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Spin pumping by a moving domain wall at the interface of an antiferromagnetic

insulator and a two-dimensional metal

A. G. Mal’shukov
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia

A domain wall (DW) which moves parallel to a magnetically compensated interface between an
antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization
into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons
through their exchange interaction on the interface. We employed the formalism of Keldysh Green’s
functions for electrons which experience potential and spin-orbit scattering on random impurities.
This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects
on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal
film takes place in the second order with respect to the interface exchange interaction. At sufficiently
weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli
magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that
the pumped polarization is sensitive to the geometry of the electron’s Fermi surface and increases
when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi
surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of
the domain wall. It is distributed asymmetrically around the DW over a distance which can be
much larger than the DW width.

I. INTRODUCTION

Antiferromagnets (AFM) have drawn growing interest
recently due to their potential use for various spintronic
applications. One of the most important characteristics
of spintronic devices is their ability to transmit and con-
trol spin polarization. From this point of view AFM ma-
terials demonstrate numerous interesting features. The
progress made in this field was presented in several re-
views (see, for instance [1–4]). Considerable progress has
been achieved in understanding of mechanisms for angu-
lar moment transfer between spins of localized and itin-
erant electrons in metallic AFM, as well as interface spin
transfer between a normal metal and a metallic or insu-
lating AFM [5–11]. These mechanisms allow to control
localized spins of AFM, as well as spins of itinerant elec-
trons. For instance, the spin current of electrons pro-
duces the torque effect on the staggered AFM magneti-
zation. Recent experimental studies have demonstrated
that this torque results in rotation of the magnetization
and its switching [4,12–14]. Alternatively, when the Néel
order varies in time the magnetization can be pumped
through the interface into the electron gas of a paramag-
netic metal which makes a contact with an AFM [6,15].
In this case the spin polarization may be delivered to the
interface by spin waves [6,16–18], or by moving topolog-
ical defects, like DWs and skyrmions. Compared with
ferromagnets, in AFM spin waves and topological spin
textures exhibit much faster dynamics with lower energy
dissipation. For instance, in antiferromagnetic insula-
tors spin waves can propagate over large (submicron)
distances due to their relatively high lifetime [20], while
DWs can move much faster than in ferromagnets [21–25].
These outstanding features of conducting and insulating
antiferromagnets form the basis for their future applica-
tions in spintronic devices.
So far, the activity in studying the spin pumping from

an AFMI into a normal metal was focused on three di-
mensional (3D) metals. On the other hand, there is a
great interest in heterostructures which are combined of
magnetic systems and 2D metals. In particular, this in-
terest is caused by recent success in creating of various
2D van der Waals metallic and insulating systems. How-
ever, the problem of spin pumping from AFMI’s space-
time dependent spin textures into 2D metal films was
not addressed in literature. At the same time, there are
some significant distinctions between 3D and 2D cases.
First of all, 2D electrons undergo scattering from an in-
terfacial spin texture which has the same 2D dimension-
ality. Therefore, constructive interference of spin depen-
dent scattering amplitudes from two AFM sublattices can
result in a strong enhancement of the scattering proba-
bility. This effect becomes important when the Fermi
surface reveals nesting parts with roughly the same wave
vector as that of the staggered magnetization. In con-
trast, in 3D systems such an interference effect is smeared
out due to integration over kz, where kz is the compo-
nent of the electron’s wave-vector which is perpendicular
to the interface. One more specific feature of 2D systems
is that electronic transport takes place along the inter-
face, so that electrons are always in contact with local-
ized spins of the AFM, while in 3D systems the angular
moment, which electrons obtain from a dynamic AFMI
texture, is carried away from the interface. Therefore,
with a good accuracy a 3D metal can be considered as
a spin sink for electrons, that is not true for 2D sys-
tems. In the former case, the angular moment transfer
is controlled by the so called interface spin mixing con-
ductance [6,19] which is simply a local characteristic of
a given interface. Such an approach can not be applied
for the analysis of the spin transfer across the AFMI/2D
metal interface, because it is closely related to the lateral
transport of 2D electrons. Therefore, one needs a unified
theory which combines quantum dynamics of 2D elec-

http://arxiv.org/abs/2211.01195v2


2

trons with their interface scattering from a space-time
dependent spin texture of AFMI.

In order to reach this goal we employ the Keldysh [26]
formalism of nonequilibrium Green’s functions for a dis-
ordered 2D electron gas which interacts with localized
spins of an adjacent AFMI by means of the exchange
interaction J . This formalism is applied to the prob-
lem of the spin pumping by a domain wall which moves
along the magnetically compensated surface of AFMI.
Besides the potential scattering from random impurities,
the spin-orbit scattering of electrons will also be taken
into account. The latter gives rise to relaxation of the
spin polarization of itinerant electrons. As a result, in
the diffusive regime the spin density distribution will dif-
fusively evolve in space and decrease in time with some
spin relaxation rate.

This problem will be considered within a simple tight
binding model where 2D and AFMI lattices form a com-
mensurate contact. The exchange interaction is treated
within the perturbation theory which is valid as long as
J ≪ EF , where EF is the Fermi energy of conduction
electrons. The Fermi level is placed not too close to
the van Hove singularity, where a gap in the electron
band energy is formed due to the interface exchange in-
teraction with AFMI [1]. Within the perturbation theory
the pumping of (nonstaggered) spin polarization into a
normal metal by the staggered Néel magnetization takes
place only in even orders of the perturbational expansion
with respect to J . On the other hand, besides the stag-
gered magnetization, a time dependent spin texture of a
moving DW carries a small nonstaggered component [27]
which is localized near the DW. In turn, due to the inter-
face exchange interaction such a ”ferromagnetic” magne-
tization polarizes spins of itinerant electrons in adjacent
normal metal already in the first order of the expansion
in J . However, as it will be shown, in a reasonable range
of parameters the effect of second order perturbational
terms may exceed considerably that of the first order
ones, because these competing effects involve very dif-
ferent physical mechanisms. Indeed, in the former case
the angular moment, which is carried by a DW, is trans-
ferred through the interface to electrons. This process
leads to accumulation of the electron’s spin polarization
near DW and, as it will be shown, the latter increases
with the spin relaxation time. In contrast, the first-order
effect is simply the Pauli magnetization which does not
depend so dramatically on the spin relaxation rate.

The article is organized in the following way. In Sec.II
a general formalism of the spin density response in a 2D
disordered electron gas to a moving DW is expressed in
terms of Green’s functions, up to the second-order with
respect to the exchange interaction. Sec. III is devoted
to calculations of the spin polarization. The results are
discussed in Sec. IV. Two section are added in the Ap-
pendix in order to clarify some details of calculations.

