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Quantum computers and simulators promise to enable the study of strongly correlated quantum
systems. Yet, surprisingly, it is hard for them to compute ground states. They can, however, ef-
ficiently compute the dynamics of closed quantum systems. We propose a method to study the
quantum thermodynamics of strongly correlated electrons from quantum dynamics. We define
time-averaged classical shadows (TACS) and prove it is a classical shadow(CS) of the von Neumann
ensemble, the time-averaged density matrix. We then show that the diffusion maps, an unsupervised
machine learning algorithm, can efficiently learn the phase diagram and phase transition of the one-
dimensional transverse field Ising model both for ground states using CS and state trajectories using
TACS. It does so from state trajectories by learning features that appear to be susceptibility and
entropy from a total of 90,000 shots taken along a path in the microcanonical phase diagram. Our re-
sults suggest a low number of shots from quantum simulators can produce quantum thermodynamic
data with a quantum advantage.

I. INTRODUCTION

Simulation of strongly correlated electrons in the con-
text of quantum chemistry and condensed matter physics
is one of the potential areas in which quantum computers
will have a significant advantage over their classical coun-
terparts [1–3]. Strong interaction between the ostensibly
simple electrons can give rise to novel phases, including
high-temperature superconductivity [4, 5], strange metal-
lic behavior[6], fractional excitations [7], and quantum
spin liquids[8]. Condensed matter physics aims to un-
derstand these novel behaviors by studying their phase
diagrams and phase-defining features. However, failure
of perturbation theory and exponential scaling of the
Hilbert space for strongly correlated electrons presents
a formidable challenge to classical simulation methods
such as exact diagonalization, density matrix renormal-
ization group(DMRG) [9–11], quantum Monte-Carlo [12]
and dynamical mean-field theory[13]. Whereas, this same
challenge provides an exciting opportunity for near-term
quantum computers.

Harnessing the power of a quantum computer to sim-
ulate quantum systems [14] requires (i) algorithms that
can be executed in a reasonable time and (ii) the abil-
ity to learn from quantum experiments without expo-
nentially many measurements. Studying the phases via
ground state preparation is a QMA-complete problem
[15–19], which cannot be carried out in a reasonable
time, even with quantum resources. However, perform-
ing dynamics on a quantum state is known to be a BQP-
hard problem [20, 21], possible within polynomial time.

∗ These authors contributed equally.

Likewise, it has been shown that shadow tomography[22]
methods such as classical shadows(CS)[23–25] are effec-
tive at predicting properties using very few measure-
ments. Thus, if we could combine dynamics simulations
and classical shadows, we would have an efficient algo-
rithm to simulate condensed matter.

We need to prepare low-energy initial states to use dy-
namics to simulate condensed matter and exploit quan-
tum ergodicity [26]. Although preparing ground states
of local Hamiltonians on a physical lattice is a challeng-
ing problem on a quantum device, it is always possible
to prepare some low-energy state with a constant-depth
circuit [27, 28]. Ergodicity then provides a link between
statistical averages and time averages obtained from the
dynamics of the low-energy state. It is important that
the observables of interest, such as the order parame-
ter, equilibrate before the qubits decohere. Nevertheless,
rapid equilibration for most local observables is a fea-
ture shared by many interacting quantum systems[29–
31]. Thus, equilibrium dynamics of low-energy states ap-
pears to be a promising route to studying equilibrium
quantum phases and phase transitions.

In this manuscript, we present an algorithm to identify-
ing phase diagrams and phase transitions of strongly cor-
related systems motivated by how physical quantum sys-
tems operate. It consists of i) identifying an initial state,
ii) generating state trajectories by evolving this state in
time, iii) using shadow tomography to convert the quan-
tum state to classical data, and iv) applying unsupervised
machine learning methods to discover phases of matter
and their phase transitions. A schematic overview of our
approach is shown in Fig. 1.

We obtain numerical results using diffusion maps [32,
33], an unsupervised machine learning(UL) algorithm
to learn phase features from unlabeled data. First, we
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FIG. 1. Schematic overview of our study. (a) Classical shadows(CS) of ground states and time-averaged classical shad-
ows(TACS) from dynamics of a time-reversal invariant GHZ state are generated using quantum simulation. (b) The classical
data from quantum simulation is then fed into diffusion map, an unsupervised machine learning algorithm to learn the phases.

benchmark diffusion maps on CS data from ground states
of a 100-qubit one-dimensional Transverse Field Ising
Model(1DTFIM) simulation. It identifies the magnetic
phase transition, its continuous nature, and the mag-
netization behavior as a function of the magnetic field
(see section II)—another machine-learning-from-CS suc-
cess story[23–25, 34]. Generalizing CS to time-averaged
CS (TACS), a shadow tomographic[22] representation of
the time-averaged density matrix[26], we then show, in
section III, on a 20 qubit 1DTFIM, diffusion maps also
identify the quantum critical region and cross-overs along
a path in the microcanonical phase diagram from a total
of 90,000 shots on state trajectories. Diffusion maps do
so efficiently by learning features from TACS that appear
to be susceptibility and entropy. Hence, we can efficiently
study the phases and phase transitions of strongly corre-
lated electrons by quantum-simulating state trajectories.

II. VON NEUMANN’S MICROCANONICAL
ENSEMBLE

A central goal of quantum computing is to build qubits
that are completely isolated from their environment.
While this is not the case today, the current development
of quantum error correction techniques[35, 36] suggests
it is in our future. Simulating quantum systems on a
quantum computer will therefore take place within the
microcanonical ensemble. But quantum microcanonical
dynamics, the evolution of a closed quantum system un-
der Schrödinger’s equation, does not directly produce the
microcanonical ensemble.

Following von Neumann’s 1929 paper[26, 37] on the
quantum ergodic theorem, it is straightforward to derive
a link between time averages and statistical averages us-
ing density matrices. Assuming we start from an initial
state |ψ(0)〉 and evolve under a Hamiltonian H via a
quantum circuit algorithm to |ψ(t)〉, the equilibrium dis-
tribution is captured by the von Neumann ensemble, the
time average of the density matrix

ρvn=
1

T

∫ T

0

dt|ψ(t)〉〈ψ(t)|−−−−→
T→∞

ω=
∑
n

Pn|ψ(0)〉〈ψ(0)|Pn,

(1)
where Pn is a projector onto the nth degenerate subspace
of the energy eigenvalues i.e. Pn =

∑
k∈n |Ek〉〈Ek|. The

T → ∞ limit, obtained in exponential time[26, 31, 38,
39], results in equilibration of all observables. Existence
of ρvn results in the ergodic principle that time averages
of observables should be captured by the statistical aver-
aging with respect to ρvn. Specifically, in the Schrödinger
picture,

〈O〉T =
1

T

∫ T

0

dt〈ψ(t)|O|ψ(t)〉 (2)

=
1

T

∫ T

0

dtTr (|ψ(t)〉〈ψ(t)|O) (3)

= Tr (ρvnO) −→
T→∞

Tr(ωO) (4)

where again the T → ∞ limit produces equilibration,
though here a presumably easier state to reach for it is
just necessary for ρvn and ω to be indistinguishable to
O[31]. Thus, the time-averaged density matrix is a link
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between time averages and statistical averages governed
by the von Neumann ensemble ρvn, a link that holds
regardless of whether the system equilibrates.

