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A resistor at finite temperature produces white noise fluctuations of the current called Johnson-
Nyquist noise. Measuring the amplitude of this noise provides a powerful primary thermometry
technique to access the electron temperature. In practical situations, however, one needs to gener-
alize the Johnson-Nyquist theorem to handle spatially inhomogeneous temperature profiles. Recent
work provided such a generalization for ohmic devices obeying the Wiedemann-Franz law, but there
is a need to provide a similar generalization for hydrodynamic electron systems, since hydrody-
namic electrons provide unusual sensitivity for Johnson noise thermometry but they do not admit
a local conductivity nor obey the Wiedemann-Franz law. Here we address this need by considering
low-frequency Johnson noise in the hydrodynamic setting for a rectangular geometry. Unlike in
the ohmic setting, we find that the Johnson noise is geometry-dependent due to non-local viscous
gradients. Nonetheless, ignoring the geometric correction only leads to an error of at most 40% as

compared to naively using the ohmic result.

Introduction — The measurement of heat flow has long
been a pivotal tool for exploring many-body systems in
condensed matter and materials physics. For example,
measurements of thermal conductivity or heat capac-
ity reflect the existence of whichever quasiparticles are
present in the system, including those which are charge
neutral. But such measurements require an accurate
thermometer, and modern metrology schemes increas-
ingly require nanoscale temperature resolution.

In the context of electron systems, one challenge of
nanoscale thermometry is to disentangle electron and
phonon contributions to heat transport; in settings with
weak electron-phonon coupling, the electron and phonon
temperatures may not even be the same. Johnson noise
thermometry addresses the electronic half of this issue:
it is a powerful primary thermometry technique that
allows one direct and isolated access to the electronic
degrees of freedom. For this technique’s simplest for-
mulation, consider a resistor held at a uniform elec-
tronic temperature Ty. The Johnson-Nyquist theorem
(fluctuation-dissipation theorem) dictates that in a two-
terminal setup

S(t—t)=(5I(t)5I(t)) st—t, (1)

_ 2kgTy
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where §I(t) = I(t) — (I) is the charge current fluctua-
tion at time ¢ and R is the resistance; (...) denotes an
ensemble average (i.e. a time average if ergodicity is as-
sumed) [I]. As seen in Eq. 7 the time-averaged current
fluctuations provide a direct measure of the temperature
of the electron bath in the resistor. The noise correlator
S(t—1t') can be written in units of temperature, defining
the so-called Johnson noise temperature

TiN = lirrb iS(w) (2)

where S(w) = [ _dt e=™*S(t) is the (two-sided) Fourier
transform of the current noise correlator. Therefore,
in situations with uniform temperature the Johnson-

Nyquist theorem tells us that Tjn = Tp; the Johnson

noise temperature directly measures the electronic tem-
perature Ty without need for calibration. In other words,
Johnson noise acts as a primary thermometer. This ther-
mometry technique has recently been fruitfully utilized to
make record-sensitive bolometers [2H6] and to make mea-
surements of electronic thermal conductivity and heat
capacity [7H9].

In many practical situations, such as those listed
above, the fundamental Eq. does not apply since the
electronic temperature is not spatially uniform. Gener-
alizations of Eq. were previously studied [I0, [I1] for
electronic systems that obey Ohm’s law, i.e. where a local
proportionality J(x) = o(x)E(x) between current den-
sity and electric field holds, as well as the Wiedemann-
Franz (WF) law. These studies find that when current
flows through a two-terminal device, Joule heating leads
to an increase in the measured Johnson noise (in temper-
ature units) by
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(3)
Here P = IR is the Joule power, R is the resistance, and
Lo = k/(0Ty) = (7%/3)(kp/e)? is the Lorenz ratio. The
quantity 67TyN can be thought of as the excess noise aris-
ing from Joule heating; throughout this paper we refer to
the total Tyn as simply the “Johnson noise”. Equation
has been known for the special case of a rectangular
geometry with a spatially uniform and diagonal conduc-
tivity tensor since at least 1992 [12], but in fact Eq.
is generic for any two-terminal geometry and any form of
the conductivity tensor (even if it exhibits spatial varia-
tions), so long as Ohm’s law and the WF law are obeyed

