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Due to its potential connection with nematic-
ity, electronic anisotropy has been the subject
of intense research effort on a wide variety of
material platforms. The emergence of spatial
anisotropy not only offers a characterization of
material properties of metallic phases, which can-
not be accessed via conventional transport tech-
niques, but it also provides a unique window into
the interplay between Coulomb interaction and
broken symmetry underlying the electronic or-
der. In this work, we utilize a new scheme of
angle-resolved transport measurement (ARTM)
to characterize electron anisotropy in magic-angle
twisted trilayer graphene. By analyzing the de-
pendence of spatial anisotropy on moiré band
filling, temperature and twist angle, we estab-
lish the first experimental link between electron
anisotropy and the cascade phenomenon, where
Coulomb interaction drives a number of isospin
transitions near commensurate band fillings [1–
4]. Furthermore, we report the coexistence be-
tween electron anisotropy and a novel electronic
order that breaks both parity and time rever-
sal symmetry. Combined, the link between elec-
tron anisotropy, cascade phenomenon and PT -
symmetry breaking sheds new light onto the na-
ture of electronic order in magic-angle graphene
moiré systems.

Electronic nematic, a translationally invariant metal-
lic phase that breaks the in-plane rotational symmetry of
the underlying crystal lattice, is a hallmark of strongly
correlated electronic systems [5–7]. Spatial anisotropy
in electronic states has been observed in a variety of ma-
terial platforms, such as two-dimensional electron sys-
tems (2DES) at high magnetic fields [8, 9], strontium
ruthenate and cuprate materials [10–13]. Recently, elec-
tron anisotropy has been reported in the superconduct-
ing and normal phases of graphene-based moiré systems
[14–18]. Owing to the quenched electron kinectic energy,
Coulomb interaction plays a prominent role in determin-
ing the electronic order within the moiré flatband. This
is reflected by a cascade of isospin transitions near inte-
ger band fillings, which lifts the spin and valley degener-
acy and reconstructs the Fermi surface with well-defined
isospin orders [2, 19–21]. A number of theoretical works

have recognized a possible connection between electron
anisotropy and strong Coulomb interaction within the
moiré band [22–31]. However, experimental evidence
directly demonstrating this link has remained elusive.

The effort to understand the interplay between
Coulomb interaction, isospin order and spatial anisotropy
is complicated by the large moiré wavelength of graphene-
based moiré systems. A recent calculation of single-
particle band structure pointed out that the influence
of lattice distortion is amplified by the large moiré wave-
length in twisted bilayer graphene and that even a small
amount of heterostrain, on the order of 0.2%, could in-
duce prominent electron anisotropy. Most strikingly,
strain-induced anisotropy is shown to exhibit doping-
dependence in both the magnitude and the orientation
of the director axis [32]. Therefore, the observation of
doping dependence in the orientation of anisotropy di-
rector is insufficient to isolate the role of Coulomb inter-
action in inducing electron anisotropy [10, 15, 18]. The
large moiré wavelength also gives rise to an abundance
of inhomogeneity in the spatial distribution of the twist
angle [33, 34], which provides additional challenges for
experimental efforts to characterize the nature of elec-
tron anisotropy. In this work, we utilize a new scheme of
angle-resolved transport measurement (ARTM) to simul-
taneously extract the conductivity matrix and character-
ize the spatial uniformity of the electronic state in magic-
angle twisted trilayer graphene. Not only does ARTM
demonstrate a direct link between electron anisotropy
and the cascade phenomenon, but it also provides a new
route for unraveling the nature of electronic orders across
the moiré flatband.

