Electrostatic interactions

We calculate the disturbance fields �Ek(ri, t) and uk(ri, t) induced by all the other rollers j 6= i. The electric
field induced by the particle j originates from the dipole Pj and its electrostatic image P?

j (Fig. S3A). Summing
these two contributions in a far-field expansion, we find

�E
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k (ri, t) =
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Figure S5 – Hydrodynamic interactions: a particle rolling in direction p̂ creates a flow field. The streamlines are plotted
in the plane containing all the other particles, which tend to align in flow. A– At distances smaller than the channel
height, the central roller induces a radial shear with anisotropic amplitude, which globally promotes alignment. B– At
distances much larger than the channel height, the non-screened resulting flow has a dipolar symmetry.

The global interaction potential He↵ accounts for all the possible interactions between the rollers that we have
established above. It takes the generic form:

He↵(r, p̂i, p̂j) = A(r) p̂j · p̂i + B(r) r̂ · p̂i + C(r) p̂j · (2r̂r̂ � I) · p̂i (S18)

where the coefficients have complex expressions, deduced from well identified microscopic parameters:
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Here, r reduces to a two-dimensional vector parallel to the surface, and ⇥ accounts for the screening of finite-
range interactions. For sake of simplicity, we henceforth approximate the screening function by a step function:
⇥(r) = 1 if r  H/⇡, and ⇥(r) = 0 otherwise. We have also introduced a noise term in Eq. (S17) to account for
rotational diffusion. ⇠i(t) is a Gaussian white noise with zero mean and unit variance h⇠i(t)⇠j(t0)i = �(t� t0)�ij .
Remarkably, the rotational diffusivity Dr is the only phenomenological coefficient of our theory.

Several comments are in order:
(i) The term A(r) p̂j · p̂i is an alignment interaction. It arises both from the short-distance hydrodynamic

interactions and from part of the electrostatic couplings. They correspond respectively to the first and the
second terms in (S19).

(ii) In the absence of the B and C terms, our model would reduce to the so-called "flying XY model"
introduced phenomenologically in [36]. Nevertheless, additional terms have been obtained from the microscopic
analysis.

(iii) The coefficient B(r) is positive, since �1+ 1
2 > 0 and �1 < 0 in our experimental system. It corresponds

to the electrostatic repulsive coupling. The last term C(r) combines electric and hydrodynamic interactions.
Contrary to A(r), theses additional terms in Eq. (S18) do not yield any net alignment interaction in an isotropic
population.

(iv) A(r) and B(r) are finite-range interactions, being screened on a distance set by the channel height.

Figure S5 – Hydrodynamic interactions: a particle rolling in direction p̂ creates a flow field. The streamlines are plotted
in the plane containing all the other particles, which tend to align in flow. A– At distances smaller than the channel
height, the central roller induces a radial shear with anisotropic amplitude, which globally promotes alignment. B– At
distances much larger than the channel height, the non-screened resulting flow has a dipolar symmetry.

The global interaction potential He↵ accounts for all the possible interactions between the rollers that we have
established above. It takes the generic form:

He↵(r, p̂i, p̂j) = A(r) p̂j · p̂i + B(r) r̂ · p̂i + C(r) p̂j · (2r̂r̂ � I) · p̂i (S18)

where the coefficients have complex expressions, deduced from well identified microscopic parameters:
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Here, r reduces to a two-dimensional vector parallel to the surface, and ⇥ accounts for the screening of finite-
range interactions. For sake of simplicity, we henceforth approximate the screening function by a step function:
⇥(r) = 1 if r  H/⇡, and ⇥(r) = 0 otherwise. We have also introduced a noise term in Eq. (S17) to account for
rotational diffusion. ⇠i(t) is a Gaussian white noise with zero mean and unit variance h⇠i(t)⇠j(t0)i = �(t� t0)�ij .
Remarkably, the rotational diffusivity Dr is the only phenomenological coefficient of our theory.

Several comments are in order:
(i) The term A(r) p̂j · p̂i is an alignment interaction. It arises both from the short-distance hydrodynamic

interactions and from part of the electrostatic couplings. They correspond respectively to the first and the
second terms in (S19).

(ii) In the absence of the B and C terms, our model would reduce to the so-called "flying XY model"
introduced phenomenologically in [36]. Nevertheless, additional terms have been obtained from the microscopic
analysis.

(iii) The coefficient B(r) is positive, since �1+ 1
2 > 0 and �1 < 0 in our experimental system. It corresponds

to the electrostatic repulsive coupling. The last term C(r) combines electric and hydrodynamic interactions.
Contrary to A(r), theses additional terms in Eq. (S18) do not yield any net alignment interaction in an isotropic
population.

(iv) A(r) and B(r) are finite-range interactions, being screened on a distance set by the channel height.

Electrosta*c Hydrodynamics
/ Pz / Pk r < H r � H

Fig. 1.3 Electrostatic and Hydrodynamics interactions: A particle rolling in direction
⃗̂p creates a perturbative electric field. A radial part (proportional to Pz) results in a repulsive

effect, which does not depend on the orientation of the particle. An additional contribu-

tion (proportional to P∥) breaks the rotational symmetry and yields a position-dependent

interaction. The rolling particle also creates a perturbative flow field. At distances smaller

than the channel height, the central roller induces a radial shear with anisotropic amplitude,

which globally promotes alignment. At distances much larger than the channel height, the

non-screened resulting flow has a dipolar symmetry.

to ⃗̂rij . The second contribution is proportional to P∥, and it possibly results in align-

ment or anti-alignment with ⃗̂pj , depending on the relative positions between the two
rollers. At distance larger than the separation distance H between the two electrodes,
all the electrostatic couplings are exponentially screened over a characteristic length
H/π. Note that the electrostatic repulsion prevents the formation of dense regions of
colloids. This justifies a posteriori the dilute limit treatment of the problem. The flow
field created by a rolling particle is expressed in terms of point-wise hydrodynamic sin-
gularities. Over distances smaller than the channel height H, a Quincke roller is akin
to a rotlet near a no-slip wall: the particle is a point-wise torque-source. At long dis-
tances, unlike electrostatic screening, mass conservation gives rise to a non-vanishing
flow having the form of a two-dimensional source dipole. The corresponding stream-
lines are plotted in Fig. (1.3)-right. At short distances, the hydrodynamic interactions
promote the alignment of the roller velocities. In addition, long-range hydrodynamic
interactions that algebraically decay as r−2 have a dipolar symmetry. They can either
cause alignment or anti-alignment, depending on the relative positions between the
rollers.

Equations of motion. Assuming that both electrostatic and hydrodynamic interac-
tions are pairwise additive, the above results can be summarized in a compact form.
The particle i moves at constant velocity v0 on the surface, and undergoes a slow
orientational dynamics:

⃗̇ri = v0
⃗̂pi (1.8)

θ̇i =
1

τ

∂

∂θi
∑
j≠i

Heff(r⃗i − r⃗j , ⃗̂pi, ⃗̂pj) (1.9)
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The interaction potential Heff takes the form:

Heff(r⃗, ⃗̂pi, ⃗̂pj) = A(r) ⃗̂pj ⋅ ⃗̂pi +B(r) ⃗̂r ⋅ ⃗̂pi +C(r) ⃗̂pj ⋅ (2⃗̂r⃗̂r − I⃗) ⋅ ⃗̂pi (1.10)

where the coefficients have complex expressions, deduced from well identified micro-
scopic parameters (see Supp. Mat in (Bricard et al., 2013) for the exact expressions).

The term A(r) describes the alignment interaction. It arises both from the short-
distance hydrodynamic interactions and from part of the electrostatic couplings. The
coefficient B(r) is positive, and corresponds to the electrostatic repulsive coupling.
The last term C(r) combines electric and hydrodynamic interactions. A(r) and B(r)
are finite-range interactions, being screened on a distance set by the channel height.
Conversely, C(r) contains the unscreened dipolar hydrodynamic coupling. It is truly
long-ranged since it algebraically decays like r−2 in two dimensions. Note however,
that its strength is small compared to the short-range hydrodynamic effect, since it is
proportional to a/H ≪ 1.

It is important to note that the interactions are far more complex than the align-
ment rules defined in the Vicsek model, for which, in the absence of noise, the incoming
velocities fully align. The fact that more complex aligning interactions observed here
lead to the same macroscopic dynamics is far from obvious. On one hand the sym-
metries of the microscopic dynamics are identical; on the other hand the short range
repulsive and the long range dipolar interactions could in principle be relevant too,
and impact the large scale dynamics.

1.2.3 Deriving the large-scale hydrodynamics

In order to discuss the relevance of the several interaction terms, one needs to derive
the large scale dynamics from the microscopic rules using kinetic theory. We shall here
only present the main steps of the procedure, which are as usual :

● Obtain the evolution equation for the N particles probability density, from the
dynamical equations;

● Integrate out all but one particles, in order to derive the evolution equation for
the 1 particle probability density. This requires closing the associated hierarchy
of equations.

● Define the large scale fields, which are moments of this distribution. One should
keep only slowly varying fields, that is those associated either to conserved quan-
tities or to the slow modes associated with broken symmetries

● Compute the evolution equation for these fields and close them with constitutive
laws.

First, a noise term
√

2Dr ξi(t), where ξi(t) is a Gaussian white noise with zero mean
and unit variance, is added to Eq. (1.9) in order to account for rotational diffusion.
The resulting 2N coupled Langevin equations (1.8)–(1.9) are then transformed into a
Fokker-Planck equation for theN -particle distribution function Ψ(N)(r⃗1..., r⃗N , θ1, ..., θN , t).
By integrating over N − 1 particle positions and directions, one obtains the time evo-
lution of the one-particle density Ψ(1)(r⃗, θ, t):
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∂tΨ
(1)
+v0

⃗̂p⋅∇Ψ(1)+
1

τ
∂θ ∫ d2r⃗′dθ′

∂Heff(r⃗ − r⃗
′, θ, θ′)

∂θ
Ψ(2)(r⃗, r⃗′, θ, θ′, t)−Dr ∂

2
θΨ(1) = 0,

(1.11)
which depends on the two-point distribution function Ψ(2)(r⃗, r⃗′, θ, θ′, t). This is the
first equation of an infinite hierarchy, which couples the n-point distribution Ψ(n) to
the (n + 1)-point distribution Ψ(n+1). This hierarchy of equations, must be closed,
by postulating a relation between Ψ(2) and Ψ(1). Here we assume that the two-body
correlations cancel over a distance as small as one particle diameter and include steric
exclusion effects between the colloids:

Ψ(2)(r⃗, r⃗′, θ, θ′, t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if ∣r⃗ − r⃗′∣ < 2a

Ψ(1)(r⃗, θ, t)Ψ(1)(r⃗′, θ′, t) if ∣r⃗ − r⃗′∣ ≥ 2a
(1.12)

We thereby obtain from Eq. (1.11) a closed equation for the one-particle distribution
function.

Second, one considers the three hydrodynamic fields:

Area fraction: φ(r⃗, t) ≡
1

πa2 ∫ dθ Ψ(1)(r⃗, θ, t) (1.13)

Velocity polarization: Π⃗(r⃗, t) ≡
πa2

φ
∫ dθ ⃗̂pΨ(1)(r⃗, θ, t) (1.14)

Nematic order tensor: Q⃗(r⃗, t) ≡
πa2

φ
∫ dθ (⃗̂p ⃗̂p −

1

2
I⃗)Ψ(1)(r⃗, θ, t). (1.15)

By integrating Eq. (1.11), closed by Eq. (1.12), over θ, one immediately recovers the
particle-number conservation law:

∂t φ + v0∇ ⋅ (φΠ⃗) = 0 (1.16)

Taking the first angular moment of Eq. (1.11) similarly couples the time evolution
of Π⃗ to the nematic order tensor Q⃗. We thereby generate a new hierarchy of equa-
tions which couples each moment of the distribution function to higher-order moments.

The third and final steps thus consist in identifying one more closure assumption.
It is important to understand that the closure assumption depends on the phase we
want to describe. Indeed, it amounts to make some hypothesis on the shape of the
angular distribution of the particles, which one expects to be very different in the
isotropic phase and in the fully polarized phase.