The connection to Boltzmann’s microcanonical ensem-
ble, obtained by quantizing the classical microcanoni-
cal ensemble, is achieved by taking the thermodynamic
limit, measuring only coarse-grained observables, requir-
ing non-degenerate energy level spacings/gaps, and con-
sidering “typical” initial states. The coarse-grained ob-
servables used by von Neumann were a commuting set
of generators of global symmetries, a restriction more
recently generalized[40] as part of the development of
quantum thermodynamic resource theories[41]. The typ-
ical initial states were the first recorded use of typical-
ity arguments[37]. Under these circumstances, von Neu-
mann obtained

ω ∼ ρmc =
1

Ω

∑
E<En<E+∆

|En〉〈En|. (5)

Namely, for the purposes of computing Tr(Oω), there
is no difference between using ω and ρmc, a maximally
mixed state within an energy window [E,E + ∆] con-
taining Ω states. Von Neumann extended this claim
to a second ensemble, ρ′vn = |ψ(T )〉〈ψ(T )|, that also
satisfies ρ′vn ∼ ρmc. The equivalence to ρmc is also
readily proven with the seemingly stronger requirement
that each eigenstate satisfies the eigenstate thermaliza-
tion hypothesis[42–44]. So, in this way, ρvn reproduces
ρmc.

A central new ingredient in von Neumann’s approach
to describing the microcanonical ensemble is the initial
state, which is never fully forgotten in quantum mechan-
ics. For each initial condition, it’s necessary to check
whether the time series was run long enough for rele-
vant observables to reach equilibrium . The same ob-
servable will equilibrate at different times depending on
the initial conditions. It turns out, this time depends on
the effective dimension given by deff = 1/

∑
p2
k, where

pk = | 〈ψ|Ek〉 |2[38, 39]. Here, the overlaps pk measure
how many energy eigenstates have a significant weight
in |ψ〉. Remarkably, a large effective dimension results in
rapid equilibration. Furthermore, there is a bound on the
equilibration time given by the second largest pk if it is
significantly smaller than 1/deff[38]. The distribution of
the pk’s likely also affects equilibration times[45]. These
arguments suggest we choose initial conditions that ex-
hibit a small overlap with most energy levels and or a
macroscopic occupation of a single energy level.

Because we will use a machine learning method as part
of our study of von Neumann’s microcanonical ensemble,
we need to compare it to what we already know to val-
idate the approach. In the next section, section III, we
will turn to a CS data-driven ground state before contin-
uing to our TACS data-driven thermodynamic study in
section V.

III. GROUND STATE DATA

To verify our approach to phase classification and
phase-defining feature identification, we first apply it to
ground states of the ferromagnetic 1DTFIM defined by
the Hamiltvon neuonian:

H1DTFIM = −
∑
〈i,j〉

ZiZj + hx
∑
i

Xi, (6)

where 〈.〉 denotes nearest neighbors, Zi is the Pauli−Z
operator, and hx is a parameter proportional to the trans-
verse magnetic field. At zero temperature, this model
has a ferromagnetic phase for |hx| < 1, and a paramag-
netic phase for |hx| > 1. The ground state study uses
diffusion maps to detect the second-order phase tran-
sition at hx = 1 for a 100 site 1DTFIM. The ground
states were generated using density matrix renormal-
ization group (DMRG) [9–11] with ITensor package[46].
Training datasets were generated using two kinds of mea-
surements on these ground states- (i) computational basis
measurements to obtain the Z dataset and (ii) measure-
ments on a random Pauli basis to obtain the CS dataset.

A. Classical Shadows

Obtaining any useful information from a quantum
computer requires performing measurements on a quan-
tum state, which is destructive to the quantum informa-
tion by nature. Since the dimension of the Hilbert space
increases exponentially in the number of qubits, a naive
strategy to learn the state requires an exponentially large
number of copies. Aaronson[22] introduced an alterna-
tive method using the notion of shadow tomography, an
approximate classical description of the quantum state,
in which M properties of a quantum state can be esti-
mated with error ε by only O(Mε2 ) copies of the state. We
can think of a shadow as an approximation of a quan-
tum state ρ by summing over measurement outcomes x,
obtained by performing measurements on bases b for a
quantum state x, i.e.

S[ρ] =
∑
b,x

P (b)Pb,xρPb,x, (7)

where Pb,x is a projector onto the measurement outcome
x on basis b, and P (b) is the probability of choosing b.

Based on this notion, Huang et al.[24, 25, 47] devel-
oped an algorithm called classical shadows and showed
that it is highly successful at learning the properties of a
many-body system. Two kinds of measurement protocols
were proposed to construct classical shadows- (i) random
Clifford measurements on the entire Hilbert space; (ii)
random single-qubit Pauli measurements. Protocol (ii)
results in very shallow measurement circuits and thus is
more suitable for the NISQ-era[48] hardware. After
measuring each of the qubits in some random Pauli basis
X, Y or Z with outcomes ±1, the post-measurement
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FIG. 2. Diagrammatic description of classical shadows showing a linear relationship between SN [ρ] and estimator σN [ρ] ≈ ρ.
(a) The full-density matrix ρ can be approximated by summing over reduced classical shadows with a coefficient that grows
exponentially in the number of remaining qubits. (b) A classical shadow SN [ρ] is obtained by summing over N measurement
outcomes on random Pauli bases. For a given N , a reduced density matrix, that involves smaller coefficients in the expansion,
can be approximated more accurately compared to the full density matrix.

wavefunction is given by the product state
∣∣s(n)

〉
=⊗L

l=1

∣∣∣s(n)
l

〉
. Here,

∣∣∣s(n)
l

〉
∈ {|0〉, |1〉, |+〉, |−〉, |i+〉, |i−〉}

is a Pauli basis state to which the lth qubit has collapsed.
The classical shadow SN [ρ] is obtained by summing over
N such randomized measurement outcomes as follows
(also see Fig. 2(b))

SN [ρ] =
1

N

N∑
n=1

∣∣∣s(n)
〉〈

s(n)
∣∣∣ (8)

=
1

N

N∑
n=1

∣∣∣s(n)
1

〉〈
s

(n)
1

∣∣∣⊗ · · · ⊗ ∣∣∣s(n)
L

〉〈
s

(n)
L

∣∣∣ . (9)

The underlying quantum state ρ can be approximated
by adding the reduced classical shadows (see Fig. 2(a)).
This sum simplifies to the following expression from Ref.
[24, 25, 47]

ρ ≈ σN (ρ) =
1

N

N∑
n=1

σ
(n)
1 ⊗ · · · ⊗ σ(n)

L , (10)

where

σ
(n)
l = 3

∣∣∣s(n)
l

〉〈
s

(n)
l

∣∣∣− I. (11)

The definition of SN (ρ) presented above is different
from Refs. 24 and 47 which defines it to be the dataset

of shots itself and not the density matrix obtained from
these shots. But both definitions are complete for Fig. 2
(whose derivation from tensor network diagrams is pre-
sented in Appendix A) shows the density matrix SN (ρ)
defined above is linearly related to the estimator σN (ρ)
of the quantum state ρ obtained by Refs. 24, 25, and 47.
Hence, the two definitions are informationally equivalent.