II. GENERAL FORMALISM

A. Basic equations

In this section we express the spin polarization in 2D
electron gas as an expansion over the exchange interac-
tion between itinerant electrons and localized spins of an
adjacent AFMI. By assuming that the 2D lattice of the
normal metal is commensurate with the lattice of local-
ized spins on the AFMI interface and that metal atoms
make an on-top contact with atoms of the AFMI, the
exchange interaction can be written in the form

M = J
∑

i

c+i Si(t) · σci . (1)

where c+i = (c+i↑, c
+
i↓) is the two-component creation op-

erator of an electron whose spin projections are ↑, or ↓
and ci is the conjugate to c+i destruction operator. The
vector Si(t) represents a spin which is localized on the
lattice site ri and σ = (σx, σy, σz) is the vector of Pauli
matrices. Since there are two sublattices, the lattice sites
will be denoted as i1 and i2. Correspondingly, spins lo-
calized on these sublattices will be denoted as Si1 and
Si2. These spins are treated as classical variables sat-
isfying the constraint |Si(t)| = S. In many practical
situations Si varies slowly within each of two AFM sub-
lattices. Therefore, one may introduce two vector fields
m1(r, t) and m2(r, t), which are defined on sublattices 1
and 2, respectively, where m1(2)(ri, t) = Si1(2)/S. The
Néel order is given by the unit vector field n(r, t) =
(m1(r, t) − m2(r, t))/|m1(r, t) − m2(r, t)|. Due to the
strong exchange coupling of spins in different sublattices
we have m1(r, t) ≃ −m2(r, t). Therefore, the nonstag-
gered field m(r, t) = (m1(r, t) + m2(r, t))/2 ≪ 1. In
this case by using the Landau-Lifshitz-Gilbert equation
m can be expressed [27] in terms of n, as

m(r, t)) =
1

Eex
(∂tn(r, t))× n(r, t))) , (2)

where Eex is the exchange energy of near-neighbor spins
in AFM. Further, by expressing the operators ci as
ci =

∑

k ck exp ikri, matrix elements of the exchange in-
teraction in Eq.(1) can be written in terms of nf (t) and
mf (t), which are spatial Fourier transforms of these fields
with the wave vector f . These matrix elements are given
by

Mk+f ,k(t) = JS[c+k+f+Gnf (t)σck+ c
+
k+fmf (t)σck] , (3)

where G = (Gx, Gy) is the umklapp vector which is asso-
ciated with the AFM’s staggered magnetization, so that
for the square lattice Gx = ±π/a and Gy = ±π/a. In
contrast, the vector f is small, namely, f ≪ 1/a, where a
is the lattice constant. It is because relatively slow spa-
tial variations of n(r, t) and m(r, t) are determined by
the spin texture of DW whose width is assumed to be
much larger than a.
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FIG. 1: A bilayer system is composed of an antiferromag-
netic insulator and a 2D paramagnetic metal film. A domain
wall which moves from left to right with the velocity v leads
to spin accumulation in the metal film. The spin is oriented
parallel to the y-axis. The corresponding spin density (shown
by color) is asymmetrically distributed around DW over dis-
tances which can be much larger than the width of the DW.

The induced spin density of electrons can be expressed
in terms of the Keldysh [26,28] function GK(r.t; r′, t′),
which is a 2×2 matrix in the spin space. This expression
has the form

S(r, t) = − i

4
Tr[σ〈GK(r, t; r, t)〉imp] , (4)

where 〈...〉imp denotes averaging over impurity positions.
The Keldysh function, in turn, is given by the perturba-
tional expansion over the exchange interaction M . The
corresponding correction δGK(q, ω) to the space-time
Fourier transform of GK(r, t; r, t) can be written in terms
of the unperturbed Green’s functions GK

k,k′(ǫ), Gr
k,k′(ǫ)

and Ga
k,k′(ǫ), which are, respectively, the Keldysh, re-

tarded and advanced ones. These functions are not aver-
aged over impurity positions. Therefore, they depend on
the two wave vectors k and k′. They may be represented
by the 2×2 matrix Ĝk,k′(ǫ) which is given by

Ĝk,k′(ǫ) =

[

Gr
k,k′(ǫ) GK

k,k′(ǫ)
0 Ga

k,k′(ǫ)

]

, (5)

where in thermal equilibrium GK
k,k′(ǫ) has the form

GK
k,k′(ǫ) =

(

Gr
k,k′(ǫ)−Ga

k,k′(ǫ)
)

tanh(ǫ/2kBT ) (6)

Within the Keldysh formalism [26,28] the correction
δGK(q, ω) is given by

δGK(q, ω) =

∫

dǫ

2π

∑

k,p,p′

[

Ĝk+,p+(ǫ+)×

Σ̂p,p′(ǫ, ω,q)Ĝp′−,k−(ǫ−)
]K

, (7)

where ǫ± = ǫ ± ω/2, k± = k ± q/2 and the superscript
”K” denotes the Keldysh component of the matrix prod-
uct in Eq.(7). By performing the time Fourier transform

of nf (t) and mf (t) in Eq.(3) one can express Σ̂ in the
form

Σ̂p,p′(ǫ, ω,q) = Σ̂(1)(ω,q)δp,p′ +
∫

dν

2π

∑

f

Σ̂
(2)
p,p′(ǫ, ω,q; ν, f) , (8)

FIG. 2: a) A second-order Feynman diagram for the spin
density S(q, ω), which is induced by a moving domain wall.
The DW perturbation Eq.(3) is shown by red arrows, k± =
k ± q/2, f± = f ± q/2, ǫ± = ǫ ± ω/2 and ν′± = ν′

± ω/2.
b) The Bethe-Salpeter equation for the spin diffusion vertex
V, where σ is the vector of Pauli matrices. Elastic scattering
from random impurirties is shown by the dashed line.

where the functions Σ̂(1) and Σ̂(2) correspond to the first-
order and second-order corrections, respectively. They
are given by

Σ̂(1)(ω,q) = 1̂JSσmq,ω (9)

and

Σ̂
(2)
p,p′(ǫ, ω,q; ν, f) = 2J2S2

(

σnf+,ν+

)

×
Ĝp−f+G,p′−f+G(ǫ − ν)(σn∗

f−,ν−) , (10)

where ν± = ν ± ω/2, f± = f ± q/2 and 1̂ is the unit
matrix in the Keldysh space. Here and below, q and
ω are Fourier variables which are related to spatial and
time variations of the induced spin density, while f and
ν are associated with DW structure. They are ”slow”
variables. At the same time, k,k′ and p,p′ are relatively
large electronic wave numbers, as well as ǫ is associated
with the electron dynamics.
The second order contribution to S(r, t) is shown as a

Feynman diagram in Fig.2, while the first-order term is
given by a usual fermion loop. The averaging in Eq.(4)
over random positions of impurities results [29] in the oc-
currence of average Green functions and the vertex V in
Fig.2. This vertex describes multiple scattering processes
which result in diffusion of particles and their spin relax-
ation. Within the Born approximation the calculation of
V is reduced to a solving of the Bethe-Salpeter equation
which is graphically shown in Fig.2. The multiple scat-
tering processes are important when the frequency and
momentum transfer in the vertex are much smaller than
Γ = 1/2τ and 1/l, where τ and l are the elastic scattering
time and electron mean free path, respectively. There-
fore, from Fig.2 it is seen that such a diffusion regime
takes place when ω ≪ Γ and q ≪ 1/l. At the same time,
the vertices which are associated with the exchange in-
teraction of electrons with the staggered magnetization
retain unrenormalized, because of the large momentum
transfer ∼ G caused by such a magnetization. By us-
ing Eqs.(5,6) and Eqs.(9,10) one may express 〈δGK〉imp
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in Eq.(7), as well as the space-time Fourier transform
S(q, ω) of Eq.(4), in terms of averaged retarded and ad-
vanced Green’s functions. The total spin polarization
may be represented by a sum of terms which are renor-
malized by V and those which are not. The former will
be denoted as SV (q, ω). It includes only vertices which
involve the product of retarded and advanced functions
in the ladder series. Otherwise, the renormalization is
not important [29]. At the same time the unrenormal-
ized term is given by the bare vertex σ instead of V.
The corresponding bare contribution to S(q, ω) will be
denoted as S0(q, ω). By combining all terms, which are
generated by the product of Keldysh matrices in Eq.(7),

we arrive at S = S
(1)
V + S

(2)
V + S

(1)
0 + S

(2)
0 . The spin den-

sities, which enter into this sum, can be written in terms
of the impurity averaged retarded and advanced Green’s
functions. Details are presented in Abstract B.