(i) Close to the instability threshold of the disordered state, one can use a Ginzburg-
Landau-type expansion as introduced in (Bertin et al., 2009) and further developed
in (Peshkov et al., 2014) (see also Hugues Chaté’s chapter in the present series). Also
assuming that the nematic order parameter Q⃗ relaxes faster than the two other hy-
drodynamics fields, one ends up with a close hydrodynamic equation for the velocity
polarization Π [Eq. (S29) of (Bricard et al., 2013)] coupled to the continuity equa-
tion (1.16).
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(ii) Far in the polar phase, it is necessary to introduce another closure approxima-
tion. In this highly polarized phase, one expects the angular probability distribution
to be sharply peaked around the direction of collective motion. In this case, a simple
assumption is to approximate it by the wrapped normal distribution. This ”Gaussian”
like Ansatz imposes the following relation Q⃗ = Π2 Π⃗ Π⃗− 1

2
Π4 I⃗. With this new closure re-

lation, neglecting higher-order terms in a
H

, one again obtains from Eqs. (1.11)–(1.12)
an hydrodynamics equation for the velocity polarization Π , [Eq. (S38) of (Bricard
et al., 2013)] coupled to the continuity equation (1.16).

1.2.4 Predictions and comparison to experiment

We first discuss the transition to collective motion. Looking for homogeneous phases,
one can drop space derivatives in the hydrodynamics equations. Close to threshold,
the hydrodynamics equations then reduce to φ(r⃗, t) = φ0 and

τ∂tΠ⃗ = (αφ0 − τDr) Π⃗ −
α2

2τDr
(φ2

0Π2
)Π⃗, (1.17)

where α ≡ ∫r≥2adr A(r) r
a2

, accounts for the alignment interactions. It readily follows
from the cubic form of the r.h.s that the system undergoes a mean-field continuous
phase transition to a polar state as φ0 exceeds the critical area fraction φc =

τDr

α
.

As the observed transition is not continuous, something else must take place. Indeed,
one can perform the linear stability analysis of the homogeneous phases. As expected,
the isotropic state is linearly stable for φ0 < φc and unstable for φ0 > φc. What
is more uncommon, is that the homogeneous weakly polarized state obtained for φ0

slightly larger than φc is also linearly unstable against compression fluctuations. Hence
all homogeneous phases are linearly unstable at the onset of collective motion. This
situation is exactly that of the Vicsek model. In such a situation, the system converges
to a non linear solution, here the propagating bands. It is difficult to derive analytically
the shape of band-density profiles. However, the particle-number conservation provides
a relation between the local density and the local polarization field when density
excitations propagate steadily. Looking for propagative solutions of the form φ = φ(x−
cbandt), Π = Π(x − cbandt)⃗̂x and integrating Eq. (1.16) over the transverse direction
leads to the relation

Π(s) =
cband

v0
(1 −

φ∞
φ(s)

) (1.18)

where the integration constant φ∞ is the area fraction far away from the band. This is
precisely the relation (1.1) observed experimentally. Note that it does not depend on
any closure scheme at the hydrodynamic level, because it derives from the continuity
equation.

Turning to the polar liquid phase, we now investigate the linear stability of ho-
mogeneous polar phases, with respect to spatial fluctuations, for densities φ0 ≫ φc.
The compression mode, which was unstable close to the transition is stabilized by
the electrostatic repulsion at higher densities. Physically the electrostatic repulsion,
impedes the formation of highly concentrated regions. Fluctuations having the form
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of bend modes are exponentially amplified by the hydrodynamics long range interac-
tion. However, as obviously expected transverse confinement eliminates this instability.
Also remember that the amplitude of this interactions scales as a/H ≪ 1. Finally, the
fastest rate, which corresponds to a pure splay mode, is negative: splay fluctuations
are stabilized by the long-range hydrodynamic interactions. This last results allows us
to discuss the presence or absence of giant density fluctuations. Giant density fluctu-
ations are a consequence of the splay mode instability. From the present result, we
should thus conclude that they are suppressed, as indeed first reported in (Bricard
et al., 2013). However the previous conclusion is valid in the limit of small wave vec-
tors qH ≪ 1. At distances smaller than H, the long-range dipolar interactions, that
govern the density fluctuations at large scales, are subdominant. As a consequence,
deviations from the above prediction are expected below a crossover length ζ, which
depends on the numerical values of the respective amplitude of the different interac-
tion terms. This presumably explains why, indications of the giant density fluctuations
could be captured in (Geyer et al., 2018).

1.2.5 Discussion

Altogether the experimental results together with their theoretical analysis establish
that colloidal rollers self-assemble into a prototypical polar active fluid. In the present
case one can conclude that the complexity of the microscopic interactions, as com-
pared to their simplistic effective formulation in the Vicsek model, does not play a
significant role. Establishing this statement however required a complete analysis of
the microscopic interactions, at least in term of symmetries, an explicit derivation of
the hydrodynamics equations, under a number of assumptions, and a linear stability
analysis of the steady state solutions. In particular we saw that a careful study of the
impact of the long range hydrodynamics interaction on the splay mode instability was
necessary to decide about the presence of the giant density fluctuations.

The ability of polar active fluids to support sound modes, regardless of whether
the dynamics of their microscopic units is overdamped, is one of the most remarkable
theoretical predictions for active fluids with broken rotational symmetry (Toner and
Tu, 1995; Toner and Tu, 1998; Toner et al., 2005). In their recent study (Geyer et al.,
2018), the authors have provided an experimental demonstration of this counterintu-
itive prediction, and establish a generic method to measure the material constants of
active fluids from their sound spectrum.

It is truly remarkable to have obtained in a real experimental system such a clear
realization of the physics described by the Vicsek model at the effective level. We
personally believe that the two ingredients at the root of this observation are (i) that
the speed of the rolling colloids is amazingly constant, wether the particles interact or
not; (ii) that the particles interact without colliding. The dynamics thus reduces to a
slow dynamics of the velocity orientation, which is precisely what the Vicsek model
describes.
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1.3 Granular Walkers

The system consists in millimeter-sized disks with a built-in oriented axis. When vi-
brated the disks perform a persistent random walk. The collisions on the other hand
are strictly isotropic. Although there is no obvious source of alignment, large-scale col-
lective streams were reported in collections of approximately a thousand disks moving
on a carefully vibrated plate (Deseigne et al., 2010; Deseigne et al., 2012). In order
to bypass the inherent difficulties of the experimental setup (limited number of disks,
limited size of the vibrated plate, limited range of control parameters), a model for
the motion and collisions of the polar disks was proposed (Weber et al., 2013), which
accounts quantitatively for the experimental properties at the single and pair interac-
tion level and agrees well with observations at the collective level. The phase diagram
of this model shares important similarities with that of the Vicsek model : for large
noise and low density one observes a disordered gas, for low noise and large density an
homogeneous polar phase sets in. At the transition, solitary polar bands propagate in
a disordered surrounding phase. The main question raised by this system is the origin
of the microscopic alignment. Once it will be identified, we will discuss how it differs
from the Vicsek one and the consequences, if any, at the macroscopic level.

1.3.1 Experimental set up and major observations

The polar particles are micro-machined copper-beryllium discs (diameter d = 4 mm)
with an off-center tip and a glued rubber skate located at diametrically opposite posi-
tions. These two ”legs”, with different mechanical response, endow the particles with
a polar axis (n⃗i = (cosφi, sinφi)). Of total height h = 2.0 mm, the discs are sandwiched
between two thick glass plates separated by a gap of H = 2.4 mm (see Fig.1.4-a). Under
proper vibration, the discs perform a persistent random walk, the persistence length
of which is set by the vibration parameters (Fig.1.4-b). Here we use a sinusoidal vibra-
tion of frequency f = 95 Hz and relative acceleration to gravity Γ = a(2πf)2/g = 2.4.
Particle trajectories are tracked within a circular region of interest (ROI) of diame-
ter 20d, where the long-time averaged density field is homogeneous. For large enough
vibration amplitude, Γ > 1, individual velocities v⃗i(t) ≡ (r⃗i(t + τ0) − r⃗i(t))/τ0 have a
well-defined most probable or mean value vtyp ≃ 3d/s , which depends only slightly
on Γ. The local displacements of the particles are overwhelmingly taking place along
n⃗i(t), their instantaneous polarity. The orientation angle diffuses, with an angular dif-
fusion constantDθ, which increases fast and linearly with Γ. As a result, the persistence
length of an isolated polar particles ξ ≃ 15d for Γ = 2.4 and decreases with increasing Γ.

Turning now to the collective dynamics of typically N = 1000 particles and a pack-
ing fraction φ ≃ 0.40, the authors (Deseigne et al., 2010) report that at low Γ values,
for which the directed motion of the polar particles is most persistent, they observe
large-scale collective motion, with jets and swirls as large as the system size. (Fig.1.4-c)
Here because the boundary conditions are not periodic, the collective motion observed
is not sustained at all times. Large moving clusters form, then breakdown, etc. The
orientational order is characterized by the modulus of the average velocity-defined
polarity Ψ(t) = ∣⟨u⃗i(t)⟩∣ where u⃗i(t) is the unit vector along v⃗i(t) and the average is
over all particles inside the ROI at time t. The times series of the order parameter Ψ
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alignment is controlled by set screws. The vibration is
produced with an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS), the accelerometer for the control
being fixed at the bottom of the top vibrating disk, em-
bedded in the expanded polystyren. A 400 mm long brass
rod couples the air-bearing slider and the shaker. It is
flexible enough to compensate for the alignment mismatch,
but stiff enough to ensure mechanical coupling. The shaker
rests on a thick wooden plate ballasted with 460 kg of lead
bricks and isolated from the ground by rubber mats
(MUSTshock 100! 100! EP5, Musthane). We have
measured the mechanical response of the whole setup
and found no resonances in the window 70–130 Hz.
Here, we use a sinusoidal vibration of frequency f ¼
115 Hz and vary the relative acceleration to gravity ! ¼
2!af2=g. The vibration amplitude a at a peak acceleration
of 1 g at this frequency is 25 "m. Using a triaxial accel-
erometer (356B18,PCB Electronics), we checked that the
horizontal to vertical ratio is lower than 10#2 and that the
spatial homogeneity of the vibration is better than 1%.

Our polar particles are micro-machined copper-
beryllium disks (diameter d¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically oppo-
site positions [Fig. 1]. These two ‘‘legs,’’ which have
different mechanical response under vibration, endow the
particles with a polar axis which can be determined from
above thanks to a black spot located on their top. Under
proper vibration, they can be set in directed motion (see
below). Of total height h ¼ 2:0 mm, they are sandwiched
between two thick glass plates separated by a gap of H ¼
2:4 mm. We also used, to perform ‘‘null case experi-
ments,’’ plain rotationally invariant disks (same metal,
diameter, and height), hereafter called the ‘‘symmetric’’
particles. We laterally confined the particles in a flower-
shaped arena of internal diameter D ¼ 160 mm [Fig. 1].

The petals avoid the stagnation and accumulation of par-
ticles along the boundaries as reported, for instance, in [11]
by ‘‘reinjecting’’ them into the bulk. A CCD camera with a
spatial resolution of 1728! 1728 pixels and standard
tracking software is used to capture the motion of the
particles at a frame rate of 20 Hz. In the following, the
unit of time is set to be the period of vibration and the unit
length is the particle diameter. Within these units, the
resolution on the position ~r of the particles is better than
0.1, that on the orientation ~n is of the order of 0.05 rad and
the lag separating two images is #0 ¼ 5:75. Measuring the
long-time averaged spatial density map (for various num-
bers of particles), we find that this density field slightly
increases near the boundaries, but is constant to a few
percent in a region of interest (ROI) of diameter 20d.
This provides an additional check of the spatial homoge-
neity of our setup.
We first performed experiments with 50 particles, i.e., at

a surface fraction small enough so that collisions are rare
and the individual dynamics can be investigated. For large
acceleration, the polar particles describe random-walk-like
trajectories with short persistence length. Decreasing !,
they show more and more directed motion, and the persis-
tence length quickly exceeds the system size. This is in
contrast with the symmetric particles which retain the same
shortly correlated individual walk dynamics for all ! val-
ues [Figs. 2(a) and 2(b)].
More precisely, individual velocities ~viðtÞ &

½~riðt þ #0Þ# ~riðtÞ)=#0 measured within the ROI have a
well-defined most probable or mean value vtyp ’ 0:025
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FIG. 2 (color online). Individual dynamics for ! ¼ 2:7.
(a) Typical portions of polar particles trajectories inside the
ROI. Black and grey (red) arrows indicate ~vt

i and ~n ti at selected
times. The domain area is about 15! 15d. (b) The same for
symmetric particles. (c) Probability distribution function (PDF)
with counterpropagating waves with a common linear polariza-
tion (lin-lin) of $, the angle between ~vt

i and ~n ti. (d) Variation of
angular diffusion coefficient D% with !.

