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We use trajectory averaging to show that the energy dissipated in the nonequilibrium energy-state
transitions of a driven two-state system satisfies a fluctuation-dissipation relation. This connection
between the average energy dissipation induced by external driving and its fluctuations about equi-
librium is preserved by an adiabatic approximation scheme. We use this scheme to obtain the heat
statistics of a single-electron box with superconducting leads in the slow-driving regime, where the
dissipated heat becomes normally distributed with a relatively high probability to be extracted
from the environment rather than dissipated. We also discuss heat fluctuation relations for driven
two-state transitions.

As the methods of fabricating, operating, and control-
ling electronic systems reach smaller and smaller scales, it
is becoming increasingly important to understand the in-
fluence of fluctuations on different properties of these sys-
tems. Various fluctuation relations have been proposed
[1–5] to describe the inherent asymmetry between the
probabilities of observing specific events of fluctuating
quantities and their time-reversed counterparts [6]. This
asymmetry is a signature of irreversible processes, which
are accompanied by the production of entropy and the
dissipation of energy. Here, we explore the statistics of
energy dissipation in driven two-state transitions. While
our studies are general and apply to all systems whose op-
eration can be restricted to two states, which have proven
useful in the verification of fluctuation relations [7, 8], ex-
periments [9–12] have shown that single-electron devices,
which enable the precise control of charge, make for an
ideal platform for the testing of fluctuation relations in
electronic systems. For this reason, we use the single-
electron box [13, 14], which has been used in a num-
ber of studies [9, 10, 12, 15–17] on fluctuations owing to
the relative simplicity of its modeling, fabrication, and
operation, as an example to illustrate our results. The
single-electron box comprises a metallic island coupled
to a superconducting electrode through a normal metal-
insulator-superconductor (NIS) tunnel junction, and a
gate voltage biases the island with respect to the elec-
trode, creating a chemical-potential difference between
them. At low temperatures, the dynamics of the box are
restricted to just two states: no electrons on the island
and one electron on the island. This setup is particularly
interesting to consider as the use of a superconducting
material for the leads opens a gap in the density of states
[18], and the gate voltage can be dynamically varied to
sweep the energy bias between the island and the elec-
trode back-and-forth across the gap. This superconduct-
ing gap influences the rate of tunneling between the lead
and the island, and owing to its finite width we need
to drive the gate voltage slowly to accurately capture
the effects of subgap tunneling on the energy-dissipation
statistics. Since the system remains close to equilibrium

under adiabatic driving, it is possible to analytically eval-
uate the thermodynamic quantities of interest, which are
in general only treatable by numerical methods.
Master equation.— We model the two-state dynam-

ics classically within a Markovian framework. The occu-
pation probabilities P0 and P1 for energy states n = 0
and n = 1, respectively, evolve in time according to
a linear master equation, which can be reduced to a
single equation Ṗ = −ΓΣP + ΓD for the difference
P ≡ P1 − P0 with the steady-state solution P̄ = ΓD/ΓΣ.
Here, ΓΣ ≡ Γ+ + Γ− and ΓD ≡ Γ+ − Γ− are de-
fined in terms of the transition rates Γ+ and Γ− from
state 0 to state 1 and vice versa, respectively. We as-
sume that these rates satisfy the detailed-balance con-
dition Γ+/Γ− = eβµ with β ≡ 1/kBT denoting the
inverse temperature and µ the energy difference be-
tween the two states. From the solution to the mas-
ter equation subject to a general initial-value condition

P (t) =
∫ t
t0

dτ1 ΓD(τ1) e
−

∫ t
τ1

dτ2 ΓΣ(τ2)
+p(t0) e

−
∫ t
t0

dτ ΓΣ(τ)
,

found using an integrating factor, we can use the identity
Pn = (1 − (−1)nP )/2 to extract the conditional transi-
tion probabilities of the system being in state n2 at time
t2 provided it was in state n1 at time t1 < t2. These are
given jointly by the expression [19]

Pn1n2(t1, t2) =
1

2

[
1 + (−1)n1+n2 e−

∫ t2
t1

dτ ΓΣ(τ) (1)

− (−1)n2

∫ t2

t1

dτ1 ΓD(τ1) e
−

∫ t2
τ1

dτ2 ΓΣ(τ2)
]
.