Eqs.(B1)-(B6) form a basis for calculation of the spin
density created by DW in 2D gas. The sum of the terms,
that are given by Eqs.(B1) and (B2), represents the spin
density induced by the interaction JSσmq,ω of electron
spins with the nonstaggered Zeeman field JSmq,ω. It is
expressed in terms of the space-time dependent Pauli sus-
ceptibility, which is given by a single fermion loop, where
the multiple scattering from impurities is taken into ac-
count in a standard way through the vertex function V

[28,29]. At the same time, Eqs.(B3) and (B4) represent
the effect whose nature is quite different from the Pauli
magnetism. They describe second-order processes where
the staggered magnetization, whose wave vector is G,
gives rise to quantum transitions of electrons between
states with the wave vectors k and k + G. The DW,
whose relatively smooth profile is characterized by the
wave vector f , such that f ≪ G, adds f to G. Therefore,
the second-order scattering amplitude of electrons from
a DW in an antiferromagnet carries terms of the form
(Ek+G−f − Ek)

−1, which are represented by Gi
k−f+G in

Eq.(B6). In this expression k is close to the Fermi sur-
face. Therefore, (Ek+G−f − Ek)

−1 becomes large if this
surface is close to the nesting condition and G coincides
with the nesting vector. This leads to the enhancement
of the effect of second-order terms Eqs.(B3) and (B4).
Moreover, this expression becomes strongly dependent on
f , although the latter is much smaller than G. On the
other hand, when the Fermi surface is far from the nest-
ing conditions this dependence is weak and the scattering
amplitude may be expanded in powers of vF f , where vF

is the Fermi velocity. Since f is associated with the coor-
dinate dependence of the Néel order these terms generate
spatial gradients of the form n(r, t)×∇in(r, t) in the in-
duced spin density. Such sort of terms, with n(r, t) sub-
stituted for the ferromagnetic order parameter m(r, t),
were discussed in connection with the spin pumping from
a ferromagnetic DW into a 3D metal film [30].

B. Disorder effects

In this subsection we shall consider effects of disorder
on 2D electrons. Besides the usual potential scattering
from impurities the spin-dependent scattering will also be
taken into account. The latter leads to spin relaxation
of electrons. A short-range impurity scattering potential
will be assumed. In this case, the scattering amplitude
from a single impurity has the form [31]

f(k,k′) = a+ ibσ · (k× k′) (11)

The first term in this expression is the isotropic spin-
independent amplitude, while the second one represents
the spin-orbit scattering. In a 2D system both incident
and scattered wave vectors, k and k′, respectively, lie in
the same xy plane. Therefore, only the σz Pauli ma-
trix enters in the amplitude of the spin-orbit scattering.
Therefore, the scattering probability, which is presum-
ably given by the second-order Born approximation over
the scattering amplitude, is spin-independent. As follows
from Ref.[31], the total elastic scattering rate of electrons
can be expressed as a sum of spin dependent and spin in-
dependent scattering channels. Accordingly, it can be
written as

Γ = 1/2τ = πNF (a
2 +

k4F
2
b2), (12)

where τ is the elastic scattering time, while NF and kF
are the state density and the Fermi wave-vector, respec-
tively. At the same time, the retarded and advanced
unperturbed Green’s functions take the form [31]

Gr
k(ǫ) = Ga

k(ǫ)
∗ =

1

ǫ− Ek + µ+ iΓ
, (13)

where µ is the chemical potential.
Multiple scattering events should be taken into account

in order to study the particle diffusion and spin relax-
ation effects. These effects are determined by the ver-
tex function V(ω,q) in Eqs.(B1) and (B3). With spin-
independent Green functions Eq.(13) in hand the vertex
V can be easy calculated by summation of ladder di-
agrams. It is convenient to use its vector components
V l (l = x, y, z) which are given by V lel = (1/2)Tr[Vσl]
(l = x, y, z), where el is the unit vector in the l-direction.
In more detail the calculation of V l is presented in Ap-
pendix A. Within the diffusion approximation, which is
valid at ω ≪ Γ and qvF ≪ Γ, the sum of the ladder
diagrams is given by the diffusion propagator

V l(ω,q) =
2Γ

iω −Dq2 − Γl
s

, (14)

where the spin relaxation rates Γl
s are Γx

s = Γy
s =

πNFk
4
F b

2, Γz
s = 0 and the diffusion constant D = v2F τ/2.

It should be noted that the spin relaxation turns to zero
when l = z in Eq.(14). It occurs because the spin pro-
jection on the z-axis is conserved due to a specific form
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of the spin-orbit scattering amplitude, which is propor-
tional to σz in a 2D gas. In this situation other mech-
anisms of the spin relaxation should be taken into ac-
count. However, such a strong spin relaxation channel
as the scattering on AFM magnons can be efficient only
at high enough temperatures. At low temperatures, due
to the Fermi-liquid character of the electron gas, such
an inelastic mechanism is weak, even in the absence of
a gap in the excitation spectrum of magnons. The same
can be said about the spin-lattice relaxation. The spin-
orbit splitting of the conduction band might result in
the spin relaxation through the D’yakonov-Perel mecha-
nism [32]. In the considered here simple model, however,
such sort of the spin-orbit coupling does not take place.
Nevertheless, a weak Γz

s can be taken into account as a
phenomenological parameter.

