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Abstract: The dynamical response of a tethered semiflexible polymer with self-attractive interactions and
subjected to an external force field is numerically investigated by varying stiffness and self-interaction
strength. The chain is confined in two spatial dimensions and placed in contact with a heat bath described
by the Brownian multiparticle collision method. For strong self-attraction the equilibrium conformations
range from compact structures to double-stranded chains, and to rods when increasing the stiffness.
Under the external field at small rigidities, the initial close-packed chain is continuously unwound by
the force before being completely elongated. For double-stranded conformations the transition from the
folded state to the open one is sharp being steeper for larger stiffnesses. The discontinuity in the transition
appears in the force-extension relation as well as in the probability distribution function of the gyration
radius. The relative deformation with respect to the equilibrium case along the direction normal to the
force is found to decay as the inverse of the applied force.
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1. Introduction

The study of single polymers such as, for example, DNA, filamentous actin, and micro-
tubules under various flow conditions, has helped in understanding their dynamical and
conformational properties [1]. The first investigations of the flow behavior of single DNA
filaments [2] opened the way to a large variety of flow experiments which provided insight into
the mechanisms regulating the dynamics. Several computational models have been studied
which reveal to be very useful in understanding such systems. Single polymer studies give
the chance of directly observing the microscopic conformations of individual chains close to
equilibrium or under flow conditions, thus accessing non-equilibrium conformations.

In the case of biological filaments, their stiffness is closely related to their functions. For
example, the rigidity of actin filaments is responsible for the mechanical properties of the
cytoskeleton, and DNA is able to pack in the genome or inside a virus capsid thanks to its
persistence length. Several works have investigated the equilibrium properties of semiflexible
polymers [3–10]. The development of spectroscopic techniques and fluorescence microscopy
provided insight into their non-equilibrium properties (for reviews see, e. g., Refs. [11,12]).
Theoretical [13–17] and computational [18–29] studies helped in revealing and understanding
novel dynamical, conformational and rheological properties.

Among others, the worm-like chain model [30] proved to be accurate to describe the
mechanical response of semiflexible polymers under specific conditions. Indeed, the main
limitations of this model come from neglecting excluded volume effects and self-interactions
between different polymer parts. The former are relevant especially in two dimensions leading,
for example, to segregation of polymers [31]. The latter interactions, that are not relevant for
strong applied fields or far from the folding temperature, are crucial for semiflexible chains
with monomer-monomer interactions, such as poly(ethylene oxide) (PEO), DNA [32] or RNA
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[33] in poor-solvent condition [34]. Short-range attractive interactions lead to a large variety
of conformations due to the competition of polymer stretching and collapse [35]. Previous
experimental [36,37], theoretical and numerical [38–46] studies have found that the mechanical
response of self-interacting semiflexible polymers to an external stretching is very complicated.
These investigations considered either chains with one of its ends grafted and the other one
pulled by a force, or chains with both ends pulled away in opposite directions.

A large majority of studies has been performed in three dimensions but addressing the
comprehension of stretched self-interacting polymers in two dimensions is also interesting for
two main reasons: Excluded-volume effects are relevant and hydrodynamic interactions can be
neglected in the case of polymers strongly adsorbed on surfaces since the overall dynamics is
dominated by the polymer-substrate interaction [47]. Two-dimensional realizations of these
systems can, for example, be provided by DNA strongly adsorbed on a surface with one
grafted end. Under these conditions the stretching of biopolymers is observed in systems with
separation of biomolecules via nanochannels [48,49]. The effects of a uniform force field on
two-dimensional semiflexible polymers have been considered both in experimental [47] and
numerical [50,51] studies but neglecting self-attractions among monomers.