Although estimating the exact density matrix requires
N →∞, we still desire to predict various linear as well as
nonlinear functions of ρ (e.g., Tr(Oρ) and Tr(ρlog(ρ)) re-
spectively). This can be achieved with N ∝ log(L)4k/ε2

copies of the state, where k is the locality of opera-
tor O [34]. It was shown in Ref. [24] that classical
machine learning algorithms can efficiently predict the
ground state properties of gapped Hamiltonians in fi-
nite spatial dimensions after learning the classical shad-
ows from a training set. An example of interest is
classifying the quantum phases of matter. Classifying
the symmetry-breaking phases is conceptually simple be-
cause it involves calculating tr(ρO) for some k-local ob-
servable O, such that tr(ρO) ≥ 1 ∀ ρ ∈ phase A and
tr(ρO) ≤ −1 ∀ ρ ∈ phase B.

In contrast to classifying symmetry-breaking phases,
capturing continuous phase transitions and classifying
topological phases involves nonlinear-in-ρ observables
like critical exponents and entropy, which are harder to
estimate than linear observables. Learning such nonlin-
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ear functions requires an expressive ML model. A cen-
tral object in kernel-based ML is the kernel function, a
local similarity measure in the feature space where the
samples live. Ref. [24] proposed a kernel based on map-
ping from classical shadows to a high-dimensional feature
space that includes the polynomial expansion of many-
body reduced density matrices. Learning nonlinear func-
tions requires access to k-body reduced density matrices,
where k may be large, but with enough shots, classical
shadows can accomplish this.Using such a kernel, Ref.
24 found a rigorous guarantee that a classical ML algo-
rithm can efficiently classify phases of matter, including
the topological phases. We will employ this kernel to
study the continuous phases transition in the 1DTFIM.

B. Machine Learning Method: Diffusion Maps

Let’s now turn to the final step in our approach: apply-
ing an unsupervised machine learning method called dif-
fusion maps [32, 33] to extract features from the shadow
tomography data. A diffusion map is a nonlinear di-
mensionality reduction technique that relies on learning
the underlying manifold from which the data points have
been generated. Recently, this method was used to iden-
tify phases in systems with complex order parameters,
which are difficult to learn using linear methods (such
as principal component analysis (PCA)[49]). Examples
of such phase identification studies include: topologi-
cal phases and phase transitions [50], incommensurate
phases, and many-body localized phases in quantum sys-
tems [51].

In the application of diffusion maps, we imagine a
random walk on a dataset X (x1, x2, . . . , xN ), where the
xn are estimators σN (ρ) of density matrices ρ obtained
from different points in the phase diagram. The tran-
sition probability P (j\i) of jumping from xi to xj in a
single “timestep” is proportional to the kernel function
k(xi, xj), a non-negative similarity measure between the
two data points. Here we use the classical shadow kernel
function prescribed in [24], defined to be for two points
x and x̃ in the dataset

k(shadow)(x, x̃) = k(shadow)(σN (ρ), σN (ρ̃))

= exp

 N∑
n,n′=1

τ

N2
exp

(
γ

L

L∑
l=1

Tr
[
σ

(n)
l σ̃

(n′)
l

]) . (12)

This kernel measures the local similarity between x and
x̃ by comparing the trace distance between the CS esti-
mates of all k-reduced density matrices. For the diagonal
components (x = x̃) of the kernel matrix, the trace dis-
tance between the k-reduced density matrices is the 2nd

Renyi-entropy. We then construct a transition probabil-
ity matrix P such that

P (j\i) =
k(shadow)(i, j)∑
l k

(shadow)(i, l)
. (13)

After t timesteps of the random walk, the transition prob-
abilities are given by the matrix P t, where P tij gives the
probability of going from xi to xj in t timesteps, it’s a
sum of the probabilities associated with all of the possible
paths to go from xi to xj in t timesteps. As t increases,
the diffusion process unfolds, where data points situated
along the overall geometric structure of the dataset be-
come more strongly connected because of the abundance
of strongly connected intermediate points along the way.

Given this random walk, we can define a ‘diffusion dis-
tance’ to quantify this idea of connectivity between two
data points:

Dt(xi, xj)
2 =

N∑
m=1

|P tim − P tmj |2, (14)

where the bigger the diffusion distance, the weaker the
connection between them. This allows us to map the data
points onto a new ‘diffusion space’ so that the diffusion
distance in data space is equal to the Euclidean distance
in this new space. Following Ref. 32, we will do so with
the map:

xi → yi =
[
λt1ψ1(i), λt2ψ2(i), · · · , λtN−1ψN−1(i)

]
(15)

where λk and ψk are eigenvalues and right eigenvectors
of the matrix P t, ψk(i) is the i-the element of the k-th
eigenvector. Then the diffusion distance is,

D2
t (xi, xj) = |yi − yj |2 =

N−1∑
k=1

(λtk)2 [ψk(i)− ψk(j)]
2
.

(16)
Plotting data in this new space provides an intuitive ge-
ometric picture of the data manifold.

The map provides several features we can exploit when
interpreting the data. In equations (15) and (16) the
k = 0 component is ignored because the leading eigen-
vector, ψ0(i) = 1√

N
, λ0 = 1, is constant for all i by

the Perron-Frobenius theorem. But this constant eigen-
vector impacts the other eigenvectors: We note add a
constant term ψk(i) → ψk(i) + C to all other eigenvec-
tors and still preserve the diffusion distance. Addition-
ally, equation (16) suggests a dimensionality reduction,
as the terms with bigger λk will dominate the sum in-
creasingly as t → ∞. So plotting the data xi in the
truncated space [λt1ψ1(i), λt2ψ2(i), λtM . . . , ψM (i) with M
determined by keeping only the significant eigenvalues
λm � λM+1, implies they are accurately separated by
distance Dt(xi, xj). Lastly, we see that t is arbitrary.
Choosing different t rescales the lengths of each compo-
nent of the vector y. Hence, the data exists on a hy-
perplane in Euclidean space up to a certain shift in the
origin and a one-parameter rescaling of the axes.

So, using the properties of the diffusion space, we
can define diffusion coordinates dc1(i) = A(ψ1(i) +
C),dc2(i) = B(ψ2(i) +C), . . . that map the data xi onto
a Euclidean space that through the choice of constants
A,B,C, . . . allow us to interpret the coordinates of each
point and visualize the geometry of the data.
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FIG. 3. Learning phases from ground state (CS and Z) data.
(a) and (c) show the 10 largest eigenvalues of the P -matrix
(excluding the trivial k = 0) for (a) Z-data and (c) CS-
data datasets. (b) Z-data points in 5D diffusion space vi-
sualized in 2D, using metric MDS. Clustering clearly emerges
based on the two phases of the model. (d) CS-data points in
2D diffusion space, the figure reveals the symmetry-breaking
phase transition. In this case, there is a direct correlation of
relevant parameters, the z-magnetization and the hx-values,
with machine-learned diffusion coordinates dc1 and dc2 re-
spectively. Notice the CS-data shows one cluster in (d) with
non-trivial geometry associated with the critical point, while
the Z-data shows two clusters in (b) with trivial geometry and
no understanding of the critical point.

