
Theory of truncation resonances in continuum rod-based phononic crystals with
generally asymmetric unit cells

Hasan B. Al Ba’ba’aa,b, Carson L. Willeyc,d, Vincent W. Chenc,d, Abigail T. Juhlc, Mostafa Nouha,∗

a Dept. of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), Buffalo, NY 14260, USA
b Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA

c Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
d UES, Inc., Dayton, OH 45432, USA

Abstract

Phononic crystals exhibit Bragg bandgaps, frequency regions within which wave propagation is forbidden. In solid
continua, bandgaps are the outcome of destructive interferences resulting from periodically alternating layers. Under
certain conditions, natural frequencies emerge within these bandgaps in the form of high-amplitude localized vibra-
tions near a structural boundary, referred to as truncation resonances. In this paper, we investigate the vibrational
spectrum of finite phononic crystals which take the form of a one-dimensional rod, and explain the factors that con-
tribute to the origination of truncation resonances. By identifying a unit cell symmetry parameter, we define a family of
finite phononic rods which share the same dispersion relation, yet distinct truncated forms. A transfer matrix method
is utilized to derive closed-form expressions of the characteristic equations governing the natural frequencies of the
finite system and decipher the truncation resonances emerging across different boundary conditions. The analysis
establishes concrete connections between the localized vibrations associated with a truncation resonance, boundary
conditions, and the overall configuration of the truncated chain as dictated by unit cell choice. The study provides
tools to predict, tune, and selectively design truncation resonances, to meet the demands of various applications that
require and uniquely benefit from such truncation resonances.
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1. Introduction

Over the past few decades, vibration mitigation research has largely transitioned from traditional active control
techniques and pursuit of materials with stronger damping properties to the notion of artificially engineered structures
which possess a set of unique wave attenuation features that are otherwise elusive [1, 2]. Most notable among these are
Phononic Crystals (PnCs), a class of periodic structures which come in continuous (e.g., rods [3], beams [4], and plates
[5]) or discrete (e.g., spring-mass chains [6] and lattices [7]) forms. PnCs exhibit bandgaps, i.e., frequency regions
of forbidden wave propagation, which arise from destructive interferences at interfaces with impedance mismatches.
These mismatches are most commonly created by layering two or more materials in a spatially periodic manner with
the smallest self-repeating block being referred to as the PnC’s unit cell. Owing to their ability to manipulate incident
vibroacoustic excitations, PnCs have been extensively used in a broad range of applications ranging from energy
harvesting [8, 9] and attenuation of airborne sound [10], to nonreciprocal wave transmission [11, 12] and ultrasonic
wave focusing [13].

In their idealized form, PnCs are typically modeled as unbounded systems with an infinite number of unit cells.
By applying the Bloch theorem, a dispersion diagram which consists of a set of curves relating the frequency of
waves in the elastic medium to their wavenumber can be obtained [14]. These curves represent “pass bands”, or
regions of permissible wave propagations, while empty spaces between them indicate bandgap regions where no
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real wavenumber solutions exist to satisfy a given frequency, culminating in an exponential attenuation of incident
waves. Intuitively, natural frequencies (or resonances) of a vibrating PnC would therefore lie within the different pass
bands of the dispersion relation. However, PnCs with a finite number of cells have been shown to exhibit natural
frequencies inside bandgap regions, known as truncation resonances – named as such since they are a direct outcome
of truncating the infinite medium and introducing boundary conditions [15]. While truncation resonances had been
repeatedly observed in research involving PnCs, they were never explicitly investigated until 2011 [16]. Mode shapes
corresponding to truncation resonances are uniquely characterized by a profile of high vibrational amplitudes which
are confined to the boundaries and decay away from it due to the bandgap effect. These profiles represent a set
of “edge” or “surface” modes which have been instrumental in several emerging applications including phononic
topological insulators [17–19], flow control via phononic subsurfaces [20, 21], and nano-particle mass sensing [22].

Given the breadth and diversity of the number of engineering problems where localized attenuated modes play
a central role, there is a strong motivation to study the dynamics of truncation resonances and comprehend their un-
derlying features including onset conditions, patterns, distributions, and sensitivity to varying boundary conditions.
Since truncation resonances are a function of finite PnCs, such goal can only be achieved by employing tools that go
beyond the traditional Bloch-wave unit cell analysis, in order to capture the structural response of the finite system.
Al Ba’ba’a et al. pioneered the use of continuous fractions [23] to devise a transfer-function-based model which
depicts the frequency response of a finite spring-mass PnC [24], by utilizing a mathematical scheme that enables
closed-form expressions for eigenvalues of perturbed tridiagonal matrices [25, 26]. The work set a framework to
identify truncation resonance locations by recognizing natural frequencies which avert dispersion branches (i.e., fall
outside the solutions of the analytical dispersion relation), and consequently, defined existence criteria for truncation
resonances in free-free diatomic PnCs as a function of both mass and stiffness ratios as well as finite chain symmetry,
as dictated by the truncation location. Additional studies of finite periodic systems shed light on additional discrep-
ancies between the dispersion behavior of an infinite chain and the actual response of the final counterpart such as
bandgaps which are undeveloped in terms of attenuation strength or frequency range [27–29]. Bastawrous and Hus-
sein extended the truncation resonance existence criteria to general boundary conditions as well as finite PnCs with
end masses [30].

In this paper, we investigate the vibrational spectrum of finite continuum rod-based PnCs which consist of two
alternating layers that repeat spatially to form a periodic composite-like structure. The primary goal is to provide the
fundamental factors that contribute to the origination of truncation resonances. Contrary to their discrete (spring-mass)
counterparts [24, 30], closed-form equations of finite PnC rods cannot be obtained by using tridiagonal k-Toeplitz
matrices, and therefore warrant a different approach. In here, we will adopt the transfer matrix method (TMM)
whose use in vibration characterization dates back to the 1950s, whether for flexural beams [31] or elastic lattices
[32–34]. Later on, and owing to its simplicity and efficiency as a predictive tool for finite vibrational structures,
TMM has been widely adopted in the modeling of elastic periodic continua [35–37]. Using TMM, we will present
an exhaustive analysis of the location, distribution, and associated wave propagation modes of the rod-based PnC’s
truncation resonances subject to all the possible boundary conditions. As eluded to in previous literature, the location
at which an infinite periodic chain is truncated influences the overall symmetry of the resultant finite structure, and by
extension, alters its truncation resonances, thus posing an additional variable to an already complex problem [38, 39].
Furthermore, the final configuration of the truncated PnC often requires the use of a non-integer number of unit cells
(For example, the analysis of a perfectly symmetric PnC of the form “A-B-A-B-A” requires the use of 2.5 units cell
of the form “A-B”). The crux of the presented model lies in the choice of unit cell configuration, as depicted in Fig. 1,
which utilizes a single symmetry parameter δ to define the boundaries of the self-repeating portion. This streamlines
the process of obtaining a family of finite PnC chains which share the same unit cell, yet distinct truncated forms, by
boiling it down to a single design parameter made at the early stage of choosing the unit cell, and then repeating the
chosen cell an integer number of times to build the finite structure. As such, the entire spectrum of possible truncated
versions of a given PnC can be generated by sweeping the symmetry parameter between −1 and 1.