So far a systematic study of polymers under poor-solvent condition in an external field is
lacking. In the present work, the dynamical and conformational properties of a semiflexible
filament, tethered by one of its ends and subjected to an external force field in two spatial
dimensions, are numerically investigated. The polymer is modeled as a self-avoiding worm-like
chain with self-attraction among beads. Hydrodynamics is neglected since it is assumed that
local polymer friction is uniquely fixed by its interaction with the adsorbing surface. For this
reason the polymer is taken to be in contact with a Brownian heat bath. This is implemented
by adopting the Brownian version [52] of the multiparticle collision dynamics [53,54]. By
varying stiffness and self-interaction strength, different equilibrium conformations are found.
For strong mutual attraction and relative low stiffness, the structure is compact. Increasing
the chain rigidity promotes the formations of folded strands. The mechanical response of the
polymer to the applied force depends on the equilibrium structure. At small rigidities the initial
close-packed chain is continuously unwound by the external force field. The polymer shows
bistable conformations before being completely elongated. When double-stranded chains form,
a “first-order”-like phase transition to the open conformation is observed in the force-extension
curve. Polymer configurations are characterized by considering the gyration tensor: It is found
that the relative deformation with respect to the equilibrium case along the direction normal to
the force, decays as the inverse of the applied force.

The numerical model for the polymer and the Brownian heat bath are illustrated in Section
2. The results for the equilibrium conformations and the dynamic behavior are reported in
Section 3. Finally, in Section 4 the main findings of this study are discussed drawing some
conclusions.

2. Model and Method

A linear chain of length L, made of N + 1 beads of mass M, is considered in two spatial
dimensions. Internal forces acting on beads are due to a potential which accounts for different
contributions. Connected beads interact via the harmonic potential

Ubond =
κh
2

N

∑
i=1

(|ri+1 − ri| − r0)
2, (1)

where ri = (xi, yi) denotes the position vector of the i−th bead (i = 1, . . . , N + 1), r0 is the
average bond length, and the elasticity is controlled by κh. The parameter κh is chosen in order
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to preserve on the average the total contour length L = Nr0 . Chain stiffness of the polymer is
introduced via the bending potential

Ubend = κ
N−1

∑
i=1

(1− cos ϕi) (2)

where κ is the bending rigidity and ϕi is the angle between two consecutive bond vectors.
Non-bonded pair interactions are modeled by the Lennard-Jones potential

ULJ = 4ε
N−1

∑
i=1

N+1

∑
j=i+2

[( σ

ri,j

)12
−
( σ

ri,j

)6]
, (3)

where ri,j is the distance between two non-consecutive beads. A strongly attractive regime
corresponds to energies ε > kBT, which determine compact structures. In the opposite limit
ε < kBT of weak self-attraction, swollen chain configurations can be observed. Here kBT is
the thermal energy, T is the temperature, and kB is Boltzmann’s constant. The parameters
κ and ε are varied in the present study, keeping fixed the temperature, to obtain different
equilibrium conformations as later shown. In the following, for the sake of clarity, chain
stiffness is characterized in terms of the length Lp = 2κr0/kBT. In the worm-like chain limit,
when the Lennard-Jones potential ULJ is negligible, this length corresponds to the polymer
persistence length [55]. However, in the present model this is not strictly true due to the
coexistence of different length and energy scales [56]. Finally, in order to consider external
stretching of the chain, a constant force F acts on every bead of the polymer. This force is
directed along the x-direction of the Cartesian reference frame and corresponds to an external
potential given by

Uext = −F
N+1

∑
i=1

xi. (4)

The external field could be a gravitational or uniform flow field. Newton’s equations of motion
of beads are integrated by the velocity-Verlet algorithm with time step ∆tp [57,58].

The chain is coupled to a Brownian heat bath which is implemented by using the Brownian
multiparticle collision (B-MPC) method [52,54,59] without taking into account hydrodynamic
interactions. Here we adopt the computationally efficient version proposed in Ref. [52]. In
this algorithm every bead undergoes stochastic collisions with a virtual particle of mass M
to simulate the interaction with a fluid volume surrounding the bead. The momenta of such
phantom particles are Maxwell-Boltzmann distributed with variance MkBT and zero mean.
The collision process is implemented via the stochastic rotation dynamics of the MPC method
[54,60,61]. This corresponds to randomly rotate the relative velocity of a polymer bead, with
respect to the center-of-mass velocity of the bead and its related phantom particle, by angles
±α. Collisions occur at time intervals ∆t being ∆t > ∆tp.