III. SPIN POLARIZATION OF ELECTRONS

A. Spin pumping by the staggered magnetization

Based on the general formalism presented in the pre-
vious section, let us consider the spin polarization which
is produced in the normal metal by the exchange field
of AFMI in the presence of a moving DW. As it was
discussed in Sec.II there are two contributions to the
spin polarization. Namely, the first-order effect due to
the nonstaggered ”ferromagnetic” magnetization and the
second-order one produced by the staggered exchange
field. The latter effect, which is given by Eqs.(B3) and
(B4), will be considered in this subsection. Let us assume
that within the classical theory the corresponding Néel
vector n(r, t) is given by the well known solution of the
equation of motion for a one-dimensional DW in an uni-
axial AFM [33]. The precession of n(r, t) around the easy
axis is assumed to be absent. It depends, however, on the
method which is employed for the excitation of DW mo-
tion. For instance, the precession may be produced by
the magnon’s impact on the DW [35,36]. Otherwise, the
azimuthal angle of the Néel vector retains fixed during
DW motion. The spin polarization of electrons, which
can be induced by such DW, depends strongly on this
angle. It becomes evident from the following consider-
ation. Since Ĝ in Eq.(10) is given by the unit matrix
in the spin space (retarded and advanced functions are
given by the spin-independent Gr andGa in Eq.(13)), the

spin structure of the function Σ̂ in Eq.(10) is determined
by the product (σnf+,ν+)(σn∗

f−,ν−). Its spin-dependent

part is given by iσ(nf+,ν+ × n∗
f−,ν−). Therefore, σ in

this equation is perpendicular to the plane where the
Néel vector of the DW resides. At the same time, this
plane is fixed by the azimuthal angle of n. In turn, as it
follows from Eqs.(B3),(B5) and (14) the trace in Eq.(B3)
dictates that this spin direction must coincide with that
of the vertex V, whose vector components strongly de-
pend on respective spin relaxation times. For example,

if n(r, t) belongs to the xy plane, the spin relaxation is
given by Γz

s, which can be much smaller than Γx
s and Γy

s

when the spin-orbit impurity scattering is a dominating
mechanism of the spin relaxation.

Below, let us consider a different situation, such that
the easy axis of AFM is oriented parallel to the z-
direction, while the DW moves in the x-direction with
the velocity v. In this case the vector (nf+,ν+ × n∗

f−,ν−)

lies in the xy-plane. Therefore, Γx
s and Γy

s enter in dif-
fusion propagator Eq.(14) . In the absence of precession
around the easy axis the Néel vector is given in spherical
coordinates by

n(r, t) = (sin θ cosφ, sin θ sinφ, cos θ) , (15)

where cos θ = tanh[(x− vt)/λ] and λ is the width of the
DW, while φ is fixed. Below, for simplicity we choose
φ = 0. In this case the functions P ijk in Eq.(B5)
are proportional to the Pauli matrix σy. As a result,
by taking the trace in Eqs.(B3) and (B4) one obtains
Tr[Vσy] = 2V yey. Therefore, spins which are pumped
into the 2D metal are oriented in the y-direction.

Parameters of the considered system are chosen in such
a way that the wave vectors q and f in Eqs.(7)-(10) are
much smaller than kF . Similarly, the frequencies ω and
ν are much smaller than the Fermi energy. For a steady
moving DW the variables ω and q, as well as ν and f , are
related to each other. Indeed, the Néel vectors nf±,ν± in
Eq.(10) can be written as

nf±,ν± = 2πδ(ν± − vf±
x )

∫

dξe−if±
x ξn(ξ) , (16)

where ξ = x−vt. The delta-function in this relation fixes
the frequencies ν± = vf±

x . By combining ν± = ν ± ω/2
and f±

x = fx ± qx/2 we find that ν = vfx and ω = vqx.
Note, that ω and q characterize the diffusion of elec-
trons, because the diffusion propagator Eq.(14) depends
on these variables. At the same time, ν and f are associ-
ated with variations of n(r, t) within a DW. The integra-
tion over wavevectors and frequencies in Eq.(B3) may be
simplified at small ω and ν by replacing tanh(Ω/kBT )
in Eq.(B5) with tanh(Ω/kBT ) − tanh(ǫ/kBT ). Such
a replacement does not change the result, because the
terms in Eq.(B3) that are proportional to tanh(ǫ/kBT )
cancel each other. Therefore, in any case, whether
Ω = ǫ ± ω/2, or Ω = ǫ + ν, at the low temperature
such a replacement restricts the integration over ǫ to
the range of small frequencies. As a result, the main
contribution to the sum in Eq.(B3) is given by vectors
k which are close to the Fermi surface. Let us con-
sider a simple tight binding model with the electronic
band energy Ek = −α(cos kxa + cos kya). Note, that
in this case Ek = −Ek+G. Consequently, by integrat-
ing Eq.(B3) over k, in the leading approximation with
respect to the small parameters ω/Γ, ν/Γ, vF q/Γ, vF f/Γ

and Γ/µ, we obtain the y-component S
y(2)
V (ω,q) of the
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vector S
(2)
V (ω,q) in the form

S
y(2)
V (ω,q) = −iJ

2S2

µ2
V y(ω,q)NF (µ)×

∫

dν

2π

∑

f

ν(nf+,ν+ × n∗
f−,ν−) , (17)

where NF (µ) is electronic state density at the chemical
potential. Details of this calculation can be found in Ap-

pendix B. It is seen that S
y(2)
V gives the main contribu-

tion in the spin density S(2) which is a sum of S
y(2)
0 (ω,q)

and S
y(2)
V (ω,q). Indeed, it follows from a comparison of

Eqs.(B4) and (B3) that these functions differ from each

other by the absence in S
y(2)
0 (ω,q) of the diffusion propa-

gator V y(ω,q). The latter, however, is much larger than
one, because in the diffusion regime Γ is large in compar-

ison with the denominator of Eq.(14). Therefore, S
y(2)
0 is

small compared with S
y(2)
V , so that the total spin density

S(2) = S
(2)
0 + S

(2)
V ≃ S

(2)
V . It is important to note that

S(2) is proportional to µ−2. Since the chemical potential
is measured from the middle of the band, this depen-
dence means that the pumping effect increases when µ
approaches to the van Hove singularity. Such a depen-
dence agrees with the discussed above role of the Fermi
surface nesting in the spin pumping.
Note, that in the case of a 1D domain wall, which

moves in the x-direction, the second line in Eq.(17) may
be expressed as

∫

dν

2π

∑

f

ν(nf+,ν+ × n∗
f−,ν−) = 2πiv ×

δ(ω − vqx)δqy

∫

dξe−iqxξ (n(ξ) ×∇ξn(ξ)) . (18)

Therefore, by setting cos θ = tanh(ξ/λ) in Eq.(15) we
obtain (n(ξ) × ∇ξn(ξ)) = (1/λ) cosh−1(ξ/λ). Further,
from Eqs.(14), (17) and (18) the spatial dependence of
the induced spin density can be written as Sy(2)(r, t) =

Sy(2)(ξ) = S
y(2)
V (ξ), where

Sy(2)(ξ) =
J2S2

µ2

∫

dqdξ′

2πλ

NF vΓ

cosh ξ′

λ

exp iq(ξ − ξ′)

Dq2 − ivq + Γy
s
. (19)

By calculating the integral over q we arrive at

Sy(2)(ξ) =
J2S2

2µ2

ΓNF v√
v2 + 4Γy

sD

∫

dξ′

λ

1

cosh ξ′

λ

×
(

e−p1|ξ−ξ′|θ(ξ − ξ′) + ep2|ξ−ξ′|θ(ξ′ − ξ)
)

, (20)

where p1 = (1/2D)(v +
√
v2 + 4Γy

sD) and p2 =

(1/2D)(v −
√
v2 + 4Γy

sD). These parameters determine
widths of forward (1/p1) and backward (1/p2) diffuse
propagations of the spin density with respect to the DW
center. In most realistic cases these widths are much
larger than the DW width λ. By taking into account that

D ∼ v2F τ it follows from above expressions for p1 and p2
that p1λ≪ 1 and p2λ≪ 1, if max[vF /v, 1/

√
Γsτ ] ≫ λ/l,

where l is the electron’s elastic mean free path. Typi-
cally vF /v ≫ 1 and Γsτ ≪ 1. Therefore, p1λ and p2λ
are small, if the ratio λ/l is not too large. In this case the
integration over ξ′ in Eq.(20) is restricted to a small in-
terval around ξ′ = 0. Hence, by setting ξ′ = 0 in Eq.(20)
it may be simplified to

Sy(2)(ξ) =
J2S2

2µ2

πΓNF v√
v2 + 4Γy

sD

(

e−p1ξθ(ξ) + ep2|ξ|θ(−ξ)
)

.