Following a description of the parameters governing the design of a generally asymmetric unit cell, the TMM is
used to derive expressions for the dispersion diagram as well as the natural frequencies, frequency response functions,
and characteristic equations of the finite PnC for four possible boundary conditions, namely, free-free, fixed-fixed,
fixed-free and free-fixed. By closely inspecting the first twelve bandgaps, we then explain the analogies and interplay
between truncation resonances emerging across the four scenarios; making several references to the accompanying
mode shapes and establishing connections between the localized vibrations and the corresponding boundary condition
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at that location. Finally, we track the truncation resonances and the aforementioned modes for each boundary con-
dition as the unit cell configuration changes, enabling us to formalize the different patterns of truncation resonances
that exist in a rod-based PnC of any truncated form. The framework presented here provides a pathway to predict
and evaluate truncation resonances prior to fabrication, in addition to an ability to tune and selectively place their
frequencies in a manner which caters to the different applications that require truncation resonances.

2. Unit Cell Analysis

2.1. Asymmetric unit cell configuration

Consider a one-dimensional PnC rod consisting of an infinite periodic arrangement of two segments, A and B,
which are comprised of different materials and geometries, as shown in Fig. 1. The rod’s longitudinal vibrations at
a given location x at any time instant t is given by the displacement function u(x, t), as shown in Fig. 1(b). Each of
the two segments has an elastic modulus Es, a density ρs, a cross-sectional area As, and a length `s, where s = a for
segment A and s = b for segment B. The self-repeating portion of the PnC rod, henceforth referred to as the unit cell,
is chosen such that the total length of segment A is equal to `a = `a+ + `a−. The values of `a+ and `a− dictate the level
of symmetry of the unit cell as depicted in the lower panel of Fig. 1(a). For any unit cell choice, a symmetry parameter
δ is defined as

δ =
2d
`a
, (1)

where d = (`a+ − `a−)/2 is the distance between the center of segment B in the chosen unit cell and that in a perfectly
symmetric unit cell. As a result, the unit cell studied here is deemed asymmetric except when δ = 0. A choice of
`a+ > `a− results in a positive δ while a choice of `a+ < `a− results in a negative δ, with δ ∈ [−1, 1]. Using the
definition of d, the lengths of `a+ and `a− corresponding to a given symmetry parameter δ can be calculated as

`a± =
`a

2
(1 ± δ). (2)

Equation (2) confirms the perfect unit cell symmetry condition, `a+ = `a−, which takes place when δ = 0. As the
absolute value of δ increases, the asymmetry of the unit cell increases. At the limit of |δ| = 1, the unit cell takes the
form of a single continuous segment A of length `a which is either followed by segment B (when δ = −1) or follows
segment B (when δ = +1). This limiting case of |δ| = 1 is perhaps the most commonly used unit cell configuration in
studies involving bi-layered PnCs (e.g., [40–42]). However, the choice of δ and the effect it has on the shape of a finite
PnC that consists of an integer number of unit cells (also known as the truncation effect) is critical and at the heart
of the present study. In this work, we will detail how the choice of δ dictates the presence of truncation resonances
within the emerging bandgaps as well as the number and location of such resonances.

Material BMaterial A

z

y

x

Ea, ρa, AaEb, ρb, Ab

Generic unit cell

u(x,t)

(a) (b)

Choices of unit cell

δ = 0 δ > 0δ < 0

d dℓb ℓa+ℓa−

ABA

Figure 1: (a) Schematic diagram of a PnC rod of two alternating layers, A and B (top), and the different unit cell choices as a function of the
symmetry parameter δ (bottom). (b) A three-dimensional model of a generic unit cell indicating the material and geometric properties of the two
constitutive layers, A and B. Longitudinal vibrations in the PnC rod are described by u(x, t), where t is time and x is the axial direction.
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2.2. Transfer matrix of a unit cell

Throughout this paper, the transfer matrix method (TMM) is used as the primary analytical approach as it facili-
tates both the wave dispersion analysis based on a single unit cell, as well as the dynamics of a finite PnC rod made of
a given number of cells which will be presented later. The transfer matrix T of a unit cell relates the components of
the state vector, in this case the displacement u and force f , at the end of one cell i to the corresponding components
at the end of an adjacent cell i + 1, as follows [43]{

ui+1
fi+1

}
= T

{
ui

fi

}
. (3)

For the unit cell defined in Sec. 2.1 with a symmetry parameter δ, T is found by multiplying the transfer matrices
for the three individual segments which form the unit cell, i.e.,

T = Ta+
TbTa− , (4)

where

Ts =

[
cos(ks`s) 1

zsω
sin(ks`s)

−zsω sin(ks`s) cos(ks`s)

]
. (5)

with s = a+, b, or a−. Here, zs = As
√

Esρs is the characteristic impedance of each segment, and ks = ω/cs is the
stand-alone wavenumber of materials A and B as a function of the angular frequency ω and the sonic speed of elastic
medium cs =

√
Es/ρs. Note that δ = ±1 renders one of the transfer matrices Ta± an identity matrix, reducing Eq. (4)

to two terms as expected. To streamline the analysis and reduce the number of parameters, we introduce ωs = cs/`s

as well as the two following non-dimensional quantities

α =

1
ωa
− 1

ωb

1
ωa

+ 1
ωb

, (6a)

β =
za − zb

za + zb
, (6b)

where α ∈ [−1, 1] and β ∈ [−1, 1] are defined as the frequency and impedance contrasts, respectively. Using Eq. (6b),
the characteristic impedance of each material can be rewritten as

zs = z(1 ± β), (7)

where z = (za +zb)/2 is the average characteristic impedance of both materials. The plus (+) version of Eq. (7) denotes
material A while the minus (−) version denotes material B. We also define a non-dimensional frequency Ω = ω/ω0,
where ω0 is the harmonic mean of the frequencies ωa and ωb and is given by

ω0 =
2

1
ωa

+ 1
ωb

. (8)

The harmonic mean ω0 can be combined with the definition of α to give

1
ωs

=
1
ω0

(1 ± α), (9)

where, once again, the plus and minus versions of Eq. (9) correspond to materials A and B, respectively. Consequently,
the matrices in Eq. (4) can be expanded, resulting in the following unit cell transfer matrix