Simulations are performed with the choices α = 130o, ∆t = 0.1tu, with time unit tu =√
mr2

0/(kBT), M = 5m, κhr2
0/(kBT) = 104, σ = r0, N = 50, and ∆tp = 10−2∆t. The value of κh

ensures that the polymer length L is constant within 1% for all systems.

3. Numerical results

Polymers are initialized with beads randomly aligned along the x-direction and allowed
to equilibrate. The position r1 of the first bead is fixed at the origin (0, 0) of the Cartesian
reference frame while no orientation is enforced for the first bond. When taking into account the
action of the uniform force field, simulations are started from the equilibrium configurations of
chains and run until reaching steady states during which average quantities are computed. We
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consider semiflexible polymers with values of the bending rigidity κ such that 0.1 ≤ Lp/L ≤ 2,
and interaction energies ε/kBT = 0.25, 2.

3.1. Equilibrium polymer conformations

In this Section the equilibrium properties of polymers are obtained and characterized
by varying the bending rigidity and the interaction energy. When considering the value
ε/kBT = 0.25, non-bonded interactions are negligibly small and the model corresponds to
the worm-like chain model [30], as shown in the following. In this case the filament assumes
a swollen configuration with spatial correlations, in the direction of the chain tangent, on a
length scale given by the persistence length. A different scenario occurs when non-bonded
interactions become relevant. Equilibrium configurations for ε/kBT = 2 and different values
of the length Lp are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Equilibrium polymer conformations for Lp/L = 0.1(a), 0.2(b), 0.4(c), 0.8(d) with ε/(kBT) = 2.
Blue and yellow beads denote the first and last ones, respectively. Polymer beads and bonds are not in
scale to allow a better visualization.

For the smallest value Lp/L = 0.1 (Figure 1 (a)) the chain has a globule structure which is
very compact. Increasing the stiffness promotes the formation of folded bundles. A configu-
ration with five rod-like strands is shown in Figure 1 (b) for Lp/L = 0.2. The energy penalty,
which is proportional to (1− cos ϕ) and increases with the bending angle ϕ at turning points, is
compensated by the energy gain from bead-bead attractions. The number of strands diminishes
when increasing κ. A structure formed by two facing strands is observed at Lp/L = 0.4 (Figure
1 (c)). For this value of Lp the average bending energy diminishes since the number of turning
points reduces, and the average Lennard-Jones energy increases. A further increase in chain
stiffness induces the formation of hairpin conformations (Figure 1 (d) for Lp/L = 0.8). This
causes a second rise in the bending energy whose energetic penalty can still be compensated by
the mutual attraction between monomers. Finally, at Lp ' L the polymer cannot sustain any
closed configuration and a rod-like structure is observed for values Lp & L. In this latter range
the average value of ULJ exhibits a sharp increase while the average bending energy decreases.
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In order to characterize the conformations of chains, it is useful to consider the root-mean-
square values of the end-to-end distance 〈R2

e 〉1/2, where Re = |rN+1 − r1|, and of the gyration
radius 〈R2

g〉1/2. By computing the gyration tensor

Gαβ =
1

N + 1

N+1

∑
i=1

∆ri,α∆ri,β, (5)

where ∆ri,α is the position of the i-th monomer in the center-of-mass reference frame of the chain
and the Greek index denotes the Cartesian component, the gyration radius can be obtained as
R2

g = ∑α Gαα. The computed values of 〈R2
e 〉1/2 and 〈R2

g〉1/2 for the two values of ε as functions
of the dimensionless length Lp/L are presented in Figure 2.
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Figure 2. Root-mean-square end-to-end distance Re of a polymer in absence of an external force for
ε/(kBT) = 0.25 (purple open triangles), 2 (blue filled triangles), and gyration radius Rg for ε/(kBT) = 0.25
(green open circles), 2 (red filled circles). The full and dashed black lines correspond to the analytical
predictions (6) and (7), respectively, in the case of continuous semiflexible polymers [55].