From now on, we shall assume that the system is initially
prepared in the state n = 0; that is, Pn(t) = P0n(−∞, t).
Fluctuation-dissipation relation.— Having established

the dynamical framework, we can now explore the ther-
modynamics of driven two-state transition events. We
are specifically interested in the statistics of the energy
that is dissipated during a single ramp of the energy
bias µ between the energy states, which can be obtained
using trajectory averaging. To gain analytical results,
we assume that the energy bias can be linearized as
µ = µ̇t with µ̇ a constant on an experimentally rele-
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vant energy scale, though we emphasize that our results
can be extended to nonlinear driving with minor adjust-
ments. Furthermore, the linear ramp is representative
of the examples considered here, where transitions occur
in a small interval around the degeneracy point µ = 0.
The heat generated during a single ramp is a stochastic
variable comprising contributions from a random num-
ber of jumps at random times between the energy states,
averaging over an ensemble of ramps to

〈Q〉 =

∫ ∞
−∞

dt µ〈ṅ〉 =

∫ ∞
−∞

dt µṖ1. (2)

To ease our analysis, we have taken the integration
boundaries to infinity, which is justified as transitions
between different states must be suppressed at large ab-
solute values of the linearly time-dependent energy bias.
The full solution to the master equation is generally
difficult to treat analytically, so we expand the prob-
ability P1 ≡ P̄1 + δP1 around the quasistatic solution
P̄1 = Γ+/ΓΣ. The correction δP1, accounting for the ef-
fects of nonquasistatic driving, is exact within our Marko-
vian model. The advantage of this expansion becomes
apparent when considering the contributions of the two
terms to the mean dissipated energy: for the first term,
the energy dissipated at negative energy biases is can-
celed out at positive ones, leaving the mean fully de-
termined by the correction. Substituting the expansion
into the master equation Ṗ1 = Γ+P0 − Γ−P1, we find

δṖ1 = −ΓΣδP1 − ˙̄P1 = −ΓΣδP1 − βµ̇P̄0P̄1 or

δP1(t) = −βµ̇
∫ t

−∞
dτ1 P̄0(τ1)P̄1(τ1) e

−
∫ t
τ1

dτ2 ΓΣ(τ2)
(3)

when the system begins and ends each ramp in the def-
inite states n = 0 and n = 1, respectively. Following an
integration by parts for 〈Q〉 = −

∫∞
−∞ dt µ̇ δP1, we find

the energy associated with the correction term

〈Q〉 = βµ̇2

∫ ∞
−∞

dt

∫ t

−∞
dτ1 P̄0(τ1)P̄1(τ1) e

−
∫ t
τ1

dτ2 ΓΣ(τ2)
.

(4)

Similarly, we can use the jump-trajectory method to
calculate the fluctuations of dissipated energy 〈δQ2〉 ≡
〈(Q− 〈Q〉)2〉 according to

〈δQ2〉 = µ̇2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 g(t1, t2), (5)

where we have introduced the correlation function [20]

g(t1, t2) =
∑
n1n2

Pn1(t<)Pn1n2(t<, t>)

×
(
n1 − 〈n(t<)〉

)(
n2 − 〈n(t>)〉

) (6)

with t< ≡ min{t1, t2}, t> ≡ max{t1, t2}. After a lit-
tle algebra, we find g(t1, t2) = P0(t<)P1(t<)(P1(t<) −
P01(t<, t>)) = P0(t<)P1(t>) e−

∫ t>
t<

dτ ΓΣ(τ). To obtain

the last equality, we have assumed that the improper in-

tegral
∫ t
−∞ dτ ΓΣ(τ) from Eq. (1) diverges. Finally, as

fluctuations induced by slow driving are accurately de-
scribed by the quasistatic solutions P̄0 and P̄1 to the
master equation,

〈δQ2〉 ' 2µ̇2

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 P̄0(t1)P̄1(t1) e−

∫ t2
t1

dτ ΓΣ(τ),

(7)

where we have exploited the time-symmetry property of
the correlation function g(t1, t2) = g(t2, t1). Comparing
Eqs. (4) and (7), we observe that

〈δQ2〉 = 2kBT 〈Q〉. (8)

This fluctuation-dissipation relation links the quasiequi-
librium fluctuations of the dissipated energy with the
mean dissipation induced by the slow driving perturb-
ing the system out of equilibrium. It should be noted
that if the distribution of heat is Gaussian, then Eq. (8)
is implied by the integral fluctuation relation [6].
Adiabatic approximation.— The integrals of Eqs. (4)

and (7), while exact, do not generally admit analyti-
cal expressions even for simple experimental setups, as
we shall later demonstrate. Nonetheless, analytical esti-
mates for the statistics of dissipated energy can be found
under slow driving, where we can calculate an adiabatic
correction to the mean heat. To this end, we assume that
the system response to the changing energy bias satisfies
δṖ1/Ṗ1 � 1, which reduces the master equation to a
simple algebraic equation for the adiabatic correction:

δP1 ' − ˙̄P1/ΓΣ = −βµ̇P̄0P̄1/ΓΣ. (9)

Substituting this into 〈Q〉 = −
∫∞
−∞ dt µ̇ δP1 yields an

adiabatic estimate for the mean. Next, to implement
a similar approximation for variance, it becomes con-
venient to reverse the order of integration in Eq. (7):

〈δQ2〉 '
∫∞
−∞ dt1 P̄0(t1)P̄1(t1)

∫∞
t1

dt2 e−
∫ t2
t1

dτ ΓΣ(τ). If

the rates vary slowly at small energy biases, we can apply

the linear approximation
∫ t2
t1

dτ ΓΣ(τ) ' ΓΣ(t1)(t2 − t1).