T =

[
t11 t12
t21 t22

]
, (10)
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where

t11 = cos(2Ωα) −
2

1 − β2 sin
(
(1 − α)Ω

)[
sin

(
(1 + α)Ω

)
− β sin

(
δ(1 + α)Ω

)]
, (11a)

t12 =
sin(2Ω) + 2β sin

(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα)

zω(1 − β)(1 + β)2 , (11b)

t21 =
−zω
1 − β

[
sin(2Ω) − 2β sin

(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα)

]
, and (11c)

t22 = cos(2Ωα) −
2

1 − β2 sin
(
(1 − α)Ω

)[
sin

(
(1 + α)Ω

)
+ β sin

(
δ(1 + α)Ω

)]
. (11d)

2.3. Dispersion analysis
Following the derivation of the transfer matrix T, we obtain a closed-form expression for the PnC’s dispersion

relation. We start by computing the eigenvalues of the transfer matrix via |T − λI| = 0. Using the fact that |T| = 1, a
unique property of transfer matrices, the characteristic equation can be found as

λ2 − tr(T)λ + 1 = 0, (12)

where tr(T) = t11 + t22 is the trace of matrix T. The eigenvalues of T can be found by solving Eq. (12), which yields
the following solution pair

λ± =
tr(T)

2
±

√(
tr(T)

2

)2

− 1. (13)

As such, it immediately follows that λ− + λ+ = tr(T) from Eq. (13). Rewriting the eigenvalues as a function of a
non-dimensional wavenumber q in the form λ± = e±iq, where i is the imaginary unit, gives

tr(T) = 2 cos(q), (14)

from which the dispersion relation can be extracted as follows

cos(2Ω) − β2 cos(2Ωα) − (1 − β2) cos(q) = 0. (15)

It is evident from Eq. (15) that the dispersion relation is not a function of the symmetry parameter δ, which is
a validating sign since the choice of the unit cell of an infinite PnC should not affect its dispersion diagram. Such
choice, however, plays an instrumental role in the dynamics and eigenfrequency analysis of the finite PnC, as will be
illustrated in Secs. 3 and 4. The dispersion relation can be plotted analytically by calculating the non-dimensional
wavenumber q corresponding to any non-dimensional frequency Ω following a simple rearrangement of Eq. (15)

q = cos−1
[
cos(2Ω) − β2 cos(2Ωα)

1 − β2

]
, (16)

which results in generally complex values of the wavenumber q = qR + iqI. A bandgap emerges when qI , 0 (or
|λ| , 1) indicating spatial wave attenuation in the PnC rod. As can be inferred from Eq. (16), a non-zero imaginary
component of the wavenumber is guaranteed when the following inequality is satisfied∣∣∣∣∣∣cos(2Ω) − β2 cos(2Ωα)

1 − β2

∣∣∣∣∣∣ > 1. (17)

Figure 2(a) shows the dispersion diagram for a PnC rod made of an ABS polymer (Material A) and Aluminum
(Material B) corresponding to the parameters listed in Table 1. For these parameters, α and β are found to be equal
to 0.5379 and −0.8906, respectively. The figure depicts the dispersion relation over the frequency range Ω ∈ [0, 20],
revealing the first twelve bandgaps of the PnC rod, which are shaded and color coded. In Fig. 2(b), the natural loga-
rithm of the magnitude of the transfer matrix’s eigenvalues is plotted, emphasizing that the eigenvalues are reciprocal
of one another, i.e., λ+λ− = 1 or ln(|λ+|) + ln(|λ−|) = 0. Frequency ranges corresponding to ln(|λ|) , 0 can be used as
an alternative indicator of bandgap regions.

5



Table 1: Material and geometric properties of segments A and B of the PnC unit cell.
Material Density Young’s Modulus Area Length

A ABS 1040 kg/m3 2.4 GPa 300 mm2 40 mm
B Aluminum 2700 kg/m3 69 GPa 600 mm2 40 mm

Ω
0 2 4 6 8 10 12 14 16 18 20

0

π

+3

−3

0

+π

0

−π

qI

ln
(|λ

|)

qR

qI

B
an

dg
ap

ln(|λ+|)

ln(|λ−|)

P
as

s 
ba

nd

Bandgap number 121

qI
qR

Dispersion diagram of infinite PnC

(a)

(b)

Figure 2: (a) Dispersion diagram of the PnC rod unit cell described in Table 1, and (b) the natural logarithm of the magnitude of the transfer matrix
eigenvalues. The first twelve bandgaps are color coded to facilitate the interpretation of the forthcoming figures.

3. Finite Structure Analysis

3.1. Transfer matrix of a finite PnC rod
The unit cell transfer matrix T derived in Eq. (10) can be used to relate the displacement and forcing at the two

ends of a finite PnC rod which consists of n unit cells as follows{
un

fn

}
= Tn

{
u0
f0

}
, (18)

where u0 and f0 denote the displacement and force at x = 0, un and fn denote the displacement and force at x = n`,
and ` = `a + `b represents the length of one unit cell. Alternatively, the matrix Tn can be found as a function of the
unit cell’s transfer matrix and the wavenumber q using the following expression [35]

Tn =
cos(nq)
2 cos(q)

(
T + T−1

)
+

sin(nq)
2 sin(q)

(
T − T−1

)
. (19)

Expanding the terms in Equation (19), it can be shown that

Tn =

 cos(nq)
2 cos(q) (t11 + t22) +

sin(nq)
2 sin(q) (t11 − t22) sin(nq)

sin(q) t12
sin(nq)
sin(q) t21

cos(nq)
2 cos(q) (t11 + t22) − sin(nq)

2 sin(q) (t11 − t22)

 . (20)

Using Eq. (14) and the elements of the transfer matrix defined in Eq. (11), the transfer matrix of a finite PnC with n
unit cells can be finally rewritten as

Tn =

[
t11n t12n

t21n t22n

]
, (21)
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where

t11n = cos(nq) +
2β

1 − β2

sin(nq)
sin(q)

[
sin

(
(1 − α)Ω

)
sin

(
δ(1 + α)Ω

)]
, (22a)

t12n =
1

zω(1 − β)(1 + β)2

sin(nq)
sin(q)

(
sin(2Ω) + 2β sin

(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα)

)
, (22b)

t21n = −
zω

1 − β
sin(nq)
sin(q)

(
sin(2Ω) − 2β sin

(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα)

)
, and (22c)

t22n = cos(nq) −
2β

1 − β2

sin(nq)
sin(q)

[
sin

(
(1 − α)Ω

)
sin

(
δ(1 + α)Ω

)]
. (22d)

3.2. End-to-end frequency response functions for different boundary conditions

By parsing the different elements of the matrix Tn, a set of frequency response functions (FRFs) which describe
the ratio between the displacements at both ends of the finite PnC rod (e.g., un/u0 or u0/un), or the displacement at one
end to the force applied at the other end (e.g., un/ f0) can be obtained for commonly encountered boundary conditions.
First, Eq. (18) is expanded into the following two equations

un = t11nu0 + t12n f0, (23a)

fn = t21nu0 + t22n f0. (23b)