The ARTM is enabled by the “sunflower” device geom-
etry, as shown in Fig. 1a. The circular part of the sample
is designed with a diameter of ∼ 2µm to minimize the in-
fluence of twist angle inhomogeneity. Electrical contacts
are made to eight “petals”, which are labelled 1 through
8 (Fig. 1a). A measurement in the “sunflower” geome-
try is carried out by applying current bias to a pair of
contacts while measuring the voltage difference across a
different pair. For simplicity, we use ∆V35/I26 to denote
the measurement configuration shown in Fig. 1a, where
current flows from contact 2 to 6 and voltage difference is
measured between contacts 3 and 5. The “sunflower” ge-
ometry allows for 840 independent measurement config-
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FIG. 1. The “sunflower” geometry. (a) Schematic showing transport measurement setup on a sample with the “sunflower”
geometry. Eight electrical contacts are labelled 1 through 8. In this setup, a DC current bias is applied to contact 2 and 6, which
are also referred as the source and drain contacts. Voltage drop ∆V is measured across two electrical contacts, 3 and 5. (b)
Schematic diagram showing two current bias configurations I and II that are used in this work. When voltage leads are aligned
parallel with current flow direction, the ratio ∆V‖/I(φ) is comparable to the longitudinal resistance, which will be referred
to as R‖(φ). φ denotes the azimuthal direction of current flow. (c-d) Schematic diagram showing the angular dependence of
R‖(φ) for (c) an isotropic state and (d) an anisotropic state. (e-h) Schematic showing the distribution of electrical potential
across a uniform sample with different boundary conditions and conductivity tensors. Panel (e) and (g) are calculated with the
boundary condition of configuration I, whereas panel (f) and (h) for configuration II. Panel (e) and (f) assumes an electronic
state with an isotropic conductivity tensor, whereas (g) and (h) are for an anisotropic state.

urations: allowing for non-reciprocity, there are 56 ways
to pick the source and the drain and for each choice there
are 15 voltage lead pairs. In this work, we focus on two
types of measurement configurations, as shown in Fig. 1b,
In configuration I, current bias is applied to contact i and
i+4, whereas current bias in configuration II is applied to
contact i and i+3. For each configuration, ∆V‖ and ∆V⊥
is defined as the voltage difference across contacts that
are aligned parallel and perpendicular to the direction of
current flow, respectively (for definitions, see Fig. S7).
For simplicity, we will refer to ∆V‖/I and ∆V⊥/I as R‖
and R⊥, which are directly comparable to the longitudi-
nal and transverse resistance of the sample. As i varies
through 1 to 8, configuration I and II allow us to mea-
sure R‖ and R⊥ with 16 azimuthal directions of current
flow, with an angular resolution of φ = 22.5◦. As shown
in Fig. 1c-d, the evolution of R‖ with varying φ offers a
direct identification for electronic anisotropy.

R‖ and R⊥ only account for a fraction of 840 possible
measurement configurations available to the “sunflower”
geometry. By measuring ∆V across all possible combina-
tions of contacts, we can map the distribution of electrical
potential along the circumference of the sunflower-shaped
sample. According to a recent calculation [35], the po-

tential distribution across a uniform sample is fully de-
termined by the combination of conductivity tensor and
the boundary condition, which is defined by the pair of
contacts used for applying current bias (Fig. 1e-h). As
such, measuring ∆V across a number of different con-
figurations allows us to simultaneously extract the con-
ductivity tensor of the underlying electronic state and
characterize the spatial uniformity across the sample.

We begin by analyzing the angle-resolved transport re-
sponse at high temperature T = 35 K near the charge
neutrality point (CNP) at ν = 0.2. Fig. 2a-b shows a
lack of angle-dependence for both R‖ and R⊥. At the
same time, the value of R⊥ is close to zero for all az-
imuthal angles φ, in stark contrast with the large value
of R‖. Such angular dependence is in agreement with
an isotropic state. Moreover, we compare ∆V measured
across 30 configurations to the expected potential distri-
bution of an isotropic state (horizontal stripes in Fig. 2c).
As shown in Fig. 2c, the measured values for all 30 con-
figurations fall within the expected range of an isotropic
state. Since the model assumes a uniform sample, the
excellent agreement with measurement points towards a
uniform sample that is free of twist-angle inhomogeneity.