For the smallest value ε/kBT = 0.25 the numerical results show a quantitative agreement
with the theoretical predictions for a continuous semiflexible chain [55]

〈R2
e 〉 = 2LpL

[
1−

Lp

L

(
1− e−L/Lp

)]
, (6)

〈R2
g〉 = LpL

[1
3
−

Lp

L
+ 2
( Lp

L

)2
− 2
( Lp

L

)3(
1− e−L/Lp

)]
. (7)

This confirms that the self-interaction energy is negligible for this choice of ε and the polymer
behaves as a worm-like chain. The behavior is different for the highest value of the energy ε.
The end-to-end distance is smaller than in the previous case and decreases to reach its minimum
value when the chain consists of two strands folded on each other (0.4 . Lp/L . 0.8). Then,
〈R2

e 〉1/2 jumps to values comparable to those of semiflexible polymers at Lp/L ' 1. The
average gyration radius 〈R2

g〉1/2 is at a minimum when compact conformations are observed
(Lp/L . 0.2), then increases to a value which remains constant as long as the chain consists of
two strands, and finally reaches the equilibrium values of worm-like chains when the polymer
assumes a rod-like structure.
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Normalized probability distribution functions (PDFs) of the polymer gyration radius Rg
are depicted in Figure 3 under equilibrium conditions.
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Figure 3. Normalized probability distribution function of the gyration radius Rg in absence of the external
force for Lp/L = 0.1 (black open circles), 0.2 (red filled circles), 0.4 (green filled stars), 0.8 (blue open
squares), 2 (yellow open triangles) with ε/(kBT) = 2, and for Lp/L = 0.1 (cyan line), 0.4 (purple line)
with ε/(kBT) = 0.25.

For the highest value of the interaction energy ε, when the polymer is compact, curves
are very narrow corresponding to the fact that the chain global conformation does not change
significantly in time. The two curves with Lp/L = 0.1, 0.2 almost overlap with peaks located at
Rg/L ' 0.07. When considering double-stranded chains, the curve at Lp/L = 0.4 is broader
since the chain fluctuates along its length. The peak is at Rg/L ' 0.14 as in the case with
Lp/L = 0.8 where the PDF is narrower since the structure is quite rigid. Finally, when the
polymer assumes a rod-like conformation (Lp/L = 2), the position of the PDF peak moves to
Rg/L ' 0.28. For a comparison two PDFs in the case of weak self-attraction (ε/kBT = 0.25)
are also presented in the figure. Curves are broader than in the previous case due to the fact
that chains are more prone to fluctuate since the mutual attraction is negligible. The peaks are
located at larger values of Rg with respect to the case with ε/kBT = 2, for the same stiffness,
corresponding to more elongated structures.

3.2. Polymer stretching in uniform force field

When the polymer is subject to the external force, it is stretched along the direction of
the force. In order to characterize the elongation of the chain, the average deficit length-ratio
δ = 1− 〈xN+1〉/L as a function of the applied force is considered. 〈xN+1〉 is the average
extension of the chain along the force direction computed as the average value of the x-
component of the end-to-end vector Re = rN+1 − r1. When self-attraction is negligible, in the
limit |xN+1| → L it results [47,62]

δ ∼
(

1
F2

)1/2
(8)
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with F2 = NFLp/(kBT). For quite strong force fields or very small bending rigidities the
behavior does not depend on the stiffness and is given by [38,50,63]

δ ∼ 1
F1

(9)

where F1 = NFr0/(kBT), as for flexible chains [64].
Different behaviors can be expected for self-interacting semiflexible polymers. When the

filament is pulled at one end by a constant force, a sharp transition appears in the force vs.
elongation curves [38] whose sharpness is enhanced by bending rigidity [42]. Simulations
results of the present model are illustrated in Figure 4 as functions of applied force for different
values of the ratio Lp/L.