FIG. 1 (color online). Collective motion of self-propelled
disks. Bottom left panel: a sketch of our polar particles. Main
panel: a snapshot of an ordered regime observed in our flower-
shape domain. The dark gray reveals the local alignment be-
tween particles {both perfect alignment [light grey (red)] and
pergect antialignment [dark grey (blue)]}. The intrinsic polarity
of the particles is indicated by the black arrows.
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significantly (see the Supplemental Material [49]).
Experiments have revealed that one ‘‘encounter’’ typically
involves many successive collisions, where the particles
bounce back without turning their polarity much, so that
they quickly collide again. These encounters last for a
finite time and take place over some finite spatial exten-
sion. It was found experimentally that they are well delim-
ited using the following criterion: an encounter starts when
two particles get closer than some threshold collision
distance, i.e., jri ! rjj " dc ¼ 1:7, and their polarities
point ‘‘inward,’’ i.e., jðri þ niÞ ! ðrj þ njÞj " jri ! rjj
[43]. An encounter ends when either particles are separated
by more than dc or their polarities point ‘‘outward.’’ We
have used the same criterion for our model. Figure 3
depicts the results of a scattering study for the experimental
setup and the model. Thousands of binary encounters
(hereafter called collisions for simplicity) were recorded,
and the outgoing relative angle !out of the two particles
plotted against their incoming relative angle !in , the impact
parameter b 2 ½0; 1( [51] is indicated by the shade [Figs. 3(a)
and 3(b)]. The model data show a striking agreement with the
results measured in the experiments: most collisions actually
leave the polarities unchanged (!out ’ !!in ), and a minority
of them align the particles almost perfectly (!out ’ 0). We
estimated the fraction of polar aligned events [54], finding
0.14 for the model and 0.18 for the experiment. The model
also matches the distribution of head-on (b ) 0) and glanc-
ing (b ) 1) collision events. We further determined the PDF
of the duration of collisions "col as well as that of their spatial
extension ‘col, given by the center of mass displacement. The
model reproduces the observed exponential distribution of
"col quantitatively, while it fails to reproduce the roughly

algebraic decay of ‘col (but nevertheless gives a correct
mean extension) [55].
We performed simulations using the same flower-shaped

geometry [Figs. 1(c) and 1(d)] and number of particles
(N ¼ 890) as in the experiment [42,43]. For the parameter
values matching the single particle dynamics and binary
collisions (for vibration amplitude ! ¼ 2:7), we observe,
as in the experiments, fairly large, polar aligned, moving
clusters (Figs. 1(c) and 1(d); for videos refer to the
Supplemental Material [49]). However, the order parame-
ter c ðtÞ ¼ 1

MðtÞ j
P

i2ROIn
ij, with MðtÞ denoting the number

of particles currently located within the central ‘‘region of
interest’’ (ROI) of radius 10, is typically smaller than in the
experiment [Fig. 4(a)]. The effective packing fraction
observed in the ROI is found to be very close to that of
the experiment (# ’ 0:39, whereas the nominal packing
fraction is 0.47), indicating that particles accumulate at
the boundary in the model as well. Running the model
at # ¼ 0:39 in a box of approximately the same size but
with periodic boundary conditions—a privilege of the
in silico approach—yields only a marginally larger average

FIG. 3 (color online). Scatter graph !in ! !out for the
experiment (a) and our model (b). Values of the impact parame-
ter b are indicated by the color bar. PDF of the duration "col
(c) [lin-log] and the extension ‘col of a collision (d) [log-log]. FIG. 4 (color online). (a) PDF of the average polarization c ,

evaluated within the ROI, for the experimental system, the model
in the petal-shaped geometry and in periodic boundaries using
two values of packing fractions: # ¼ f0:39; 0:47g. (b) Average
polarization h"it as a function of the noise fraction $2 ¼
Dk=D

!¼2:7
k ¼ D?=D

!¼2:7
? , shown for three boundary sizes L 2

f50; 100; 200g and # ¼ 0:47. Inset: h"it [log-log] for $ ¼ 1 and
# ¼ 0:47 as function of system size L. (c) Sketch of packing
fraction(# )-noise($) phase diagram: States with h"it " 0:5 are
indicated by squares, polar homogenous states with h"it > 0:5
by triangles, and states exhibiting heterogenous patterns trans-
versal to the average moving direction (bands) are depicted by
circles. (d) Representative snapshots for selected # -$ values
indicated by numbers in (c).
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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(a) (b)

Figure 2.13 – Exemples de simulations de trajectoires de disques. (a) :
Trois trajectoires di�érentes, sans bruit et pour trois configurations initiales di�é-
rentes à – = 0.5. La flèche noire indique la force de propulsion et les flèches en
couleurs correspondent aux vitesses. (b) : Collision entre deux disques au cours
d’une simulation qui permet d’aligner deux trajectoires. Les deux disques arrivent
avec une vitesse alignée selon leur polarité. A l’issue de la collision, le couplage entre
v̨ et ˆ̨n a pour e�et de courber les trajectoires des disques. A la sortie de la collision,
l’écart entre les trajectoires est plus faible qu’à l’entrée.

manière arbitraire. Au bout de ce temps ”t les coordonnées sont actualisées selon
les équations déterministes. Si le bruit D/⁄ ”= 0, juste après avoir actualisé les coor-
données (n̨i+1, v̨i+1), on ajoute le même angle ÷i(t) aux deux vecteurs. Celui-ci suit
une loi normale de moyenne nulle et de variance égale à 2D”t.

Les collisions sont détectées et traitées selon la méthode d’event-driven : dès que
deux trajectoires de disques se coupent aux mêmes instants, les vitesses des deux
disques sont modifiées en supposant que l’on a des collisions élastiques et leur pola-
rité est inchangée :

v̨1 + v̨2 = v̨
Õ
1 + v̨

Õ
2 et n̨i = n̨

Õ
i, avec i œ (1, 2).

La figure (2.13-b) montre deux disques qui arrivent avec une vitesse v̨ = ˆ̨n et une
certaine orientation. Tout de suite après la collision, on observe que tout de suite
après la collision les trajectoires sont courbées du fait du couple qui s’exerce sur
ˆ̨n. Puis les trajectoires deviennent rectilignes ce qui signifie que les vitesses et les
polarités des disques ont relaxé l’une vers l’autre. On note aussi l’e�et d’une collision
sur l’alignement entre les disques : l’angle entre les trajectoires des particules en
sortie de la collision est plus faible qu’avant la collision.
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Periodic boundary conditions

4

experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do ex-
ist nearby, constituting the first report of long-range ori-
entational order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of
the model varying � and the packing fraction � in square
domains of linear size L = 200 with periodic boundary
conditions (Fig. 4c). For � . 0.6, varying �, we observe
the usual phenomenology of models with (e↵ective) po-
lar alignment like the Vicsek model [7, 12, 18, 20, 24]
: immediately below the transition, the particles spon-
taneously segregate in high-density high-order “bands”
traveling in a low-density disordered sea (Fig. 4d). Fur-
ther away from the transition, these nonlinear structures
disappear, leaving a statistically-homogeneous Toner-Tu
phase with its characteristic giant number fluctuations
and long-range correlations [9–11, 25]. However, we de-
tected, for large enough packing fractions, narrow dis-
ordered channels (see Fig. 4d, 4) for small noise values
(green circles in Fig. 4c). These “inverse bands”, not
found in dilute or point-like particle models, seem to co-
exist with the Toner-Tu phase. We believe that the in-
creased frequency of collisions at large packing fractions
trigger the emergence of these inhomogeneous structures.

Interestingly, for � � 0.6 we could not observe bands
(Fig. 4c). This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage,
however we cannot conclude, due to numerical limita-
tions, whether this feature remains in the limit of large
system sizes and asymptotically large times: the width
of the bands increases with increasing � (cf. Fig. 4d) so
that their disappearance might just be a finite-size e↵ect.
However, the longitudinal density profile around � ⇡ 0.6
turns out to be rather flat, with an overall rather low
order (as low as h it ⇡ 0.2 for � = 0.6 and � = 1.4).
They may thus be of di↵erent nature from the Vicsek-
like, sharp, well-ordered bands found at low �, and could
cease to exist asymptotically at a packing fraction below
the rise of jamming and crystallization e↵ects.

To summarize, we have built a simple yet quantita-
tively faithful model for the dynamics of the vibrated
polar disks studied in [1, 2]. This model constitutes one
of the first in which the dynamics of the particle’s intrin-
sic polarity with respect to their velocity is taken into
account [54, 55]. An adequate description of the granular
system of vibrated discs requires to account for the po-
larity as a slow variable compared to the velocity, which
can change fast due collisions with the plate or neighbor-
ing particles. Our in silico study has shown that in the
original experiments the most ordered state reached was
in fact in the region of the transition to collective motion,
slightly on the disordered side. However, asymptotically-
ordered regimes do exist nearby. The new features of the
phase diagram, i.e. the emergence of “inverse bands” in
the low noise regimes of su�ciently dense systems and

FIG. 4. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2 =Dk/D�=2.7

k =D?/D�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

the possibility of a direct transition from disorder to a
collectively-moving Toner-Tu-like phase, deserve further
investigations. In particular, this last point, if confirmed
in the future, might reopen the debate about the possi-
bility of a continuous transition to collective motion since
the structures “responsible” for its discontinuous charac-
ter —the bands— would then not exist.

3

FIG. 2. (color online) Scatter graph ✓in � ✓out for the experi-
ment (a), and our model (b). Values of the impact parameter
b are indicated by the color bar. PDF of the duration ⌧col (c),
and the extension `col (d) of a collision.

quickly collide again. These encounters last for a finite
time and take place over some finite spatial extension.
It was found experimentally that they are well delimited
using the following criterion: an encounter starts when
two particles get closer than some threshold collision dis-
tance, i.e. |ri � rj |  dc = 1.7, and their polarities point
“inwards”, i.e. |(ri + ni) � (rj + nj)|  |ri � rj | [2].
An encounter ends either when particles are separated
by more than dc, or their polarities point “outwards”. In
the following we have applied the same criterion in our
model. Fig. 2 depicts the results of a scattering study
for the experimental setup and our model. Thousands of
binary encounters (hereafter called collisions for simplic-
ity) were recorded, and the outgoing relative angle ✓out of
the two particles plotted against their incoming relative
angle ✓in, the impact parameter b 2 [0, 1] [51] is shown as
color code (Fig. 2a,b). The model data shows a striking
agreement with the results measured in the experiments:
most collisions actually leave the polarities unchanged
(✓out ' �✓in), and a minority of them align the particles
almost perfectly (✓out ' 0). We estimated the fraction
of polar aligned events [53], finding 0.14 for the model
and 0.18 for the experiment. The model also matches
the distribution of head-on (b ⇡ 0) and glancing (b ⇡ 1)
collision events. We further determined the PDF of the
duration of collisions ⌧col, as well as that of their spatial
extension `col, given by the center of mass displacement.
The model reproduces the observed exponential distribu-
tion of ⌧col quantitatively, while it fails to reproduce the
roughly algebraic decay of `col (but nevertheless gives a
correct mean extension). To what degree this is an ac-
tual discrepancy between model and experiment remains
to be clarified. In fact, the very existence of an algebraic

FIG. 3. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2 =Dk/D�=2.7

k =D?/D�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

decay for the experimental data can be questioned due
to the small number of collisions with large extensions.

Finally, we performed simulations using the same
flower-shaped geometry, and number of particles (N =
890) as in the experiment [1, 2]. For the parameter val-
ues matching the single particle dynamics and binary
collisions (for vibration amplitude � = 2.7), we observe
fairly large, polar aligned, moving clusters [54]. How-
ever, the order parameter  (t) = 1

M(t) |
P

i2ROI n
i|, with

M(t) denoting the number of particles currently located
within the central “region of interest” (ROI) of radius
10, is typically smaller than in the experiment — even
after choosing ✏ = 0.4, a value which optimizes order in
the model (Fig. 3a). However, when comparing the cor-
responding videos, the discrepancy between model and
experiment could be related to the fact that clusters in
the model have a slightly larger tendency to move at the
border of the ROI, instead of directly crossing it. The
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i) ⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p

N for
the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,
D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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(a) (b)

Figure 2.13 – Exemples de simulations de trajectoires de disques. (a) :
Trois trajectoires di�érentes, sans bruit et pour trois configurations initiales di�é-
rentes à – = 0.5. La flèche noire indique la force de propulsion et les flèches en
couleurs correspondent aux vitesses. (b) : Collision entre deux disques au cours
d’une simulation qui permet d’aligner deux trajectoires. Les deux disques arrivent
avec une vitesse alignée selon leur polarité. A l’issue de la collision, le couplage entre
v̨ et ˆ̨n a pour e�et de courber les trajectoires des disques. A la sortie de la collision,
l’écart entre les trajectoires est plus faible qu’à l’entrée.

manière arbitraire. Au bout de ce temps ”t les coordonnées sont actualisées selon
les équations déterministes. Si le bruit D/⁄ ”= 0, juste après avoir actualisé les coor-
données (n̨i+1, v̨i+1), on ajoute le même angle ÷i(t) aux deux vecteurs. Celui-ci suit
une loi normale de moyenne nulle et de variance égale à 2D”t.