This approximation is justified, because the double in-
tegral in 〈δQ2〉 is dominated by small values of t1 and
t2 − t1. In the end, we are left with

〈δQ2〉 ' 2µ̇2

∫ ∞
−∞

dt P̄0(t)P̄1(t)/ΓΣ(t). (10)

Comparing the adiabatic correction in Eq. (9) and the
integrand of (10), we observe that our analytical esti-
mates also satisfy the fluctuation-dissipation relation (8)
as a sign of consistency between exact results and our
approximation scheme in the limit of adiabatic driving,
where the fluctuation-dissipation relation from Eq. (8)
can be expected to hold.

Example: single-electron box.— As a demonstration of
our results, we apply our analysis to a single-electron box,
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FIG. 1. Approximations for calculating NIS tunneling rates.
As outlined in the main text, the errors resulting from our ap-
proximations, represented in the figure with dashed lines, for
the Fermi-Dirac distribution and the BCS density of states,
shown here in solid red and blue lines, respectively, are con-
centrated inside the superconducting gap and far outside its
edges. Here, we have chosen β∆ = 3 and µ/∆ = 1/2 for
demonstrative purposes; using more realistic temperatures,
e.g., β∆ & 10 for superconducting aluminum, the presented
approximations work extremely well. The inset schematically
depicts the single-electron box with superconducting leads.
Tunneling between the superconducting electrode and the
normal-state metallic island and vice versa happens across
the insulating barrier at rates Γ+ and Γ−, respectively.

which can be modeled as a two-state system at low tem-
peratures. With each electrode at the same temperature,
electrons tunnel across an NIS tunnel junction at rates
given by the golden-rule expressions

Γ+ =
GT

e2

∫ ∞
−∞

dE n(E)f(E − µ)
(
1− f(E)

)
,

Γ− =
GT

e2

∫ ∞
−∞

dE n(E)f(E)
(
1− f(E − µ)

) (11)

with n(E) =
∣∣Re
{
E/
√
E2 −∆2

}∣∣ denoting the elec-
trode density of states given by BCS theory and f(E) =
1/(eβE + 1) the Fermi-Dirac distribution. To gain an-
alytical expressions for the tunneling rates, we first use
particle-hole symmetry 1 − f(E) = f(−E) to write the
tunneling rates in the more compact form

Γ± =
GT

e2

∫ ∞
−∞

dE n(E)f(±(E − µ))f(∓E). (12)

Next, we approximate the tail of the Fermi-Dirac distri-
bution with its asymptotic behavior f(E) ∼ e−βE while
treating the states below the energy bias as filled; that
is, f(E − µ) ' e−β(E−µ) and f(E − µ) ' 1 for E > µ
and E ≤ µ, respectively. We also expand the density of
states as n(E) ' 1/

√
2(±E/∆− 1) just outside the gap

of the superconductor. To justify these approximations,
we note that at low temperatures the resulting errors,
depicted graphically in Fig. 1, are concentrated at ener-
gies with little influence on the tunneling-rate integrals in
Eq. (12). With small energy biases, the error due to our

approximation for f(E − µ) is confined to the supercon-
ducting gap at low temperatures, where the Fermi-Dirac
distribution decays rapidly above the energy bias, and
the gap does not contribute to the tunneling rates as
the density of states vanishes. Conversely, our density-
of-states approximation only begins to deviate from the
BCS result far outside the superconducting gap, where
the decay of the Fermi-Dirac distribution prevents errors
from accumulating in the tunneling rates at small bi-
ases. While the errors from our approximations may be
larger further away from the degeneracy, the thermody-
namic behavior of our two-state system is dominated by
small values of the energy bias owing to the suppression
of single-electron transitions at larger biases. Evaluating
the integrals in Eq. (12), we find the tunneling rates

Γ± '
GT∆

e2

√
π

2β∆
e−β∆(1 + e±βµ) (13)

inside the gap and near its edges. We now deploy the
adiabatic approximation, and to this end it becomes con-
venient to define a dimensionless driving rate

λ ≡ βµ̇

Γ±(µ = 0)
=
βµ̇e2

GT∆

√
β∆

2π
eβ∆ (14)

to quantify the adiabaticity of the drive. Ideally, as the
time-scales for external driving and tunneling are set by
βµ̇ and Γ±(µ = 0), respectively, we want λ � 1 for
the adiabatic approximation to give accurate results, and
hence the ramping rate µ̇ must be decreased superex-
ponentially as temperature is lowered to maintain adi-
abatic driving. With this condition satisfied, the mean
and fluctuations are connected through the fluctuation-
dissipation relation