For a free-free rod, a force f0 can be prescribed at x = 0 with the displacement measured at x = n`. This implies
that fn = 0 which results in u0 = −t22n/t21n f0 as can be obtained from Eq. (23b). Substituting back into Eq. (23a) and
taking advantage of the fact that the determinant of Tn is unity, the following FRF can be computed

un

f0
= −

1
t21n

. (24)

For fixed-free and free-fixed rods, the FRF can be obtained via a base excitation of the fixed end and a displacement
measurement at the free one. In the fixed-free case, we prescribe a base displacement u0 and set fn = 0 for the free
end at x = n`. Following which, we solve for the force f0 = −t21n/t22nu0 from Eq. (23b) and plug that into Eq. (23a)
to get

un

u0
=

1
t22n

. (25)

Analogously, the FRF for the free-fixed rod can be obtained by following a similar procedure to that of the fixed-free
rod but switching the base excitation and measurement locations, thus resulting in

u0

un
=

1
t11n

. (26)

A slightly different treatment is required to attain the FRF of the fourth, and final, boundary condition, namely the
fixed-fixed rod. Since both ends of the rod are fixed and a direct measurement of the displacement at either end is not
possible, the FRF will be obtained as a ratio between the displacement at a point very close to one of the fixed ends,
un−∆, which is measured at x = n` − ∆, and a base excitation u0 at the opposite end. Here, ∆ is a distance parameter.
As a result, the state vector at x = n` − ∆ can be found by a transfer matrix inverse as follows{

un−∆

fn−∆

}
= T−1

∆

{
un

fn

}
, (27)

where

T−1
∆ =

 cos
(
ω
ca

∆
)

− 1
ωza

sin
(
ω
ca

∆
)

ωza sin
(
ω
ca

∆
)

cos
(
ω
ca

∆
)  . (28)
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Note that consistent with our generalized unit cell definition in Sec. 2.1 and Fig. 1, both ends of the finite structure
are made out of material A for all unit cell choices (except for the one unit cell design corresponding to δ = −1 which
ends with material B), thus justifying the use of material A properties in the T−1

∆
expression. Assuming a very small

∆, T−1
∆

can be linearized about ∆ = 0 as follows

T−1
∆,0 =

 1 − 1
zaca

∆
ω2za

ca
∆ 1

 . (29)

Consequently, the state vector right before the fixed end (i.e., at x = n` − ∆) can alternatively be computed using
Eq. (27), albeit with T−1

∆,0 instead of T−1
∆

. Setting un = 0 at the fixed end and using Eqs. (23a) and (23b) to derive an
expression for fn as a function of u0, we obtain fn = −u0/t12n, and thus the FRF for this boundary condition can be
shown to be

un−∆

u0
=

∆(1 + α)
`aω0z(1 + β)

1
t12n

. (30)

Note that setting ∆ = 0 in Eq. (30) recovers the boundary condition un = 0. Using the same properties listed in
Table 1 and δ = −0.8, the FRFs for all four boundary conditions for a finite PnC rod made out of a single unit cell
(n = 1; blue curves) and ten unit cells (n = 10; black curves) are plotted in Fig. 3. Furthermore, to validate the
analytical expressions obtained earlier, the same FRFs are also reproduced via a finite element model (FEM) of the
finite structures, coded via MATLAB using two-node rod elements [44]. For the FEM results, the number of finite
elements per unit cell is ne = 250, and ∆ = `/ne is used in the fixed-fixed case. All the FEM plots are superimposed
on the analytical plots for comparison (white dashed lines), and an excellent agreement between the analytical and
FEM data can be seen.

Two important observations are made regarding Bragg bandgaps exhibited by the finite PnC rod. The first is
that such bandgaps are recognized in FRFs as regions of significant u-shaped drops in amplitude, which are more
pronounced in structures comprising a larger number of unit cells (e.g., easier to detect in the n = 10 FRFs than
the n = 1 FRFs in Fig. 3). The formation mechanism of such bandgaps in finite PnCs and the underlying reasons
behind the extent of amplitude drop and the number of unit cells are thoroughly detailed in Ref. [24]. The second
observation pertains to the appearance of resonant peaks inside some bandgaps in the n = 10 case, often referred to as
truncation [15, 24] or bandgap resonances [30]. Interestingly, for both the free-free and fixed-fixed cases, we observe
that these truncation resonances perfectly coincide with the natural frequencies of the single unit cell which is not the
case for the two other boundary conditions. Even more intriguingly, we note that while the truncation resonances in
the fixed-free and free-fixed cases do not necessarily align with the natural frequencies of the single unit cell in their
respective cases, each of these truncation resonances perfectly coincides with a single cell natural frequency from
either the free-free or fixed-fixed cases, as highlighted in the close-up shown in Fig. 3(e). The locations and unique
features of these truncation resonances will be confirmed and analytically proven in the subsequent sections by closely
examining the characteristic equations of the finite PnCs subject to different boundary conditions.

4. Truncation Resonances

4.1. Natural frequencies for different boundary conditions

To find the natural frequencies of the finite PnC rod, we set the force or displacement to zero for fixed or free
ends, respectively, and use either Eq. (23a) or (23b) to find the characteristic equation. For example, f0 = fn =

0 in a free-free rod. Substituting these conditions into Eq. (23b), a non-trivial solution is only possible if t21n =

0, which constitutes the characteristic equation for the free-free case. The solutions of the characteristic equation
represent the finite structure’s natural frequencies. It should be noted that these solutions also represent the roots of
the denominator of the transfer function in Eq. (24), which are commonly known as the system’s poles in controls
and linear systems theory [45]. A similar process can be adopted for the rest of the boundary conditions to obtain the
remaining characteristic equations, which are summarized in Table 2 for ease of reference.
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Figure 3: Frequency response functions (FRFs) of finite PnC rods comprised of a single unit cell (n = 1; solid blue) and 10 unit cells (n = 10; solid
black), both corresponding to a symmetry parameter of δ = −0.8, analytically obtained via TMM. FEM results for both cases are superimposed on
all the results (white dashed curves). The FRFs are presented for four boundary conditions as follows: (a) Free-free, (b) Fixed-fixed, (c) Fixed-free,
and (d) Free-fixed. The rightmost column panel provides illustrative schematics of the different excitations and boundary conditions. (e) A close-up
of the FRFs shown in (a-d) for the shaded region Ω ∈ [0, 4], showing natural frequencies appearing within the first two bandgaps.