IV. PHASE CLASSIFICATION OF GROUND
STATES

For the ground state study, we used two datasets,
one the computational basis measurements and the other
generated via CS tomography. The first (Z-dataset) con-
tains qubit measurements only along the Z-axis [in Eq. 7,
P (b) = 1 for b = Z, P (b) = 0 for all other b]. While the
other (CS-dataset) has randomized Pauli measurements
using the CS method [P (b) = 1

3 for b ∈ {X,Y, Z}]. Both
of them contain 200 100-spin 1DTFIM ground state shots
for each state obtained from different hx values (hx rang-
ing from 0.1 to 100). Since the Z-magnetization is the
order parameter for TFIM, the UL algorithm should be
able to learn the phases of the model from the Z-dataset.
Using this knowledge, we compare the Z-dataset and the
CS-data to see if the UL algorithm can successfully iden-
tify phases in each case and if so how it does so.

By deploying diffusion maps armed with the shadows
kernel function (Eq. 12) utilized for both data sets as
our UL model, we are able to identify the phases from
both the Z data and the CS data. In both cases, we set
τ = 1, γ = 1 in Eq. 12. For the Z data, we chose the
first five non-trivial eigenvectors as the diffusion space
basis vectors because the P -matrix (Eq. 13) eigenvalue

spectrum shows the first five eigenvalues to be larger than
others (Fig. 3(a)). Mapping the states from Z data onto
this five-dimensional diffusion space, we found that clear
clustering emerges based on the phases of the states. We
used multidimensional scaling (MDS), a dimensionality
reduction method [52] that seeks to preserve point-to-
point distances, to project these states onto a 2D plane.
We see a clear separation of the two phases even on this
2D reduced space (Fig. 3(b)), indicating the machine’s
success in identifying the two phases.

From the CS data, the unsupervised learning algorithm
was also able to learn about the phases and the underly-
ing parameters of the model. We can see in Fig. 3(c) that
the P matrix has two non-trivial eigenvalues larger than
the rest. The eigenvectors corresponding to these two
eigenvalues are the basis vectors of the reduced diffusion
space. Figure (3(d)) shows all of the ground state clas-
sical shadows projected onto this two-dimensional plane.
It shows three groups- the top left and the bottom left
are the all-up and all-down states, whereas the group on
the center right are states in the disordered phase. This
closely resembles the spontaneous symmetry-breaking
phase transition of 1DTFIM[53]. The learned diffusion
coordinates (dc1 and dc2) have direct correlations with
the magnetization < Mz > and the field values hx re-
spectively, as shown in appendix C (Fig. 8).

The above-mentioned clustering is dependent on the
number of snapshots N for a given state. However, the
dimensionality reduction and the subsequent clustering
will settle down after a minimum value of N has been
reached (Nc). Increasing the value of N beyond that
point does not change the results in any significant way.
We find Nc (Z data) < Nc (CS data), so it is easier for
the algorithm to learn the phase space structure of the
Z-data (hence fewer snapshots are required) than the CS-
data.

A striking feature of the diffusion map results pre-
sented in Fig. 3 is the geometry it reveals about the
data. In the case of Z-data, it finds the data is separated
into two distinct clusters(Fig. 3(b)) while in the CS-data
case it finds only one cluster but that this cluster has
a non-trivial geometry with three curves meeting at the
critical point (Fig. 3(d)). This geometry is directly a
consequence of visualizing of the data space through the
lens of the kernel function that defines distances between
data points via Eqs. 13 and 14. Another kernel function
might see the same CS-data as separate clusters. Hence,
it is a striking feature of the kernel of Eq. 12 that it can
capture the full geometry of phase defining features in
the TFIM model.

V. MICROCANONICAL DYNAMICS OF THE
1DTFIM

Despite the successful identification of the ground state
phases with the CS+ML model, the fact remains that
the problem of calculating ground-states is a QMA-hard
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FIG. 4. A sketch of the expected 1DTFIM phase diagram at
finite T and finite N as a function of internal energy E and
transverse magnetic field hx. This diagram is a modification
of the canonical ensemble representation of the phase diagram
in Ref. 54, adapted to the microcanonical ensemble. The
spectrum is mirror symmetric about E = 0 due to the chiral
symmetry C = ZY ZY ZY...

problem [18]. We now turn to an algorithm built us-
ing Schrödinger dynamics, a known BQP class algorithm,
that aims to reveal the microcanonical phase diagram as
a proxy for a ground state study.

Consider now Fig. 4, a sketch of the thermodynamic
phase diagram of the 1DTFIM relating internal energy
E = 〈ψ(0)|Ĥ|ψ(0)〉 to the transverse magnetic field hx
inspired by Ref. [54]. This phase diagram is relevant for
a microcanonical dynamics study governed by the en-
tropy S(E, hx). It exists even for a simulation over a
finite time T and with a finite number of spins N and
a specific choice of initial conditions but with finite T ,
finite N , and initial choice-dependent errors that round
phase transitions. We present in this figure our expecta-
tions for the phase diagram in this context, pointing out
phase transitions where the phase diagram will sharpen
in the thermodynamic limit. We further highlight the
path through the phase diagram carried out by our sim-
ulations below, showing that we expect it to cross the
quantum critical region and so be sensitive to the phase
diagram at a rounded level even in the long-T , large-N
limit.

To reveal the phase diagram expected from micro-
canonical dynamics presented in Fig. 4, we need an
experimentally producible classical representation of the
quantum data obtained from a microcanonical dynam-
ics simulation. Noticing that the time-averaged integral
amounts to an expectation value of the pure state den-
sity matrix |ψ(t)〉〈ψ(t)| over the probability distribution
PT (t) = (1/T ) (Θ(T − t〉)−Θ(−t)), where Θ(x) is the
Heaviside step function, we see we can construct time-
averaged classical shadows(TACS) by the quantum chan-

nel

TACS [ρ] = lim
T→∞

∫
dt
∑
b,σ

PT (t)P (b)Pb,σ|ψ(t)〉〈ψ(t)|Pb,σ.

(17)
Hence by sampling the joint probability distribution
PT (t)P (b) to obtain (ti, bi), i = 1 . . . N , and then mea-
suring one shot σi from |ψ(ti)〉 in basis bi we obtain a
finite-shot TACS via

TACSN [ρ] =

N∑
i=1

|tibiσi〉〈tibiσi| (18)

This approach captures the power of CS tomography and
enables an experimental study of microcanonical thermo-
dynamics.

With this shadow tomography method in mind, we
ran quantum dynamics simulations of 1DTFIM using the
TDVP algorithm[55, 56] starting from the GHZ state

|ψ(0)〉 = |000···〉+|111···〉√
2

to generate TACS data from

500 randomly sampled dimensionless time values between
t = 10.0 to t = 20.0 and 187 randomly sampled hx field
values between hx = 0.1 to hx = 10.0. An example code
to generate TACS dataset for 1DTFIM is available in our
github repository [57]. These 187 TACS were the data
points with which we performed unsupervised learning
by constructing the 187 × 187 kernel matrix using the
shadow kernel in equation (12) and then using diffusion
maps for dimensionality reduction.