What has remained unknown is how Eq. should
be generalized for situations not governed by Ohm’s law.
Electronic systems that violate Ohm’s law have become
increasingly prominent in recent years, with experimental
works demonstrating a hydrodynamic regime of strongly-
interacting electrons in a number of materials [I3H40]. In
such systems there is no concept of a spatially local con-
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FIG. 1. The rectangular geometry that we consider and its
boundary conditions. A voltage V' is applied across the con-
tacts, and we consider no-slip boundary conditions at the
walls. We also fix the temperature on the x boundaries and
enforce 0,7 = 0 on the y boundaries.

ductivity and WF is violated. Graphene in particular
is a material of choice both for Johnson noise thermom-
etry and electron hydrodynamics, due to its relatively
weak electron-phonon coupling, low disorder, and strong
electron-electron interactions. The advent of these hy-
drodynamic electron systems calls for an extension of
Johnson noise theory to this new setting.

Moreover, a naive application of Eq. (as was used,
for example, in the seminal measurements of WF viola-
tion in graphene [20]) suggests great practical utility of
hydrodynamic electrons. Electrons in the hydrodynamic
regime can display large WF violations [20, 34, 4TH50],
and deep in the hydrodynamic regime (with only a single
type of carrier) the Lorenz ratio x/(0Tp) becomes very
small [4TH43| [45] [49]. Naively inserting this small effec-
tive Lorentz ratio into Eq. suggests a very large sen-
sitivity for Johnson noise in the hydrodynamic regime.
Such high sensitivity would imply that hydrodynamic
electrons are ideal for bolometry and thermometry appli-
cations. Therefore, the key question of the fate of thermal
noise in a hydrodynamic electron system and the validity
of Eq. has significant practical and theoretical impor-
tance for the development of electron thermometry.

In this paper, we explicitly study the Johnson noise
of hydrodynamic electrons. We analytically solve for
the low-frequency fluctuations of the Navier-Stokes equa-
tions in a rectangular geometry, depicted in Fig. We
find that the Johnson noise temperature is no longer
geometry-independent due to non-local viscous gradients,
as opposed to the ohmic case [I1]. Despite this nonuni-
versality, Eq. is of the correct functional form up to a
multiplicative geometric correction. In fact, this geomet-
ric correction is no larger than 40% for any aspect ratio
of the system or any value of the electron-electron scat-
tering rate. Thus, Eq. provides a generally correct
description of the Johnson noise, even though the resis-
tance R and Lorenz ratio L are strongly renormalized by
hydrodynamic effects.

Mathematical Setup — Throughout this paper, we work
with the rectangular geometry shown in Fig. [1} The full

equations of motion for incompressible flow are given by
1
atv—l—v-Vv:—fVP—quS—vv—i—uVQv (4)
p m

T +v-VT = iVQT + =z (&wi + 8w"”')2 + lvz
PCp 2¢, Cp
()
V-v=0. (6)

The hydrodynamic fields are the velocity v, the tempera-
ture T, the pressure P, and the electric potential ¢. The
phenomenological constants in the equations of motion
are the hydrodynamic mass m, the charge ¢, the mass
density p, the momentum relaxation rate v, the viscos-
ity v, the specific heat at constant pressure c,, and the
thermal conductivity x. We have assumed an incom-
pressible flow with constant density [51]; this assump-
tion is valid for flows with v < ¢ and 7 > L/c where ¢
is the speed of sound and 7 and L are a characteristic
time and length, respectively [52] [53]. We also neglect
the pressure P since it can be subsumed into an effec-
tive electric potential ¢/ = ¢ +mP/(pq). Finally, we will
work at linear order, neglecting convection terms v - Vv
and thermal advection v - VTI'. Dropping convection is
valid at low Reynolds numbers Re, = vL/v < 1 [54]
or at low “momentum-relaxation Reynolds number” [55]
Rey, = v/Ly < 1. Graphene experiments are typi-
cally deep within this low Reynolds number regime, with
v ~ 650 GHz, v ~ 0.1m?/s, and L ~ 5pum [19] so that
Rey, ~ I/(26mA) and Re, ~ I/(160pA) [65]. More-
over, dropping thermal advection is valid for x/(c,L) > v
when thermal diffusion is fast compared to the fluid ve-
locity. After these simplifications, the equations of mo-
tion become

v = —%V(gﬁ — (v = vViv (7)