(21)
Note, that the singularity of the derivative of Sy(ξ) at
ξ = 0 vanishes, when the actual profile of the DW in the
integral over ξ′ is taken into account. Such fine details,
however, are not important, because the above expression
is valid only in the range of distances from DW which are
much larger than its width.

B. Spin polarization due to the nonstaggered

magnetization of the domain wall

The polarization which is induced in the normal metal
by the ”ferromagnetic” part of the exchange field is given
by Eqs.(B1) and (B2). For a one-dimensional DW mov-
ing with the velocity v in the x-direction m(r, t) =
m(x−vt) ≡ m(ξ). By performing Fourier transformation
ofm(r, t) in Eq.(2) one can see that its Fourier transform
mq,ω is given by the right-hand side of Eq.(18) multi-
plied by the factor −i/Eex. This expression should be
substituted in Eq.(9) which, in turn, enters in Eqs.(B1)
and (B2) for the spin density. By taking into account
Eq.(14), in the leading approximation with respect to
the small parameters ω/Γ and vF qx/Γ the spin density

S(1) = S
(1)
V + S

(1)
0 can be written in the form

Sy(1)(ξ) = −i JS
Eex

NF v

∫

dqdξ′

2π

exp iq(ξ − ξ′)

λ cosh ξ′

λ

×
[

vq

Dq2 − ivq + Γy
s
− i

]

. (22)

Similar to the previous subsection, at distances from DW
which are larger than λ the integration over ξ′ may be
simplified, that results in

Sy(1)(ξ) =
πJSNF v

Eex
×

(

δ(ξ) +
vp1e

−p1ξθ(ξ) + vp2e
p2|ξ|θ(−ξ)√

v2 + 4Γy
sD

)

. (23)

The first term in this expression is represented by the
delta-function, as long as large distances are of interest,
while in the range of DW it is given by the function
π−1λ−1 cosh−1(ξ/λ), as it follows from the second term
in the square brackets of Eq.(22).
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IV. DISCUSSION

It was shown above that a moving DW in AFMI in-
duces a macroscopic spin density in a 2D electron gas,
which is in the epitaxial contact with the compensated
surface of the AFMI. This spin density is a sum of two
parts S(1) and S(2) whose y-components are given by
Eqs.(20-21) and Eqs.(22-23). The spin polarization is
perpendicular to the plane where the Néel vector of DW
evolves. In the considered case it is the zx-plane, so that
the polarization is parallel to the y-axis. The spin den-
sities S(1) and S(2) have very different physical origins.
Thus, S(1) is induced by the nonstaggered part of the
exchange field of a moving DW. It is determined by the
Pauli magnetism in the first order with respect to the
exchange interaction. At the same time, S(2) is pro-
duced by the staggered Néel order in the second order
with respect to J . It is instructive to compare these
competing contributions to the total spin polarization
S. Let us consider the total polarization which is ac-
cumulated in the metal (per unit length of DW in the
y-direction). By integrating spin densities Eq.(21) and

Eq.(23) over x we obtain S
y(1)
tot = π(JS/Eex)NF v and

S
y(2)
tot = (J2S2/µ2)(Γ/Γy

s)NF v. First, it should be noted
a fundamental difference between these two spin densi-

ties. The effect of the staggered magnetization S
(2)
tot di-

verges when the spin relaxation rate Γs → 0 [37], while

S
(1)
tot does not depend on the spin relaxation. The rea-

son is that the former effect is based on spin pumping
from AFM into the metal. In the absence of spin re-
laxation such a pumping would lead to steady increase
of the spin polarization in the metal. However, it satu-
rates due to the spin relaxation at some finite value. At
the same time, the nonstaggered exchange field gives rise
to the spin polarization through the Pauli mechanism.
The motion of DW results only in redistribution of this
polarization over the 2D metal. From a comparison of

S
y(1)
tot and S

y(2)
tot it is seen that the pumping mechanism

dominates at JS > (Γy
s/Γ)(µ

2/Eex). For instance, at
JS/µ = 0.1 and µ ∼ Eex the above inequality is ful-
filled at Γy

s/Γ . 0.1, which always takes place if the spin
relaxation is determined by the spin-orbit impurity scat-
tering. This is because Γs is a relativistic correction to
Γ, which is given by the nonrelativistic potential scatter-
ing. Also, µ must be close enough to zero, where the van
Hove singularity just in the middle of the band is placed.
In the above evaluation µ was assumed to be compara-
ble with the exchange energy of spins in AFM, but much
larger than the exchange interaction between itinerant
and AFM interface spins. Note, that the latter condition
follows from the perturbation theory. The unperturbed
Green functions which were used above for the calcula-
tion of Feynman diagrams do not take into account the
interface exchange interaction J of electrons with the un-
perturbed Néel order (without DW). On the other hand,
this order leads to the gap in the middle of the band [1,5]
and modifies electronic wave functions. One may neglect

these effects only for electronic states, which are suffi-
ciently far from the gap. The electronic band with the
gap is represented by two branches ±

√

E2
k + S2J2. The

effect of this gap on the Green function can be ignored
if S2J2 ≪ µ2 and Ek ≈ µ. This is the main condition
which restricts the strength of the second order effect.
As long as the effect of the staggered DW’s magneti-

zation dominates, let us further focus on the discussion
of this effect. As it follows from Eqs.(20) and (21), the
pumped spin density is distributed asymmetrically with
respect to DW. A tail of spin polarized electrons extends
behind the moving DW over the distance ∼ p−1

2 , which
increases up to ∞ when v ≫ vF

√
Γsτ . At the same time,

ahead of DW the spin density extends up to ∼ p−1
1 which

is always smaller than l(
√

(v2/v2F ) + Γsτ)
−1/2. The mag-

nitude of the induced magnetization is largest at the cen-
ter of the DW. From Eq.(21) one can evaluate it as

Sy(0) = NFΓ
J2S2

µ2

v√
v2 + 4Γy

sD
. (24)

This expression turns to 0 at v = 0 and reaches its max-
imum when the DW velocity v ≫

√
Γy
sD ∼ vF

√
Γy
sτ , by

taking into account that D = v2F τ/2. It will be, however,
assumed that v stays less than the magnon’s group ve-
locity which plays the role of the light speed. So that rel-
ativistic effects, such as the Lorentz contraction of DW,
can be ignored Refs.[34,35]. Further, we notice that Sy

increases as µ−2 at µ → 0 where the Fermi level ap-
proaches the middle of the band. This position of µ cor-
responds to the nesting condition for the Fermi surface,
when EkF