Table 2: Characteristic equations and FRFs of commonly encountered boundary conditions of the finite PnC rod.
Boundaries Characteristic Equation Frequency Response Function
Free-Free t21n = 0 un

f0
= − 1

t21n

Fixed-Fixed t12n = 0 un−∆

u0
=

∆(1+α)
`aω0z(1+β)

1
t12n

Fixed-Free t22n = 0 u0
un

= 1
t22n

Free-Fixed t11n = 0 u0
un

= 1
t11n
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4.1.1. Free-free and fixed-fixed cases
We begin with the free-free case with the characteristic equation t21n = 0, which reads

Ω
sin(nq)
sin(q)

(
sin(2Ω) − 2β sin

(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα)

)
= 0. (31)

From Eq. (31), it can be inferred that the solution Ω = 0, which describes a non-oscillatory rigid body mode, satisfies
the characteristic equation, as expected in a free-free (unconstrained) structure. Additionally, the roots obtained from
sin(nq)
sin(q) = 0 provide closed-form wavenumber solutions of the following form

q =
rπ
n
, (32)

for all integer values of r except zero and multiples of n, which yield indeterminate expressions. These values can be
then substituted into the dispersion relation in Eq. (15), to get

cos(2Ω) − β2 cos(2Ωα) − (1 − β2) cos
( rπ

n

)
= 0. (33)

Given the periodicity of the dispersion relation, the range q ∈ [0, π] defining the irreducible Brillouin zone suffices
for the analysis. As a result, the integer r can be limited to r = 1, 2, . . . , n − 1. Equation (33) can then be solved
numerically to compute the subset of the PnC’s natural frequencies which satisfy the dispersion relation, i.e., the
natural frequencies which lie within pass band regions and correspond to the purely real values of q in Eq. (32).
Each value of the integer r will result in an infinite number of natural frequency solutions, one per dispersion branch,
regardless of the unit cell symmetry parameter δ. The fact that there exists an infinite number of natural frequencies is a
hallmark feature of finite continuum structures, contrary to finite spring-mass lattices which comprise a finite number
of degrees of freedom and hence a finite number of resonant vibrational modes [15, 24]. Finally, the presence of
resonant peaks outside of pass bands (and inside bandgaps) in Fig. 3(a) suggests that another set of natural frequencies
must emanate from the roots of the third factor in Eq. (31), representing the truncation resonances which correspond
to the free-free boundary condition. These are given by the solutions of

sin(2Ω) − 2β sin
(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα) = 0. (34)

Here, we confirm the observation made earlier in Fig. 3(a) that the truncation resonances of a free-free PnC rod
match the natural frequencies of a single unit cell with identical boundary conditions. This feature is easily provable
by using Eq. (31) and setting the number of cells n equal to one, and is inline with earlier results reported for mono-
coupled systems [46]. It also serves as both a valuable and efficient tool in applications requiring a priori placement
of truncation resonances, rather than arbitrary trial and error. It is, however, important to reiterate that the roots of
Eq. (34) may not always lie inside a bandgap and could, in some cases, end up satisfying a dispersion branch. Whether
or not a given solution lie within a bandgap can always be checked via the inequality provided in Eq. (17). As such,
it is prudent to refer to the solutions of Eq. (34) as potential truncation resonances. Simply stated, not every solution
of Eq. (34) is necessarily a truncation resonance but any truncation resonance is a solution of Eq. (34).

Next, we move to the fixed-fixed boundary condition where t12n = 0 represents the characteristic equation of the
finite system. From Eq. (22b), it can be inferred that all the non-zero pass band natural frequencies of the fixed-fixed
PnC rod are identical to those of the free-free one, and can be similarly obtained using Eq. (33). However, the potential
truncation resonances in this case need to be obtained from the following equation

sin(2Ω) + 2β sin
(
(1 − α)Ω

)
cos

(
δ(1 + α)Ω

)
− β2 sin(2Ωα) = 0. (35)

It is important to note that the only distinguishing feature between Eqs. (34) and (35) is the sign of the second term,
meaning that if the sign of β is flipped (i.e., impedance values are swapped), the truncation resonances of a fixed-fixed
rod will become those of a free-free one, and vice versa. Equally important is the fact that the sign of δ has no effect
on the truncation resonances here since it is a part of the argument of the cosine function in both equations.

Using the same parameters as those used to generate Fig. 3, all the natural frequencies of the free-free and fixed-
fixed PnC rods up to Ω = 20 are computed analytically using the equations derived here, and projected on the
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Figure 4: Analytical (circles) and FEM-obtained (dots) natural frequencies for finite PnC rod subject to the following boundary conditions: (a)
Free-free, (b) Fixed-fixed, (c) Fixed-free, and (d) Free-fixed. The natural frequencies are superimposed on the dispersion relation for reference.
The rightmost column shows the number of natural frequencies that appear in each bandgap, which are color coded to facilitate figure interpretation
and correspond to the legend in Fig. 2.

dispersion diagram, as shown in Figs. 4(a) and 4(b), respectively. Additionally, and for verification, the natural
frequencies are also computed via the same FEM model described in Sec. 3.2, and superimposed on the figures
for comparison; generally showing excellent agreement with the analytical values with minor deviations at higher
frequencies consistent with FEM resolution. The right column of Figs. 4(a) and (b) shows a count of the number of
truncation resonances that exist in each bandgap, revealing a constant total of one truncation resonance per bandgap
in both cases. For convenience, truncation resonance features (e.g., value and count) follow the same color code used
in Fig. 2, allowing each truncation resonance to be easily traced to its corresponding bandgap.

Finally, we note that while the analytical derivations detailed here are established for a PnC rod comprising two
different materials, the findings are generalizable for any free-free and fixed-fixed PnC regardless of the number of
material layers. A simple proof can be obtained by inspecting the form of the matrix Tn and by comparing Eqs. (20)
and (21). It can be seen that t21n is found from the multiplication of the terms sin(nq)

sin(q) and t21. Setting t21n = 0 also
mandates that t21 = 0, suggesting that the natural frequencies of a free-free PnC with n = 1 represent a subset of a
free-free PnC natural frequencies with any n > 1. By replacing t21n with t12n, the same can be said about the fixed-
fixed PnC rod. This conclusion remains true regardless of the number of material layers constituting the unit cell, a
fact that was also proven for a general class of free-free polyatomic PnC lattices [15].