AT = ——°T + = (' + 0,0%)° + Lo®  (8)
PCp 2¢, Cp
V-v=0 9)

Eq. is the momentum balance equation with an
electric force, momentum relaxation, and viscous drag.
Eq. is the heat equation, with source terms from
viscous heating and Joule heating. Supplemented by
fixed-voltage, fixed-temperature, and no-slip/no-heat-
flow boundary conditions (see Fig. , solving these equa-
tions provides the quasi-equilibrium solution about which
we will study noise fluctuations.

Once the steady-state solution is known, we can study
the thermal noise fluctuations. We are interested in low
frequency solutions, s — 0, where the velocity fluctu-
ations dv; are described by the Laplace transform of

Eq. (7) [56]
(s+~— VVf)(évi(r, $)dv;(x’,0)) = (dv;(r,0)dv;(r',0))

= kBL(r)(S(I’ — r’)&j

p
(10)



where s is the Laplace parameter [57] and the initial con-
dition on the RHS of Eq. is given by the equipartition
theorem. This equation is supplemented by incompress-
ibility of fluctuations 9;(dv;(r, s)év;(r",0)) = 0. In writ-
ing Eq. with incompressibility, we have neglected
the electric potential (pressure) and density fluctuations.
This approximation is again valid when w < ¢/L, i.e.
when the frequency is much smaller than the character-
istic sound frequency of the sample. Finally, to obtain
the current fluctuations from the velocity fluctuations,
it is convenient to apply the relation I = %fd:cdyjm to
the solution of Eq. (10)); this relation arises from current
conservation since &JI is independent of x.

For simplicity, we ignore other forms of noise that may
be present. Shot noise, in particular, is also present; for
diffusive conductors it dominates whenever the source-
drain voltage V is large enough that eV > kT (see, e.g.,
Refs. [68] 59]). However, recent experiments measuring
Johnson noise in hydrodynamic electrons tend to operate
in a regime where Johnson noise is dominant over shot
noise [7H9, 20] [60]. We leave an exploration of other
noise mechanisms in the hydrodynamic regime to future
work.

Solution — We begin by solving the steady-state equa-
tions of motion to determine the temperature profile.
The steady-state velocity profile is given by the ohmic-
Poiseuille solution (see, e.g., Ref. [I7)

cosh (y;;\m)

Jo(y) = nv(y) = opEy |1 — ol (2%) ,  (11)

where op = ne?/(m7) is the Drude conductivity and
the electric field E, = V/{. The viscous length scale
or Gurzhi length A = /v/v is a length scale below
which viscous effects are important. For convenience,
we can define an effective conductivity & = (¢/h)/R =
(1 — % tanh %) op, where the two-terminal resistance
R = V/I was computed using Eq. . In the ohmic
limit A < h, the effective conductivity @ — op reduces
to the usual Drude conductivity. We emphasize that a
local conductivity is not well-defined in the presence of
viscosity; the effective conductivity is useful as a measure
of the heat dissipation, not of the local current-voltage
relation. The solution for the velocity profile in Eq. (11))
determines the dissipative heating terms in Eq. 7 which
allows us to solve for the temperature profile.

We use Fourier techniques to obtain the temperature
profile analytically. The exact result can be written as

V2 (1. . h? h A

2
where & = z/l is the non-dimensionalized z-coordinate
and F' is a double Fourier sum [6I]. To obtain a qual-
itative understanding, we consider this result in various
simplifying limits (see Fig. [2)).
In the ohmic limit A\ < h, the heating profile (i.e.
the heat per unit area generated at each point) is spa-

tially uniform; since F' — 0, this limit admits the simple
parabolic temperature profile

T (2) = T + ETVQ%@Q _H 400, (13)

with @ — op. This parabolic profile is the result of the
thermal boundary conditions: heat is only allowed to flow
at the contacts at x = 0 and = = /¢, so the temperature
must be maximal in the center and minimal at the fixed-
temperature boundaries.

