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Magnetic gels are composite materials, consisting of a polymer matrix and embedded magnetic particles.
Those are mechanically coupled to each other, giving rise to the magnetostrictive effects as well as to a
controllable overall elasticity responsive to external magnetic fields. Due to their inherent composite and
thereby multiscale nature, a theoretical framework bridging different levels of description is indispensable
for understanding the magnetomechanical properties of magnetic gels. In this study, we extend a recently
developed density functional approach from two spatial dimensions to more realistic three-dimensional sys-
tems. Along these lines, we connect a mesoscopic characterization resolving the discrete structure of the
magnetic particles, to macroscopic continuum parameters of magnetic gels. In particular, we incorporate the
long-range nature of the magnetic dipole-dipole interaction, and consider the approximate incompressibility
of the embedding media, and relative rotations with respect to an external magnetic field breaking rotational
symmetry. We then probe the shape of the model system in its reference state, confirming the dependence
of magnetostrictive effects on the configuration of the magnetic particles and on the shape of the considered
sample. Moreover, calculating the elastic and rotational coefficients on the basis of our mesoscopic approach,
we examine how the macroscopic types of behavior are related to the mesoscopic properties. Implications for
real systems of random particle configurations are also discussed.

I. INTRODUCTION

Ferrogels, magnetic gels as well as magnetorheological
gels and elastomers, all referred to as magnetic gels, are
soft elastic composite materials containing magnetic or
magnetizable particles, both simply referred to as mag-
netic particles. Their mechanical properties are control-
lable by external magnetic fields1–4. The composite na-
ture arises as the magnetic particles are mechanically
coupled to a surrounding polymeric matrix5–9. Such a
magnetomechanical coupling has even been enhanced by
anchoring polymers directly on the surface of magnetic
particles2,5,6,9. To understand the rheological properties
of these materials, the dependence of their elastic moduli
and magnetostrictive effects on external magnetic fields
have been investigated in various settings10–17. In par-
ticular, induced changes in the configuration of the mag-
netic particles, especially the touching of adjacent parti-
cles and chain formation, have been repeatedly reported
as prominent features in the response of magnetic gels to
external magnetic fields7,18–23.

Due to their inherent composite nature, a complete
theoretical understanding of magnetic gels is still chal-
lenging24. At macroscopic scales, thermodynamic and
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hydrodynamic theories have been developed25–27, in
which both the magnetic and elastic components are
modeled as homogeneous continua. Notably, the posi-
tive magnetostriction, namely elongation along the mag-
netic field direction, has been predicted using such con-
tinuum approaches28–30. However, potential effects stem-
ming from the detailed configurations of the magnetic
particles and the polymers as well as the mechanisms
governing these effects are hardly resolved at this scale.
Rather than that, phenomenological coefficients have to
be determined via modeling or experiments. In a theo-
retical perspective, one may consider a model resolving
all the magnetic particles and polymer molecules at a
microscopic level. Indeed, numerical simulation studies
have been performed at this scale, revealing the roles of
the polymer network topology and the coupling between
the orientation of magnetic particles and the surrounding
polymers31,32, as well as the degree of cross-linking in the
polymer matrix33. However, unifying all the ingredients
of such models to derive macroscopic parameters remains
a demanding task.

In this regard, mesoscopic approaches still address the
configurations of the magnetic particles explicitly, while
individual polymeric building blocks are not resolved. In-
deed, the significance of detailed structures at mesoscopic
length scales has been revealed, as the mesoscopic mod-
els predict, for instance, both positive and negative mag-
netostrictive effects depending on the specific configura-
tion of the magnetic particles34–37. The rotational fluc-
tuations of magnetic particles have also been addressed
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within a mesoscopic approach38. Specifically, the poly-
mer matrix can be coarse-grained as an elastic contin-
uum39–42. We note that the role of the magnetic parti-
cles can also be modeled using continuum fields43,44 that
describe the particle arrangements.

Alternatively, the elastic continuum can be discretized
on the mesoscopic scale as a network of harmonic
springs45–47. One advantage of this approach is that mi-
croscopic theories as well as simulation techniques devel-
oped in the framework of statistical mechanics are di-
rectly applicable. The interaction energies are explic-
itly defined in this case. As demonstrated in Ref. 48
using a description of a uniaxial magnetic gel, and in
Refs. 24 and 49 using an approach for isotropic one- and
two-dimensional systems, a bridging description between
mesoscopic and macroscopic scales may unravel the role
of the discrete mesoscopic structures in the materials for
the macroscopic behavior. In this way, the gap between
continuum theories and mesoscopic models is closed.

In the present study, we further explore the issue of
scale-bridging and, in particular, the statistical mechan-
ics of magnetic gels. As for the mesoscopic descrip-
tion, we employ a simple but tangible model consist-
ing of magnetic dipolar particles and harmonic springs
connecting them. Starting from the mesoscale model,
we aim at calculating macroscopic elastic and rotational
coefficients, the trend of which we then correlate with
mesoscopic characteristics, i.e., the configuration of the
magnetic particles. Specifically, we employ classical den-
sity functional theory (DFT)50–53, extending the concept
of mapping the elastic interactions between the parti-
cles through the surrounding elastic medium onto pseu-
dosprings24,49 to three dimensions. The resulting free
energy allows for a calculation of macroscopic elasticity
parameters.

To this end, the following issues need to be addressed
in advance. First of all, the dipolar magnetic interac-
tion is strictly long-ranged, rendering the system ther-
modynamically ill-defined54. While the Ewald summa-
tion technique55,56 can be adopted to numerically sim-
ulate systems with long-range interactions such as sus-
pensions of magnetic particles in liquid crystalline ma-
trices57,58, the shape dependence of the free-energy has
to be clarified as in the studies of dipolar fluids59,60 and
of magneto-sensitive elastomers61. In addition, we note
that the aforementioned magnetostrictive effects origi-
nate from the anisotropic nature of the magnetic dipole-
dipole interaction. These points require a careful choice
of the DFT implementation. Second, thermal fluctua-
tions of the magnetic particles need to be included. As
we develop a statistical theory for the equilibrium free
energy, i.e., DFT, this issue is resolved automatically.
Third, when an external magnetic field explicitly breaks
the rotational symmetry of the system, relative rotations
with respect to the field direction should be considered
in the underlying elasticity theory. Originally, this con-
cept was introduced in the context of liquid-crystalline
elastomers62–65, but has also been extended to uniax-

ial magnetic gels26,48. Lastly, the role of incompressibil-
ity that may be inherent in many systems of magnetic
gels should also be clarified in the description. Just as
conventional gels, magnetic gels can swell/shrink by ab-
sorbing/releasing liquid. Otherwise, they are regarded as
incompressible, for instance, due to the dispersed fluid.
Such incompressibility may alter the mechanical proper-
ties of magnetic gels15,66, calling for a theory respecting
volume conservation.