〈δQ2〉 = 2kBT 〈Q〉 =
2

3
λ(kBT )2. (15)

From this, we see that in the limit of adiabatic driv-
ing the mean and fluctuations vanish together as dissi-
pation becomes suppressed even for individual ramps of
the energy bias. To evaluate the validity of the adia-
batic approximation, we carry out a comparison between
numerically exact results and the adiabatic approxima-
tion. As shown in Fig. 2, these results are in agreement
in the slow-driving regime λ� 1 before diverging in the
vicinity of λ ∼ 1. The adiabatic approximation rapidly
breaks down beyond that, proving that the value of the
dimensionless driving rate functions as a good predictor
of accuracy for the adiabatic approximation.
Fluctuation relations.— Numerical simulations of the

driven transitions in the single-electron box show that
the dissipated energy becomes normally distributed

p(Q) =

√
β

4π〈Q〉
e−β(Q−〈Q〉)2/4〈Q〉 (16)

in the limit of adiabatic driving λ � 1 as can be seen
from the results of Fig. 3. To understand why the
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FIG. 2. Mean dissipated energy 〈Q〉 scaled by its adiabatic
estimate against the dimensionless driving rate λ. The in-
set shows the influence of driving rate on the accuracy of the
adiabatic approximation with the evolution of P1 at low, in-
termediate, and high driving rates depicted here in blue, red,
and green, respectively. Solid lines represent exact results and
dashed lines the adiabatic approximation in the main figure
as well as the inset.

FIG. 3. Heat statistics for the single-electron box. Stochas-
tic simulations confirm that for λ < 1 the average heat and
its fluctuations are accurately estimated by the adiabatic-
approximation results from Eq. (15) and that above λ ∼ 1
the approximation rapidly breaks down. The simulations also
show that the integral fluctuation relation holds at all driving
rates. The inset on the left shows that in the adiabatic-driving
regime the energy dissipation becomes normally distributed
as seen from the histogram and the Gaussian fit from Eq. (16),
displayed here with a dashed red line. Under faster driving,
however, the distribution becomes negatively skewed, as can
be seen from the histogram in the inset on the right.

distribution becomes Gaussian under slow driving, we

note that heat is exchanged during transitions between
state n = 0 and state n = 1 and back. These tran-
sitions are independent of one another if they do not
overlap, and their typical duration is captured by the
correlation function g(t1, t2). In the adiabatic limit, it
takes considerably less time for the correlation to de-
cay than for the gate voltage to change significantly.
Thus, we can consider the total heat a sum of indepen-
dent random variables of bounded variance, and because
the central limit theorem applies, the distribution be-
comes Gaussian. A similar result was also obtained in an
earlier study on the energy dissipated in driven transi-
tions across a normal metal-insulator-normal metal tun-
nel junction [19]. With our single-electron box, we see
that in the adiabatic regime λ� 1 there is a high prob-
ability, (1/2)erfc(

√
λ/24) ' 1/2 − 0.12

√
λ to be precise,

for energy to be extracted from the environment rather
than dissipated during a single ramp. Combined with
the fluctuation-dissipation relation, the Gaussian form
of the distribution also implies the detailed fluctuation
relation p(−Q)/p(Q) = e−βQ and the associated integral
fluctuation relation 〈e−βQ〉 = 1. We also note that if the
distribution of heat is Gaussian, the fluctuation relations
imply the fluctuation-dissipation relation from Eq. (8),
which can be verified with numerical simulations as seen
in Fig. 3. However, it should be emphasized that these
fluctuation relations for adiabatic driving are just a spe-
cial case of a more general result and not unique to the
Gaussian distribution as seen in the figure, which shows
that the integral fluctuation relation is satisfied even in
the fast-driving regime, where the adiabatic approxima-
tion breaks down and the distribution of heat becomes
non-Gaussian. With our choice of driving protocol, both
the forward and time-reversed trajectories begin and end
in definite charge states, which combined with the fact
that the protocol is odd under time reversal is sufficient
to guarantee that the total entropy production is an in-
volution with respect to time-reversal [6]. As the entropy
production is fully attributed to energy dissipation un-
der our driving protocol, we can infer the fluctuation re-
lations. While we have demonstrated these results for
the superconducting single-electron box, similar results
extend to other driving protocols with equivalent sym-
metry properties and boundary conditions as well as to
other driven two-state setups with detailed balance.
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[11] B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Gol-
ubev, Y. Utsumi, T. Ihn, and K. Ensslin, Irreversibility

on the Level of Single-Electron Tunneling, Physical Re-
view X 2, 011001 (2012).

[12] G. Manzano, D. Subero, O. Maillet, R. Fazio, J. P.
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