A key element needed to obtain reasonable results from
the above calculation is an initial state that equilibrates
within the chosen time window for observables of inter-
est that are accurately captured by the chosen method
of shadow tomography. In the above case, we started
from a GHZ state because it equilibrated efficiently for
local observables, as shown in Appendix C. Presumably,
this equilibration would occur even faster if we broke the
integrability of the 1D TFIM model by adding certain
additional terms to the Hamiltonian. Hence, up to possi-
bly finite size effects, thermodynamic observables in our
results should behave as expected.

Fig. 5 shows our results. The first two eigenvectors
were chosen as our diffusion space basis vectors because
as Fig. 5(inset) shows, those are the two dominant non-
trivial eigenvalues in the spectrum. The rest of the eigen-
vectors go to zero as the number of data points increases.
Projecting the states onto this two-dimensional diffusion
space, we see that the states all fall on a curve in this
hyperplane along which the value of hx increases mono-
tonically, and the inflection point neighborhood of the
curve coincides with the quantum critical region [see D 2].
Therefore, as in the ground state study, it is apparent
that the unsupervised learning algorithm was able to in-
fer two phases from the data via a single cluster with non-
trivial geometry. Presumably, taking paths through the
phase diagram closer to the critical point, we would see
the inflection point sharpen, leading to a singular point
in the data manifold at the critical point. However, un-
like the ground state study, it is not obvious what the
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FIG. 5. Phase identification from dynamics data. The eigen-
value spectrum (inset) obtained from diffusion maps shows
the two largest eigenvalues corresponding to the two dom-
inant diffusion coordinates dc1 and dc2 (the trivial point
k = 0, is not shown). The TACS data points largely fall
on a two-stranded curve parameterized by hx in this 2D re-
duced diffusion space. The quantum critical region (in green)
coincides with the inflection point neighborhood of the curve,
with points on the left strand belonging mostly to the or-
dered phase while points on the right strand belong to the
disordered phase.

two diffusion coordinates dc1 and dc2 correspond to. To
identify these, we need to study observables capable of
capturing the phase-defining features and see which cor-
relate with these learned coordinates.

As a preliminary exploration of phase-defining ob-
servables, a straightforward first approach is to check
whether the diffusion coordinates obey power laws con-
sistent with the known quantum critical point. In Fig.
6(a), we plot dc2, which diverges as it approaches the
critical point with critical exponents p− = 0.58 ± 0.05
and p+ = 0.7 ± 0.1. We have shifted the diffusion co-
ordinates by C = −0.0027 since the diffusion distance is
invariant under an overall shift of the origin as mentioned
in Sec. III B and this renders it positive. Remarkably,
this shift simultaneously renders both dc1 and dc2 posi-
tive. However, our errors in the exponents are hard to
estimate. Suppose we view the unknown variable C as
a Gaussian distribution. In that case, the corresponding
distribution of p± from our predictions is highly non-
Gaussian (see Appendix D 4). The closest known critical
exponent is ν = 1 [58] (see also wikipedia[59]). However,
we found that the observable that qualitatively matches
the diverging behavior at hx = 1 is xx component of the
susceptibility, which we define as:

χab =
1

L2

∑
ij

〈
σai σ

b
j

〉
, (19)

where σa ∈ {X,Y, Z} is a 2 × 2 Pauli matrix. This is
different than the usual definition obtained by summing
over the connected correlations. The resemblance be-

tween dc2 and susceptibility here is only qualitative, so
the critical exponents do not match. Since there are a
number of observables, such as χxx, χyy and χzz, that are
equally likely candidates to define the phases, we conjec-
ture that dc2 could be some combination of these.

This leaves the puzzle of determining dc1, which nei-
ther diverges nor shows a power law behavior. When
inverted, it appears qualitatively similar to the ZZ com-
ponent of the susceptibility (see Sec. D 3) but we turn
to calculate the 2nd Renyi entropy given the diagonal
components of the kernel function capture this quantity.
Entropy is the key thermodynamic potential of the micro-
canonical ensemble that certainly captures phase transi-
tions and from which all important phase-defining fea-
tures could be extracted. It is also known that the quan-
tum critical region features the interplay of equilibrium
and quantum fluctuations leading to the entropy being
maximized [54, 60]. Renyi entropy is a lower bound for
the von Neumann entropy and has the same limits—it
vanishes for pure states and reaches N for the maximally
mixed state. We do so by first computing the purity
using eqn 10 as follows

γ [ρ] = Tr
[
ρ2
]

(20)

≈ 1

N2

N∑
n 6=n′=1

Tr
[
σ

(n)
1 σ

(n′)
1

]
× · · · × Tr

[
σ

(n)
L σ

(n′)
L

]
,

(21)

then the Renyi entropy is S2 = − log2 γ.
Figure 6(b) presents the Renyi entropy as calculated

from TACS shots on a L = 10 qubit system using exact
diagonalization. We use Bayesian inference, as detailed
in appendix E (see also Ref. 61) to extract the large-n,
large-N predictions with N = 100, 000 shots per hx value
and 35 hx values between hx = 0.1 and hx = 3.3. The
range of time sampled for this particular calculation was
between t = 5 and t = 25. The results show clear evi-
dence that entropy is maximized in the quantum critical
region around hx = 1 as expected from Fig. 2 of [54]. Er-
ror estimates for these values were obtained in Ref. 62,
and given by:

N ≥ 4n+1γ

ε2δ
(22)

Where 1− δ is the probability of obtaining a good TACS
dataset and ε is the additive error. For a δ = 0.33 (67
percentile), and N = 100, 000 shots, we find an additive
error for the n = 5 entropy curve plotted in Fig. 6 at
hx = 1.0 of S2/n ≈ 0.5 ± 0.24. This is larger than the
observed error shown via error bars in Fig. 6 but only
within a factor of order 1. Hence, by using 3, 300, 000
shots, we have estimated the thermodynamic entropy as
a function of hx that reproduces the expected maxima at
the critical point.

Given an estimate of the entropy, we lastly turn to
plotting it alongside dc1 to discover that it is highly cor-
related with this observable. Although dc1 was calcu-
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FIG. 6. Interpretation of dc1 and dc2 for microcanonical dy-
namics of 1DTFIM. The divergent behavior of dc2 qualita-
tively matches the xx component of the susceptibility, com-
puted using 100k shot TACS data for a 10-site 1DTFIM, de-
noted by orange circles (b) dc1 matches the Bayesian infer-
ence estimate for the second Renyi entropy per site (S2/n)
in the thermodynamic limit (n = ∞). Bayesian inference is
performed on n-body entropies for n = 1− 5, also computed
using the 10-site dataset.

lated using only 500 shots per hx value, orders of mag-
nitude less than the number of shots needed for accu-
rate Bayesian inference estimation, the diffusion process
is able to combine information across different hx values
without any supervision.

In summary, the diffusion map was able to learn phase-
defining features from TACS and used these features to
map the data points as a function of the model param-
eter hx onto a curve in the two-dimensional plane with
geometry that reveals the quantum phase transition.