This paper is organized as follows. In Sec. II our model
for magnetic gels is introduced. We then formulate elas-
ticity theory for incompressible systems in Sec. III, in-
cluding the components of relative rotations. The DFT
for our model system and its implementation are de-
scribed in Sec. IV. In Sec. V, we present the elastic and
rotation coefficients as well as magnetostrictive effects
obtained from the DFT calculation. Lastly, discussions
are included in Sec. VI.

II. MESOSCOPIC DIPOLE-SPRING MODEL

We consider a three-dimensional version of the previ-
ously studied dipole-spring system46,67 as a mesoscopic
model for magnetic gels. The model consists of N identi-
cal magnetic particles of diameter σD and dipole moment
m, which are connected by identical harmonic springs of
spring constant kel and rest length ael. The position of
the ith particle is denoted by ri (i = 1, . . . , N).

The total HamiltonianHtot of the system is introduced
as the sum of the kinetic part Hkin and the interaction
part Hint of the magnetic particles, the latter of which
splits into three parts:

Hint = Hm +Hel +Hst. (1)

Here, Hm and Hst, respectively, denote the energies of
the magnetic dipole-dipole interaction and the steric re-
pulsion, which are all-to-all pairwise additive. Therefore,
with rij = rj − ri, they take the form

Hm,st =
1

2

∑
i6=j

um,st(rij), (2)

where um and ust denote the two-body magnetic dipole-
dipole interaction and steric repulsion, respectively, as
detailed below.

In stark contrast to Eq. (2), the elastic part Hel does
not simply take the form of a pairwise additive poten-
tial, namely no general two-body potential applying si-
multaneously to all pairs of particles can be introduced.
Specifically, the elastic contribution is written in the form

Hel =
∑
〈i,j〉

uel(rij) =
∑
〈i,j〉

1

2
kel(rij − ael)

2, (3)

where 〈i, j〉 indicates that the sum only includes a pre-
defined set of neighbors, which labels the particles such
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that they become distinguishable. Thus the potential
energy cannot be written as a sum over pair potentials
of indistinguishable particles. For the two-body poten-
tial uel a harmonic spring potential of spring constant
kel is adopted, while ael is the rest length of the springs
and rij = |rij |. Here, we assume a face-centered cu-
bic (FCC) lattice structure with twelve nearest-neighbor
particles, which is indicated by the angular bracket in
Eq. (3). Therefore, in total 6N harmonic springs con-
nect the nearest-neighboring pairs of magnetic particles
in this specific model (except for boundary effects).

Next, for the two-body steric repulsion in Eq. (2), we
assume a particle diameter σD and adopt a hard-core
potential in the form of

ust(r) =

{
0 if r ≥ σD,
∞ otherwise.

(4)

As a dimensionless density we introduce the packing frac-
tion η defined as the fraction of the volume occupied
by the magnetic particles, i.e., η ≡ N(4π/3)(σD/2)3/V
where V is the volume of the system.

Specifying the two-body magnetic dipole-dipole inter-
action energy, the two-body potential in Eq. (2) reads

um(r) =
µ0

4π

[
m ·m
r3

− 3(m · r)(m · r)

r5

]
, (5)

where µ0 is the vacuum permeability. The magnetic
moment m is determined by the applied magnetic field
H = Hẑ, which is always directed along the z-direction,
and the magnetization properties of each magnetic parti-
cle, see, e.g., Refs. 68 and 69. When an external magnetic
field is applied, we assume that m(H) ‖ H, i.e., m = mẑ,
see Fig. 1(a) for illustration. In the absence of the applied
field, magnetic particles may or may not retain their mag-
netization. Here we consider two simple cases. First, in
Model I, we assume that the magnetic particles are ferro-
magnetic. There, the magnetic moment of each particle
persists and is fixed with respect to the particle orien-
tation, once the magnetic particles are magnetized. We
then investigate elastic properties of the model system in
the absence of external fields as depicted in Fig. 1(b). In
this case, the dipole moment m rotates rigidly with the
whole system. In Model II, we assume that the magnetic
particles are paramagnetic. To retain the magnetization,
the external field H needs to be persistently applied to
the system in this case. In contrast to Model I, m is
then always directed along H as shown in Fig. 1(c), even
when the whole system rotates. Consequently, relative
rotations between the magnetization direction and the
rest of the system become relevant. We note that the
magnetic dipole-dipole interaction breaks the isotropy of
the system both in Model I and Model II.

As for the orientation of the system, we consider two
cases in which the (0, 0, 1)- and (1, 1, 1)-orientations of
the FCC lattice are directed along the z-axis36. When the
lattices are elongated or contracted along the z-direction
due to the anisotropic magnetic interaction, the resultant

  

(a) (b) Model I (c) Model II 

FIG. 1. (a) Under an external magnetic field H, the mag-
netic dipole moment m (black solid arrow) is aligned along the
external field direction H (red dashed arrow). Here the whole
system (solid ellipse) has the same orientation (green dashed
line at the center of the ellipse) as the initial magnetization,
which is the reference state of our model system. Regarding
rotations, we consider two models, (b) Model I for ferromag-
netic particles and (c) Model II for paramagnetic particles,
see text for details.

lattices of the (0, 0, 1)- and (1, 1, 1)-cases are tetragonal
and rhombohedral, respectively.

Lastly, we assume that our model system is incom-
pressible, i.e., the volume of the whole system is fixed
and persists even under deformations. Here we set
V = (

√
2/2)a3

elN , at which the total Hamiltonian Htot

is minimized for m = 0.

III. MACROSCOPIC DESCRIPTION

As incompressibility is assumed in our model system,
we should address the maintained volume conservation
when developing our macroscopic description. While our
model system is initialized with the prescribed volume V
at m = 0, an external magnetic field induces a magne-
tostrictive effect, which is not necessarily volume preserv-
ing. However, the imposed incompressibility constraint
hinders the system to relax to a new volume upon mag-
netization. Such effects introduce a predeformation hid-
den behind the maintained volume, rendering our model
system nonlinear elastic. Here, following the group the-
oretical approach proposed in Ref. 70, we consider non-
linear elastic responses of our model system and calcu-
late elastic moduli accordingly. For self-containedness,
we briefly summarize the formulation and introduce the
second-order corrections to the deformation gradient ten-
sors that are relevant for the computation of elastic mod-
uli.