Starting from the isotropic state in Fig. 2, an
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FIG. 2. Angle-resolved transport response of an isotropic state at T = 35 K. (a) R‖ and (b) R⊥ as a function of
azimuth direction φ measured at T = 35 K and ν = 0.2. The measurement configuration for each data point is labeled in the
legend. Solid (open) circles are measured with configuration I (II). The dashed open circles are measurement value, whereas
the open circles is the corrected value accounting for the different geometry between configurations I and II. The measurement
configurations for R‖ = ∆V‖/I and R⊥ = ∆V⊥/I are labeled to the bottom. (c) Comparison between ∆V measured from 30
different configurations and the expected voltage difference for each configuration calculated using an isotropic conductivity
tensor. The black dashed line denote the expected value. The plotted value across all panels is renormalized by the expected
value of ∆V‖ from the configuration I. The width of the stripes denote the expected error arising from the non-zero width of
voltage leads. Panel i-ii (panel iii-v) correspond to ∆V‖ (∆V⊥) measured with configuration I and II.

anisotropic state emerges with decreasing temperature.
As shown in Fig. 3a-b, the angular dependence of R‖ and
R⊥ both exhibit well-defined two-fold oscillation, which
can be fit with the expected behavior of orthorhombic
anisotropy [10, 11],

R‖(φ) = ∆Rcos[2(φ− α− 90◦)] +R0

R⊥(φ) = ∆Rcos[2(φ− α− 45◦)]. (1)

Here ∆R denotes the oscillation amplitude and R0 the
average value of R‖(φ). The ratio between ∆R and R0,
∆R/R0, provides a measure of the electron anisotropy. α
defines the orientation of the anisotropy director, which is
a unit vector aligned along the principle axis with higher
conductivity. The best fit to the angular dependence in
Fig. 3a-b yields α = 77◦ and ∆R/R0= 0.84. This corre-
sponds to a conductivity tensor with principle axis along
φ = 77◦ and 167◦, which are marked by solid black lines
in the polar coordinate plots in Fig. 3a-b. When current
flows along the principle axes, R‖ is either maximized
or minimized, whereas R⊥ vanishes. This accounts for
the 45◦ shift in the phase of the oscillation between R‖
and R⊥. The diagonal terms of the conductivity tensor,
which denote sample conductivity along principle axes,
are defined as σ̄ + δσ and σ̄ − δσ. According to the
angle dependence in Fig. 3a-b, the ratio between δσ and
σ̄ corresponds to δσ/σ̄ = ∆R/R0= 0.84. This indicates
a highly anisotropic electron state.

At this doping and temperature, mapping the po-

tential distribution across the “sunflower” sample tes-
tifies that the entire sample is described by the same
anisotropic conductivity tensor. Fig. S1 plots the volt-
age difference of more than 50 measurement configura-
tions. Collectively, these measurements are best fit with
a single conductivity matrix. The quality of this fit is
demonstrated by the excellent agreement between the
measurement and the expected value from the calcu-
lated potential distribution (horizontal stripes in Fig. 3c-
d and Fig. S1). Most importantly, this fit produces an
anisotropy director along α = 78◦ and an anisotropy ratio
∆R/R0= δσ/σ̄ = 0.74, which is in excellent agreement
with the conductivity tensor extracted from in Fig. 3a-
b. The consistency demonstrated by different schemes of
ARTM offers further validation for the identification of
electronic anisotropy.