VI. OUTLOOK

In this paper, we have identified an approach to study-
ing quantum thermodynamics on a quantum computer
in a way that is suitable for studying quantum materials,
their phases, and their phase transitions. This approach
consists of

(i) preparing a low-depth initial state for which rele-
vant observables are observed to equilibrate within
the coherence time of the quantum computer,

(ii) time evolving this state using a quantum algorithm

to a randomly chosen time point t within some time
interval,

(iii) extending shadow tomography methods to obtain
a physically useful representation of the von Neu-
mann ensemble such as TACS used in this paper,
and

(iv) employing an unsupervised machine learning
method to discover the phase diagram, with ker-
nel methods such as diffusion maps employing well
designed kernels showing promise.

Our approach parallels statistical mechanics calculations
on classical Hamiltonians, where a random initial state
is prepared, a Metropolis Monte-Carlo algorithm is run
beginning from this state, and data is collected and an-
alyzed using traditional observables and more recently
machine learning methods. Our results, demonstrating
the existence of a quantum phase transition and the abil-
ity to map out regions of the phase diagram by a careful
choice of initial conditions, show promise.

There are several resources needed to carry out the
microcanonical dynamics simulations. A key resource is
a low-energy state that equilibrates within the accessi-
ble time scale and can also be prepared easily. For lo-
cal Hamiltonians on physical lattices, we can always find
low-energy states which can be prepared with constant-
depth circuits [27]. Another resource to carry out dy-
namics simulations to a time T in which the relevant
local observables equilibrate (T = 25 in our simulations).
It allows one to exploit advances in variational time evo-
lution algorithms[63–65], which are especially suitable for
the NISQ era due to robustness to noise and ability to go
beyond the coherence time of quantum computers. Fi-
nally, we need the ability to perform time averages by
sampling the state |ψ(t)〉〈ψ(t)| at least at the Nyquist
rate determined by the bandwidth, which is linear in the
system size. We produced a TACS dataset consisting of
500 shots from the equilibrium dynamics starting from a
GHZ state at each of 187 points in the phase diagram;
these resources were all that were required for diffusion
maps to learn the phases and identify the phase transi-
tion for a 20-qubit system. Somewhat different resources,
a system size of L = 10, and N = 100, 000 shots at 33
points in the phase diagram, were required for Bayesian
inference to obtain reasonable estimates for the thermo-
dynamic entropy.

We believe these resources are significantly smaller
than those of other proposed methods for studying ther-
modynamics on quantum computers. For example, the
overhead from using ancillas as a heat bath in the ex-
isting methods to study thermodynamics on a quantum
computer [66–68] is not an issue with our approach. The
resources required also open up an exciting possibility of
employing new generation of quantum simulators [69, 70]
to study quantum thermodynamics as they too can sim-
ulate quantum dynamics and are capable of performing
randomized measurements. Finally, a possible direction



10

for future research would be to identify and benchmark
a strongly interacting system with initial states that will
yield quantum advantage in the near term.

ACKNOWLEDGMENTS

We thank Mikhail Lukin, Katherine Van Kirk, Nishad
Maskara, Yanting Teng, Subir Sachdev, Daniel Parker,
and Anurag Anshu for useful discussions. This material
is based upon work supported by the National Science
Foundation under Grants No. OAC-1940243 and OAC-
1940260.

Appendix A: Diagramatic understanding of classical
shadows

In this section, we will develop a diagrammatic under-
standing of the classical shadows. We will work in the
superoperator formalism where the indices of the density
matrix ρij are grouped together to make a vector |ρ〉〉
and the product AρB translates to an operator A⊗ BT
acting on the vector |ρ〉〉.

In general, we can view the outcomes obtained from
many classical shadows measurements on the same pre-
pared state ρ as defining an ensemble of states S [ρ] where

S[ρ] =
∑
b,x

P (b)Pb,xρPb,x =

[∑
b,x

P (b)Pb,x ⊗ PTb,x
]
|ρ〉〉,

(A1)
and Pb,x is the projector in basis b onto qubit state |x〉.
To break this down into manageable parts, let’s start
from the one qubit case and work our way up to N qubits.

One qubit case. In the one qubit case, we generate clas-
sical shadows samples for bases b ∈ {X,Y, Z} with uni-
form probabilities i.e. P (b) = 1/3. We can thus express
the one-qubit version of A1 with the following diagram:

S [ρ] =
1

3

∑
b,x

Pbx ρ Pbx . (A2)

Using cap and cup notation, we can redraw this in the
superoperator form:

S[ρ] =
1

3

∑
b,x

Pbx

Pbx

ρ

(A3)

The highlighted box can be viewed as a superoperator
acting on the space of linear operators ρ. Remarkably,
this particular superoperator consisting of a product of

two projection operators simplifies substantially i.e.

∑
b,x Pbx

Pbx

=

[
+

]
. (A4)

They amount to the sum of an identity and a cup-cap
product. Using this simplification we recognize the one
qubit case as the depolarizing map

S [ρ] =
1

3

[
ρ +

]
, (A5)

where we further simplified using

ρ = 1 (A6)

Inverting, we can extract the original density matrix (full
tomography) via

ρ = 3 S [ρ] − (A7)

Going from diagrammatic results to equations gives

S [ρ] =
1

3
(ρ+ I) =⇒ ρ = 3S [ρ]− I, (A8)

which is a single-qubit depolarizing channel.
Two-qubit case. In the two-qubit case, the CS map of

Eq. A1 takes the form

1

9

∑
b,x

∑
b′,x′ Pb′x′

Pbx
ρ

Pb′x′

Pbx

. (A9)

Again, we can add cups and caps to express it in super-
operator form:

Pb′x′

Pbx

Pb′x′

Pbx

ρ . (A10)

This diagram shows that the two-qubit projection opera-
tors produce the same structure on each qubit as they did
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in the one-qubit case. Applying the same simplification
as before, we arrive at

1

9


ρ + ρ

+
ρ

+

 , (A11)

where again we used Tr [ρ] = 1. This expression amounts
to a simple sum of all possible reduced density matrices.
We can invert our diagram for the two qubit case by first
tracing over one of its qubits to get

S [ρ]
=

1

3

 ρ

+
]
. (A12)

This allows us to rewrite the reduced density matrices in
terms of the partially summed S[ρ] . Using this relation,
we then arrive at the inverse of the two-qubit classical
shadow

ρ = 9 S [ρ] − 3
S [ρ]

− 3
S [ρ]

+ .