4.1.2. Fixed-Free and Free-Fixed cases
As indicated in Table 2, the characteristic equations of the free-fixed and fixed-free finite PnC rods are t11n = 0

and t22n = 0, respectively, and their explicit forms are found by setting Eqs. (22a) and (22d) equal to zero. By closely
examining these two characteristic equations, it can be also observed that they can be obtained from one another by
either changing the sign of the contrast parameter β or the symmetry parameter δ. Unlike the free-free and fixed-
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Figure 5: Modes shapes corresponding to truncation resonances revealing edge modes which attenuate away from the localized vibrations, provided
as follows: (a) First bandgap for fixed-fixed, free-free, and free-fixed boundary conditions, and (b) second bandgap for fixed-fixed, free-free, fixed-
free, and free-fixed boundary conditions.

fixed cases, an analytical expression for the wavenumber q is generally not available for general system parameters.
As such, the natural frequencies can be found by plugging in Eq. (16) into t11n = 0 or t22n = 0, and numerically
finding Ω solutions that satisfy the resulting equation. This approach yields all the natural frequencies, whether they
represent pass bands or truncation resonances. Following which, the natural frequencies Ω can be used to determine
the corresponding wavenumber from Eq. (16). Figure 4(c,d) shows all the natural frequencies of the fixed-free and
fixed-free PnC rods up to Ω = 20. By comparing the results with those obtained earlier for the free-free and fixed-fixed
cases in Fig. 4(a,b), we observe that each truncation resonance that appears in either the fixed-free or free-fixed cases
must already exist in the free-free or fixed-fixed ones. This feature is graphically emphasized in Fig. 4 via a series of
arrows which trace each truncation resonance in the figure’s last two rows to its counterpart in the first two rows.

To illustrate the underlying dynamics of truncation resonances associated with these two boundary conditions, we
consider the first bandgap in the free-fixed case. As depicted in Fig. 4(d), two truncation resonances appear in this
bandgap. By tracing the arrows, the first one at Ω = 0.897 corresponds to a truncation resonance from the fixed-
fixed case, while the second one at Ω = 1.201 corresponds to a truncation resonance from the free-free case. This
observation can be further explained by considering the eigenvectors associated with these two truncation resonances,
or their mode shapes, in Fig. 5(a). Since these are resonant modes that appear within a bandgap, i.e., a region of spatial
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wave attenuation, mode shapes of truncation resonances typically show vibrations which are localized or confined to
one end of the structure [15]. At Ω = 0.897, the mode shapes of the fixed-fixed and free-fixed systems resemble each
other and show localized vibrations near the rightmost end of the rod, which is fixed in both cases – explaining the
matching truncation resonances. Similarly, at Ω = 1.201, the mode shapes of the free-free and free-fixed systems
resemble each other and show localized vibrations near the leftmost end of the rod, which is free in both cases.
Additional examples of matching truncation resonances which lie in the second bandgap are provided in Fig. 5(b).
One additional observation from Fig. 5(a) is that the displacement profiles at Ω = 0.897 exhibit a slower spatial decay
of vibrations away from the localized edge when compared to their counterparts at Ω = 1.201. This is attributed to the
strength of bandgap attenuation within the first bandgap at each of these two frequencies, as dictated by the imaginary
component of the wavenumber qI, and shown in Fig. 2(a). The same observation can be made for truncation resonance
mode shapes falling within the second bandgap, shown in Fig. 5(b).

Interestingly, an analytical proof for the observations above can be derived by considering a semi-infinite PnC,
similar to finding surface modes in elastic lattices [47] or photonic crystals [48]. We propose the following proof
using a combination of the transfer matrix of the finite PnC rod and the solution of the displacement and internal
forces within an elastic medium. Starting with the latter, the displacement and internal force at an arbitrary point
x along a rod with longitudinal vibrations can be found using a combination of forward- and backward-propagating
waves as follows

û(x) = a1e−iks x + a2eiks x, (36a)

f̂ (x) = −iEsAsks

(
a1e−iks x − a2eiks x

)
. (36b)

At x = 0, we have u0 = û(0) and f0 = f̂ (0) and using Eqs. (36a) and (36b), a compact matrix form of the two equations
can be written as {

u0
f0

}
=

[
1 1

−iEsAsks iEsAsks

]
︸                     ︷︷                     ︸

Us

{
a1
a2

}
. (37)

Note that zeroing out the displacement (or force) in Eq. (37) implies that a1 = −a2 (or a1 = a2). Now, let us revisit
Eq. (18) which relates the state vectors at x = 0 and x = n`. If we consider a semi-infinite medium, we can relate
these two vectors using the eigenvalues of the transfer matrix as{

un

fn

}
= λn

{
u0
f0

}
. (38)

Using Eqs. (18), (37) and (38), we arrive at an eigenvalue problem of the form

U−1
s TnUs︸     ︷︷     ︸

Hs

{
a1
a2

}
= λn

{
a1
a2

}
. (39)

where the matrix Hs is given by

Hs =

[
h ĥ
ĥ† h†

]
. (40)

where the superscript † denotes the complex conjugate and

h =
1
2

(t11n + t22n) +
i
2

(
t21n

EsAsks
− (EsAsks)t12n

)
, (41a)

ĥ =
1
2

(t11n − t22n) +
i
2

(
t21n

EsAsks
+ (EsAsks)t12n

)
. (41b)

Considering the first row of Eq. (39) in conjunction with a2 = a1 from the zero force condition at x = 0 pertaining to
a free end, we obtain

t11n − λ
n + i

(
t21n

EsAsks

)
= 0. (42)
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Equivalently, the second row of Eq. (39) can be used and shall result in the complex conjugate of Eq. (39). Note that
both real and imaginary components have to be zero to satisfy Eq. (42). Recall that, for a natural frequency within
the bandgap, the eigenvalues of the transfer matrix are both real and distinct, and only |λ| < 1 shall be considered
for a mode decaying away from x = 0, hence, λn → 0 as n → ∞. As a consequence, the result of setting the real
and imaginary components of Eq. (42) equal to zero becomes merely the characteristic equations of the free-fixed
(t11n = 0) and free-free (t21n = 0) cases, respectively. This signals that a truncation resonance must satisfy both the
characteristic equations of the free-fixed and free-free cases, which confirms that these modes are in fact the same for
both boundary conditions when n→ ∞. If instead we consider a fixed-end scenario (i.e, u0 = 0 and a2 = −a1), it can
be similarly shown that

t22n − λ
n + i (EsAsks) t12n = 0, (43)

and hence t22n = 0 and t12n = 0 must both be satisfied when λn → 0, which serves as a proof for the truncation
resonance matching between the free-fixed and fixed-fixed cases.

4.2. Effect of unit cell symmetry on truncation resonances

The performance of the finite PnC rods shown thus far in Figs. 3 through 5 is for δ = −0.8. However, the choice
of unit cell (i.e., symmetry parameter) can largely influence the final configuration of the finite structure and thus the
location of the truncation resonances, as will be outlined here. Figure 6 illustrates the effect of δ on the truncation
resonance frequencies. The plots show a series of loci which trace each truncation frequency (color coded to represent
the bandgap to which they belong) as δ varies from −1 to 1. This is done for all four boundary conditions discussed
in Sec. 4.1. Since a truncation resonance can be located anywhere between the starting and ending frequencies of
the bandgap in which it resides, the shaded space between the different curves in Fig. 6 actually represents pass band
regions. As can be seen in the figure, the variation of truncation resonance location as the unit cell choice changes
fluctuates up and down in an oscillatory manner. More fluctuations occur at larger values of Ω indicating an increased
sensitivity to the symmetry parameter δ at higher frequencies.