Having established the method of ARTM, we are now
in position to examine the connection between the ob-
served electron anisotropy and Coulomb interaction. In
graphene-based moiré systems, strong Coulomb interac-
tion drives a cascade of isospin transitions. This gives rise
to a unique doping-dependent modulation in the trans-
port response. For instance, Fig. 4a shows the ν−T map
of R‖. The isospin transitions divide the moiré flatband
into regimes of different isospin orders, with the bound-
ary defined by peak positions of R‖, along with resets in
Hall density (see Fig. S9) [2–4, 36]. We mark the isospin
order of each regime, such as isospin ferromagnet IF and
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FIG. 3. Angle-resolved transport response of an anisotropic state at T = 20 mK. (a) R‖ and (b) R⊥ as a function of
azimuthal angle φ, which denotes the direction of current flow. The right panels show polar coordinate plot the the same data.
The measurement configurations for R‖ and R⊥ are labeled in the legend. (c-d) ∆V measured using different configurations.
The plotted value is renormalized by the expected value of ∆V‖ when current flows along the anisotropy director, ∆V max

‖ . The
grey shaded horizontal stripes denote the expected range of voltage drop for each configuration, which is extracted from the
anisotropic conductivity tensor and the boundary condition (see Fig. S8 for more details) [35]. (e) Based on the anisotropy
conductivity tensor extracted from the combination of 56 measurement configurations (panel (c-d) and Fig. S1), we calculate
an expected angular dependence for R‖ (red dash line), which is in excellent agreement with the measured R‖ as a function of
φ (blue circles). Grey solid lines indicate the principle axes of the anisotropy conductivity tensor.

isospin unpolarized IU, which are identified based on the
main sequence of quantum oscillation (see Fig. S10). The
cascade of isospin transitions, which occur near most in-
teger band fillings (with fully filled/empty moiré band
defined as band filling ±4), also coincide with resets in
the Hall density (Fig. S9) [2–4, 36]. The presence of
cascade phenomenon provides a unique window allowing
us to characterize the link between Coulomb interaction
and electron anisotropy. This is achieved by measuring
angle-resolved transport response across the ν − T map.
As shown in Fig. S2, the conductivity tensor, includ-
ing the anisotropy ratio ∆R/R0 and director orientation
α, can be extracted by fitting R‖ and R⊥ using Eq. 1.
Across the moiré flatband, both ∆R/R0 and α display
prominent dependence on moiré band filling. Most im-
portantly, the electronic state is shown to be more (less)
anisotropic at low (high) temperature, which provides a
strong indication that the spatial anisotropy is an emer-
gent phenomenon (Fig. S2). In the following, we will
examine the interplay between electron anisotropy, cas-
cade phenomenon and other electronic orders across the
moiré flatband by plotting the anisotropy ratio ∆R/R0

across the ν − T map in Fig. 4b. The director orienta-
tion α, which is extracted by fitting the same angular

dependence, is shown in Fig. S4c.

First, we examine the evolution of electron anisotropy
in the temperature range of 5 < T < 35 K, where
the the cascade phenomenon dominates. The doping-
dependence of anisotropy ratio ∆R/R0 is shown to be in
excellent correspondence with the cascade phenomenon
across the ν − T map. Near each isospin transition
(marked as open white circles in Fig. 4a-b), we observe
a local maximum and minimum in the anisotropy ra-
tio, which are located on either side of the transition.
This correlation is further demonstrated by examining
the doping dependence measured at a fixed temperature
T = 10 K. As shown in Fig. 4e, the reset in Hall den-
sity nHall gives rise to a small Fermi surface on the high
density side of the isospin transition. In these density
regimes (marked with blue shaded stripes), the trans-
port response is mostly independent of the azimuthal di-
rection of current flow, which points towards an isotropic
electron state. On the other hand, prominent electron
anisotropy, evidenced by strong angular dependence in
the transport response, is associated with the large Fermi
surface on the low density side of the isospin transition.
The anisotropic director (marked by green solid lines)
exhibits prominent doping-dependent rotation, as shown
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different moiré band fillings, showing prominent rotation in the anisotropy director (marked by green solid line). (d) R‖, (e)
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in Fig. 4c, which is comparable with previous observa-
tions in cuprate [10] and graphene-based moiré systems
[14, 15, 28, 37].