= EkF+G. It agrees with the qualitative be-
havior of the second-order scattering of 2D electrons from
an AFMI spin texture, which was discussed in SecIIA. In
order to evaluate quantitatively the effect of spin pump-
ing by a DW, it is convenient to compare it with the spin
polarization which could be produced in the electron gas
by an external static magnetic field Heff . Since this spin
polarization is NFµBHeff , we get µBHeff = Sy(0)/NF ,
where Sy(0) is given by Eq.(24). From this equation one
can see that in the case when Γy

sD/v
2 ≫ 1 the effective

magnetic field µBHeff ∼ Γ(J2S2/µ2)(v/vF )(Γ
y
sτ)

−1/2 (it
was taken into account that D = v2F τ/2). By assuming
τ = 10−13s, Γy

s = 109s−1, vF = 105m/s, v = 100m/s,
(J2S2/µ2)=0.01, and Γ = (~/2τ) ∼ 3meV, we obtain
µBHeff = 0.003meV, or Heff ∼ 0.05T. In this parame-
ter range the induced spin polarization linearly increases
with the velocity of DW. As shown in Refs.[35,36], in
AFM insulators spin waves provide an efficient mecha-
nism for DW propulsion. A more pronounced effect may
be realized due to the so called staggered torque effect,
which is produced by electric current in a metallic AFM
[21]. Regarding the magnon’s effect, the relatively high
value v ∼ 100m/s was calculated [36] for circularly polar-
ized magnons, while linearly polarized magnons produce
much weaker effect. It should be noted that in the for-
mer case magnons cause precession of DW, so that the
axial angle in Eq.(15) varies as φ = Ωt. As a result, the
induced spin density will oscillate, in contrast to the sta-
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tionary spin density soliton given by Eq.(21). Moreover,
the spin polarization vector will have not only Sy com-
ponents. Such a situation was not analyzed in this work.
Also, a further analysis is necessary of the physics close
to the nesting point, as it was discussed in the end of
Sec.IIA.
The spin polarization, which is pumped by DW, can

be detected by measuring the electric current in a heavy
metal contact. The contact may be placed at the right
edge of the junction which is shown in Fig.1. The cur-
rent can be produced by the inverse spin Hall effect,
or spin galvanic effect due to the strong spin-orbit cou-
pling of electrons in the heavy metal. This method is
usually applied for detection of the pumped spin polar-
ization Ref.[1]. The other method, which we shall dis-
cuss in detail is based on the conversion of the spin cur-
rent into electric one by passing through a ferromagnetic
film Ref.[38,39]. In the considered set up a DW, which
passes by the detector shown in Fig.3, injects the spin
polarization into the contact and produces a pulse of
the electric voltage there. The set up and correspond-
ing calculations are presented in Appendix C. The volt-
age which is induced by the spin current is given by
Eq.(C17). Let us evaluate it at Γ=30 meV, that cor-
responds to the elastic scattering time of 2D electrons
τ ≈ 1/2Γ = 10−14s and the mean free path 10nm with

the Fermi velocity 106m/s. This gives the diffusion con-
stant DN ≡ D = v2F τ/2 = 50cm2s−1. Let us take
J2S2/µ2 = 0.1, NF = m/2π ≈ 2 × 1014eV−1cm−2, and
NFF = 2 × 1022eV−1cm−3. The latter is a typical DOS
for 3d transition metals. At d = 10nm the 2D DOS of
the ferromagnetic film is dNFF = 2 × 1016eV−1cm−2.
The DOS of the normal metal was taken according to
the parabolic band model. Its enhancement with the ap-
proaching of the chemical potential to the van Hove sin-
gularity has been ignored. In the considered tight binding
model this enhancement is large only when µ is very close
to the antiferromagnetic gap (see e.g. Ref.[5]). Other

parameters: v=100m/s, P̃ = 0.1, τNs = Γ−1
Ns ≡ 1/Γy

s =

100ps, τFs = Γ−1
Fs = 10ps, and DF = 50cm2s−1. With

these parameters we obtain from Eq.(C17) ∆φ ≈ 30nV.
The parameters can vary significantly, so that ∆φ can be
smaller, or larger of the above evaluation. For the de-
tection it is important to have a very thin ferromagnetic
film, ideally a 2D film. Anyway, the above calculation
shows that the spin pumping by a single DW can be de-
tected.

This research is funded by the research project FFUU-
2021-0003 of the Institute of Spectroscopy of the Russian
Academy of sciences.
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Appendix A: Calculation of the vertex function

V(q, ω)

A single element of the ladder array, which corresponds
to the Bethe-Salpeter equation in Fig. 2, is given by

ψij
0 =

1

2

∑

k

Tr[σiGr(ǫ+,k+)f(k+,k+′)σj ×

f(k−′,k−)Ga(ǫ−,k−)] , (A1)

where Gr and Ga are given by Eq.(13), Since ω′ ≪ µ the
integration in Eq.(A1) is restricted to k ≃ kF . Therefore,
one may set |k±| = kF and |k±′| = k′F in the scattering
amplitude f , which is given by Eq.(11). Note, that in
general, for a nonspherical Fermi surface kF 6= k′F . Fur-
ther, as was noted in the main text, the spin-dependent
part of f is proportional to σz. Hence, by calculating the
trace in Eq.(A1) one may express it in the form

1

2
Tr[σif(k+,k+′)σjf(k−′,k−)] = a2δij+

b2k2Fk
′2
F (1− (k̂k̂′)2)(δizδjz − δixδjx − δiyδjy) , (A2)

where k̂ and k̂′ are unit vectors which are parallel to k

and k′, respectively. Let us assume, for simplicity, that
the Fermi line has an approximately circular form, which
takes place if the chemical potential is sufficiently far
from the middle of the considered tight binding band.

In this case after integration in Eq.(A1) over |k| and by
taking into account Eq.(A2) we obtain

ψzz
0 = 2πiNF

∫

dφ

2π

a2 + b2k4F (1− (k̂k̂′)2)

ω − vFq+ 2iΓ
(A3)

and

ψxx
0 = ψyy

0 = 2πiNF

∫

dφ

2π

a2 − b2k4F (1− (k̂k̂′)2)

ω − vFq+ 2iΓ
,

(A4)

where φ is the polar angle of the vector |k̂|. These func-
tions depend on the angle between k′ and q. This de-
pendence originates from the second term in integrands
of Eqs.(A3) and (A4), which, in turn, is proportional to
the spin-orbit scattering amplitude b. The latter is much
weaker than the usual potential scattering a. There-
fore, in the leading approximation the vertex function
is angular independent. Hence, within this approxima-
tion Eqs.(A3) and (A4) can be averaged over directions
of k′. By expanding them over ω, q and b up to their
respective leading orders, after averaging over k̂′ and by
substituting Γ from Eq.(12), we arrive at

ψxx
0 = ψyy

0 = 1+
1

2Γ
(iω −Dq2 − 2πNF b

2k4F ) ;

ψzz
0 = 1 +

1

2Γ
(iω −Dq2) . (A5)

By summing the ladder diagrams the vertex function V l

can be expressed in terms of ψ0 as

V l =
1

1− ψll
0

. (A6)

Finally, by substituting ψll
0 from Eq.(A5) we obtain

Eq.(14).