Next, we shift our focus to the combined effect of δ and boundary conditions on truncation resonance locations.
The first observation that stands out is the symmetry of the curves in Figs. 6(a,b), representing the free-free and
fixed-fixed rods, about δ = 0. This is understandable given that the boundary condition is the same on both ends of
the structure in both of these cases, and thus a change in the sign of δ would not result in a change in the system’s
truncation resonances. This has also been mathematically confirmed in Eqs. (34) and (35) where δ appears as a
factor inside the cosine function, where the sign of δ would not affect the function’s outcome. On the other hand,
the truncation resonance curves are not symmetric about δ = 0 for the fixed-free and free-fixed cases, as shown in
Figs. 6(c,d). This is anticipated due to the asymmetric nature of the rod under these two boundary conditions. As
established in Sec. 4.1.2, each truncation resonance in these two cases must have an identical counterpart in either the
free-free or fixed-fixed rods. For that reason, it can be observed that parts of the curves shown in Figs. 6(a,b) appear
in Figs. 6(c,d). An interesting graphical depiction of this phenomenon is shown in Figs. 6(e,f) which show that the
combined truncation resonances of the free-free and fixed-fixed cases are nearly identical to the combined truncation
resonances of the fixed-free and free-fixed ones. To further elucidate the overall patterns shown in Fig. 6, we break
down the truncation resonances of the free-free case into two groups. The first represents mode shapes with localized
vibrations near x = 0 and is referred to as group I, while the second represents mode shapes with localized vibrations
near x = n` and is referred to as group II. Similarly, we break down the truncation resonances of the fixed-fixed
case into groups III and IV. With these four groups in mind, the Venn diagram shown in Fig. 6(g) summarizes the
distribution of truncation resonances across the four boundary conditions. The outer black circle represents all the
possible natural frequencies of the finite PnC rod within a given frequency range, subject to any of the four boundary
conditions. The two ellipses inside the black circle represent the entire set of truncation resonances in that frequency
range, while the space outside of the two ellipses contains the remaining natural frequencies representing pass band
resonances. The ellipse comprising groups I and II represents the free-free truncation resonances and the ellipse
comprising groups III and IV represents the fixed-fixed truncation resonances. The shared area (intersection) between
the two ellipses contains some truncation resonances which co-exist in both cases, as evident from the crossing of
curves in Figs. 6(e,f). Finally, the combination (union) of groups II and III constitute the truncation resonances for the
fixed-free case, while the combination (union) of I and IV constitute the truncation resonances for the free-fixed case.
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Figure 6: Effect of the symmetry parameter δ on the truncation resonances of finite PnC rods subject to the following boundary conditions: (a) Free-
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To further emphasize the truncation resonance features summarized in Fig. 6(g), the eigenvectors (i.e., mode
shapes) corresponding to the truncation resonances are computed using our FEM model previously described in
Sec. 3.2. These modes are then categorized based on the edge of the structure at which the vibrations are localized.
This is accomplished by calculating a normalized weighted average x̄ of the location using the absolute displacements
of the FEM nodes as weights, denoted as u j, and their location in the spatial domain as the data, denoted as x j, which
is mathematically expressed as follows

x̄ =
1
n`

∑
j x j|u j|∑

j |u j|
. (44)

A normalized average of x̄ < 0.50 or x̄ > 0.50 indicates that higher displacement amplitudes are more skewed towards
the left or right edges, respectively. The limiting case of x̄ → 0 or x̄ → 1 indicates that the amplitude is strongly
localized at the left or right edge, respectively. Figure 7 shows the outcome of this procedure for all four boundary
conditions, namely, (a) free-free, (b) fixed-fixed, (c) fixed-free, and (d) free-fixed for all unit cell choices spanning the
symmetry parameter range −1 ≤ δ ≤ 1. For ease of reference, the modes in the figure are color coded to reflect the
edge at which the localized vibrations take place (left vs. right) as well as the boundary condition at that edge (free vs.
fixed), and are therefore grouped in four sets as detailed in the figure’s legend. As seen in Figs. 7(a,b), the truncation
resonances in both the free-free and fixed-fixed cases consist of left- and right-localized modes, represented by sets I
+ II and III + IV, respectively. Additionally, it can be observed that sets II + III constitute the truncation resonances of
the fixed-free case in Fig. 7(c). This makes perfect sense since these sets represent the matching boundary conditions
at the two respective edges. Specifically, the eigenvectors in set II represent “right-localized modes for a free end”
while the eigenvectors in set III represent “left-localized modes for a fixed end”. These two sets, put together, create
the fixed-free PnC. Following the same logic, it is observed that sets I + IV constitute the truncation resonances of
the free-fixed case in Fig. 7(d). Lastly, we make an important observation from Figs. 7(a,b) regarding a truncation
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resonance phenomenon which is not immediately evident from Figs. 6(a,b), which is that the edge at which the
localized vibrations happen flips from left to right or vice versa upon touching a pass band (remember that all these
truncation resonances are by definition inside bandgaps). It should be noted that a similar behavior has been previously
reported in the context of quasi-periodic lattices [19].

4.3. Absence of truncation resonances in symmetric unit cells (δ = 0)
A perfectly symmetric unit cell is a special case for all boundary conditions, where truncation resonances cease to

exist. To analytically prove this, we start with the free-fixed and fixed-free cases whose characteristic equations are
given by t11n = 0 and t22n = 0, respectively. For δ = 0, both of these reduce to

cos(nq) = 0, (45)

for which the only possible wavenumber solutions are real and are given by

q =
(2r − 1)π

2n
, r = 1, 2, . . . n. (46)

All of these real wavenumbers correspond to natural frequencies that fall within pass bands. These natural frequencies
can simply be found by solving the dispersion relation in Eq. (15) at these wavenumbers, thereby proving that no
truncation resonances shall appear for these two boundary conditions as long as δ = 0.