A. Nonlinear deformation gradient tensor

Under the incompressibility condition, the deformation
gradients in three dimensions are elements of the spe-
cial linear group SL(3,R), the Lie algebra of which is
sl(3,R). Generally, the components of the deformation
gradient tensor F are defined by Fij = ∂r′i/∂rj , where r′

and r mark the positions of the material elements in the
deformed and undeformed state, respectively. Then non-
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linear deformation gradient tensors F may be expressed
via the exponential map

F = exp

(
8∑
i=1

εiλi

)
, (6)

where, λi denote the SL(3,R) group generators and εi
are small coefficients indicating the magnitude of defor-
mations generated by λi. One should choose a set of
generators, which is appropriate for the system consid-
ered. Accordingly, for our model system, we employ the
generators of

λ1 =

 1 0 0
0 −1 0
0 0 0

 , λ2 =
1√
3

 1 0 0
0 1 0
0 0 −2

 ,

λ3 =

 0 0 0
0 0 1
0 1 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 1 0
1 0 0
0 0 0

 , λ6 =

 0 0 0
0 0 −1
0 1 0

 ,

λ7 =

 0 0 1
0 0 0
−1 0 0

 , λ8 =

 0 −1 0
1 0 0
0 0 0

 . (7)

Here, the transformations associated with λ1 stretch
(compress) the system along the x-axis, combined with
compressions (stretches) along the y-axis; the deforma-
tions generated by λ2 stretch (compress) the system
in the xy-plane combined with compressions (stretches)
along the z-axis of twice the magnitude; λ3, λ4, and λ5

generate shear deformations in the yz-, zy-, and xy-plane,
respectively; λ6, λ7, and λ8 generate rotations in the yz-
, zy-, and xy-plane, respectively. We note that λ5 can
also be regarded as a generator of shear deformations in
the xy-plane, but with orientations different from those
generated by λ1. For the purpose of calculating elastic
moduli, corrections up to the second order of εi are rele-
vant. Accordingly, we may truncate the expansion at the
third order of {εi} and use

F = I +
∑
i

εiλi +
1

2

(∑
i

εiλi

)
·

(∑
i

εiλi

)
. (8)

We note that, in general, generators do not commute, i.e.,
λi · λj 6= λj · λi. Within our approach, the free-energy
density F (see Sec. IV for the definition based on density
functional theory), equivalent to the deformation energy
density in nonlinear elasticity, is regarded as a function
of {εi}. This choice naturally allows us to define the
generalized elastic moduli as

Cij =
∂2F
∂εi∂εj

. (9)

In the case of Model I, only the five generators λi for
i = 1, . . . , 5 are relevant, among which the shear defor-
mations generated by λ3 and λ4 lead to identical con-
tributions to F due to the symmetry of tetragonal and

rhombohedral lattices. In addition to those, the relative
rotations corresponding to λ6 and λ7 must be included
for the description of Model II, whereas rotations in the
xy-plane generated by λ8 are still irrelevant. Again due
to the symmetry, the rotations corresponding to λ6 and
λ7 lead to identical contributions to F.

B. Irreducible representation for stiffness tensors

In the framework of linear elasticity theory, irreducible
representations for stiffness tensors are determined by the
underlying symmetry of the systems. We here consider
the strains which are defined in linear elasticity as

εij ≡
1

2
(∇iuj +∇jui), (10)

where u denotes the displacement field. For a tetrag-
onal lattice [(0, 0, 1)-orientation], the stiffness matrix C
in Mandel (or orthonormal) notation, where the stiffness
matrix becomes a second-rank tensor71,72, takes the form

CTetr

Mandel
=



C̃00 C̃01 C̃02 0 0 0

C̃01 C̃00 C̃02 0 0 0

C̃02 C̃02 C̃22 0 0 0

0 0 0 C̃33 0 0

0 0 0 0 C̃33 0

0 0 0 0 0 C̃55

 . (11)

We note that here the indices run from 0 to 5, not from
1 to 6.

We then turn to nonlinear elasticity. The infinitesimal
group generators corresponding to Eq. (10) are {λ̃i} for
i = 0, . . . , 5, three of which are defined componentwise
via [λ̃i−1]lm = δilδim for i, l,m = 1, 2, 3, and the others

by λ̃i = λi for i = 3, 4, 5. However, such a choice of group
generators is not compatible with the symmetry of sys-
tems under the incompressibility constraint. Therefore,
we should introduce a transformation, which allows us
to switch to the generators of Eq. (7). Since a set of in-
finitesimal group generators is a basis of a vector space,
namely Lie algebra, we can find the form of generalized
elastic constants corresponding to Eq. (7) via a linear
transformation. Specifically, a unitary transformation

U =



1√
3

1√
3

1√
3

0 0 0
1√
2
− 1√

2
0 0 0 0

1√
6

1√
6
−
√

2√
3

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(12)

connects, via ε = U · ε̃, the deformation vector ε̃ =

1/
√

2(ε̃0, . . . , ε̃5) in Mandel notation, corresponding to

{λ̃i}, to ε = (ε0, . . . , ε5), corresponding to the set of
group generators consisting of {λi} for i = 1, . . . , 5, and

λ0 ≡
√

2/3I, where I is the 3 × 3 identity matrix, such
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that
∑
i εiλi =

∑
i ε̃iλ̃i. Subsequently, the stiffness ten-

sor C
com

for compressible systems can be computed from

C
com

= U · C
Mandel

· UT , as is obvious from linear alge-
bra. Within this representation, all deformations involv-
ing a volume change are associated with the generator
λ0. Therefore, under the incompressibility constraint,
the components in C

com
associated with λ0 become ir-

relevant. Furthermore, predeformations also give rise to
additional terms that are absent in linear elasticity, as
demonstrated in Ref. 70. In our case, as only a prede-
formation in volume is involved, such nonlinear contribu-
tions are all diagonal and associated with the generalized
pressure

p = − 1√
6

∂F
∂ε0

, (13)

which only makes sense if a volume change is allowed.
Finally, we conclude that the stiffness tensor of incom-
pressible systems takes the form of

CTetr

in
=


C11 0 0 0 0
0 C22 0 0 0
0 0 C33 0 0
0 0 0 C33 0
0 0 0 0 C55

 , (14)

whose components are defined by Eq. (9).
Second, if the (1, 1, 1)-direction of the lattice is oriented

along the z-axis, we have a rhombohedral lattice (RI Laue
group), the stiffness tensor of which, again in Mandel
notation, is given as73,74

CRhomb

Mandel

=



C̃00 C̃01 C̃02

√
2C̃03 0 0

C̃01 C̃00 C̃02 −
√

2C̃03 0 0

C̃02 C̃02 C̃22 0 0 0√
2C̃03 −

√
2C̃03 0 2C̃33 0 0

0 0 0 0 2C̃33 2C̃03

0 0 0 0 2C̃03 C̃00 − C̃01

 .

(15)

Then the stiffness tensor of the corresponding incom-
pressible systems, within our notation, reads

CRhomb

in
=


C11 0 C13 0 0
0 C22 0 0 0
C13 0 C33 0 0
0 0 0 C33 C13

0 0 0 C13 C11

 . (16)

As we demonstrate in Sec. V, the macroscopic ap-
proach described here provides a precise and economic
framework to investigate nonlinear elastic properties of
incompressible anisotropic systems. In particular, our
choice of generators given by Eq. (7) and the correspond-
ing stiffness tensors given in Eqs. (14) and (16), respec-
tively, determine all the necessary but only allowed de-
formations and elastic constants compatible with the un-
derlying symmetry of the system and the imposed con-
straint. Sticking to the linear strain tensors as given by

Eq. (10), instead of our nonlinear definition in Eq. (8),
may involve errors in the second order, which are relevant
for elastic constants. Indeed, the rotation coefficients C66

and C77 shown in Fig. 4(a) can become negative, if the
volume conservation in the second order is not explicitly
taken into account via Eqs. (6) and (7). Alternatively,
one may consider the method of Lagrange multipliers,
which is, however, technically demanding, particularly in
combination with the density functional calculation that
we describe next.