(A13)

As for the one qubit case, we can convert our diagrams
back to algebraic expressions. The results of this two-
qubit case amount to the forward expression

S[ρ] =
1

9
(ρ+ I ⊗ Tr1 [ρ] + Tr2 [ρ]⊗ I + I ⊗ I) (A14)

and the inverse expression

ρ = 9S [ρ]− 3I ⊗Tr1S [ρ]− 3Tr2S [ρ]⊗ I + I ⊗ I (A15)

N -qubit case. The formulas we have derived for the one-
and two-qubit cases readily extend to N -qubits. They
are

S [ρ] =
1

3L

ρ+
∑
l

Trlρ+
∑
l 6=l′

Trll′ρ+ . . .+ I

 (A16)

for the forward map and for the inverse map

ρ = 3LS [ρ]− 3L−1
∑
l

TrlS [ρ]

+ 3L−2
∑
l 6=l′

Trll′S [ρ] + . . .+ (−1)LI, (A17)

where we have suppressed the presence of identity op-
erators that replace traced out regions for ease of nota-
tion. These expressions satisfy Tr[ρ] = 1 and S[ρ] ≥ 0.
The inverse map is not non-negative in general, but
should be for the density matrices resulting from this
map. Equation A17 may also be written as:

ρ =
1

N

N∑
n=1

L⊗
l=0

(3
∣∣∣b(n)
l ;σ

(n)
l

〉〈
b
(n)
l ;σ

(n)
l

∣∣∣− 1), (A18)

where l denotes the site-index and n denotes the shot-
index.

Appendix B: Symmetries of 1DTFIM

1. Z2 symmetry

The 1DTFIM is invariant under global flipping of the
z-component of the spin, the Z2 symmetry. This unitary
symmetry can be expressed as

S =
∏
i

Xi. (B1)

We can check that the symmetry operator S commutes
with the TFIM Hamiltonian i.e. [S, H1DTFIM] = 0. This
allows us to write H1DTFIM in block diagonal form with
each block corresponding to eigenvalues 1 (even parity)
and −1 (odd parity)of S. States in these sectors evolve
independently of each other. If we start in GHZ state

|GHZ〉 =
|00 · · · 0〉+ |11 · · · 1〉√

2
, (B2)

a time reversal even state, we remain in the even sector
under time evolution. Since the magnetization of this
state is 0, the magnetization will stay at this value for-
ever. Thus, equilibration of the order parameter is not
an issue. Since the 1DTFIM Hamiltonian is purely real,
it is symmetric under complex conjugation K, and con-
sequently the eigenvalues are also real. Hence, it is also
symmetric under T = SK i.e. time reversal symmetry.
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2. Chiral symmetry

The 1DTFIM is also symmetric under the following
chiral operator

C = ZY ZY · · ·ZY (B3)

We can check that C anticommutes with H1DTFIM i.e.
{C, H1DTFIM} = 0, so for every energy eigenstate E,
there exists an eigenstate with −E, which makes the
spectrum of 1DTFIM mirror symmetric about zero en-
ergy.

Appendix C: Equilibration from initial states

FIG. 7. Time evolution of 〈Z〉, 〈X〉 and 〈ZZ〉 for ferromag-
netic (all up) and GHZ (all up plus all down) states for 10 sites
and hx = 0.8. t ∈ [5, 25] (highlighted in orange) is the sam-
pling window used for generating the TACS data. The order
parameter 〈Z〉 for the ferromagnetic state doesn’t equilibrate
in this window

An important resource for studying microcanonical
phases using quantum dynamics is an initial state that
equilibrates within the time scale T accessible to a quan-
tum device. The initial state sets the energy and the
symmetry sector of the microcanonical ensemble result-
ing from time-averaging over [0, T ].

In figure 7, we present a numerical assessment of equili-
bration for some observables in the 1DTFIM. Specifically,
we plot the evolution of expectation values for operators
〈Z〉,〈X〉 and 〈ZZ〉 corresponding to two initial states:
the ferromagnetic (|00 . . .〉) and GHZ ( 1√

2
(|00 . . .〉 +

|11 . . .〉)) states respectively. We observe that the T -odd
operators such as Z do not equilibrate for the all-up state
within the sampling window whereas they are forced to
be 0 for the GHZ state by the T -symmetry. Likewise,
we find that T -even operators such as X, ZZ equilibrate
and are identical for both initial states, also due to the

T − symmetry (the ferromagnetic state is a superposi-
tion of T -even and T -odd states, and the expectation
value of T -even operator for a T -odd state yields 0). Fi-
nally, we observe all equilibrating observables equilibrate
within time scale of 5. For this reason, all of the dynam-
ics results presented in the main manuscript used this
numerical evidence time interval to [5, 25] (shown in the
highlighted region in Fig. 7 for time averages. Hence,
we find numerical evidence for equilibration of local ob-
servables, evidence that formed an important basis upon
which we carried out our dynamics simulations.

Appendix D: Interpreting diffusion maps

1. Learning physical parameters from 1DTFIM
Ground State Data

The UL model we implemented was able to unveil
the symmetry-breaking phase transition of 1DTFIM from
ground state CS data (Fig. 3(d)). It did so by generating
diffusion coordinates that are related to relevant param-
eters, the order parameter Mz, and the model parameter
hx of 1DTFIM. Fig. 8 shows the correlation between the
diffusion coordinates and these parameters.

(a) (b)

FIG. 8. Learning 1DTFIM model parameter and order pa-
rameter from ground state CS data. Correlation between (a)
dc1 and order parameter Mz and (b) dc2 and model param-
eter hx.

2. Quantum Criticality in TACS Kernel Matrix

The microcanonical phase diagram being studied here
has three characteristically distinct regions—namely, the
ordered phase, the quantum critical region, and the dis-
ordered phase. The quantum critical region, although
does not include the phase transition point, exhibits crit-
ical behavior characterized by singularity in the order
parameter and the response functions. This behavior
manifests itself in the feature space accompanying the
shadows kernel function [Eq. 12] as it contains the poly-
nomial expansion of the reduced density matrices [24]
and can be analyzed from the kernel matrix.

Figure 9 displays how the microcanonical phases re-
veal themselves in the kernel matrix. Figure 9(a) shows a
maximum in the diagonal elements of the kernel matrix
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(c)

(a) (b)

FIG. 9. The three distinct regions of the microcanonical phase
diagram depicted via the kernel matrix K. (a) shows the
diagonal elements ofK against their respective hx values. The
quantum critical region is inferred from this plot. (b) shows
three different rows of K, each belonging to a different region
in the microcanonical phase diagram. (c) portrays the full
matrix K itself, where the distinct regions (ordered, quantum
critical, and disordered) can be seen. (diagonal elements have
been ignored in (b) and (c) for better visualization.)

in the quantum critical region due to increased corre-
lation length. In the figure, we delineate the quantum
critical region in the neighborhood of this peak. Like-
wise, Fig. 9(b) and (c) demonstrate how the kernel
function between states behaves in different regions. The
ordered states have low entropy; hence, greater ”similar-
ity” among themselves makes the kernel function take
a higher value than the other regions, dropping sharply
as we go out of that region. The disordered states have
roughly uniform values for the kernel function with all
other states due to their high entropy, and a peak in the
critical region as discussed above. These character traits
of each of these regions help us identify them from the
kernel matrix. However, we don’t use the kernel matrix
for phase classification. We let the probabilities diffuse
and use the diffusion matrix and resulting diffusion coor-
dinates.