10
-2

10
-1

1

1 10 10
2

F
1

δ

10 10
2

10
3

F
2

Figure 4. (Left panel) Mean deficit length-ratio along the direction of the external force as a function of
the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue filled triangles), 0.2 (black filled squares)
with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles) with ε/(kBT) = 0.25. The dashed and full
lines have slopes −1/2 and −1, respectively. (Right panel) Mean deficit length-ratio along the direction
of the external force as a function of the dimensionless force F2 = NFLp/(kBT) for Lp/L = 0.4 (black
open circles), 0.6 (red open triangles), 0.8 (blue open squares), 2 (green filled stars) with ε/(kBT) = 2. The
dashed line has slope −1/2.

In case of Lp/L ≤ 0.2, corresponding to compact initial states (see Figure 1), data collapse
is obtained when plotting values of δ as functions of the dimensionless force F1 = NFr0/(kBT)
(left panel of Figure 4). The initial structure is tilted in the direction of the force and only slightly
deformed as long as F1 . 1. This can also be appreciated when considering the normalized
PDFs of the gyration radius: In the case with Lp/L = 0.2 and F1 = 1, the PDF exhibits a narrow
peak (see Figure 5 (left panel)).
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Figure 5. (Left panel) Normalized probability distribution function of the gyration radius Rg for F1 =

NFr0/(kBT) = 1 (black open circles), 4 (red filled circles), 7 (green filled stars), 20 (blue open squares)
with Lp/L = 0.2 and ε/(kBT) = 2. (Right panel) Normalized probability distribution function of the
gyration radius Rg for F2 = NFLp/(kBT) = 100 (black filled squares), 120 (red filled triangles), 150 (green
open triangles), 200 (blue filled stars) with Lp/L = 0.8 and ε/(kBT) = 2.

By increasing the force, the extension increases smoothly since the globule is partially
unwound, similarly to what holds for single-stranded DNA and RNA [38,39]. A chain-and-blob
[65] configuration can be observed where the blob at the end fluctuates in shape and size due
to thermal fluctuations (see the supplementary video S1 for Lp/L = 0.2 and F1 = 4). The
corresponding PDF broadens while still displaying a single peak which moves toward larger
values of Rg. At F1 ' 7, the chain is stretched although, from time to time, the final part
can be still folded due to self-attraction (see the supplementary video S2 for Lp/L = 0.2 and
F1 = 7). The PDF of Rg exhibits two peaks corresponding to fully elongated and partially bent
conformational states which are stable for relatively long times to be clearly observed. This
multi-peak feature is similar to that observed for pulled semiflexible polymers under poor-
solvent condition [42,66,67] and proteins subject to a uniform flow [68]. By further increasing
the force, the polymer is completely elongated with a narrow PDF of Rg whose position shifts
continuously to larger values of Rg. The relation (9), observed once F1 & 10, indicates that the
chain behaves as a semiflexible polymer under strong force. As a matter of comparison we
report also the results in the case when self-attraction is negligible for a similar bending rigidity
(see the data for Lp/L = 0.1 and ε/(kBT) = 0.25 in the left panel of Figure 4). The behavior at
small force values is different with the deficit length-ratio decaying as F−1/2, which is typical
of semiflexible polymers without self-interaction. By increasing the force, the dependence (9) is
recovered with the values of δ collapsing onto the ones for ε/(kBT) = 2.

When the stiffness of the chain is such that a polymer exhibits a double-stranded con-
formation, the mechanical response to the external force is different as it can be seen in the
right panel of Figure 4 where the average deficit length-ratio δ is plotted as a function of the
dimensionless force F2 = NFLp/(kBT). Three regimes can be distinguished. For values F2 . 10
the two strands are aligned along the force direction but there is no relative motion of the last
bead with respect to the first one, kept fixed in the origin, so that 〈xN+1〉 ' 0. In this case the
PDF of the gyration radius is narrow (see the curve corresponding to the case with Lp/L = 0.8
and F2 = 100 in the right panel of Figure 5). When the force is increased, the strand, which
is not constrained to the origin, moves over the other part. This causes a broadening of the