IV. DENSITY FUNCTIONAL THEORY: BRIDGING
SCALES

We now formulate a density functional theory (DFT)
for the dipole-spring model by approximating the free
energy functional F [ρ(r)] where ρ(r) denotes the one-
body density field of the magnetic particles. Together
with the ideal gas term

F id[ρ(r)] = β−1

∫
dr ρ(r)[ln {Λ3ρ(r)} − 1], (17)

where β ≡ (kBT )−1 is the inverse temperature, the total
free-energy functional subjected to minimization is given
as

F [ρ(r)] = F id[ρ(r)] + Fex[ρ(r)], (18)

where Fex[ρ(r)] denotes the excess functional describing
the interparticle interactions (1). Following Ref. 75, we
employ the Picard iteration algorithm

ρ(i+1)(r) = αρ̃(i)(r) + (1− α)ρ(i)(r), (19)

with a mixing parameter α and

ρ̃(i)(r) = exp

(
−β δF

ex

δρ(r)
+ βµi

)
, (20)

where

µi ≡
1

Vcell

∫
cell

dr

{
ln (ρ(i)Λ3)− δFex

δρ(i)

}
, (21)

which is updated in each iteration step to ensure that the
total (average) number of particles is kept fixed. Accord-
ingly, for the verification of successful minimization, we
use the relative chemical potential defined as

∆µrel ≡
µi+1 − µi
µi+1

. (22)

In this way, F is minimized for a prescribed value of
the vacancy concentration nvac. In principle, our model
systems are defect-free, i.e., nvac = 0. To accelerate and
enhance the robustness of the minimization processes,
however, we consider lattices with vacancy concentration
of nvac = 0.001± 10−6.
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Regarding the geometry of the calculation box, we use
the primitive unit cell in our calculations, consisting of
only one particle, instead of the cubic unit cell of the
FCC lattice, consisting of four particles, usually adopted
in DFT studies of freezing. Accordingly, we use periodic
boundary conditions in the directions of three primitive
vectors. Both the primitive and reciprocal lattice vectors
of undeformed and deformed systems are summarized in
Appendix A. With this geometry, we are able to minimize
our free-energy functional more precisely, (∆µrel < 10−15

in most cases), compared to the method using the cubic
unit cell (∆µrel ≈ 10−8 for the tested cases).

Now we turn to the excess functional Fex[ρ(r)], which
is given as a sum of three functionals corresponding to
the steric repulsion, magnetic dipole-dipole interaction,
and harmonic spring potential. First, for the hard-core
repulsion, we use the White-Bear II (WB-II) functional76

with the Tarazona tensors77, which is one of the most
precise versions among the fundamental measure theory
for hard spheres78. Then, for the elastic and magnetic
dipole-dipole interactions, we intend to adopt the simple
mean-field functional in the form of

FMF[ρ(r)] ≡ 1

2

∫
dr

∫
dr′ ρ(r)u(r− r′) ρ(r′), (23)

where u(r) is an appropriate pair potential. However,
the practical evaluation of the above functionals is not
straightforward. In what follows, we describe how to con-
struct the Fourier transforms of the elastic and magnetic
energies, which allow us to perform DFT calculations in
Fourier space.

A. Magnetic dipolar interaction

As discussed, there are two important properties in-
herent in the magnetic dipole-dipole interaction, Eq. (5),
in three dimensions. It is long-range and anisotropic79,
which has to be taken into account in DFT calculations.

When we switch m to m 6= 0, the systems elongate
or contract, and so does the unit cell. Then the side
lengths of the cubic unit cell are no longer the same, but
satisfy the relation ax = ay 6= az where ax, ay, and az
denote the side lengths in the x-, y-, and z-direction,
respectively. Here, we define the aspect ratio as Rasp ≡
az/ax. We note that Rasp characterizes the deformation
of the internal lattice structure.

Now, we address the long-range nature of the mag-
netic dipole-dipole interaction in three dimensions. The
difficulty arises from the fact that the interaction energy,
i.e., the integral of um, diverges at both short and long
distances. In our DFT calculation, this issue can be re-
solved rather easily. On the one hand, the steric repul-
sion hinders particles from approaching closer than their
diameter and therefore prevents the divergence at short
distances. On the other hand, as the DFT calculation is
performed in Fourier space, the divergence at long dis-
tance can be handled directly as follows. While, for k 6= 0

Fourier modes, the Fourier transform of the dipole-dipole
interaction can be obtained with the aid of the orthogo-
nality of the spherical harmonics Y ml , the k = 0 mode,
which dictates the long-range divergence, indeed depends
on the shape of the whole material body (see Appendix B
for more details). With such a shape dependent mode,
which is related to the demagnetizing factor in continuum
theory61, we are able to capture the long-ranged nature
of the magnetic interaction. In general, we may consider
a system with the initially spheroidal shape (at m = 0) of
the shape parameter Rsh ≡ Rz/Rx, where Rx = Ry and
Rz are the lengths of the semiaxes along the x-, y- and
z-axis, respectively. In contrast to Rasp, here Rsh indi-
cates the aspect ratio of the whole material. As we turn
on the magnetic interaction applying a magnetic field,
the initial aspect ratio of the whole system shape further
changes to RaspRsh due to magnetostriction associated
with a change in internal lattice structure.

B. Elastic energy

While the magnetic particles are strictly labeled due to
fixation by the surrounding polymer matrix, namely the
elastic interaction term given as Eq. (3), the conventional
machinery of DFT calculation assumes the indistiguisha-
bility of particles, i.e., as if the potential uel was act-
ing equally between all pairs of particles throughout the
system. To nevertheless enable DFT calculations, a map-
ping of the harmonic spring potential onto a pseudospring
potential upseudo has been proposed in Ref. 24. There,
only nearest-neighbor pairs of the resulting configuration
are within the range of upseudo and thus elastically cou-
pled to each other, as in the original system based on the
harmonic springs, see Eq. (3). In the present study, the
mapping is extended to three dimensions. Notably, in
two and three spatial dimensions, the success of apply-
ing the finite-ranged pseudospring potential is connected
to the particle arrangement arising from a freezing tran-
sition49, which has been extensively investigated within
density functional approaches80–84. Specifically, we con-
sider the pseudospring potential

upseudo(r) =

{
1
2kel(r − ael)

2 − u0, r < Rc
0, otherwise.

(24)

In this expression, Rc and u0 denote the cut-off length
and the offset for the pseudospring potential, respec-
tively. The cutoff length Rc is determined from cor-
responding Monte-Carlo simulations as the distance at
which the pair correlation function g(r) is minimized,
which turns out to be Rc = 1.21ael. The value of u0 is
determined within the DFT calculations so as to match
the vacancy concentration of the resultant lattice with
the prescribed value of nvac = 0.001.