Les collisions sont détectées et traitées selon la méthode d’event-driven : dès que
deux trajectoires de disques se coupent aux mêmes instants, les vitesses des deux
disques sont modifiées en supposant que l’on a des collisions élastiques et leur pola-
rité est inchangée :

v̨1 + v̨2 = v̨
Õ
1 + v̨

Õ
2 et n̨i = n̨

Õ
i, avec i œ (1, 2).

La figure (2.13-b) montre deux disques qui arrivent avec une vitesse v̨ = ˆ̨n et une
certaine orientation. Tout de suite après la collision, on observe que tout de suite
après la collision les trajectoires sont courbées du fait du couple qui s’exerce sur
ˆ̨n. Puis les trajectoires deviennent rectilignes ce qui signifie que les vitesses et les
polarités des disques ont relaxé l’une vers l’autre. On note aussi l’e�et d’une collision
sur l’alignement entre les disques : l’angle entre les trajectoires des particules en
sortie de la collision est plus faible qu’avant la collision.
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experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do ex-
ist nearby, constituting the first report of long-range ori-
entational order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of
the model varying � and the packing fraction � in square
domains of linear size L = 200 with periodic boundary
conditions (Fig. 4c). For � . 0.6, varying �, we observe
the usual phenomenology of models with (e↵ective) po-
lar alignment like the Vicsek model [7, 12, 18, 20, 24]
: immediately below the transition, the particles spon-
taneously segregate in high-density high-order “bands”
traveling in a low-density disordered sea (Fig. 4d). Fur-
ther away from the transition, these nonlinear structures
disappear, leaving a statistically-homogeneous Toner-Tu
phase with its characteristic giant number fluctuations
and long-range correlations [9–11, 25]. However, we de-
tected, for large enough packing fractions, narrow dis-
ordered channels (see Fig. 4d, 4) for small noise values
(green circles in Fig. 4c). These “inverse bands”, not
found in dilute or point-like particle models, seem to co-
exist with the Toner-Tu phase. We believe that the in-
creased frequency of collisions at large packing fractions
trigger the emergence of these inhomogeneous structures.

Interestingly, for � � 0.6 we could not observe bands
(Fig. 4c). This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage,
however we cannot conclude, due to numerical limita-
tions, whether this feature remains in the limit of large
system sizes and asymptotically large times: the width
of the bands increases with increasing � (cf. Fig. 4d) so
that their disappearance might just be a finite-size e↵ect.
However, the longitudinal density profile around � ⇡ 0.6
turns out to be rather flat, with an overall rather low
order (as low as h it ⇡ 0.2 for � = 0.6 and � = 1.4).
They may thus be of di↵erent nature from the Vicsek-
like, sharp, well-ordered bands found at low �, and could
cease to exist asymptotically at a packing fraction below
the rise of jamming and crystallization e↵ects.

To summarize, we have built a simple yet quantita-
tively faithful model for the dynamics of the vibrated
polar disks studied in [1, 2]. This model constitutes one
of the first in which the dynamics of the particle’s intrin-
sic polarity with respect to their velocity is taken into
account [54, 55]. An adequate description of the granular
system of vibrated discs requires to account for the po-
larity as a slow variable compared to the velocity, which
can change fast due collisions with the plate or neighbor-
ing particles. Our in silico study has shown that in the
original experiments the most ordered state reached was
in fact in the region of the transition to collective motion,
slightly on the disordered side. However, asymptotically-
ordered regimes do exist nearby. The new features of the
phase diagram, i.e. the emergence of “inverse bands” in
the low noise regimes of su�ciently dense systems and

FIG. 4. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2 =Dk/D�=2.7

k =D?/D�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

the possibility of a direct transition from disorder to a
collectively-moving Toner-Tu-like phase, deserve further
investigations. In particular, this last point, if confirmed
in the future, might reopen the debate about the possi-
bility of a continuous transition to collective motion since
the structures “responsible” for its discontinuous charac-
ter —the bands— would then not exist.

3

FIG. 2. (color online) Scatter graph ✓in � ✓out for the experi-
ment (a), and our model (b). Values of the impact parameter
b are indicated by the color bar. PDF of the duration ⌧col (c),
and the extension `col (d) of a collision.

quickly collide again. These encounters last for a finite
time and take place over some finite spatial extension.
It was found experimentally that they are well delimited
using the following criterion: an encounter starts when
two particles get closer than some threshold collision dis-
tance, i.e. |ri � rj |  dc = 1.7, and their polarities point
“inwards”, i.e. |(ri + ni) � (rj + nj)|  |ri � rj | [2].
An encounter ends either when particles are separated
by more than dc, or their polarities point “outwards”. In
the following we have applied the same criterion in our
model. Fig. 2 depicts the results of a scattering study
for the experimental setup and our model. Thousands of
binary encounters (hereafter called collisions for simplic-
ity) were recorded, and the outgoing relative angle ✓out of
the two particles plotted against their incoming relative
angle ✓in, the impact parameter b 2 [0, 1] [51] is shown as
color code (Fig. 2a,b). The model data shows a striking
agreement with the results measured in the experiments:
most collisions actually leave the polarities unchanged
(✓out ' �✓in), and a minority of them align the particles
almost perfectly (✓out ' 0). We estimated the fraction
of polar aligned events [53], finding 0.14 for the model
and 0.18 for the experiment. The model also matches
the distribution of head-on (b ⇡ 0) and glancing (b ⇡ 1)
collision events. We further determined the PDF of the
duration of collisions ⌧col, as well as that of their spatial
extension `col, given by the center of mass displacement.
The model reproduces the observed exponential distribu-
tion of ⌧col quantitatively, while it fails to reproduce the
roughly algebraic decay of `col (but nevertheless gives a
correct mean extension). To what degree this is an ac-
tual discrepancy between model and experiment remains
to be clarified. In fact, the very existence of an algebraic

FIG. 3. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2 =Dk/D�=2.7

k =D?/D�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

decay for the experimental data can be questioned due
to the small number of collisions with large extensions.

Finally, we performed simulations using the same
flower-shaped geometry, and number of particles (N =
890) as in the experiment [1, 2]. For the parameter val-
ues matching the single particle dynamics and binary
collisions (for vibration amplitude � = 2.7), we observe
fairly large, polar aligned, moving clusters [54]. How-
ever, the order parameter  (t) = 1

M(t) |
P

i2ROI n
i|, with

M(t) denoting the number of particles currently located
within the central “region of interest” (ROI) of radius
10, is typically smaller than in the experiment — even
after choosing ✏ = 0.4, a value which optimizes order in
the model (Fig. 3a). However, when comparing the cor-
responding videos, the discrepancy between model and
experiment could be related to the fact that clusters in
the model have a slightly larger tendency to move at the
border of the ROI, instead of directly crossing it. The
e↵ective packing fraction observed in the ROI is found
to be very close to that of the experiment (� ' 0.39,
whereas the nominal packing fraction is 0.47), indicating

(a) (b) (c)

(d) (e)

significantly (see the Supplemental Material [49]).
Experiments have revealed that one ‘‘encounter’’ typically
involves many successive collisions, where the particles
bounce back without turning their polarity much, so that
they quickly collide again. These encounters last for a
finite time and take place over some finite spatial exten-
sion. It was found experimentally that they are well delim-
ited using the following criterion: an encounter starts when
two particles get closer than some threshold collision
distance, i.e., jri ! rjj " dc ¼ 1:7, and their polarities
point ‘‘inward,’’ i.e., jðri þ niÞ ! ðrj þ njÞj " jri ! rjj
[43]. An encounter ends when either particles are separated
by more than dc or their polarities point ‘‘outward.’’ We
have used the same criterion for our model. Figure 3
depicts the results of a scattering study for the experimental
setup and the model. Thousands of binary encounters
(hereafter called collisions for simplicity) were recorded,
and the outgoing relative angle !out of the two particles
plotted against their incoming relative angle !in , the impact
parameter b 2 ½0; 1( [51] is indicated by the shade [Figs. 3(a)
and 3(b)]. The model data show a striking agreement with the
results measured in the experiments: most collisions actually
leave the polarities unchanged (!out ’ !!in ), and a minority
of them align the particles almost perfectly (!out ’ 0). We
estimated the fraction of polar aligned events [54], finding
0.14 for the model and 0.18 for the experiment. The model
also matches the distribution of head-on (b ) 0) and glanc-
ing (b ) 1) collision events. We further determined the PDF
of the duration of collisions "col as well as that of their spatial
extension ‘col, given by the center of mass displacement. The
model reproduces the observed exponential distribution of
"col quantitatively, while it fails to reproduce the roughly

algebraic decay of ‘col (but nevertheless gives a correct
mean extension) [55].
We performed simulations using the same flower-shaped

geometry [Figs. 1(c) and 1(d)] and number of particles
(N ¼ 890) as in the experiment [42,43]. For the parameter
values matching the single particle dynamics and binary
collisions (for vibration amplitude ! ¼ 2:7), we observe,
as in the experiments, fairly large, polar aligned, moving
clusters (Figs. 1(c) and 1(d); for videos refer to the
Supplemental Material [49]). However, the order parame-
ter c ðtÞ ¼ 1

MðtÞ j
P

i2ROIn
ij, with MðtÞ denoting the number

of particles currently located within the central ‘‘region of
interest’’ (ROI) of radius 10, is typically smaller than in the
experiment [Fig. 4(a)]. The effective packing fraction
observed in the ROI is found to be very close to that of
the experiment (# ’ 0:39, whereas the nominal packing
fraction is 0.47), indicating that particles accumulate at
the boundary in the model as well. Running the model
at # ¼ 0:39 in a box of approximately the same size but
with periodic boundary conditions—a privilege of the
in silico approach—yields only a marginally larger average

FIG. 3 (color online). Scatter graph !in ! !out for the
experiment (a) and our model (b). Values of the impact parame-
ter b are indicated by the color bar. PDF of the duration "col
(c) [lin-log] and the extension ‘col of a collision (d) [log-log]. FIG. 4 (color online). (a) PDF of the average polarization c ,

evaluated within the ROI, for the experimental system, the model
in the petal-shaped geometry and in periodic boundaries using
two values of packing fractions: # ¼ f0:39; 0:47g. (b) Average
polarization h"it as a function of the noise fraction $2 ¼
Dk=D

!¼2:7
k ¼ D?=D

!¼2:7
? , shown for three boundary sizes L 2

f50; 100; 200g and # ¼ 0:47. Inset: h"it [log-log] for $ ¼ 1 and
# ¼ 0:47 as function of system size L. (c) Sketch of packing
fraction(# )-noise($) phase diagram: States with h"it " 0:5 are
indicated by squares, polar homogenous states with h"it > 0:5
by triangles, and states exhibiting heterogenous patterns trans-
versal to the average moving direction (bands) are depicted by
circles. (d) Representative snapshots for selected # -$ values
indicated by numbers in (c).
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Fig. 1.4 Transition to collective motion in a system of self-propelled walkers: (a)

Sketch of a walker : a hard metallic disc with an off-center tip and a glued rubber skate located

at diametrically opposite positions; the velocity v⃗ is in general not perfectly aligned with the

polarity n⃗. (b) Under proper vibration the walker performs a persistent random walk. (c) A

thousand of such discs interacting through collisions develop large scale collective motions.

(d) In silico mimicking the experimental system allows to explore the full phase diagram, with

γ the noise amplitude and φ the area fraction: (gray square = disordered phase; red triangles

= homogeneous polar ordered phase; blue bullet = polar bands; green bullets = inverse polar

bands). (e) Snapshot of the polar phase obtained with periodic boundary condition in a

system of N = 1000 particles (inset : order parameter as a function of γ; γ = 1 corresponds

to the experimental conditions). (f) Snapshot of a polar band state in a very large system

(L = 200).

presents strong variations, but can take a rather well-defined order one value for long
periods of time. At high Γ values (large noise) no large-scale ordering is found. The
study of the spatial and temporal correlation functions further confirm the onset of
large scale collective motion.