The direct link between electron anisotropy and
Coulomb-driven isospin transition is further confirmed

by analyzing the twist angle dependence. When the twist
angle is detuned from the magic-angle, the moiré band
structure becomes more dispersive, diminishing the in-
fluence of Coulomb interaction [38]. As a result, the
abundance of isospin transitions near the magic angle
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is reduced to a single Fermi surface reconstruction near
ν = +2 at θ = 1.33◦. This is evidenced by the Hall den-
sity reset marked by the blue shaded stripe in Fig. S6a-b.
In the absence of isospin transition, electron anisotropy is
suppressed. This is especially the case in the hole-doping
band, where vanishing anisotropy ratio points towards an
isotropic electron state (Fig. S6a). Together, our findings
provide unambiguous evidence that Coulomb-driven cas-
cade phenomenon plays an essential role in the doping
and temperature dependence in electron anisotropy.

Notably, the behavior of electron anisotropy in the
temperature range of T < 5 K deviates from the cas-
cade phenomenon. In this temperature range, the moiré
flatband of twisted trilayer graphene hosts a novel elec-
tronic order that breaks both parity and time-reversal
symmetry (PT -breaking), which is evidenced by the an-
gular dependence of the nonreciprocal transport response
[39]. Notably, the emergence of this PT -breaking or-
der at T < 5 K shows excellent correspondence with the
temperature dependence of electron anisotropy. When
the low-temperature nonreciprocal response is one-fold
symmetric (Fig. 5a), the onset of nonreciprocity coin-
cides with the enhancement in electron anisotropy, which
is evidenced by the sharp onset in the anisotropy ratio
(Fig. 5b). On the contrary, a predominantly three-fold
symmetric nonreciprocal response, as shown in the in-
set of Fig. 5c, induces a suppression in the anisotropy
ratio with decreasing temperature (Fig. 5d). This gives
rise to an isotropic state at low temperature (left inset
in Fig. 5d), even though the high temperature state is
highly anisotropic (right inset in Fig. 5d). Similar low-
temperature behavior in electron anisotropy is observed
at a number of moiré band fillings, as shown in Fig. 4b
and Fig. S3). Near the CNP, a small nonreciprocal re-
sponse at ν = 0.2 points towards a weak PT -breaking or-
der (Fig. 5e). At this band filling, the temperature depen-
dence of the anisotropy ratio exhibits no sharp changes
at T < 5 K (Fig. 5f). That the temperature depen-
dence of electron anisotropy is determined by the angular
symmetry, as well as magnitude, of nonreciprocity points
towards the dominating influence of the PT -breaking or-
der at low temperature. Combined, our findings suggest
that changes in electron anisotropy at T < 5 K originates
from the emergence of the PT -breaking order. Owing to
the time-reversal breaking, the PT -breaking order does
not couple to lattice distortion. Therefore, the associ-
ated electron anisotropy must have a Coulomb origin.
This provides another indication for a direct link between
electron anisotropy and Coulomb interaction.

In a realistic solid state sample, some level of lattice
distortion is unavoidable. The influence of uniaxial strain
is evidenced in our ARTM as well. For instance, the on-
set of electron anisotropy in Fig. 5f is distributed over a
wide temperature window. A broadened transition could
be the result of uniaxial strain in the sample. Neverthe-
less, the evolution of electron anisotropy as a function

of moiré doping and twist angle demonstrates an unam-
biguous link with the cascade phenomenon and the PT -
breaking order. Combined, our findings point towards
the crucial influence of Coulomb interaction in stabiliz-
ing electron anisotropy.
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[37] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watan-
abe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Na-
ture 572, 101 (2019).

[38] P. Siriviboon, J.-X. Lin, H. D. Scammell, S. Liu,
D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone,
M. S. Scheurer, and J. Li, arXiv e-prints (2021),
arXiv:2112.07127.