Appendix B: Calculation of the spin density

As can be seen from Eqs.(7-10), δGK and, hence, the
spin density are represented by products of retarded and
advanced functions in various combinations. Thus, the
product of two functions enter in S(1), while that of three
functions contributes in S(2). The Keldysh component
of a binary product has the form [G1G2]

K = GK
1 G

a
2 +

Gr
1G

K
2 , while that of a triple product is [G1G2G3]

K =
GK

1 G
a
2G

a
3 + Gr

1G
K
2 G

a
3 + Gr

1G
r
2G

K
3 . The labels 1,2 and

3 denote variables of averaged Green functions. GK is
given by GK

k (ǫ) = [Gr
k(ǫ) − Ga

k(ǫ)] tanh ǫ/kBT . By fol-
lowing these rules we arrive at

S
(1)
V (q, ω) = − i

4

∑

k

∫

dǫ

2π
Tr[V(ω,q)Gr

k+(ǫ+)×

Σ(1)(ω,q)Ga
k−(ǫ−)]

(

tanh
ǫ+

kBT
− tanh

ǫ−

kBT

)

, (B1)
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S
(1)
0 (q, ω) = − i

4

∑

k

∫

dǫ

2π
Tr
[

σGr
k+(ǫ+)Σ(1)(ω,q)×

Gr
k−(ǫ−) tanh

ǫ−

kBT
− σGa

k+(ǫ+)Σ(1)(ω,q)×

Ga
k−(ǫ−) tanh

ǫ+

kBT

]

, (B2)

S
(2)
V (q, ω) = − i

4

∑

k,f

∫

dǫ

2π

dν

2π
Tr
[

V(ω,q)(P raa(ǫ+)

−P rra(ǫ−) + P rra(ǫ− ν)− P raa(ǫ− ν))
]

(B3)

and

S
(2)
0 (q, ω) = − i

4

∑

k,f

∫

dǫ

2π

dν

2π
Tr
[

σ(P rrr(ǫ−)−

P aaa(ǫ+))
]

, (B4)

where the functions P ijk(Ω), with Ω = ǫ± and Ω = ǫ−ν,
are given by

P ijk(Ω) = Gi
k+

(

ǫ+
)

Σ
(2)j
k (ǫ, ω,q; ν, f)×

Gk
k−(ǫ−) tanh

(

Ω

kBT

)

, (B5)

where Gi
k(ω) = 〈Gi

k,k′(ω)〉impδk,k′ , Σ
(2)i
k (ǫ, ω,q; ν, f) =

〈Σ(2)i
k,k′(ǫ, ω,q; ν, f)〉impδk,k′ and i = r, a. It follows from

Eq.(10) that after the averaging over impurity positions

the function Σ
(2)i
k,k′(ǫ, ω,q; ν, f) becomes

Σ
(2)i
k (ǫ, ω,q; ν, f) = 2J2S2

(

σnf+,ν+

)

×
Gi

k−f+G(ǫ− ν)(σn∗
f−,ν−) . (B6)

Further, we calculate the spin density, start-
ing from Eq.(B3). There are four terms, namely
P raa(ǫ+), P rra(ǫ−), P rra(ǫ + ν), and P raa(ǫ + ν) in the
right hand side of this equation. Each of these terms is
proportional to the Fermi statistical factors in the form
of tanh[(ǫ + ωi)/2kBT ]− tanh[ǫ/2kBT ], where ωi = ±ω,
or ωi = ν. Since these frequencies are small, all these
terms give small contribution to the spin density. How-
ever, the first two of them are much smaller than the
third one. The reason is that the former are propor-
tional to ω, while the latter ∼ ν. However, the function
Σi

k(ǫ, ω; ν, f) in Eq.(B5) is an odd function with respect
to change of signs of ν and f , because two Néel vectors
in Eq.(10) form a cross product, as it was explained in
subsection III A. Indeed, (nf+,ν+ × n∗

f−,ν−) changes sign

when ν → −ν, f → −f , because at such sign reversal
f± → −f∓ and ν± → −ν∓. Hence, nf+,ν+ ⇆ n∗

f−,ν− .

Therefore, those terms which are proportional to ω have
an additional small factor, because they must turn to
zero with ν and f . In contrast, the term ∼ ν is initially
an odd function of ν. On this reason, it dominates in
Eq.(B3), as long as νΓ ≫ ω · max(ν, vF f). By using
Eq.(10) the contribution of this term in Eq.(B3) can be
written in the form

S
(2)
V (q, ω) = J2S2 1

2

∑

f

∫

dν

2π
I(ω,q; ν, f)×

Tr
[

V(ω,q)
(

σ · (nf+,ν+ × n∗
f−,ν−)

)]

, (B7)

where

I(ω,q; ν, f) =
∑

k

∫

dǫ

2π
Gr

k+(ǫ+)Ga
k−(ǫ−)

(

Gr
k+f+G(ǫ+ ν)−Ga

k+f+G(ǫ + ν)
)

(

tanh
ǫ+ ν

kBT
− tanh

ǫ

kBT

)

. (B8)

By substituting in this equation the expressions for Green
functions from Eq.(5) and by expanding there the elec-

tron energy as Ek+Q = Ek + vk ·Q, where Q = q, or f
and vQ is the velocity, the integral I can be written as

I(ω,q; ν, f) =

∫

d2k

4π2

∫

dǫ

2π

1

(ǫ + ω
2 − Ek − vkq

2 + µ+ iΓ)

1

(ǫ− ω
2 − Ek + vkq

2 + µ− iΓ)
×

(

1

(ǫ + ν
2 − Ek+G − vk+Gf

2 + µ+ iΓ)
− 1

(ǫ+ ν
2 − Ek+G − vk+Gf

2 + µ− iΓ)

)

(

tanh
ǫ+ ν

kBT
− tanh

ǫ

kBT

)

. (B9)

One should take into account that within the tight bind- ing model Ek+G = −Ek and vk+G = −vk. Then, it
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is seen that since |ǫ| ∼ |ν| ≪ µ, as well as ω, Γ, vkq
and vk+Gf ≪ µ the major contribution to the integral
at small T is given by two poles, whose wave vectors
are close to the Fermi surface. Therefore, one can set
vk ≃ vkF

≡ vF , where EkF
= µ. In the leading approxi-

mation µ≫ Γ ≫ [vF q, vF f, ν, ω] this integration gives

I(ω,q; ν, f) = −i ν
µ2
NF . (B10)

By substituting this expression in Eq.(B7) we arrive at
Eq.(17).

Appendix C: Detection of the pumped spin

The setup is shown in Fig.3. If spin-flip effects are
weak, the current in the ferromagnet JF can be decom-
posed in the spin-up JF↑ and spin-down currents. Each
of them is given by

JF↑ = −DF↑e∇xcF↑ − σF↑∇xφ

JF↓ = −DF↓e∇xcF↓ − σF↓∇xφ , (C1)

where DF↑ and DF↓ are diffusion constants in each of the
spin subbands and σF↑, σF↓ are conductivities. These
currents are driven by gradients of the electron densi-
ties cF↑ and cF↓, as well as by the electric potential φ.
Since in general conductivities and diffusion constants of
electrons with opposite spin projections are different in
ferromagnets, spin and charge transport characteristics
become interdependent. Therefore, the spin polarized
current can induce the electric current and potential, and
vice versa [38,39]. This phenomenon serves as the basis
for detecting spin currents. Since in the considered exam-
ple the spin density, which is produced by DW, is directed
parallel to the y-axis, we consider the ferromagnet whose
magnetization is parallel to this axis. Therefore, ρFs and
JFs correspond to spins oriented along the y-axis.