In order to extend the observation range of the system, in terms of size and pa-
rameter values, a mathematical model for the motion and collisions of the polar disks
was proposed (Weber et al., 2013). Rather than modeling the full three-dimensional
dynamics, the model describes the effective two-dimensional motion of the discs. As
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compared to the most common Active Brownian Particles (ABP), the main new fea-
tures of the model, dictated by the experimental system, is twofold: (i) the dynamics
of the particle’s intrinsic polarity with respect to their velocity is explicitly described,
and (ii) no explicit alignment rules are employed, but collisions are explicitly modeled.
Particle i is subject to a noisy acceleration along its polarity axis n⃗i (with anisotropic,
intrinsic, “active” noise, respecting the particle’s polar symmetry), balanced by an
effective linear friction term along its velocity v⃗i = d

dt
r⃗i, with r⃗i denoting the particle’s

coordinates. Particles i and j with ∣r⃗i−r⃗j ∣ < d, where d is the particle diameter, interact
by means of a pairwise, inelastic, repulsive interaction force F⃗ ijε . Furthermore, when

αi = ̂
(v⃗i, n⃗i), the angle between velocity and polarity, is nonzero, frictional interactions

with the vibrating plate are observed to induce a torque on the particle. More pre-
cisely, when αi, is acute, n⃗i rotates towards v⃗i, while for ∣αi∣ > π/2, n⃗i rotates towards
−v⃗i. The model thus reads:

d

dt
v⃗i = [F0 + η∥]n⃗

i
+ η⊥n⃗

i
⊥ − βv⃗

i
+∑

j

F⃗ i,jε , (1.19)

d

dt
φi = ζ sinαi sign(cosαi) + ηφ (1.20)

where F0, the propulsive force amplitude, and β, the damping coefficient, are constants
giving rise to a stationary speed v = F0/β. φi is the orientation of the unit vector n⃗i

and ζ characterizes the strength of the coupling between polarity and velocity. n⃗i⊥ is a
unit vector perpendicular to n⃗i, η∥,⊥,φ represent Gaussian and wrapped Gaussian dis-
tributed white noises with zero mean, and D∥,⊥,φ denotes the corresponding diffusion
constant.

The numerical values of the coefficient of the model are first fixed by exploring
the statistical properties of the one particle dynamics, namely its translational and
angular diffusion properties, as well as the dynamical correlations between v⃗ and n⃗.
Lastly the restitution coefficient ε is obtained by fitting the statistics of two-body col-
lisions. The model provides a fair description of the experiment, also at the collective
level. Finally simulating the model with periodic boundary conditions, varying only
the noise level and the packing fraction, a phase diagram akin to the Vicsek one was
obtained, thereby establishing the first evidence of truly long range collective motion
in an experimentalo-silico system of self-propelled particles Fig.1.4-d-e-f).

We however note two features distinct from the standard Vicsek case: (i) at large
packing fraction and low noise, the authors report the existence of ”inverse polar
bands”, where a dilute disordered region propagates within the polar phase; such
”inverse polar bands” have never been reported in the Vicsek model; (ii) no polar
bands could be observed when transitioning from the disordered to the polar phase,
for packing fractions φ > 0.6. The absence of polar bands in the transitional regime
between the disordered state and the fully polar state might just be a finite-size effect;
however, for the existing band, we note that the longitudinal density profile around
φ ≈ 0.6 turns out to be rather flat, with an overall rather low order (as low as ⟨ψ⟩t ≈ 0.2
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for φ = 0.6 and γ = 1.4). These bands may thus be of different nature from the Vicsek-
like, sharp, well-ordered bands found at low φ, and could cease to exist asymptotically
at a packing fraction below the rise of jamming and crystallization effects.

1.3.2 Microscopic dynamics : reorientation mechanism

In order to discuss the relation of the above observations with the Vicsek scenario,
one first needs to understand the origin of the alignment: since the particles are discs,
it is not expected to arise from steric interactions; it therefore must have a dynamical
origin. In order to simplify the discussion let us first introduce the dimensionless and
noiseless version of the above model:

˙⃗ri = v⃗i, (1.21)

τv ˙⃗vi = n⃗i − v⃗i +∑
j

fij , (1.22)

τn ˙⃗ni = (n⃗i × ⃗̂vi) × n⃗i, (1.23)

where for simplicity, we consider that the torque in eq. 1.23 always aligns v⃗i towards
n⃗i. Let us stress the presence of this torque is the key ingredient of the model and
that it is a generic term for dry active systems. Even for a non chiral self-propulsion,
namely when the propulsion mechanism is mirror-symmetric with respect to the body
axis n⃗i, a torque acting on the particle is allowed by symmetries as soon as v⃗i is not
aligned with n⃗i. The mutual relaxation towards each other causes the two vectors to
converge against a common stationary direction, where v⃗i = v0n⃗i. Here, v0 = F0/β
denotes the final speed of the isolated particle. The mass m of the particles, their
diameter d, and d/v0, being respectively the units of mass, length and time, one has
τv = mv0

βd
and τn = 1/ζ. When a particle starts with given v⃗i ≠ n⃗i, the trajectory

depends on both parameters τv and τn. It turns out, however, that the final direction
of the particle depends on these parameters mostly through their ratio α = τn

τv
(not to

be confused with the angle α...), which can be understood as the persistence of the
polarity vector n⃗. When α≪ 1, then n⃗ aligns very fast and is practically always parallel
to v⃗. Conversely when α ≫ 1, then n⃗ dictates the orientation of v⃗. Quite remarkably
the experiments conducted with the vibrated polar disks seem to work in the crossover
between these limits, α ≃ 1 (Weber et al., 2013).

The dynamical origin of the alignment is summarized on figure 1.5-(a) and (b).
Let’s consider first the simpler case of the collision of a self-propelled disc with a wall.
Before the collision, ∣v⃗∣ = v0 and v⃗ ∥ n⃗. On the contrary, right after the collision, the
velocity has reoriented according to the collision rule, while n⃗ remains unchanged.
During the mutual relaxation of v⃗ and n⃗, the trajectory is bended by the active force,
pointing in the direction of n⃗, leading to an asymptotic common direction, which makes
a smaller angle with the wall than the incoming direction, hence the alignment of the
trajectory with the wall. Note that if α is large, the trajectory can also induce a new
collision with the wall. Considering now the collision between two self-propelled discs,
the situation is complicated by the fact that not all collisions are as simple as the one
with the wall. In general they will depend on the impact parameter of the collision.
The next step is therefore to consider all possible scattering events and somehow add
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(a) (b)

Figure 2.13 – Exemples de simulations de trajectoires de disques. (a) :
Trois trajectoires di�érentes, sans bruit et pour trois configurations initiales di�é-
rentes à – = 0.5. La flèche noire indique la force de propulsion et les flèches en
couleurs correspondent aux vitesses. (b) : Collision entre deux disques au cours
d’une simulation qui permet d’aligner deux trajectoires. Les deux disques arrivent
avec une vitesse alignée selon leur polarité. A l’issue de la collision, le couplage entre
v̨ et ˆ̨n a pour e�et de courber les trajectoires des disques. A la sortie de la collision,
l’écart entre les trajectoires est plus faible qu’à l’entrée.

manière arbitraire. Au bout de ce temps ”t les coordonnées sont actualisées selon
les équations déterministes. Si le bruit D/⁄ ”= 0, juste après avoir actualisé les coor-
données (n̨i+1, v̨i+1), on ajoute le même angle ÷i(t) aux deux vecteurs. Celui-ci suit
une loi normale de moyenne nulle et de variance égale à 2D”t.

Les collisions sont détectées et traitées selon la méthode d’event-driven : dès que
deux trajectoires de disques se coupent aux mêmes instants, les vitesses des deux
disques sont modifiées en supposant que l’on a des collisions élastiques et leur pola-
rité est inchangée :

v̨1 + v̨2 = v̨
Õ
1 + v̨

Õ
2 et n̨i = n̨

Õ
i, avec i œ (1, 2).

La figure (2.13-b) montre deux disques qui arrivent avec une vitesse v̨ = ˆ̨n et une
certaine orientation. Tout de suite après la collision, on observe que tout de suite
après la collision les trajectoires sont courbées du fait du couple qui s’exerce sur
ˆ̨n. Puis les trajectoires deviennent rectilignes ce qui signifie que les vitesses et les
polarités des disques ont relaxé l’une vers l’autre. On note aussi l’e�et d’une collision
sur l’alignement entre les disques : l’angle entre les trajectoires des particules en
sortie de la collision est plus faible qu’avant la collision.

precise statements can bemade regarding the connection between the effective alignment during scattering

events and the phase transition at large scale.

In this paper, (i)we formulate amodel of an active liquid,made of self-propelled hard disks which interact

through elastic collisions. 2As we shall see, the key ingredient of themodel is themutual coupling of the

positional and orientational degrees of freedom
in the dynamics of each particle.W

e argue that this coupling

is generically present in real systems of self-propelled particles, as soon as they are not point-like. The nature

of the interaction itself is not essential.W
e choose it here to be hard core repulsion, and then compare with

othermodels of self-propelled disks found in the literature. (ii)W
e integrate themodel equations

numerically, with andwithout noise.W
e focus on the transition between homogeneous phases which are

theoretically tractable at themean-field level. To do so, we restrict the simulations to ‘small’ enough systems,

such that spatial inhomogeneities, which are frequently encountered in active systems, do not develop.W
e

obtain the following phase diagram: in the absence of noise, the system
exhibits a strongly first-order

transition from
the isotropic to the collectivemotion phase (see figure 1(c)). Above a finite level of noise, the

transition becomes second order at a tricritical point. (iii)W
e analyze themodel equations on the grounds of a

Boltzmann-like equation, bymaking use of a recently proposed observable p
p

· d
á

ñwhich quantifies the non-

conservation ofmomentum [21]. This observable allows us to span the bridge from
microscopic dynamics, in

particular binary collisions such as those depicted in
figure 1(b), to the Landau coefficients for the dynamics of

themacroscopic order parameters. By direct sampling of all possible binary scattering events, we obtain an

excellent quantitative prediction of our numericalfindings.W
e thereby demonstrate that self-propelled hard

disks generate effective alignment, provided that translational and orientational degrees of freedom
are

coupled to each other. Neither inelasticity nor softness are required. Even the re-collisions alluded to in [18–

20] are not necessary. (iv)W
e scrutinize the very peculiar dynamics of a single collision between two self-

propelled disks and explain the specific shape of the scattering function that was obtained numerically. In

turn, this result explains how self-propulsion intrinsically generateseffective alignment, requiring the

interaction only to be repulsive.

2.Model of self-propelled hard disks

Themodel consists ofNhard disks in a square box of sizeL×L, with periodic boundary conditions. The

particles collide elastically when they touch, otherwise they follow a self-propelledmotionwithout interacting.

2.1. Trajectories between collisions

Aparticleiis described by its center
t

r
,

i ( ) its velocity
t

v
,

i ( ) and by a unit vector
t

n
i

ˆ ( ) along its body axis, see

figure 1(a).W
e assume a self-propelling force F

n
i

0 ˆ parallel to the body axis, and a dissipative force F

v

D

i
g

=
-

parallel to and opposed to the velocityv .i The dissipation compensates the acceleration produced by the self-

propelling force and allows a stationary speed of the individual particle.

In general, the particle velocityvi and the particle axisn
i

ˆ are not alignedwith each other. Then, the velocity

has the tendency to alignwith the axis, because the acceleration due to self-propulsion is proportional ton .i
ˆ

Figure 1. (a)An isolated self-propelled particle converges to its stationary state where velocity v and polarity n̂ are parallel. (b)A

single binary ‘scattering event’ can consist ofmany hard-disk elastic collisions. (c)Stable phases in the absence of noise. Between the

isotropic (

0

yá ñ »
) and polar (

1

yá ñ =
) phase is a discontinuous transition.

2
Atfirst sight, themodelmight appear to be a simplified version of themore ad-hoc one [20] used to reproduce and to interpolate

numerically the vibrated polar disks experiment [18, 19]. However, we here present it starting from
minimal principles using themechanics

of rigid bodies.

2
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wall

p̂?
p̂ p

p0
�p
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(ii) a continuous time model of hard discs obeying Vicsek

aligning rules, actually an event-driven
implementation

of the BDG model [11, 13], and (iii) a model of inelastic

hard discs, noiseles
s, but with geometrica

l collisi
on rules.

In all cases
not only the transition

point is very well pre-

dicted, but the ansatz also works surprisingly well, even

far in the ordered phase.
All detailed

derivat
ions are

provided in the Supplementary Materia
ls.

Theoret
ical framework — Particle

velocities
at equi-

librium obey the Maxwell-Boltzm
ann distribution; self-

propelled particle
s do not. After some transient, a self-

propelled particle
reaches its intrinsic steady velocity v0,

set by the competition
between propelling and dissipa-

tion mechanisms [40–42
]. In the low-density limit, this

transient lasts much less than the mean free flight, and

one can safely
assume that particle

s have a constant

speed v0. For spatially
homogeneous states

, the one par-

ticle distribution thus reduces to the density probability

f(✓, t) of having a particle
with velocity v0ê(✓) at time t,

with ê(✓) the unit vector
of polar angle ✓.