In the opposite viscous limit, A > h, viscous dissipa-
tion leads to a non-uniform heating along the y direction
(though heating is still uniform in z, as in the ohmic
case). The temperature profile then obtains a “geomet-
ric correction” to the ohmic result as a function of the
aspect ratio h/¢. In the thin channel regime h < ¢, ana-
lyticity of F' around h/¢ = 0 means that the temperature
profile takes the simple form

—1r2
Tinin = To + %%f(l — &)+ O(h*/1?) (14)

This “ohmic-like” temperature profile arises due to the
fact that in the thin channel limit, the problem be-
comes quasi-1D; heating inhomogeneities rapidly equi-
librate along y as compared to along x, leading to small,
O(h?/¢?) corrections to the “ohmic-like” temperature
profile that is independent of y. An example of an
“ohmic-like” temperature profile in the thin channel limit
is plotted in Fig.

As we will see below, the temperature profile deter-
mines the Johnson noise profile, so that correspondingly
Eq. is obeyed in both the ohmic limit and the thin
channel limit (for the latter, even in the limit of zero
Drude resistivity, ¥ — 0). Therefore, in order to observe
any deviation from Eq. , one needs to be in the regime
¢ 2 h 2 A, for which the temperature profile is nonuni-
form in the y direction. An example is shown in Fig. [2a]
where one can see increased temperature at the bound-
aries due to viscous dissipation from the no-slip boundary
friction.

Given the temperature profile, we can solve for the
measured current noise via Eq. , again using Fourier
techniques. The analytic result can be written as

_ 2k

=%

T 2
T+ s, a9

where the function f is a Fourier series and is plotted in
Fig. 3 [62]. In the ohmic limit A < h, we find that f —
1, recovering the previous ohmic result for the Johnson

noise [I1] (see Eq. (3)).

2k
Sohm = =5 |:TO +

(16)

R 12k

op V2 :|
Therefore, we interpret f as a geometric correction to the
ohmic Johnson noise result. For h < £ where the tem-
perature profile is “ohmic-like”, we also obtain the ohmic
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FIG. 2. A plot of the purely viscous (A — co0) temperature
profiles for (a) h/¢ =1 and (b) h/¢ = 1/40. Notice that for
(b), the profile is very similar to the ohmic profile, having
negligible y variation.

result f — 1. Around A\/h ~ 0.2, we find that f — 1
changes sign. This sign change is due to a crossover from
the regime where Joule heating dominates to the regime
where viscous heating dominates, which produces a cor-
responding change in the “topography” of the tempera-
ture profile. When Joule heating dominates (A\/h < 0.2)
there is a single temperature peak in the center, while
when viscous heating dominates (A/h = 0.2) there are
two temperature peaks, one at each boundary.

In general, the dimensionless function f is a slow O(1)
function of h/¢ and A/h and f never deviates from unity
by more than 40%. Deep in the limit of viscous flow
and large aspect ratio (A\/h > 1 and h/¢ > 1), i.e. the
top-right corner of Fig. [3| the value of f approaches 3/5.
Despite this conclusion that the “ohmic” result of Eq.
is always “nearly correct,” we emphasize that the sensi-
tivity of Johnson noise thermometry is generally strongly
renormalized by hydrodynamic effects. Specifically, vis-
cous effects tend to strongly renormalize the resistance
R and the Lorenz ratio L = k/(1p), thereby making a
large quantitative change in the measured Johnson noise.