The obtained upseudo instead of uel is inserted into
Eq. (23) via u. We refer to our previous study49 for
the detailed description and verification of the mapping
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of the real onto the pseudospring potential. Moreover,
due to the anisotropy of dipolar interactions as discussed
in Sec. IV A, corresponding lattice structures may be-
come anisotropic as well. Such anisotropy then should
also be taken into account when we construct the pseu-
dospring potential. In practice, we then cut the spring
potential at the surface of the spheroid with the aspect
ratio Rasp, instead of at the surface of the sphere with the
radius Rc as in Eq. (24). In other words, the cutting is
direction-dependent. The resultant Fourier components
are presented in Appendix C explicitly.

V. MECHANICAL PROPERTIES

From now on, we measure lengths and energies in units
of the rest length ael and the thermal energy kBT , re-
spectively. Accordingly, the magnitude m of the mag-
netic moment and the spring constant kel are measured
in units of m0 ≡

√
kBTa3

el/µ0 and kBT/a
2
el, respectively.

We consider systems with elastic constant kel = 100 and
shape parameter Rsh = 1, and investigate the effects of
magnetization on the mechanical properties, by varying
the magnitude of the magnetic momentm. The two mod-
els, described in Sec. II, give identical results as long as
no rotations are considered, while only the paramagnetic
Model II has a unique reference state with respect to
rotations.

One can also probe steric effects by varying the volume
packing fraction η. Naively speaking, while steric repul-
sion should affect the bulk modulus of a system, how and
to what extent it would affect the mechanical properties
under each specific deformation is still unclear. More-
over, there might also appear numerical artifacts due
to several approximations employed. Therefore, leaving
systematic investigations for further studies, we demon-
strate that our method is valid for a reasonable range of
η by employing two representative values of η = 0.1 and
0.3, which are relatively small when compared to the co-
existing fluid (crystal) packing fractions 0.495 (0.544)75

for the WB-II functional used in this study. We note that
the pseudospring potential suffices to stabilize the FCC
crystal for η = 0 within our model. Indeed, steric repul-
sion does not play a dominant role for these low packing
fractions, as one may confirm from Fig. 2 in Sec. V A, as
well as from Figs. 3 and 4 in Sec. V B.

A. Magnetostriction

As a first step, we determine the reference equilibrium
state of the undeformed system for a given magnetization
m. Technically, we first determine the value of u0 for
which the vacancy concentration of system becomes equal
to the prescribed value within the margin of tolerated
error. Then, varying Rasp while fixing u0, we find the
value of the aspect ratio Rasp at which the free energy

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
a
sp

m/m0

(0, 0, 1), η = 0.1
(0, 0, 1), η = 0.3
(1, 1, 1), η = 0.1
(1, 1, 1), η = 0.3

FIG. 2. The aspect ratio Rasp of the system is presented
as a function of m. Converse magnetostriction effects are
observed, depending on the orientation of the lattice.

functional is minimized. The resultant values of Rasp are
shown in Fig. 2.

The most prominent feature here is that the magne-
tostriction effects of the (0, 0, 1)- and (1, 1, 1)-orientations
are opposite to each other. In line with the results re-
ported in Ref. 36, our systems elongate when the dipole
moments are directed along the (0, 0, 1)-orientation,
while a contraction along the direction of the dipole mo-
ments is observed in the (1, 1, 1)-case, confirming that
the internal configuration of magnetic particles is a de-
cisive factor of the magnetostriction effect. In addition,
we also note that the magnetostriction effect can be re-
versed, if large values of the shape parameter (Rsh & 2)
are used in the case of the (0, 0, 1)-orientation (results not
shown). Such shape-dependence is a trivial consequence
of the long-range nature of the dipolar interaction.

B. Elastic coefficients

Now we determine the elastic constants Cij for i, j =
1, . . . , 5, defined in Eq. (9), from our DFT, explicitly de-
forming the primitive unit cell. Specifically, we numer-
ically calculate the derivatives through finite differences
and obtain the diagonal terms of the stiffness tensor from

Cii =

(
∂2F
∂εi

2

)
≈ F(εi) + F(−εi)− 2F(0)

ε2i
, (25)

while the offdiagonal terms can be calculated as

Cij =

(
∂2F
∂εi∂εj

)
≈ F(εi, εj) + F(−εi,−εj)−F(−εi, εj)−F(εi,−εj)

4εiεj
.

(26)
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FIG. 3. Elastic coefficients are presented as functions of m. The values of (a) C11 for the (0, 0, 1)-orientation, (b) C11 and C55

for the (1, 1, 1)-orientation, (c) C22 for the (0, 0, 1)- and (1, 1, 1)-orientations, (d) C33 for the (0, 0, 1)- and (1, 1, 1)-orientations,
(e) C55 for the (0, 0, 1)-orientation, and (f) C13 and C45 for the (1, 1, 1)-orientation are shown. For values of m larger than
those presented in this figure, we were not able to find stable equilibrium configurations.

In most of the cases, we use ε1 = ε2/
√

3 = ε3 =
· · · = ε7 = 0.0001, except for the cases of the (1, 1, 1)-
orientation with η = 0.3 and m ≤ 2.5, in which the
functional can be minimized up to the values of ∆µrel

between 10−4 and 10−8 at most. There, we use ε1 =
ε2/
√

3 = ε3 = · · · = ε7 = 0.0001 or 0.001 to obtain con-

sistent results. Before proceeding to the results in Fig. 3,
we recall from Sec. III that some coefficients vanish and
others are equal. Specifically, we confirm in Figs. 3(b)
and (f) for rhombohedral lattices that C11 = C55 and
C13 = C45, respectively, in accordance with Eq. (16).

First, we take a closer look at the elastic constant C55,
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corresponding to shear deformations in the xy-plane, and
C11, corresponding to stretches (compressions) along the
x-axis combined with compressions (stretches) along the
y-axis. C11 can also be regarded as a shear modulus,
but corresponding to shear deformations with orienta-
tions different from those for C55. In most cases, the
dipolar interaction, which is repulsive in the plane per-
pendicular to the dipole moment, causes an increase of
the elastic constants. Specifically, as shown in Fig. 3(b),
values of both C11 = C55 increase as m increases in the
(1, 1, 1)-case, while, in the (0, 0, 1)-case, only C55 is an
increasing function of m, as shown in Fig. 3(e). In sharp
contrast, C11 in the (0, 0, 1)-case is a decreasing function
of m, as shown in Fig. 3(a). Furthermore, as m increases
further, it drops towards zero, indicating instability of
the tetragonal lattices. We notice here that hexagonal
configurations can be obtained eventually by squeezing
the tetragonal lattice in the xy-plane, if the whole lattice
is projected on the xy-plane. In other words, as m in-
creases, there might arise a growing tendency to match
the lattice to the underlying symmetry of the magnetic
dipole-dipole interaction, which prefers the hexagonal
lattice over the tetragonal lattice in the plane perpen-
dicular to the dipole moment. Therefore, we conclude
that such a softening effect correlates with a rearrange-
ment of the magnetic particles in the plane perpendicular
to m.