[39] N. J. Zhang, K. Watanabe, T. Taniguchi, L. Fu, and
J. I. A. Li, arXiv e-prints (2022), arXiv:2209.12964.

[40] Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf,
P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester,
et al., Nature 600, 439 (2021).

[41] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi,
K. Watanabe, M. P. Zaletel, and A. F. Young, Science
360, 62 (2018).

http://dx.doi.org/10.1103/PhysRevB.99.144507
http://dx.doi.org/10.1103/PhysRevB.99.144507
http://arxiv.org/abs/1910.07379
http://arxiv.org/abs/1910.07379
http://dx.doi.org/ 10.1103/PhysRevLett.127.027601
http://dx.doi.org/ 10.1103/PhysRevLett.128.026403
http://dx.doi.org/ 10.1103/PhysRevLett.128.026403
http://dx.doi.org/10.1103/PhysRevLett.128.156401
http://dx.doi.org/10.1103/PhysRevLett.128.156401
http://dx.doi.org/10.1103/PhysRevB.102.155142
http://dx.doi.org/10.1103/PhysRevB.102.035161
http://arxiv.org/abs/2209.08208
http://arxiv.org/abs/2112.07127
http://arxiv.org/abs/2209.12964


8

SUPPLEMENTARY MATERIALS

Electronic anisotropy in magic-angle twisted trilayer graphene

Naiyuan J. Zhang, Yibang Wang, K. Watanabe, T. Taniguchi, and J.I.A. Li†

† Corresponding author. Email: jia li@brown.edu

This PDF file includes:
Supplementary Text
Materials and Methods
Figs. S1 to S10



9

−1.00

−0.50

0.00

0.50

1.00

S D

A

B

S D

A

B

S D

A B

S D

A B

S D

A
B

S D

A
B

S D

A
B

S D

A
B

S D

A

B

S D

A

B

S D

A

B

S D

B

A

S D

B

A

S D

A

B

S D

B

A

S

D

A

B
S

D
A

B S

DB

A

−1.00

−0.50

0.00

0.50

1.00

S

D

A
B

S

D

A
B

S

D

A

B S

D

A B

S

D

A

B

S

D
A

B

S

DA

B

S

D

A

B

S

D

A

B

S

D

A

B

S

D

A

B S

D
A

B

−1.00

−0.50

0.00

0.50

1.00

S D

A

B

S D

A

B

S

D

A

B

S

D

A

B

S

D

A

B

S

D

A

B

S

D

AB

S

D
AB

S

D

AB

S

D

B

A

S

D

A

B

S

D

A

B

S

D

A
B S

D

A

B

S

D
AB

S

DA

B

ΔV   /I25 14

S

D
B

A
ΔV   /I38 14

S

D

A

B

ΔV   /I58 47

S

D
B

A

ΔV   /I36 47

S

DB

A

ΔV   /I26 14

S

D
A

B

ΔV   /I37 14

S

D

BA

ΔV   /I15 47

S

D
A

B

ΔV   /I26 47

−1.00

−0.50

0.00

0.50

1.00

Δ
V

/Δ
V /

/m
ax

Δ
V

/Δ
V /

/m
ax

Δ
V

/Δ
V /

/m
ax

Δ
V

/Δ
V /

/m
ax

FIG. S1. ARTM on a highly anisotropic state. ∆V measured from more than 50 different configurations. An anisotropy
conductivity tensor is extracted by fitting all measurement results with the model discussed in Ref. [35]. The grey shaded
horizontal stripes denote the expected range of voltage drop for each configuration, calculated using the anisotropic conductivity
tensor and the boundary condition [35]. The plotted values of ∆V are renormalized by the expected value of ∆V‖ when current
flows along the anisotropy director, ∆V max

‖ . Green bars indicate that highlighted configurations share the same expected value
for an isotropic conductivity tensor.