3. Qualitative similarity between dc’s and
susceptibility

Susceptibility is an important quantity of interest to
us because it diverges at the critical point. Although our
microcanonical dynamics takes place at an energy above
the ground state, we expect the signature of this diver-
gence to be present in the quantum critical region. With
the experience that diffusion coordinates correspond to
phase-defining observables in the case of ground states,

we plotted the the xx, yy and zz components of the sus-
ceptibility in Fig. 10 computed using the 100k shot TACS
dataset for the 1DTFIM to compare against dc1 and dc2.
Although χzz, a natural candidate for dc1, looks quali-
tatively similar to dc1 when inverted, we find that the
2nd Renyi entropy is a better fit. Similarly, χxx behaves
qualitatively similar to dc2 in sense that both are sharply
peaked at the critical value of hx = 1. However, they do
not share the same critical exponents, hence, we cannot
make as strong of a claim as for dc1.

0 1 2 3
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FIG. 10. xx, yy and zz components of the magnetic sus-
ceptibility for a 10-site 1DTFIM, computed using 10000 shot
TACS dataset.

4. Estimating The Critical Exponent from The
TACS Diffusion Coordinates

In Fig. 11(a) below, we see that the second diffusion
coordinate dc2 in TACS diffusion maps approximates a
power law in the quantum critical region. In order to
estimate the critical exponent, we modeled dc2 as:

dc2(hx; a, p) = a |hx − 1|−p + C (D1)

where a and p are fitting parameters and ν is the critical
exponent.

It is evident that our estimate of p depends on our
choice of C. Fig. 11 shows that dependence on either
side of the critical point (hx = 1). We can obtain a prob-
ability distribution P (C) on C by modeling the Bayesian
estimate of the 2nd Renyi entropy S2/n as a function of
dc1:

S2/n(hx;α,C) = α(dc1
(
hx
)
− C) (D2)

Here, α and C are fitting parameters. The ordinary least
squares fit gives us the optimum value for C (Copt) with
the least square error(ε). We then model P (C) as a nor-
mal distribution, P (C) = N (Copt, σ = ε2) and plot it
together with the dependence of p on the shift C in Fig.
11 to visualize how an error in C translates to an error
in ν.
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FIG. 11. Modeling the power-law behavior of dc2 in the crit-
ical region. (a) shows the dc2 value of each TACS plotted
against their respective hx values, as well as the power law fit
on either side of the critical point. (b) log-log plot of |hx−1| vs
(dc2−C), along with straight-line fits, the slopes give us the p
values .Here C = −0.0027. (c) and (d) show the dependence
of the (c) p+ and (d) p−, estimated power law exponents on
the shift in the diffusion coordinates C discussed in section
III B(blue) [dashed line shows the optimum C-value, which
was chosen in (a) and (b)], along with the modeled normal
distribution on C obtained from error estimates on the shift
needed to render dc1 positive near hx = 0 (orange). Chosen
range of C is [Copt − 3σ,Copt + 3σ]

.

Appendix E: Bayesian Inference Extrapolation of
Entropy Data

To infer the entropy in the limit of large N , the num-
ber of shots, and large n, the number of qubits, we need
to extrapolate the estimates we obtain from CS data.
At first glance, this would seem hard to do because the

error in our estimates grows exponentially with the lo-
cality of the observables and entropy is not a local ob-
servable. However, the dynamics data we have obtained
represents a mixed state with volume-law entanglement
and, due to the finite energy—the microcanonical stand-
in for temperature—typically has exponentially decaying
correlations beyond a correlation length. Hence, we ex-
pect the entropy of the reduced density matrix of a region
A with nA qubits will obey S ∝ nA even for small nA.
Our approach to extrapolate the entropy is therefore to
build a probability model p(X|θ) with parameters θ that
captures our estimated entropy value data X.

To simplify the calculation of entropy, we will com-
pute the second Renyi entropy of a sub-region A: SA =
− log2 γA, γ = Trρ2

A. To obtain a model of this entropy
as a function of the number of CS shots N and qubits
nA, a data set of values Y given by the entropy SA and
dependent variables X given by (N,nA), we generated
data from the maximally mixed state ρ = (1/d)I, d = 2nA
the size of the Hilbert space. The results fit a model of
the form (see Fig. 12):

µγ(n,N) = ae−bn + cedn/N, σγ = eefn (E1)

with positive parameters a, b, c, d, e, f . Namely, we
found the purity γ is linear in 1/N but exponential in n.

Given the mean and variance as modeled above, we
can then model the probability distribution from which
a given data point (~x, y) ∈ (X,Y ) is a sample as a Gaus-
sian:

P (y\θ, ~x) =
1√

2πσ2(~x; θ)
e−(y−µ(~x;θ))2/2σ2(~x;θ). (E2)

Then by Bayes Law, we can learn the posterior

p(θ\Y,X) =

∏
(~x,y)∈(X,Y ) P (y\θ, ~x)P (θ)

P (Y \X)
(E3)

where P (X,Y ) =
∫
dθ
∏

(X,Y ) P (~x, y\θ)P (θ) is called the

evidence that provides a sense of how well the model is
performing.

The probability of observing a new data point (~x′, y′)
is then given by the posterior predictive

P (~x′, y\X,Y ) =

∫
dθp(~x′, y′\θ)P (θ\X,Y ) (E4)

An estimate of which is obtainable from a set of samples
Θ drawn from P (θ\X,Y )

P (~x′, y\X,Y ) =
1

|Θ|
∑
θ∈Θ

p(~x′, y′\θ) (E5)

We are then specifically interested in the mean and stan-
dard deviation of P ((∞,∞), y\X,Y ). Knowing this, we
solve the problem of extrapolating the entropy from a
finite number of shots and qubits for the entropy is the
mean and our uncertainty in obtaining it is the standard
deviation.
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(b)

(c)

(d)

(e)

(a)

FIG. 12. Developing a model for purity γ = N (µγ , σγ) from CS data on the maximally mixed state. (a) µγ is linear in 1
N

,

so it takes the form: µγ = a0(n) + a1(n)
N

. (b) The intercept a0(n) can be modeled as an inverse exponential function of n,

a0(n) = ae−bn (c) The slope, a1(n), can be modeled as an exponential in n, a1(n) = cedn. (d), (e) show that the variance σ2
γ

can be closely approximated by an exponential function in n and linear in 1
N2 , σ2

γ = eefn/N2.

It remains then to obtain samples from the posterior
P (θ\X,Y ). We could do so using a straightforward Mon-
tecarlo algorithm. For example, starting with an initial
choice for the parameters θ0, we pick a random direc-
tion in parameter space and move an amount δ in that
direction to obtain θtrial. We then compute

log(r) = log
P (θtrial\X,Y )

P (θ0\X,Y )
=∑

(~x,y)∈(X,Y )

(logP (~x, y\θtrial)− logP (~x, y\θ0)) +

logP (θtrial)− logP (θ0) (E6)

which simplifies if we choose a uniform distribution for
P (θ). We keep the trial, setting θ1 = θtrial if a ran-
dom number q between 0 and 1 satisfies q < r and re-
ject otherwise. Either way, we repeat the process gen-
erating ultimately a list Θ of correlated samples θi from
which we can estimate the entropy and uncertainty from
P ((∞,∞), y\X,Y ).

However, a better approach than the Metropolis algo-
rithm is to use the NUTS algorithm available in PyMC
instead. This algorithm automatically chooses parame-
ters in hamiltonian monte-carlo (HMC) and is more ef-
ficient than Metropolis for Bayesian inference. See Ref.
71.
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