Next we turn to the elastic constants of C22, cor-
responding to stretches (compressions) in the xy-plane
combined with compressions (stretches) along the z-axis
of twice the magnitude, and C33, corresponding to shear
deformation in the yz-plane (or equivalently C44, corre-
sponding to shear deformations in the xz-plane). All of
them involve deformations in the z-direction. In both
the (0, 0, 1)- and (1, 1, 1)-orientations, C22 is an increas-
ing function of m [Fig. 3(c)], indicating hardening of the
materials. Since there is no significant difference be-
tween the systems of η = 0.1 and 0.3, the phenomenon
of hardening observed here has a purely elastic origin.
Simultaneously, C33 is always a decreasing function of
m [Fig. 3(d)]. Moreover, at large m, the rhombohedral
lattice becomes unstable as well, with the values of C33

dropping towards zero. Such instabilities at large m and
the decrease of C33 in general may originate from the ten-
dency towards pair formation20,85 or similarly from the
typical chain-like aggregates forming under strong dipo-
lar interactions48,86,87. Indeed, we observe a shift of the
energetic minimum in the landscape of two-body inter-
action energy from separated to touching configurations
occurs between m = 2.5 and 3.0 in the (1, 1, 1)-case (not
shown). This seems to confirm that the instability is the
consequence of the formation of touching pairs. In the
case of the (0, 0, 1)-orientation, the drop towards zero in
C11 occurs in advance of that in C33, compare Figs. 3(a)
and (d), indicating that rearrangement in the xy-plane
is preferred over rearrangement in the z-direction.

Lastly, the values of C13 and C45 in the (1, 1, 1)-case
are presented in Fig. 3(f). Overall they exhibit a similar
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FIG. 4. Rotation coefficients obtained from the (1, 1, 1)-
orientation. In (a), the coefficients C66 and C77, respectively,
corresponding solely to the rotations in the yz- and xz-planes
are presented, whereas the off-diagonal coefficients C36 and
C47 as well as C16 and C57 are depicted in (b) and (c), re-
spectively.

behavior, increasing from negative values for small m to
positive ones for large m. We note, however, that these
constants reflect a rather specific symmetry inherent in
the lattice, and therefore, may not reflect the situation
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of real magnetic gels.

C. Rotation coefficients

Finally, we investigate the rotation coefficients, which
are relevant only in Model II. Alike the elastic constants,
the rotation coefficients are calculated from Eqs. (25) and
(26). As the (0, 0, 1)-orientation turns out to be unstable
with respect to rotations in xz- and yz-planes, we only
analyze the results for the (1, 1, 1)-orientation.

First, the coupling of the model systems to the applied
magnetic field is captured by the rotation coefficients C66

and C77, corresponding to rotations in the yz- and xz-
plane, respectively. As shown in Fig. 4(a), the values
of C66 and C77 increase as m increases, indicating an
enhanced resistance to the rotations.

As shown in Fig. 4(b), the mixed coefficients of C36

and C47, corresponding to mixed shear deformations and
rotations in the yz- and xz-plane, respectively, first ex-
hibit an increase as a function of m for small values of
m. Then, the increasing trend is reversed for large m.
We note that, in Ref. 48, where chain-like aggregates are
assumed, only a decreasing tendency in the form of −m2

has been predicted for D2, which is equivalent to C36 and
C47 in the present study. Presumably, as already men-
tioned for magnetostrictive effects in Sec. V A, different
behaviors may be due to the internal configuration of
the magnetic particles. We also note that the values of
C66 and C77 are approximately 103 times smaller than
those of C33 and C44. In Ref. 48, the rotation coefficient
D1 (equivalent to C66 and C77 in the present study) is
even larger than ∆c5 (C33 and C44 in the present study).
Again, this may be caused by the different internal struc-
ture, which is chain-like in Ref. 48.

Lastly, the additional mixed coefficients C16 and C57

increase monotonically, as shown in Fig. 4(c), which
seems to be a simple consequence of enhancement of both
hardening in the xy-plane (C11 and C55) and resistance
to rotations in the xz- or yz-plane (C66 and C77).

VI. CONCLUSION

So far we have constructed and evaluated a DFT for
three-dimensional dipole-spring models, which bridges
from the discretized mesoscopic model to a macroscopic
elasticity theory of magnetic gels. Based on the scale-
bridging description, we have determined the elastic and
rotational material coefficients. They depend on the
mesoscopic configuration of the magnetic particles. No-
tably, we have observed softening responses to magneti-

zation both in the external field direction and in the plane
perpendicular to the external field, which indicates a ten-
dency towards an instability. We have proposed that such
behaviors imply changes in overall symmetry, accompa-
nied by rearrangement of magnetic particles. Such rear-
rangements might be decomposed into the formation of a
hexagonal-like arrangement in the plane perpendicular to
the magnetic field and pair formation along the magnetic
field direction. To verify our conclusion, the decreas-
ing behavior of C11 needs to be tested experimentally.
Notably, in a previous study, where random configura-
tions for magnetic particles are assumed [see Fig. 14(b)
of Ref. 46], a decrease of the shear modulus has been
observed, suggesting that the idea of rearrangement may
also be valid for real magnetic gels with disordered con-
figurations.

Conversely, one could equally well think about synthe-
sizing a sample with the regular arrangement adopted
in this study. In particular, the prescribed FCC-based
connectivity shows certain characteristics as explained
above. For instance, 6 among 12 nearest neighboring
particles are located in the same plane perpendicular to
the magnetization in the case of (1, 1, 1)-orientation, and
thereby, the repulsive interaction in the plane seems to
dominate the response of the magnetic particles. This
leads to the contraction along the magnetization direc-
tion. We note that there have been attempts to synthe-
size thin ferrogel films88. Since in planar configurations,
magnetic particles form hexagonal arrangements in the
plane perpendicular to the external magnetic field89, it
would be possible to obtain ferrogel films with a hexag-
onal configuration in such a way. Then, by stacking
two-dimensional layers, a magnetic gel with a three-
dimensional hexagonal structure might be fabricated ex-
perimentally. Our results of the (1, 1, 1)-case may then
provide an insight into such systems.

At the same time, regarding future work on our the-
ory, one important direction is to address systems with
random configurations. An important additional ingre-
dient to model the heterogeneity inherent in real sam-
ples is polydispersity of the magnetic particles90. The
idea of the replica DFT91,92 might be used to address di-
rectly disordered configurations. Lastly, dynamical den-
sity functional theory93–95 should provide a route to in-
vestigate the dynamics of the systems.
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TABLE I. The reciprocal lattice vectors for the (0, 0, 1)-orientation. As for the infinitesimal parameters {εi}, see Eqs. (6)
and (7) in which the deformation gradient tensor as well as the generators are defined.