10

a

b

c

d

T = 1 K ν = -1.91 ν = 0.25 ν = 1.86ν = -2.50

T = 34 K ν = -1.91 ν = 0.25 ν = 1.86ν = -2.50

ν

0.5

0.0

−4 −3 −2 −1 0 1 2 3 4
T = 34 K
T = 0.05 K

α
 ( 

de
gr

ee
s 

)

0

60

-60

Δ
R

/R
 0

FIG. S2. Polar-coordinate plot of R‖ and R⊥ measured at different temperatures. (a) Polar-coordinate plot of
R‖ and R⊥ measured at T = 1 K and different band fillings. (b) Anisotropy ratio and (c) director orientation as a function
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nonreciprocal response is one-fold symmetric. The onset of ∆V 2ω
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the linear transport response. In (c-f), ∆V 2ω
⊥ is predominantly three-fold symmetric. The onset of ∆V 2ω
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fillings. According to Fig. 5 and Fig. S3, the onset in ∆R/R0 with decreasing temperature corresponds to the emergence of a
PT -breaking electronic order. That this onset coincides with a rotation in the anisotropy director (marked with green solid line
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plots the behavior of electron anisotropy across the boundary defined by black dashed line in panel (b). The anisotropy ratio
displays a minimum at the boundary, concomitant with a jump in the director orientation. This points towards a transition
between different electronic orders across the black dashed line. Notably, while this transition corresponds to clear features in
the anisotropy ratio and director orientation, it is not visible in conventional transport response (Fig. 4a and panel (a)).
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MATERIALS AND METHOD

Device Fabrication

The doubly encapsulated tTLG is assembled using the “cut-and-stack” technique. All components of the structure
are assembled from top to bottom using the same poly(bisphenol A carbonate) (PC)/polydimethylsiloxane (PDMS)
stamp mounted on a glass slide. The sequence of stacking is: graphite as top gate electrode, 24 nm thick hBN as top
dielectric, bilayer WSe2, tTLG, 24 nm thick hBN as bottom dielectric, bottom graphite as bottom gate electrode.
The entire structure is deposited onto a doped Si/SiO2 substrate. Electrical contacts to tTLG are made by CHF3/O2

etching and deposition of the Cr/Au (2/100 nm) metal edge contacts. The sample is shaped into an sunflower
geometry with an inner radius of 1.9 µm for the circular part of the sample. In this geometry, the electrical contacts
are separated by an azimuth angle of 45o, allowing an increment in the azimuth angle that is 22.5o.

Transport measurement

The carrier density in tTLG is tuned by applying a DC voltage bias to the bottom gate electrode. The electrical
potential of the top gate electrode is held at zero. As a result, the tTLG sample experience a non-zero displacement
field D at large carrier density, which induces hybridization between the monolayer band and the moiré flatband. We
note that the dependence of Hall density on moiré band filling is in excellent agreement with D = 0 behavior from
previous observations. This indicates that the influence of D on the moiré flatband is not substantial. This is further
confirmed by the Landau fan diagram in Fig. S10, which is also consistent with the expected behavior at D = 0.

Transport measurement is performed in a BlueFors LD400 dilution refrigerator with a base temperature of 20 mK.
Temperature is measured using a resistance thermometer located on the cold finger connecting the mixing chamber
and the sample. An external multi-stage low-pass filter is installed on the mixing chamber of the dilution unit. The
filter contains two filter banks, one with RC circuits and one with LC circuits. The radio frequency low-pass filter
bank (RF) attenuates above 80 MHz, whereas the low frequency low-pass filter bank (RC) attenuates from 50 kHz.
The filter is commercially available from QDevil.

The current-voltage characteristics is measured using two methods. In the DC measurements, we sweep the ampli-
tude of the DC current with a small, fixed AC excitation of 5 nA at a frequency of 13 Hz. The differential voltage
is measured using standard lock-in techniques with Stanford Research SR830 amplifier. In the AC measurements, we
sweep the amplitude of the AC current at a frequency of 13 Hz. The nonlinear response is measured at the second
harmonic frequency using Stanford Research SR830 amplifier.