Let us denote the total electric current and the spin
current as JF = JF↑+JF↓ and JFs = JF↑−JF↓, respec-
tively. Similarly, for charge and spin densities we have
ρF = ecF↑ + ecF↓ and ρFs = ecF↑ − ecF↓. By combining
two equations in (C1) and taking into account the charge

FIG. 3: A proposed set up for the detection of the spin po-
larization induced by a domain wall. The instant position of
the DW is shown by the dashed line. The arrow shows the
DW motion direction. The arrows origin is fixed at x = 0.

neutrality constrain ρF = 0 we arrive at

JF = −DFs∇xρFs − σF∇xφ

JFs = −DF∇xρFs − σFs∇xφ , (C2)

where DF = (DF↑ + DF↓)/2, DFs = (DF↑ − DF↓)/2,
σF = σF↑+σF↓ and σFs = σF↑−σF↓. Since in the open
circuit the electric current JF = 0, Eq.(C2) gives

σF∇xφ = −DFs∇xρFs . (C3)

By substituting this equation in the second line of
Eq.(C2) we obtain

JFs = −D̃F∇xρFs , (C4)

where D̃F = DF (1 − PDFs/DF ), with P denoting the
polarization coefficient P = (σF↑ − σF↓)/(σF↑ + σF↓).
In the following, this unimportant renormalization of the
diffusion coefficient will be ignored and we set D̃F = DF .
The spin diffusion equation has the conventional form:

∂ρFs

∂t
= −∇xJFs − ΓFsρFs , (C5)

where ΓFs is the spin relaxation rate. By taking into
account Eq.(C4) and performing the time Fourier trans-
form this equation can be written in the form

−iωρFs = DF∇2
xρFs − ΓFsρFs . (C6)

Further, Eq.(C3) can be integrated over the ferromag-
netic region x > 0. This integration results in an equa-
tion which expresses the electric voltage via the spin
density on the border between the ferromagnet and 2D
metal. This relation has the form

σF∆φ = DFsρFs(0) . (C7)

where ∆φ is the voltage which is measured by the volt-
meter shown at Fig.3. It was taken into account that
ρ(x) → 0 when x ≫

√

DF /ΓFs. If the magnetic film is
thin, so that its thickness d is much less than the spin
diffusion length (d ≪

√

DF /ΓFs), the spin density is
homogeneously distributed over d. Therefore, dρFs can
be considered as a 2D spin density. The same can be
said about the current dJFs. The spin density should be
calculated from Eq.(C6) with the boundary conditions

dρFs(0) = ρNs(0) , dJFs(0) = JNs(0) , (C8)

where JNs(0) and ρNs(0) are the spin current and spin
density on the normal metal side (x < 0) of the boundary.
The above boundary conditions are valid if a significant
interface spin relaxation is absent. In the ferromagnet
the relation between JFs(0) and ρFs(0) can be simply
found from the solution of Eq.(C6) which has the form

ρFs(x) = ρFs(0)e
−x/lFs(ω), (C9)
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where l−1
Fs =

√

(ΓFs − iω)D−1
F . Further, Eq.(C4) gives

the sought relation

JFs(0) = ρFs(0)DF /lFs (C10)

The spin diffusion equation in the normal metal can
be written as

−iωρNs = DN∇2
xρNs − ΓNsρFs +W (ω, x) . (C11)

This equation follows from Eqs.(17) and (18) by convert-
ing them into the coordinate representation. In Eq.(C11)
the parameters ρNs, ΓNs and DN are identified with, re-
spectively, Sy, Γy

s and D in the main text. The so calcu-
lated source term W has the form

W (ω, x) = NFΓv
J2S2

µ2

∫

dt
1

λ cosh x−vt
λ

eiωt . (C12)

As it will be clear below, for chosen values of v and ΓNs

the characteristic length v/ω is of the order of 102 nm,
that is much larger than the typical DW width λ. There-
fore, one can set t = ω/v in the exponential function in
Eq.(C12). So, we finally obtain

W (ω, x) = πNFΓ
J2S2

µ2
eiωx/v . (C13)

The general solution of Eq.(C11) at x < 0 is a sum of
two functions. One of them is produced by the source and
the other is originated from the interface with the ferro-

magnet. The former (ρ
(1)
Ns) is given by the time Fourier

transform of Eq.(21), while the latter (ρ
(2)
Ns) is obtained

from Eq.(C11) in the form

ρ
(2)
Ns(x) = Ae−|x|/lNs , (C14)

where l−1
Ns =

√

(ΓNs − iω)D−1
N . It was assumed that

width of the contact between the ferromagnet and 2D
film is much smaller than l−1

Ns which is in a submicron
range. Therefore, it is possible to treat the contact as a
point at x = 0. As a consequence, ρ(2) takes a simple
form (C14). The coefficients A and ρFs(0) in Eq.(C9)
and Eq.(C14) can be found from the boundary conditions
Eq.(C8) and Eq.(C10). In the considered set up we have
for the current

JNs(0
−)− JNs(0

+) = dJFs(0) . (C15)

From this equation, by taking into account Eqs.(C14)
and (C10) we obtain

dρFs(0) =
v2W (ω, 0)

DN (vp1 + iω)(vp2 + iω)

1

1 + (lNs/2lFs)
,

(C16)
where the factors p1 and p2 are defined just below
Eq.(20). Further, the electric potential which is induced
by the spin current in the ferromagnetic film can be cal-
culated from Eq.(C3). The time dependence of the mea-
sured voltage has a form of a pulse whose shape is de-
termined by the spatial dependence of the spin density
soliton, which is represented by Eq.(21). In the center
of this pulse at t = 0 the spin density at x = 0 can be
calculated by integrating Eq.(C16) over ω. Since p1 > 0
and p2 < 0, ρFs(0) has a single pole in the upper complex
semiplane, while another pole and cuts are in the lower
semiplane. Since the integral is converging, by calculat-
ing the residue at ω = ivp1 and by substituting the result
in Eq.(C3) we finally obtain

e∆φ|t=0 = rΓP̃
πNF

2NFFd

J2S2

µ2

v√
v2 + 4ΓNsDN

, (C17)

where NFF = (NF↑ + NF↓)/2 is the density of electron
states at the Fermi level per one spin in the ferromagnet.
The dimensionless factor r is given by

r =

[

1

1 + (lNs/2lFs)

]

ω=ivp1

(C18)

and

P̃ =
DF↑ −DF↓

DF↑ +DF↓
(C19)

is the polarization factor for the diffusion coefficient of
the magnet. When calculating Eq.(C17) the Einstein re-
lation σF = 2e2DFNFF was employed. The potential
∆φ|t=0 is evaluated for a set of material parameters in
the end of Sec.IV.
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