This distribu-

tion evolve
s accord

ing to self-di↵usion and binary scat-

tering events. Note that a scatte
ring event can be rather

complex, involving for instance successiv
e re-coll

isions, as

in systems of hard discs [40].
Collisio

ns are then corre-

lated
and should be considered as part of the same scat-

tering event, so that the molecular chaos hypothesis may

hold. A scatte
ring event [Fig. 1(left)

] is specified by the

incoming angles ✓1
and ✓2 of the two particle

s or, equiv-

alently, the incoming half-an
gle ✓̄ = Arg(e

i✓1 + ei✓2 ) and

the incoming angular separatio
n � = ✓1�✓2.

Additional

scatte
ring parameters,

such as the impact parameter or

some e↵ective
noise, are collect

ively
noted as ⇣.

From

now on, we shall again
call “collis

ion” a given
scatte

ring

event, keeping in mind the above discussion.

Let us first derive
a kinetic equation

for a generic

observab
le A =

1
N

P
i
a(✓i).

Each self-di↵usion event

changes A into A
0 such that N(A

0 � A) = �adi↵(✓,
⌘),

where ⌘
is some noise describ

ed by the probability den-

sity P⌘(⌘)
. Each scatte

ring event changes , A into A
0

such that N(A
0 � A) = �a, where �a

depends a priori

on all collisi
onal parameters.

Assuming molecular chaos

and averag
ing these balance equations over all di↵using

and scatte
ring events in a small time interval

, then tak-

ing the continuous time limit, one obtains the evolution

equation

dA

dt
= ��f [�a] + �di↵

Z 2⇡

0

d✓

Z
d⌘ P⌘(⌘)

f(✓, t) �
adi↵, (1)

�f [�a] =

Z 2⇡

0

d✓̄

Z ⇡

�⇡
d�

Z
d⇣ K(�, ⇣)f(✓1, t)

f(✓2, t)
�a, (2)

where the normalized
scatte

ring rate K(�, ⇣) is inde-

pendent of ✓̄
because of global rotati

onal invarian
ce.

We define h. . . i0 =
1
2⇡

R ⇡
�⇡

d�
R

d⇣ K(�, ⇣)(. .
. ) and re-

quire h1i0 = 1 which defines the interact
ion rate scale

�. For discs like particle
s with an interact

ion range

scatte
ring

b, d0, �

p1

p2

p0
1

p0
2�1

�2

�

p = p1 + p2

p
0 =

p
0
1
+

p
0
2

�p = p0�p

backward
forward

FIG. 1. Left: Scatter
ing of two particle

s. Right:
Criterio

n for

stability of the isotro
pic phase. The momentum of two inter-

acting particle
s is changed from

p to p
0 . If p

0 is more proba-

bly found (see text for details)
in the forward semi-plane, the

isotro
pic phase is unstable.

d0, and an impact parameter �d0  b  d0, one has

R
d⇣ K(�, ⇣) =

⇡
4d0

R d0

�d0
db |sin(�/2)| and � = 4⇢d0v0/⇡,

with ⇢ the number density [42, 43].
In mean-field or

metric-f
ree models K(�, ⇣) does not depend on �. Note

that, in both cases,
� and ⇣ are decoupled.

In general, the scatte
ring of two self-propelled particle

s

does not conserve
the averag

e momentum of the system

P(t), which defines a polariza
tion vector

, the modulus of

which  (t) = |P(t)| is the order parameter of the tran-

sition
towards collect

ive motion. It is thus natural to

analyze the change of momentum at the level of binary

collisi
ons in order to understan

d collect
ive macrosc

opic

states
. Noting �p the change of total momentum during

a collisi
on (fig. 1-righ

t), we apply Eq. (1) to the averag
e

momentum written
in polar coordinates P =  ê(✓P ).

When the scatte
ring rules have a mirror symmetry (no

chirality
), the radial component of the kinetic equation

reads:
d 

dt
= ��f

h
(p̂ · �p) cos ✓̄

i
� D ,

(3)

with D a di↵usion constant set by P⌘ [44], while ✓P

is constant and has been set to 0. The same proce-

dure can be follow
ed to write the kinetic equation

of

the squared momentum, the balance equation
of which

is N
�
P
02 �P

2
�

= 2P · �p +
1
N
�p · �p, and find:

d 
2

dt
= 2��f

h
P · �p +

1

2N
�p · �p

i
� 2D

�
 

2 �
1

N

�
. (4)

The von Mises distrib
ution

ansatz — The above ki-

netic equations remain of limited interest
as long as the

angular distribution f is unknown. Here, we propose an

ansatz of the form f(✓, t) = f (t)
(✓), which we constrain

to be exact in the isotro
pic phase.

This ansatz is ex-

pected
to be good if the angular distribution is at every

time close
to some local equilibrium. We choose f to

be the so-cal
led von Mises distribution, the distribution

of uniformly random angles constrain
ed by the condition

|
R

d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R

f log f under the afore-

mentioned constrain
t and is, in this sense, the simplest

ansatz one can think of. It is parameterize
d by the order

parameter  
in the follow

ing way:

f (✓) =
e

cos ✓

2⇡I0()
,

with
I1()

I0()
=  ,

(5)

~P

p = p1
+ p2

✓̄

(a) (b)

(c) (d)

Fig. 1.5 Dynamical alignment of self-propelled discs: (a) When a particle starts with

given v⃗i ≠ n⃗i, the mutual relaxation towards each other causes the two vectors to converge

against a common stationary direction, which mostly depends on α =
τn
τv

, which can be

understood as the persistence of the polarity vector n⃗. (three trajectories with different initial

conditions, for α = 0.5). (b) Trajectory of a particle following an elastic collision with a wall:

for a finite α, the mutual reorientation of v⃗i and n⃗i leads to an alignment of the trajectory

with the wall. (c) Description of a scattering event. P⃗ is the total momentum in the system.

Two particles incoming with momenta p1 and p2 exit the scattering event with momenta p′1
and p′2. The scattering event ends when all relaxation processes have taken place, namely

the speeds have relaxed to v0 and v⃗i ∥ n⃗i. (d) The alignment within the scattering event is

positive if pdp > 0.

their contribution to the global alignment.

Before doing so, let us mention, that on top of the deterministic equations (1.21–
1.23), one can add some angular noise distributed normally with zero mean and an
angular diffusion constant D.

1.3.3 Alignment rooted in the non conservation of momentum

In this section, we shall derive a general setting to compute the average alignment for
a system of self-propelled particles interacting by pairs. A published version of this
discussion can be found in (Nguyen Thu Lam et al., 2015a) and further details in the
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supp. mat. of the arXiv https://lanl.arxiv.org/pdf/1410.4520v2.

Particle velocities at equilibrium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-propelled particle reaches its
intrinsic steady velocity v0, set by the competition between propelling and dissipation
mechanisms. In the low-density limit, this transient lasts much less than the mean free
flight time, and one can safely assume that particles have a constant speed v0. For
spatially homogeneous states, the one-particle distribution thus reduces to the density
probability f(θ, t) of having a particle with velocity v0

ˆ⃗e(θ) at time t, where ˆ⃗e(θ) is the
unit vector of polar angle θ. This distribution evolves according to self-diffusion events
and binary scattering events. A scattering event, as pictured schematically on Fig. 1.5-
(c), is specified by the incoming angles θ1 and θ2 of the two particles or, equivalently,
by the incoming half-angle θ̄ = Arg(eiθ1+eiθ2) and the incoming angular separation
∆ = θ1−θ2. Additional scattering parameters, such as the impact parameter, or some
collisional noise, may be needed and are collectively noted as ζ. A scattering event
changes the momentum sum of the involved two particles by an amount δp⃗, which
depends a priori on all scattering parameters θ̄, ∆ and ζ. The average momentum
of all N particles in the system changes in this event from P⃗ into P⃗ ′, concluding
that N(P⃗ ′ − P⃗ ) = δp⃗. In the same way, a self-diffusion event changes the momentum
of a particle at θ1 by an amount N(P⃗ ′ − P⃗ ) = δp⃗diff(θ1, η) = Rηp⃗ − p⃗, where Rηp⃗ is

the rotation of p⃗ = ˆ⃗e(θ1) by an angle η. The self-diffusion process is characterized
by the probability density Pη(η) for a particle with angle θ1 to jump to angle θ1 +

η. Assuming molecular chaos and averaging these two balance equations over the
statistics of scattering and self-diffusion events taking place in a small time interval,
one obtains the evolution equation by taking the continuous time limit:

dP⃗

dt
= λdiff Φdiff

f [δp⃗diff(θ1, η)] + λΦscat
f [δp⃗(θ̄,∆, ζ)], (1.24)

where

Φdiff
f [. . . ] = ∫

2π

0
dθ1 ∫ dη Pη(η) f(θ1, t) (. . . ), (1.25)

Φscat
f [. . . ] = ∫

2π

0
dθ̄∫

π

−π
d∆∫ dζ K(∆, ζ) f(θ1, t)f(θ2, t) (. . . ). (1.26)

In the right hand side of Eq. (1.24), the first term comes from the self-diffusion process,
which happens at a characteristic rate λdiff . The second term comes from the binary
scattering process. In its integrand, a scattering event with scattering parameters θ1,
θ2 and ζ is assumed to happen at a rate proportional to both f(θ1, t) and f(θ2, t); this
comes from the molecular chaos hypothesis. The proportionality factor is λK(∆, ζ),
the scattering rate of such an event. Note that it does not depend on θ̄ as a result
of global rotational invariance. As a convention, we have chosen to normalize K such
that 1

2π ∫
π
−π d∆ ∫ dζK(∆, ζ) = 1. The prefactor λ thus gives the characteristic scale of

the scattering rate. If one considers interacting disks with diameter d0 at a number
density ρ, a scattering event is entirely described by θ1, θ2 and the impact parameter b

(thus, ∫ dζ ≡ ∫
d0
−d0

db). By using the construction of the Boltzmann cylinder, one finds
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for the scattering rate λK(∆, b) = ρv0∣ sin
∆
2
∣. Importantly, it is proportional to the

density and does not depend on the impact parameter.

Equation (1.24) gives the evolution of the vectorial order parameter P⃗ . Now, in
order to get the evolution of ψ = ∣P⃗ ∣, we go to polar coordinates P⃗ = ψ ˆ⃗e(θP ) and
project Eq. (1.24) on the radial direction ˆ⃗e(θP ). In the absence of chirality, P⃗ keeps
its angular direction, so that one can set θP (t) = 0. As for the binary scattering term,
we find for the projection Φscat

f [δp⃗] ⋅ ˆ⃗e(θP ) = Φscat
f [( ˆ⃗p ⋅ δp⃗) cos θ̄]. For the self-diffusion

term, we can compute the integral explicitly and obtain λdiffΦdiff
f [δp⃗diff] = −Dψ, where

the self-diffusion constant is given by

D = λdiff (1 − ∫ dη Pη(η) cosη) ≥ 0. (1.27)

Altogether, the radial component of Eq. (1.24) reads:

dψ

dt
= λΦscat

f [( ˆ⃗p ⋅ δp⃗) cos θ̄] −Dψ. (1.28)

This evolution equation is derived from Eq. (1.24) with the only additional assumption
that the system is not chiral. We keep this assumption in what follows.

As usual, the kinetic equation (1.36) is of no use if the angular distribution f(θ, t) is
unknown. The strategy consists in introducing an Ansatz for the distribution, assuming
that the time-dependence is implicitly given by ψ(t):

f(θ, t) = Υψ(t)(θ) (1.29)

where Υψ(θ) for all 0 ≤ ψ ≤ 1 is a family of angular distribution functions. Without
further specifying the shape of the distribution family Υψ, one readily obtains a close
equation for the order parameter ψ(t)

dψ

dt
= λF (ψ) −Dψ, (1.30)

with

F (ψ) = Φψ[ ˆ⃗p ⋅ δp⃗ cos θ̄] = ∫
π

−π

d∆

2π
∫ dζ K(∆, ζ) g(ψ,∆) p⃗ ⋅ δp⃗. (1.31)

and

g(ψ,∆) =
2π

2 cos ∆
2

∫

2π

0
dθ̄Υψ(θ̄ +∆/2)Υψ(θ̄ −∆/2) cos θ̄ (1.32)

Finally, we now specialize to the wrapped Gaussian or von Mises angular distribution,
which is a generalization of the Gaussian on a periodic interval and the simplest
distribution to describe fluctuations around a given orientation; it is given by

Υψ(θ) =
eκ(ψ) cos θ

2πI0(κ(ψ))
, (1.33)
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where

In(x) =
1

2π
∫

2π

0
dθ ex cos θ cosnθ (1.34)

are the order n modified Bessel function of the first kind and K(ψ) is obtained from

the inversion of the implicit relation I1(κ)
I0(κ)

= ψ. The integrations over dθ̄ in Eq. (1.32)

can be performed explicitly to obtain

g(ψ,∆) =
κ(ψ)

I2
0(κ(ψ))

I1(2κ(ψ) cos ∆
2
)

2κ(ψ) cos ∆
2

. (1.35)

Eqs. (1.30), (1.31) and (1.35) provide an explicit solution for the homogeneous dynam-
ics of the order parameter.