Version November 3, 2022 submitted to Polymers 9 of 14

PDF (see the curve with F2 = 120). A stronger force facilitates a larger sliding. Due to the
overall fluctuations of the polymer, the final bead does not attain a fixed position relative to the
first bead but can move back and forth along the chain (see the supplementary video S3 for
Lp/L = 0.8 and F2 = 150). The PDF is characterized by more peaks corresponding to different
stable configurations assumed by the polymer in the same ensemble. However, the final part of
the chain cannot slide continuously due to the finite rigidity so that larger forces are required to
unfold the polymer. The time behavior of the energy terms (Ubend − |ULJ |) and (|Uext| − |ULJ |)
is shown in Figure 6 in the case with Lp/L = 0.8 for F2 = 200. The last bead can slide when
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Figure 6. Potential energy differences Ubend − |ULJ | (blue line) and |Uext| − |ULJ | (red line) as functions
of time in the case of the polymer with Lp/L = 0.8 and ε/(kBT) = 2 for F2 = NFLp/(kBT) = 200. The
time behavior of the end-to-end distance Re is also shown (black line).

it occurs that |Uext| > |ULJ |, as witnessed by the increase of the end-to-end distance Re also
reported in the figure. As Re gets continuously larger, Ubend approaches |ULJ | and, when Ubend
exceeds |ULJ |, the polymer swells abruptly signaling a “first-order”-like phase transition. (see
the supplementary video S4 for Lp/L = 0.8 and F2 = 200). Once the polymer is completely
elongated, the PDF has again a single peak whose position jumps discontinuously to a larger
value. The force required to unzip completely the polymer increases with the bending rigidity
and the transition from the folded state to the elongated one becomes sharper, as in the case of
the unzipping of double-stranded DNA [39,45,69]. When the polymer is completely unfolded,
the values of δ for different bending rigidities lay on the same curve following the decay (8) of
semiflexible filaments, as it happens in the case of the stiffer chain with Lp/L = 2.

Polymer deformation can be characterized in terms of the gyration tensor (5). The ratios
〈Gαα〉/(〈R2

g0〉/2) (α ∈ {x, y}) are presented in Figs. 7,8, where 〈R2
g0〉 is the mean-square value

of the gyration radius calculated at equilibrium. For values of the bending rigidity Lp/L ≤ 0.2
(see the left panel of Figure 7), the behavior is similar and the polymer is smoothly deformed in
the force direction as long as the blob is unwound (1 . F1 . 10).



Version November 3, 2022 submitted to Polymers 10 of 14

1

10

10
2

1 10 10
2

F
1

 <
 G

x
x
 >

 /
 (

<
 R

g
0

2
 >

 /
 2

)

1

10

10 10
2

10
3

F
2

Figure 7. (Left panel) Radius of gyration tensor component along the force direction with respect to the
equilibrium value as a function of the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue filled
triangles), 0.2 (black filled squares) with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles) with
ε/(kBT) = 0.25. (Right panel) Radius of gyration tensor component along the force direction with respect
to the equilibrium value as a function of the dimensionless force F2 = NFLp/(kBT) for Lp/L = 0.4 (black
open circles), 0.6 (red open triangles), 0.8 (blue open squares), 2 (green filled stars) with ε/(kBT) = 2.

Once the chain has been disentangled (F1 > 10), the deformation reaches a value which
does not change significantly with the force. Due to the initial compact structure, the ratio
of deformation is considerably larger with respect to the case with negligible self-interaction
which is also shown in the left panel of Figure 7 for Lp/L = 0.1. In the right panel of the same
figure the deformation is shown as a function of the dimensionless force F2 when the polymer
has a double-stranded initial configuration. Initially, in case of 〈xN+1〉 ' 0, the force slightly
elongates the chain with respect to the equilibrium case. As soon as the last bead starts to slide
over the filament, the deformation increases rapidly with steepness depending on the bending
rigidity. Finally, it reaches a constant value when the polymer is fully elongated along the force
direction. The smaller relative deformation corresponds to the more stiff polymer whose initial
configuration is a stiff hairpin (see Figure 1 (d)). When the bending rigidity is such that no
closed structure can form (Lp/L = 2), the chain is smoothly elongated over the whole range
of explored forces with a final value sensibly smaller than the one corresponding to initially
double-stranded chains.