Conclusion — In this paper, we have shown that the re-
lationship between Johnson noise and heating for ohmic
and WF-obeying systems [Eq. (3)] is, surprisingly, mostly
valid even for hydrodynamic electrons [Eq. ] A geo-
metric correction arises from preferential heating near the
no-slip boundaries by viscous shear, but this correction
is never more than 40%, regardless of the sample’s as-
pect ratio or viscosity. Our result enables a range of fun-
damental and applied applications in thermometry and
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FIG. 3. A plot of f(h/l,A\/h)—1, the deviation of the geomet-
ric correction to the Johnson noise from unity. In both the
ohmic limit, A\/h < 1, and the thin channel limit, h/l < 1, we
find f — 1. Viscous effects are most prominent for A/h > 1
and h/l > 1, where f — 3/5.

bolometry, and justifies applying existing Johnson noise
thermometry techniques (those of Refs. [§ and [9] for ex-
ample) directly in the hydrodynamic regime.

Our results, derived for a Galilean-invariant fluid, can
be directly extended to the “Dirac fluid” limit where n-
type and p-type carriers coexist (as in graphene near
the charge neutral point) [63]. In general, with chemi-
cal potential y away from the Dirac point, electron-hole
scattering causes the majority carriers to drag the mi-
nority carriers, so that electrons and holes equilibrate
to the same hydrodynamic drift velocity. Very near the
Dirac point, however, there is a zero-momentum mode
with disequilibrated electron and hole drift velocities
that can also carry current. This zero-momentum mode
can relax current via electron-hole scattering, increasing
the current-relaxation rate and suppressing the viscous
length A. Therefore, when the chemical potential is suffi-
ciently close to the Dirac point, the current noise should
return to ohmic-like behavior. To estimate the window
where the zero-momentum mode is important, we esti-
mate the two modes’ relative contribution to the effective
conductivity. We find [64]

2 - (kBT)2 @ + '.)/imp
OF ,LL2 L2 Yee ’

(17)

where o, and op correspond to the zero-momentum and
finite-momentum (hydrodynamic) conductivities, respec-
tively, and L is the sample length. Therefore, even in the
Dirac fluid limit, the zero-momentum mode can be ne-
glected so long as p?/(kpT)? > 12,/ L* + Yimp/Vee, Where
the RHS is small in the hydrodynamic limit. Where this
inequality is satisfied, our main result, Eq. ( ., applies
directly; where it is v1olated the ohmlc result Eq. ( .



applies. We remark that one can make more rigorous
estimates using the explicit expressions from Boltzmann
kinetic theory [26] 41l [65] which give the same functional
form.

While for a rectangular geometry the geometric cor-
rection f to the Johnson noise does not deviate greatly
from unity, one may wonder whether this conclusion
is strongly geometry-dependent. More specifically, one
can ask about the annular Corbino geometry; it exhibits
“paradoxical” behavior for hydrodynamic electron flow,
with a near-vanishing of the bulk electric field even when
a strong current is flowing [38-40, [66l [67]. If one naively
applies the Shockley-Ramo theorem [68H7I], then this
bulk electric field expulsion would seemingly imply that
the Johnson noise is unmodified by current flow, even as
this flow produces significant electron heating. However,
the version of Shockley-Ramo appropriate for an electron
fluid [71] relies on a well-defined local conductivity. We
expect that the current noise for the Corbino geometry

is qualitatively similar to the rectangle; we do not expect
any zeros or anomalies, only a quantitative change in the
geometric correction. In the ohmic limit (i.e. small X),
we expect a return to Eq. . Moreover, when the two
annular radii ro —r; = § < 71 are very close, the temper-
ature variations are suppressed by O (52 / r%) so we also
expect the current noise to be ohmic-like in this 1D limit.
We leave further exploration of the Corbino and of other
geometries to future work.
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Appendix A: Calculational details

In this appendix, we fill in the calculational details of the main text. We first consider the heat equation Eq. .
Upon computing the heating terms, the heat equation becomes
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where the first term on the RHS corresponds to viscous heating and the second term to Joule heating. To solve this,

we look for a Fourier series solution of the form
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where & = 2/l and § = y/h are the non-dimensionalized coordinates. This solution satisfies the thermal boundary
conditions by construction. Therefore, we need to find the corresponding Fourier series of the heating terms on the
RHS of Eq. (Al). This is given by