At this stage, one can compute the steady state of ψ by injecting Eq. (1.35) into
the r.h.s. of Eq. (1.30), and equating the latter to zero. One trivial solution is the
isotropic state, of which we now discuss the stability by expanding, up to order ψ3

1

λ

dψ

dt
≃ (µ −D/λ)ψ − ξψ3, (1.36)

with

µ ∶= ⟨p⃗ ⋅ δp⃗⟩
0
, (1.37)

ξ ∶= ⟨( 1
2
− cos ∆) p⃗ ⋅ δp⃗⟩

0
, (1.38)

⟨f⟩0 ∶=
1

4
∫

1

−1
db∫

π

0
d∆ ∣sin

∆

2
∣f(b,∆). (1.39)

Altogether, the above calculation confirms our intuition that p⃗ ⋅ δp⃗ is truly the relevant
quantity to evaluate alignment in a system of self-propelled particles with binary
interaction, provided that the density is low enough to ensure complete relaxation
between successive scattering events.

1.3.4 Vicsek vs. self-propelled disks alignment

We shall now apply the above method to three different model systems. The motiva-
tion is to investigate how the local alignment rules affect the global aligning properties.
We shall thus consider Hard Discs with Vicsek aligning rules, with inelastic collision,
and with the rules identified above for the walkers. In the first one, which we call the
Vicsek Hard Discs (VHD) model, the continuous time noiseless dynamics is that of
hard discs moving ballistically at constant speed v0 and interacting with the Vicsek
rules when they collide; the scattering parameter is the collision noise amplitude σ.
The second case is that of Self Propelled Inelastic Hard Discs (SPIHD); the scattering
parameter is the restitution coefficient e ∈ [0 − 1]. Between collisions, the velocity v⃗i of
particle i relaxes to ˆ⃗vi = v⃗i/∣v⃗i∣ on a timescale τ . Here it is very clear that the collision
conserves momentum, while the scattering event does not. The third case is that of the
Walking Hard Discs (WHD) described by Eqs. (1.21-1.23); the scattering parameters
are α and τv.
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The results are summarized in Fig 1.6, with columns (a),(b),(c) respectively de-
scribing the three models VHD, SPIHD, WHD. The first line provides information
about the aligning property of the scattering event. The alignment function, ∫ dζ p⃗ ⋅ δp⃗,
which depends only on the incoming angular separation ∆, summarizes the micro-
scopic dynamics averaged over the “internal” degrees of freedom of the scattering.
Consider first the VHD case, for which the “internal” degrees of freedom of the scat-
tering is the collision noise. It is easy to see that p⃗ ⋅ δp⃗ = ∣p⃗∣(cosη1 + cosη2 − ∣p⃗∣),
where ∣p⃗∣ = 2 cos ∆

2
. The integration over the collision noises is performed using ∫ dζ ≡

∫ dη1dη2P (η1)P (η2), with P (η) a gaussian distribution of zero mean and variance σ2.
One obtains the alignment function

∫ dζ p⃗ ⋅ δp⃗ = 2 cos ∆
2
(2e−σ

2
/2
− 2 cos ∆

2
). (1.40)

For σ = 0 it is always positive, all collisions align on average; for σ = ∞ it is always
negative, there is no alignment on average. At intermediate σ, collision with a large,
respectively small, incoming angle separation ∆ align, respectively dis-align. For the
SPIHD and WHD models, the alignment functions ∫ζ p⃗ ⋅ δp⃗ are computed numerically
by simulating many binary scattering events at some fixed incoming angular separa-
tion ∆, varying the impact parameter b and are plotted on Fig. (1.6)-b1-c1. A central
observation is that the alignment functions of these two models share important simi-
larities, while they differ strongly from the VHD case. Indeed the Vicsek aligning rule
is such that for large ∆, it aligns the velocities as long as the noise remains finite;
however for pairs of particles with velocities that are already well aligned (small ∆),
the noise dis-align them with high probability. Physical collisions between discs, and
convex object in general, provide very different aligning rules. Consider for instance
the case of the SPIHD displayed on Fig (1.6)-b1. Small incoming ∆ favors alignment,
and large ∆ lead to dis-alignment. This is exactly the opposite physics.
We are now in position to discuss the impact of this important qualitative difference
on the large scale physics, as far as homogeneous phases are concerned. Computing the
coefficients µ and ξ now simply consists in averaging this function against the kinetic
kernel K(∆), including the geometric factor 1

2
− cos ∆, in the case of ξ. The results

are plotted on lines (2) and (3) of Fig. (1.6). For the VHD case, µ is negative at large
interaction noise σ and turns positive for small enough σ. Similarly in the SPIHD
case, µ is negative for large restitution coefficient e and turns positive for sufficiently
inelastic collisions (small e). The main difference is that in the VHD case ξ is always
positive and the transition is continuous as confirmed on Fig. (1.6)-a4. This is not the
case in the SPIHD case. In particular ξ < 0, at the transition where µ = D

λ
= 0 in the

absence of diffusion (red line). The transition is then discontinuous (Fig. (1.6)-a4). In-
terestingly, the presence of diffusion D > 0 shifts the transition towards more inelastic
systems, for which eventually ξ becomes positive. There is therefore a first-order to
second order transition driven by the amplitude of diffusion. In the WHD case, for
α < 1, the situation is essentially identical to that of the SPIHD, the transition to col-
lective motion being driven by the persistence of the polarity orientation n⃗. For α > 1,
one observes (inset of Fig. (1.6)-c1) that the alignment function uniformly decreases
towards zero: the persistence of n⃗ is such that collisions do not alter it anymore and
alignment can not takes place. This explains the non monotonic µ and ξ dependence
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Figure 3. Mean-field binary Vicsek model. (a): The alignment function
R
⇣
p · �p, for

di↵erent values of the control parameter �. (b): Angular distributions measured at

N = 104 (symbols) and the corresponding ansatz distributions (lines). From top to

bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively  ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset:

the same but with vertical log-scale. (c), (d): Average in the steady state of the order

parameter and its rescaled standard deviation. Symbols are numerical solution of the

Boltzmann equation. Full black lines are theoretical predictions using the von Mises

distribution as an ansatz for the angular distribution.

on the binary scattering properties, illustrating the link between the alignment functionR
⇣ p · �p of the models and the corresponding collective behaviour. We thus study the

models without any self-di↵usion noise by setting D = 0. As we described quantitatively

by Eq. (13), the D > 0 case shifts the transition by stabilizing the isotropic phase.

3.1. Mean-field binary Vicsek model

We first consider a non-metric model where interactions are binary, with a change of

momentum that follows the collision rule of the Vicsek model. At every time-step, two

randomly chosen particles among N � 1 collide, following the binary Vicsek collision

rule: from pre-collision velocity angles ✓1 and ✓2, the half-angle ✓̄ = Arg(ei✓1 + ei✓2)

is computed and randomly rotated to ✓̄ + ⌘1 and ✓̄ + ⌘2. The collisions noises ⌘1

and ⌘2 are two independent noises following a gaussian distribution of variance �2,

P (⌘) = e�⌘
2/2�2

/
p

2⇡�2. The two new angles are then assigned to the unit velocity

vectors of the particles. The collision noise � is used as the control parameter. As for

the Vicsek model, it has the e↵ect to blur out the alignment to the half-angle ✓̄ and

we expect an isotropic phase at large � and a polar phase at small �. An important
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Figure 5. Continuous-time hard disks Vicsek model at densities ⇢ = 10�3, 10�2, 10�1

and 1. (a): Polar order parameter. (b): Collision rate, rescaled. For clarity, the data

at ⇢ = 1 is not plotted. At this density, the rescaled collision rate behaves qualitatively

the same than for lower densities, but with much higher values (reaching around 28

as the maximal value at the transition). Symbols are numerical data, N = 104. Black

lines are theoretical predictions at vanishing density.

deviations become more and more noticeable, as density increases. For the order

parameter (Fig. 5(a)), an increase in density stabilizes the isotropic phase. This is

in contrast with the most commonly reported e↵ect of stabilization of the polar phase

by density, in the presence of self-di↵usion. In the present case, there is no self-di↵usion

(D = 0) and the transition shift comes from truly non-trivial correlations. For the

collision rate, a quantity most easily measured in event-driven simulations, see Fig. 5(b),

a prediction can be obtained by computing ��scat
f [1], using the von Mises distribution

ansatz. The idea is simply to count +1 at each collision, instead of �p in kinetic

equations such as Eq. (2). The result is plotted as a black full line in Fig. 5(b). In the

isotropic phase, the collision rate is simply the constant � = 4⇢/⇡. In the polar phase,

it decreases smoothly as  is increased. This is again a pure kinetic e↵ect. When polar

order is higher, particles are more parallel, with smaller relative velocities, so it takes

more time before a collision is likely to occur. The collision rate vanishes for  = 1,

when all particles are strictly parallel. From the numerical data, we observe first that

the overall collision rate is increased as density gets higher; second that, for a given

density, the collision rate increases as the transition is approached from either side,

reaching a finite maximal value at the transition. While the first feature is expected,

as it happens also in equilibrium systems [20], the second one indicates a non-trivial

dependance of the collision rate with density in the transitional regime. These e↵ects

cannot be understood on the basis of the Boltzmann formalism.

3.3. Inelastic self-propelled hard disks

Several works [30, 52, 53] have shown that pairwise dissipative interactions lead to

global polarization in swarms of SPPs. In the present model, particles are hard disks of

diameter d0 = 1 that collide inelastically. The restitution coe�cient 0  e  1 of the
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Figure 6. Self-propelled hard disks model with inelastic collisions, ⌧ = 1. (a): The

alignment function
R
⇣
p · �p, for di↵erent values of the control parameter e. (b): Polar

order parameter. Symbols: numerical data, N = 1000 (open symbols), N = 4000 (full

symbols). Black lines are theoretical predictions at vanishing density.

inelastic collisions is used as a control parameter for the transition. Between collisions,

the dynamics of particle i is given by

dri

dt
= vi, (21)

⌧
dvi

dt
= sign(v0 � |vi|)v̂i, (22)

where sign(x) is -1, 0 or 1, respectively when x is negative, zero or positive. The r.h.s.

term of Eq. (22) allows us to use event-driven methods to perform molecular dynamics

simulations. It mimics the more standard exponential relaxation of the velocity vi to

v̂i = vi/|vi| on a timescale ⌧ . We also studied the case of an exponential relaxation,

though in less details, for which we observe that all the results presented below are

qualitatively the same. We choose v0 = 1 and ⌧ = 1.

For this model, the
R
⇣p · �p functions are computed numerically by simulating

many binary scattering events at some fixed incoming angular separation �, varying

the impact parameter b uniformly, see Fig. 6(a). Here, as already stated in the

theoretical framework section, the distinction between binary scatterings events and

binary collisions is specially important. A binary scattering event starts at the time of

a first collision, when both particles have speed v0, with a momentum p. After some

time, the particles separate forever and the dynamics restore the speed of both particles

to v0. Only when all these conditions are eventually met, the binary scattering event

ends and we record the momentum p0. We insist that while the momentum is conserved

by inelastic collisions, it is not by the scattering event; the reason being that after the

collision, velocities is being relaxed to v0 and momentum is changing meanwhile, so that

in general p0 6= p. Note also that a single binary scattering event can comprise several

inelastic collisions, depending on the parameters of the scattering. From these data, we

can compute p · �p(b,�), then µ and ⇠, using Eqs. (13) and (16). We find a transition

at ec ' 0.70. Because ⇠(ec) < 0, the transition is predicted to be discontinuous. The

results are in full agreement with direct molecular dynamics simulations with a random
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inelastic collisions is used as a control parameter for the transition. Between collisions,

the dynamics of particle i is given by

dri

dt
= vi, (21)

⌧
dvi

dt
= sign(v0 � |vi|)v̂i, (22)

where sign(x) is -1, 0 or 1, respectively when x is negative, zero or positive. The r.h.s.

term of Eq. (22) allows us to use event-driven methods to perform molecular dynamics

simulations. It mimics the more standard exponential relaxation of the velocity vi to

v̂i = vi/|vi| on a timescale ⌧ . We also studied the case of an exponential relaxation,

though in less details, for which we observe that all the results presented below are

qualitatively the same. We choose v0 = 1 and ⌧ = 1.