Appendix A: Reciprocal lattices

For the (0, 0, 1)-, and (1, 1, 1)-orientations of the FCC lattice, the primitive vectors read

a1 =
a

2
(x̂+ ŷ), a2 =

a

2
(ŷ + ẑ), a3 =

a

2
(ẑ + x̂), (A1)

and

a1 =
a

2

(
2√
6
ŷ +

2√
3
ẑ

)
, a2 =

a

2

(
− 1√

2
x̂− 1√

6
ŷ +

2√
3
ẑ

)
, a3 =

a

2

(
1√
2
x̂− 1√

6
ŷ +

2√
3
ẑ

)
, (A2)

respectively. Here, a =
√

2ael denotes the side length of the cubic unit cell.

In practice, the DFT calculations are performed with the reciprocal lattice vectors in Fourier space. For the
(0, 0, 1)-orientation, the reciprocal vectors read

b1 =
2π

a
(1, 1,−1) , b2 =

2π

a
(−1, 1, 1) , b3 =

2π

a
(1,−1, 1) , (A3)

while for the (1, 1, 1)-orientation, we obtain

b1 =
2π

a

(
0,

4√
6
,

1√
3

)
, b2 =

2π

a

(
−
√

2,− 2√
6
,

1√
3

)
, b3 =

2π

a

(√
2,− 2√

6
,

1√
3

)
. (A4)

Under deformation, the reciprocal vectors are transformed accordingly. We expand the reciprocal vectors of de-
formed lattices with respect to {εi} to compute the corresponding reciprocal lattice vectors in the form

bdeformed
1 = b1 +

2π

a
∆b1, bdeformed

2 = b2 +
2π

a
∆b2, bdeformed

3 = b3 +
2π

a
∆b3. (A5)

The correction terms ∆b1, ∆b2, and ∆b3 for the (0, 0, 1)- and (1, 1, 1)-cases are given in Tables I and II, respectively,
which are sufficient for the pure deformations that do not involve mixed terms, i.e., εiεj for i 6= j. When more than two
different types of deformations are applied, Eq. (6) still provides a correct formulation. However, such mixed terms
are irrelevant for our incompressible systems because second-order corrections only enter via the diagonal terms in
the stiffness tensor, as we describe in Sec. III B (see Ref. 70 for details). Therefore, for the calculation of off-diagonal
components in the stiffness tensors, we simply add the second-order corrections from two different types of pure
deformations.
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TABLE II. The reciprocal lattice vectors for the (1, 1, 1)-orientation. The deformation gradient tensor and the group generators
corresponding to the infinitesimal parameters {εi} are defined in Eqs. (6) and (7).

Appendix B: Fourier transform of the magnetic dipole-dipole interaction

1. Undeformed system

In the case of the k 6= 0 terms, we calculate the Fourier transform utilizing the plane wave expansion

eik·r = 4π

∞∑
l=0

l∑
m=−l

iljl(kr)Y
m
l (k̂)Y m∗l (r̂), (B1)

where jl and Y ml are spherical Bessel functions and spherical harmonics, respectively, and the superscript asterisk ∗
denotes complex conjugate. Since the dipole-dipole interaction energy [Eq. (5)] is proportional to Y 0

2 for m = mẑ,
i.e.,

um(r) =
µ0m

2

4πr3

(
−4

√
π

5

)
Y 0

2 (θ, φ), (B2)

we obtain

ũm(k) = −
∫ ∞
σ

dr

∫ π

0

dθ

∫ 2π

0

dφ
µ0m

2

π

√
π

5

sin θ

r
Y 0

2 (θ, φ)e−ik·r = 4µ0m
2

√
π

5
Y 0

2 (θk, φk)

∫ ∞
σ

dr
j2(kr)

r

= 4µ0m
2

√
π

5
(1− 3 cos2 θk)

kσ cos kσ − sin kσ

k3σ3
. (B3)

Meanwhile, the k = 0 term is calculated as follows:

ũ(k = 0) = lim
R→∞

µ0m
2

4π
2π

∫ π

0

dθ

∫ γR/
√

cos2 θ+γ2 sin2 θ

σ

dr r2 sin θ
1− 3 cos2 θ

r3

= lim
R→∞

µ0m
2

2

∫ π

0

dθ sin θ(1− 3 cos2 θ) ln r|γR/
√

cos2 θ+γ2 sin2 θ
σ

=− µ0m
2

2

∫ π

0

dθ sin θ (1− 3 cos2 θ) ln

√
cos2 θ + γ2 sin2 θ

=



−µ0m
2

2

[
2

3
+

2

γ2 − 1
− γ

(γ2 − 1)3/2

(
sinh−1

√
γ2 − 1 + tanh−1

√
γ2 − 1

γ2

)]
, γ > 1.

0, γ = 1.

−µ0m
2

2

[
2

3
+

2

γ2 − 1
+

γ

(1− γ2)3/2

(
sin−1

√
1− γ2 + tan−1

√
1− γ2

γ2

)]
, γ < 1.

(B4)

where γ = RaspRsh. Apparently, the k = 0 Fourier mode depends on the shape of systems, namely the aspect ratio γ.
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2. Deformed systems

When k 6= 0, the Fourier transformation is shape independent. For the k = 0 mode, however, the Fourier transform
of the deformed system is in general different from the undeformed one, due to the dependence on the sample shape.
To calculate the correction, we first clarify how a deformation F modifies the integration via∫

Ω(r,θ,φ)

d3r
r2 − 3z2

r5
→
∫

Ω′(r,θ,φ)

d3r
r2 − 3z2

r5
, (B5)

where the prime indicates that the region of integration has been changed according to the deformation. Then, we
recover the original shape of the system by changing the variables via r′ = F · r where the center dot · denotes matrix
multiplication, and subsequently, rewriting the integration as∫ π

0

dθ

∫ 2π

0

dφ

∫ γRc/
√

cos2 θ+γ2 sin2 θ

σ′(θ,φ)

dr
r2 sin θ (x′2 + y′2 − 2z′2)

r′2
=

∫ π

0

dθ U(θ), (B6)

while the boundaries of integration region stemming from the hard-core repulsion must be modified accordingly. We
note that the differential d3r = dr r2 sin θ remains unchanged because |detF| = 1. Also note that F ≡ dr′/dr. Then
the above integration can be performed up to the second order of {εi} with straightforward algebra, which has been
performed using Mathematica96. Here, with

U0(θ) = − sin θ − 3 sin 3θ

16
ln (cos2 θ + γ2 sin2 θ), (B7)

we write the integrand in Eq. (B6) as

U(θ) = U0(θ) + ∆U(θ, {εi}), (B8)

where ∆U is the correction due to deformation.
First, for stretches (compressions) along the x-axis, combined with compressions (stretches) along the y-axis asso-

ciated with λ1, ∆U reads

∆U(θ, ε1) = − ε21
128

sin3 θ[24 + 32 cos 2θ + 72 cos 4θ + (99 + 180 cos 2θ + 105 cos 4θ) ln (cos2 θ + γ2 sin2 θ)]