_ 2 _ 2
opE2 | (sinh =042 cosh ¥=h/2
z A +11-= . W
h h
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2 Tag [es}
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KR

cos(2mby,y) (A3)

where the first bracketed term on the RHS corresponds to the Fourier series of unity and A= A/h is the non-
dimensionalized viscous length. Therefore, the solution for the temperature profile is

3 1 12,272
dhtanh 2 (1 2X%7%2)

h? 4sin” M= 1 1 . _ _
2 Z Z a : h2 S sin(ra,Z) cos(2mwb,y)
L b2

Tlaz + 47721)5 1 — 2\ tanh % (1 + szwzbi) (1 + 45\27r2b§>
(A4)

%i(l — i) - %QF <}; 2 x)] (A5)

whivh validates the form of Eq. .

Then, we solve Eq. for the Johnson noise. Similar to before, to satisfy the boundary conditions we take the
following Fourier expansions

(6vy(r, )00, (x',0)) Z Z A, €77 sin(mny ) (AG)
Mgp=—00ny=1
kBT(r)(;(r —r) = kBT Z Z 2 e2mims (3—a') sin(mny,y') sin(mn,y) (AT)

p

Myp=—00 n,,_l
In particular, our (dv,dv,) ansatz satisfies the no-slip boundary conditions. Therefore, this gives us the solution

S 1 kgT(r') 2 NP
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Mgp=—00 ny=1 S + Y + Vvy p

For (existence and) uniqueness statements, see Ref. [[2l Since the velocity-velocity correlator is time-reversal even,
the Fourier transform of the velocity-velocity correlator is given by the replacement s — iw [56] with an additional
overall factor of 2. In the w — 0 limit and using 61, = ne [ dz dy dv,, we get
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FIG. 4. A plot of the geometric correction f(h/l) to the effective Johnson noise temperature in the viscous limit A/h — oco. It
takes the limits f(0) =1 and f(h/l — c0) = 3/5

The geometric correction f is evaluated as

oo
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From this expression, it is immediate that f — 1 when h/l — 0 or \/h — 0; the geomtric correction f becomes unity
and the Johnson noise temperature returns to the ohmic result for an ohmic (ohmic-like) temperature profile.
In the viscous limit A/h — oo, the geometric correction Eq. simplifies to

h? <~ 108 h Imb
h/l) = f(h/I, X =1- 1-— tanh L Al
FO1) = F(h/1 A o0) lQﬂﬂ%( iy tanh ) (A15)

This is plotted in Fig. [ and has the limits

f(h/l<1)=1—- gi;; +0 (h3) (A16)
h/l>>1)_1—+(’)<}l;> (A17)

Appendix B: Estimate for the zero-momentum mode of the Dirac fluid

Here, we fill in the mathematical details of estimating when one can neglect the zero-momentum mode in the Dirac
fluid [Eq. (I7)]. Using the Drude form ne®/(mv) as a guide, we need to estimate the parameters n, m, and + for the
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two modes. We first consider the finite-momentum (hydrodynamic) mode. The effective conductivity of this mode

2
n—e

is op ~ Wit o) 7 jV/LQ, where W is the enthalpy, n_ = n. — ny is the charge density, vp is the Dirac Fermi
- imp

velocity, Yimp is the momentum-relaxing scattering rate, and L is a characteristic length. For the zero-momentum
2

k:;:;)% ﬁ, where ny = n. + n; is the particle density, Yec

is the electron-electron collision rate, and we have estimated the mass with the thermal mass kT /v%. Taking the

ratio, we find that in the Dirac fluid limit u < kT,

mode, we estimate the effective conductivity to be o, ~

0. ny W/(n_vp)? Yyimp +v/L?

or n- kpT/vk Vee
kT 2 l2 im
~ ( B ) “ee i P , (Bl)
W LA e

where we evaluate ny,n_, W using the Fermi-Dirac distribution [73] and use v ~ I2,7ee, where the electron-electron
scattering length lee ~ VF /Yee-
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