For this model, the
R
⇣p · �p functions are computed numerically by simulating

many binary scattering events at some fixed incoming angular separation �, varying

the impact parameter b uniformly, see Fig. 6(a). Here, as already stated in the

theoretical framework section, the distinction between binary scatterings events and

binary collisions is specially important. A binary scattering event starts at the time of

a first collision, when both particles have speed v0, with a momentum p. After some

time, the particles separate forever and the dynamics restore the speed of both particles

to v0. Only when all these conditions are eventually met, the binary scattering event

ends and we record the momentum p0. We insist that while the momentum is conserved

by inelastic collisions, it is not by the scattering event; the reason being that after the

collision, velocities is being relaxed to v0 and momentum is changing meanwhile, so that

in general p0 6= p. Note also that a single binary scattering event can comprise several

inelastic collisions, depending on the parameters of the scattering. From these data, we

can compute p · �p(b,�), then µ and ⇠, using Eqs. (13) and (16). We find a transition

at ec ' 0.70. Because ⇠(ec) < 0, the transition is predicted to be discontinuous. The

results are in full agreement with direct molecular dynamics simulations with a random

precise statements can bemade regarding the connection between the effective alignment during scattering
events and the phase transition at large scale.

In this paper, (i)we formulate amodel of an active liquid,made of self-propelled hard disks which interact
through elastic collisions.2 As we shall see, the key ingredient of themodel is themutual coupling of the
positional and orientational degrees of freedom in the dynamics of each particle.We argue that this coupling
is generically present in real systems of self-propelled particles, as soon as they are not point-like. The nature
of the interaction itself is not essential.We choose it here to be hard core repulsion, and then compare with
othermodels of self-propelled disks found in the literature. (ii)We integrate themodel equations
numerically, with andwithout noise.We focus on the transition between homogeneous phases which are
theoretically tractable at themean-field level. To do so, we restrict the simulations to ‘small’ enough systems,
such that spatial inhomogeneities, which are frequently encountered in active systems, do not develop.We
obtain the following phase diagram: in the absence of noise, the system exhibits a strongly first-order
transition from the isotropic to the collectivemotion phase (see figure 1(c)). Above a finite level of noise, the
transition becomes second order at a tricritical point. (iii)We analyze themodel equations on the grounds of a
Boltzmann-like equation, bymaking use of a recently proposed observable p p· dá ñwhich quantifies the non-
conservation ofmomentum [21]. This observable allows us to span the bridge frommicroscopic dynamics, in
particular binary collisions such as those depicted in figure 1(b), to the Landau coefficients for the dynamics of
themacroscopic order parameters. By direct sampling of all possible binary scattering events, we obtain an
excellent quantitative prediction of our numericalfindings.We thereby demonstrate that self-propelled hard
disks generate effective alignment, provided that translational and orientational degrees of freedom are
coupled to each other. Neither inelasticity nor softness are required. Even the re-collisions alluded to in [18–
20] are not necessary. (iv)We scrutinize the very peculiar dynamics of a single collision between two self-
propelled disks and explain the specific shape of the scattering function that was obtained numerically. In
turn, this result explains how self-propulsion intrinsically generateseffective alignment, requiring the
interaction only to be repulsive.

2.Model of self-propelled hard disks

Themodel consists ofNhard disks in a square box of sizeL×L, with periodic boundary conditions. The
particles collide elastically when they touch, otherwise they follow a self-propelledmotionwithout interacting.

2.1. Trajectories between collisions
Aparticleiis described by its center tr ,i( ) its velocity tv ,i( ) and by a unit vector tniˆ ( ) along its body axis, see
figure 1(a).We assume a self-propelling force F ni0 ˆ parallel to the body axis, and a dissipative force F vD ig= -
parallel to and opposed to the velocityv .i The dissipation compensates the acceleration produced by the self-
propelling force and allows a stationary speed of the individual particle.

In general, the particle velocityvi and the particle axisniˆ are not alignedwith each other. Then, the velocity
has the tendency to alignwith the axis, because the acceleration due to self-propulsion is proportional ton .iˆ

Figure 1. (a)An isolated self-propelled particle converges to its stationary state where velocityv and polarity n̂ are parallel. (b)A
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Atfirst sight, themodelmight appear to be a simplified version of themore ad-hoc one [20] used to reproduce and to interpolate
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when D 0.l As D l is increased, ( )x a- eventually becomes positive and the transition turns continuous at a
tricritical point D, .c c( )a l Note that 0:( )x a >+ the re-entrant transition is always continuous. Regarding the
role of ,vt a- is practically independant of ,vt while a+ increases when vt decreases. The theoretical predictions
are shown as solid lines infigure 2(c). The agreement with theMD simulation data for density 10 2r = - is
excellent. The small shift of themeasured transition lines to the left with respect to the theoretical one comes
fromfinite-density effects.

Finally, we also learn from examination of the scatteringmaps that, in the absence of noise, the polar phase
1y = is actually an absorbing phase [28]: this is because all binary scattering events at smallΔ have p p 0.· d >

When all particles in a system are sufficiently parallel, binary scattering events can only align the systemmore.
This is true for allα, andmost remarkably for 0.a l

Altogether, our kinetic theory description, using the vonMises ansatz for the angular distribution, captures
quantitatively all the phenomenology reported in the numerical simulations at low enough density. It however
relies on the numerical evaluation of the scatteringmaps. In the last part of the paper, wewould like to provide
some intuition on the origin of the peculiar formof thesemaps. Also, wewill elucidate the role of themultiple
collisions which can take place during a scattering event.

6. Analytical limits

Whenwe take the limit 0,nt l the vector n̂ has no persistence at all. After two particles collide elastically,
the n̂ rotate to their respective v instantaneously, the two particles cannot collide a second time and the
post-collisional relaxation of v∣ ∣ to unity occurs on a straight trajectory.We take advantage of this
simplification to compute the scatteringmap in the case 0.a = Because velocities have equalmodulus, we
can use a nice visualisation of an elastic collision as a rotation in the center-of-mass frame (figure 4(a), (b)).
One can then find an analytic expression6 for bp p , ,· ( )d D which is plotted in figure 4(c). This plot nicely
completes the series of varyingα from figure 3(a)-(d). The essential structure of the scatteringmaps can be
accounted for by the sole ingredients present in the case 0.a = Inelastic collisions and persistence of n̂ are
not essential. Conversely, non-conservation ofmomentum due to the relaxation of the particle speeds to
unity is crucial.

At values 0,a > the vectorn̂ has non-vanishing persistence, which results in curved trajectories and
possible recollisions. This could lead to the effective alignmentmechanismwhichwas proposed to be at the root
of the collectivemotion in the experiment of vibrated polar disks [18–20]. Concerning the influence of
recollisions in the scattering, we askwhether they contribute significantly toμ and ξ. In particular, how
numerous are they depending on the scattering geometry b, ,( )D what is their statistical weight and howmuch
do they affect the scatteringmap bp p ,· ( )d D ? One can get an intuitive picture of the recollisionmechanismby

Figure 3.Top:colourmaps of the full scattering function bp p , .· ( )d D The geometry of the collisions and the colour scale are shown
in the bottom-left panel. Bottom–middle:the partially integrated scattering function as a function of the incoming angleΔ, for
different valuesα, 4.vt = Right:Fully integrated scattering functionsμ andξ, defined in equations (7) and(8)plotted as a function
ofα for different .vt The red vertical line indicates ,*a the transition in the absence of noise. The blue vertical line indicates .ca
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Fig. 1.6 Transition to collective motion of self-propelled discs: Columns (a),(b),(c)

respectively correspond to the models VHD, SPIHD and WHD. Line (1) : the alignment

∫ζ p⃗ ⋅ δp⃗ as a function of the incoming separation angle ∆ summarizes the microscopic dynam-

ics averaged over the “internal” degrees of freedom of the scattering. Line (2) : the linear

coefficient µ as a function of the internal scattering parameter; the red lines indicate where it

cancels; the blue line indicate where µ −D/λ = 0 for a finite value of D and density ρ = 10−3.

(3) : The third order coefficient ξ as a function of the internal scattering parameter; the red

and blue lines are reported from line (2). Line (4) : the order parameter ⟨ψ⟩t as a function of

the internal scattering parameter, in the absence of noise (D = 0).

on α.

1.3.5 Discussion

Altogether the above analysis has revealed that the collective aligning strength within
a system of self propelled particles is truly given by ⟨p⃗ ⋅ δp⃗⟩

0
. We shall however stress
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that the above derivation considers the situation where scattering events are well sep-
arated, so that the incoming particles have a common speed v0, and fully relax their
dynamics before a new collision takes place. This amounts to a low density approxima-
tion. Indeed one can see in line (4) of Fig. (1.6), that increasing density from ρ = 10−3

to 10−1 already leads to quantitative shifts of the transition. These density effects
are directly related to the renormalization of the coefficients µ and ξ by the velocity
fluctuations. Tackling this question is a significantly hard problem that has not been
addressed yet.

We have also understood how purely dynamical alignment can take place and, in
particular, how it can lead to collective motion in a population of self-propelled discs,
with no steric source of alignment. On our way, we have seen that self-propelled hard
discs, the alignment of which comes from physical collisions, behave very differently
from their Vicsek counterpart in terms of alignment function, which in turn induces
very different transition scenario between homogeneous phases. Let us stress here that
this does not rule out the global Vicsek scenario, which at the end of the day, is
dominated by nucleation like processes of the propagative bands. This is indeed what
is also observed in the large scale simulations of the walking hard discs, as illustrated
on Fig. (1.4)-e. One still expects that the differences observed in the alignment function
may be significant when trying to compute the density effects we just mentioned. This
in turn could play an important role on the precise nature of the localized non linear
solution that are selected during the nucleation process. Here also is the frontier of the
present knowledge in this matter.

1.4 Perspectives

In this chapter, we have focused on the transition to collective motion (TCM) in di-
lute systems of self-propelled particles, belonging to the class of polar and dry active
matter. We have seen that for two very different systems, namely rolling colloids align-
ing through hydrodynamics interactions and walking discs aligning through dynamical
relaxation of their polarity, the Vicsek scenario globally holds. It was however shown
that such a conclusion can not be reached without a careful analysis of the relevance of
the microscopic interactions. In the case of the rolling colloids, the long range dipolar
hydrodynamics interactions could in principle suppress the giant density fluctuations
predicted in the polar phase, although in the experiment they are too weak to fully
destroy them. In the case of the walking grains, the structure of the hydrodynamics
equation at the level of the Landau terms is very different from the case of the Vicsek
model. It happens that the transition being governed by the coupling of the density
fluctuations to the polar ordering in a nucleation like process, this last difference is not
relevant for large system size. It remains however unclear wether it could become sig-
nificant in the long range hydrodynamics properties, when considering the non-linear
solutions.

Most theoretical results, discussed here, were obtain in the context of kinetic theory,
and in the low density limit. Apart from the renormalization of the hydrodynamics
coefficients by density and velocity fluctuations, there are good reasons to believe that
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density is a key control parameter in the physics of active matter, which does not only
set the amplitude of noise above which collective motion sets in.

First, we have mentioned in the introduction that, in the absence of alignment, a
Motility Induced Phase Separation takes place in systems of self-propelled particles
if the density induces a sufficiently strong slowing down of the typical velocity of the
particles. This slowing down is generically induced by the crowding of the dynamics
: the particles velocities decrease during their mutual interactions and the density is
such that the relaxation towards the nominal velocity v0 does not have time to take
place. On one hand the same should hold in the presence of alignment. Then if the
alignment is dynamically related to v0, it could be enforced or suppressed. Conversely,
the alignment could prevent the particle from decreasing their velocity with density;
in such a case the MIPS would not take place. Apart from a few papers (Farrell et al.,
2012; Mart́ın-Gómez et al., 2018), the question of the coupling between TCM and
MIPS remains largely unexplored.

Second, from the point of view of liquid state theory, how the activity alters the
structural properties of a liquid and in turn its relaxation properties is essentially
an open question, especially in the presence of alignment. Finally, at large enough
density, the active liquid is expected to eventually crystallize (Bialké et al., 2012;
Menzel and Löwen, 2013; Briand and Dauchot, 2016), or become glassy (Berthier
and Kurchan, 2013; Stuart et al., 2013; Berthier, 2014). The influence of activity on
the glass transition has been investigated and it was shown that it depends on the
stiffness of the interactions (Szamel et al., 2015; Berthier et al., 2017). These studies
were however conducted in the absence of alignment. How alignment contributes to
this picture is far from simple. One could have thought that at very high density, the
aligning processes would be destroyed by the high collision frequency. This is however
not the case as exemplified by the observation of fully aligned active crystals flowing
according to their boundary conditions (Briand et al., 2018).
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