≡ ∆U1(θ, ε1). (B9)

At the same time, the correction stemming from the deformation associates with λ2 are already reflected in Eq. (B4),
as we have calculated the values of um(k = 0) for arbitrary aspect ratios. Because of the uniaxial symmetry of the
magnetic dipolar interaction, the correction due to the shear deformations in the xy-plane takes the same form as
Eq. (B9), namely, ∆U(θ, ε5) = ∆U1(θ, ε5). Next, the correction due to the shear deformations in the yz-plane is given
as

∆U(θ, ε3) =
ε23

256
[36 sin 3θ + 28 sin 5θ − 72 sin 7θ + (15 sin θ − 27 sin 3θ + 45 sin 5θ − 105 sin 7θ) ln (cos2 θ + γ2 sin2 θ)]

≡∆U3(θ, ε3). (B10)

Due to the symmetry, we obtain ∆U(θ, ε4) = ∆U3(θ, ε4) for the shear deformation in the xz-plane. Now we turn to
the deformations involving rotations. Again due to the uniaxial symmetry, the corrections due to the rotations in the
xz- and yz-planes are identical with each other, reading

∆U(θ, ε6) =
3ε26
32

(sin θ − 3 sin 3θ) ln (cos2 θ + γ2 sin2 θ)

≡∆U6(θ, ε6). (B11)

For the off-diagonal terms, the form of ∆U is simply given as the sum of two deformations, except for the cases of
C36 and C47, in which the correction terms are given by

∆U(θ, ε3, ε6) =∆U3(θ, ε3) + ∆U6(θ, ε6)

+
ε3ε6
128

[28 sin θ + 18 sin 3θ − 42 sin 5θ + (6 sin θ + 45 sin 3θ − 105 sin 5θ) ln (cos2 θ + γ2 sin2 θ)]

≡U36(θ, ε3, ε6), (B12)
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and

∆U(θ, ε4, ε7) = ∆U36(θ, ε4, ε7). (B13)

The appearance of the additional correction terms of ε3ε6 and ε4ε7 is the direct consequence of the uniaxial symmetry
underlying the magnetic dipole-dipole interaction. Such corrections correspond to the only nonzero mixing terms
associated with the shear deformation and the rotation in any plane parallel to the anisotropy axis of uniaxial
systems, namely the coefficient D2 in Ref. 48. Moreover, equivalently to elastic constants as discussed in Appendix A,
the corrections to ũ(k = 0) associated with mixing in the second order do not depend on nonlinear corrections in the
deformation gradient F. For the incompressibility constraint, they only appear at higher orders.

Appendix C: Fourier transform of the anisotropic pseudospring potential

When k = 0, the Fourier transformation can be performed analytically. In cylindrical coordinates, it reads

ũpseudo(k = 0) =2π

∫ RaspRc

−RaspRc

dz

∫ √R2
c−z2/R2

asp

0

dρ ρ

[
1

2
kel

(√
ρ2 + z2 − a

)2

− u0

]

=2π

∫ RaspRc

−RaspRc

dz

[
1

8
kelρ

4 − 1

3
kela(ρ2 + z2)3/2 +

1

2
ρ2

(
1

2
kelz

2 +
1

2
kela

2 − u0

)]√R2
c−z2/R2

asp

0

=4π

∫ RaspRc

0

dz

[
1

8
kel(R

2
c − z2/R2

asp)2 − 1

3
kela(R2

c − z2/R2
asp + z2)3/2 +

1

3
kelaz

3

+
1

2

(
1

2
kelz

2 +
1

2
kela

2 − u0

)
(R2

c − z2/R2
asp)

]
, (C1)

which can be evaluated straightforwardly, except for

∫ RaspRc

0

dz (R2
c − z2/R2

asp + z2)3/2 − z3 =
1

8
R2

aspR
4
c(3 + 2R2

asp) +
3

8
RaspR

4
c

sinh−1
√
−1 +R2

asp√
−1 +R2

asp

. (C2)

Altogether, we obtain

ũpseudo(k = 0) =



2π

[
1
15Rasp(2 +R2

asp)kelR
5
c − 1

4

(
R2

asp +
Rasp sinh−1

√
−1+R2

asp√
−1+R2

asp

)
kelaR

4
c

+ 2
3Rasp

(
1
2kela

2 − u0

)
R3
c

]
− C0, Rasp > 1,

4π
[

1
10kelR

5
c − 1

4kelR
4
ca+ 1

3R
3
c

(
1
2kela

2 − u0

)]
− C0, Rasp = 1,

2π

[
1
15Rasp(2 +R2

asp)kelR
5
c − 1

4

(
R2

asp +
Rasp sin−1

√
1−R2

asp√
1−R2

asp

)
kelaR

4
c

+ 2
3Rasp

(
1
2kela

2 − u0

)
R3
c

]
− C0, Rasp < 1,

where

C0 ≡ 4π

[
1

10
kelσ

5 − 1

4
kelσ

4a+
1

3
σ3

(
1

2
kela

2 − u0

)]
. (C3)
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When k 6= 0, we have

ũpseudo(k) =

∫ RaspRc

−RaspRc

dz

∫ √R2
c−z2/R2

asp

0

dρ

∫ 2π

0

dφ ρ

[
1

2
kel

(√
ρ2 + z2 − a

)2

− u0

]
e−ik·r

−
∫ σ

0

dr

∫ π

0

dθ

∫ 2π

0

dφ r2 sin θ

[
1

2
kel(r − a)2 − u0

]
e−ik·r

=4π

∫ RaspRc

0

dz

∫ √R2
c−z2/R2

asp

0

dρ ρ

[
1

2
kel

(√
ρ2 + z2 − a

)2

− u0

]
cos (kzz) J0

(
ρ
√
k2
x + k2

y

)
− 2π

k5

[
4kelk +

{
kel(−4 + 6σ)k − kel(σ

3 − 2σ2 + σ)k3 + 2u0σk
3
}

cos kσ

+
{
−6kel + kel(1− 4σ + 3σ2)k2 − 2u0k

2
}

sin kσ
]
. (C4)

We implemented the double integration in the third line using the Cubature package97.
We recall our assumption and observation underlying the mapping onto the pseudo-spring system that the inter-

action does not depend much on the precise location of the boundaries of the Wigner-Seitz cells. This results from
the localization of the peaks in the density profiles mainly in the center of the cells49. Therefore, in contrast to the
magnetic dipole-dipole interaction, we simply use the same value of ũpseudo(k) obtained for the undeformed geometry
also for the deformed systems.
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70S. Goh, H. Löwen, and A. M. Menzel, Phys. Rev. B 106, L100101
(2022).

71M. M. Mehrabadi and S. C. Cowin, Q. J. Mech. Appl. Math. 43,
15 (1990).
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20, 15037 (2018).
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