Transport response is measured across voltage leads that are parallel and perpendicular to the current flow direction.
The setup for the parallel response, ∆V‖, is shown in Fig. 1a. For current flowing in the azimuth angle 0 − 180◦,
Fig. S7a-h display 8 measurement configurations with an increment of 22.5◦ in the azimuth direction of current flow.
The voltage measurement in panel e-h is different by a geometric factor compared to that of panel a-d. This geometric
factor is shown to be 1.09 (Fig. 2).

The cascade phenomenon

The ν − T map of the moiré flatband is divided into different areas based on the underlying isospin polarization.
The boundaries of different isospin polarizations are defined by peaks in longitudinal resistance, concomitant with
reset in the Hall density [2–4, 36]. Fig. S9 shows the ν −T map of R‖ and Hall density nHall. Isospin transitions are
marked by white circles in the top panel. The cascade of isospin transition is clearly detectable at T > 30 K. This
onset of isospin polarization transitions provides a characteristic for the Coulomb energy scale, which is believed to
be the main driver behind the observed cascade phenomenon.
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FIG. S7. Schematic of angle-resolved transport measurement. (a-h) Eight measurement configurations for R‖= ∆V‖/I,
which corresponds to either different current flow directions. With forward and reverse DC bias, this gives us 16 angles.
Measurement configuration for ∆V⊥ in (i) configuration I and (j) configurations II. In configuration I, ∆V⊥ = 0 for an isotropic
state (panel iii in Fig. 2). In configuration II, while both ∆V⊥1 and ∆V⊥2 are non-zero for an isotropic state, ∆V⊥1+∆V⊥2 = 0,
as shown in panel iv and v in Fig. 2. As such, we define R⊥ as R⊥= (∆V⊥1 + ∆V⊥2)/I for configuration II, and R⊥= ∆V⊥/I
for configuration I.
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FIG. S8. Expected range of distribution for ∆V . (a) The open blue circle denote the measured value of ∆V for a
specific configuration, ∆V24/I15. The grey horizontal stripe marks the expected range of distribution based on the potential
distribution. As shown in panel (b), the range of distribution for ∆V arise from the non-zero width of electrical contact. Based
on the potential distribution across the sample [35], the range of ∆V across a pair a contact is defined by the maximum
and minimum potential difference, which are measured between green dots (maximum potential difference) and purple dots
(minimum potential difference). These correspond to the green and purple dashed lines in panel (a). Notably, we have also
taken into account the non-zero width of the current bias contact. Although the influence of the current bias contact appears
to be of secondary importance.
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FIG. S9. Cascade of isospin transitions. R‖ (top panel) and Hall density nHall (bottom panel) measured with linear
transport (small current bias of 5 nA) as a function of moiré filling and temperature. The peak position of ∆V‖/I marks the
boundary between different isospin orders [3, 36], which are marked with white circles. The transition between different isospin
orders coincide with resets in the Hall density. The cascade of isospin transitions are detectable at T = 34 K, much higher
compared to the onset temperature of valley-polarized loop current state, which is T < 5 K.
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FIG. S10. Magneto-transport measurement across the moiré flatband. (a) R‖ and (b) R⊥ across the moiré filling-
magnetic field (ν − B) map. Incompressible states are manifested as minima in R‖/I, concomitant with quantized plateau in
R⊥/I. (c) The most prominent incompressible states are marked with black dashed line in the schematic ν − B map, where
each trajectory is described by a pair of quantum numbers (t, s) from the Diophantine equation ν = tφ/φ0 + s. Here ν is the
moiré filling factor at the incompressible state, whereas t and s describe the slope and intercept of each trajectory [40, 41].
(d) Hall density nHall as a function of moiré filling measured at B = 0.5 T.
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