Along the y-direction, normal to the force, the relative deformation diminishes as a
function of the dimensionless force F1 when Lp/L ≤ 0.2 (left panel of Figure 8).
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Figure 8. (Left panel) Radius of gyration tensor component along the y-direction with respect to the
equilibrium value as a function of the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue
filled triangles), 0.2 (black filled squares) with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles)
with ε/(kBT) = 0.25. The full line has slope −1. (Right panel) Radius of gyration tensor component
along the y-direction with respect to the equilibrium value as a function of the dimensionless force
F2 = NFLp/(kBT) for Lp/L = 0.4 (black open circles), 0.6 (red open triangles), 0.8 (blue open squares), 2
(green filled stars) with ε/(kBT) = 2. The dashed line has slope −1.

As long as the chain maintains a compact structure, the decrease is weak while it becomes
steeper when the polymer is open under the action of the external driving. At values F1 > 10,
data collapse and a power-law with dependence F−1

1 can be observed. When self-interaction
is negligible, the behavior is similar but the deformation is much smaller due to the lack
of a compact-like initial structure. More interesting appears to be what happens for the
range of stiffness corresponding to double-stranded conformations. The initial values of
〈Gyy〉/(〈R2

g0〉/2) decrease, due to the stretching of the two strands, with a similar trend. When
the folded strands open, an overshoot can be observed that is due to the larger fluctuations of
the chain. The deformation then follows a power-law decay with dependence F−1

2 . The data for
the initially stretched polymer (Lp/L = 2) show a similar behavior without the aforementioned
overshoot.

4. Discussion and Conclusions

The dynamical and conformational properties of semiflexible polymers under poor-solvent
condition in a uniform force field have been numerically studied. The chain has been anchored
at one end, confined in two dimensions and placed in contact with a Brownian heat bath
implemented by the stochastic version of the multiparticle collision dynamics.

The equilibrium conformation depends both on the stiffness and on the self-interaction
strength. When the self-attraction energy is smaller compared to the thermal energy, the chain
behaves as a semiflexible filament. In the opposite limit of strong mutual attraction, different
configurations are obtained. At low bending rigidity the polymer assumes a compact structure.
By increasing the stiffness, patterns of folded bundles emerge where the number of strands
reduces as the chain becomes more rigid. A larger number of polymer beads, with respect to
the value here considered, would promote folded conformations with more strands as observed
for three-dimensional semiflexible polymers [70]. Finally, rod-like conformations are recovered
for high values of the rigidity.
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The mechanical response to the action of the external force depends on the initial equilib-
rium structure. For small bending rigidity the compact structure is continuously unwound and
stretched by the force. On the other hand, when the polymer consists of two facing strands, a
“first-order”-like phase transition is observed from the folded to the stiff conformation. These
behaviors are highlighted in the force-extension relations as well as at the probability distribu-
tion functions of the gyration radius. The deformation of the radius of gyration with respect to
the equilibrium value along the direction normal to the force is found to decay as the inverse of
the applied force.

Although hydrodynamics interactions have been neglected in this investigation, it is
known that such interactions are not essential in the case of semiflexible polymers since
only logarithmic corrections are expected [5]. Therefore, the present results also describe the
behavior of a self-attractive semiflexible polymer placed in a uniform flow field as long as the
chain follows the fluid flow. We hope that this study will stimulate theoretical studies and
experimental investigations to confirm the outlined phenomenology.

Supplementary Materials: Video S1: Animation of polymer stretching for Lp/L = 0.2 and ε/(kBT) = 2
with F1 = 4; Video S2: Animation of polymer stretching for Lp/L = 0.2 and ε/(kBT) = 2 with F1 = 7;
Video S3: Animation of polymer stretching for Lp/L = 0.8 and ε/(kBT) = 2 with F2 = 150; Video S4:
Animation of polymer stretching for Lp/L = 0.28 and ε/(kBT) = 2 with F2 = 200.
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