While no truncation resonances exist for the free-free and fixed-fixed boundary conditions when δ = 0, proving
so is not as straightforward. In these two cases, the portion of the characteristic equations responsible for truncation
resonances, i.e., Eqs. (34) and (35) reduce to(

cos(Ω) ∓ β cos(Ωα)
)(

sin(Ω) ± β sin(Ωα)
)

= 0, (47)

for free-free (−,+) and fixed-fixed (+,−) boundary conditions. Both of the bracketed expressions in Eq. (47) are a
multiplication of two terms, which are in fact related to the equations that govern the bandgap limits. To elaborate,
let’s substitute q = 0 and q = π, the two values which mark the beginning and end of all dispersion branches, in the
dispersion relation given by Eq. (15), which results in the following

cos(2Ω) − β2 cos(2Ωα) ± (1 − β2) = 0. (48)

Equation (48) provides the limits for odd (+) and even (−) numbered bandgaps, and can be further simplified to(
cos(Ω) − β cos(Ωα)

)(
cos(Ω) + β cos(Ωα)

)
= 0. (49a)

(
sin(Ω) − β sin(Ωα)

)(
sin(Ω) + β sin(Ωα)

)
= 0, (49b)

One can now see the connection between the equations defining bandgap limits and the characteristic equations of
the free-free and fixed-fixed cases when δ = 0. Specifically, the two equations in Eq. (47) can be simply obtained by
multiplying one term in Eq. (49a) by another in Eq. (49b). This effectively proves that all resonances corresponding
to these two boundary conditions when δ = 0 are indeed within pass bands. Similar results have been reported by
Mead for mono-coupled systems, where some natural frequencies for asymmetric elements arise within attenuation
zones and coincide with bounding frequencies of bandgaps for symmetric elements [46]. The same phenomenon has
also been observed in some configurations of diatomic lattices with free boundaries [24].

4.4. Patterns of truncation resonances
The general pattern of the truncation resonance curves is best explained using Eqs. (34) and (35). For given values

of β and α, a contour plot can be obtained by sweeping Ω and δ, as can be seen in Fig. 8(a) for the free-free and fixed-
fixed cases. Whenever a contour has a magnitude of zero, it represents a solution of the equation (i.e., a truncation
resonance), which are indicated by the color-coded solid curves in the figure. The proof presented earlier confirming
the absence of truncation resonance for free-free and fixed-fixed PnCs which are formed of symmetric unit cells (i.e.,
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Figure 8: (a) Relationship between the truncation resonances patterns and the contours of Eqs. (34) and (35). Color-coded solid lines between
the contours represent points that render the contour’s magnitude equal to zero, i.e., roots of Eqs. (34) and (35). (b) The combined patterns of the
free-free and fixed-fixed truncation resonances, given by the lines described in Eqs. (50) and (51).

when δ = 0) can be used to explain the general patterns of the truncation resonances as a function of δ. We start by
pointing out that the magnitude of the cosine function cos

(
δ(1 +α)Ω

)
in Eqs. (34) and (35) becomes unity when δ = 0

and results in the simplified characteristic equations in Eq. (47). Second, given its periodicity, the cosine function may
assume the values of ±1 at different combinations of Ω and δ. As such, one can derive an expression that relates the
frequency Ω to the symmetry parameter δ that satisfies such condition, which results in

Ω̂p =
±pπ

(1 + α)
1
δ
, (50)

where p = 0, 1, 2, . . . ,∞. These lines intersect with the truncation resonance curves when they touch the bandgap
limits, as observed in Fig. 8(b). In addition, it is possible that the magnitude of cos(δ(1 + α)Ω) becomes zero at some
combinations of Ω and δ, resulting in

Ω̄p =
±(2p + 1)π

2(1 + α)
1
δ
. (51)

In such a case, the curves for free-free and fixed-fixed truncation resonances intersect since t12n = 0 and t21n = 0 have
identical roots, and the intersection point satisfies Eq. (51). This also aligns with the shared area between the two
ellipses representing the free-free and fixed-fixed truncation resonances in the Venn diagram of Fig. 6(g).

Finally, for completeness, we study the effect of the design parameters on the truncation resonance curves. As
depicted in Fig. 8, such curves fluctuate in an oscillatory manner as the value of δ changes, and become more sensitive
to changes in δ at higher frequencies. Figure 9 shows the combined truncation resonances for the free-free and fixed-
fixed cases for different values of α (columns) and β (rows), from which the following can be established:

• Equations (50) predicts when the solutions of the free-free and fixed-fixed truncation resonances touch the
bandgap limits, while Eq. (51) predict when the solutions of the free-free and fixed-fixed truncation resonances
intersect with one another, as established earlier.
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resonances across all the possible unit cell configurations, as dictated by the full δ range.
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• The frequency of the oscillatory behavior of the truncation resonance curves depends on α. It is seen that a move
towards increasingly negative values of α decreases the frequency by which truncation resonances fluctuate in
response to a change in δ over the same Ω range. This behavior can be well explained by inspecting the lines
generated by Eq. (51), which captures all the intersections between truncation resonance lines, as shown in
Fig. 9. The first solution of this equation becomes larger with a smaller denominator due to the (1 + α) term.
As a result, integer multiples of the first solution grow further apart, thus forcing truncation resonance curves to
oscillate a fewer number of times over the δ range.

• The impedance contrast β plays no role in the periodic fluctuations of the truncation resonance curves as δ
changes. This can be inferred from Eqs. (50) and (51) since they are not functions of β. However, the amplitude
of the fluctuation is largely a function β and is bounded by the width of the underlying bandgap.

• The sign of β does not affect the behavior of the truncation resonances curves when we collectively consider
the free-free and fixed-fixed cases, owing to the fact that flipping the sign of β only interchanges the curves of
the free-free and fixed-fixed cases, as evident in Eqs. (34) and (35).

5. Conclusions

In this paper, we presented a comprehensive analytical investigation of truncation resonances emerging within the
bandgaps of continuum rod-based finite PnCs. By implementing an approach based on the transfer matrix method
(TMM), expressions for both the unit cell dispersion relation of the infinite PnC rod and the frequency response func-
tions of a finite one with defined boundaries were obtained. Different truncated chains were obtained by stacking a
number of unit cells, each consisting of two different material/geometric segments and a level of symmetry charac-
terized by the parameter δ. It was proven that the truncation resonances of a free-free and fixed-fixed PnC rod always
coincide with the natural frequencies of a single unit cell with the same boundary conditions, providing an efficient
tool to tune these truncation resonances. Furthermore, it was shown that the truncation resonances exhibited by the
two other cases (fixed-free and free-fixed) must co-exist in the two former cases (free-free and fixed-fixed). This
feature was further verified and analytically proven using a semi-infinite PnC configuration. With the exception of
the perfectly symmetric unit cell choice (i.e., δ = 0), it was also shown that truncation resonances can potentially
occur in all the commonly encountered boundary conditions and are functions of the symmetry parameter δ as well
as the unit cell properties, defined here using the frequency and impedance contrasts, α and β. In the free-free and
fixed-fixed cases, a maximum of one truncation resonance may occur inside each bandgap, while in the fixed-free
and free-fixed cases, up to two truncation resonances may emerge inside each bandgap. The underlying connection
between the localized mode associated with a truncation resonance and the corresponding boundary condition was
explained, enabling us to interpret the different patterns of truncation resonances for a family of finite PnCs obtained
using different asymmetric realizations of a single unit cell. The ability to understand the origins of truncation reso-
nances beyond lumped-parameter systems, and to accurately predict these resonances in continuum rod-based PnCs
provides an intriguing road map for a broad range of applications that demonstrably benefit from the presence of
truncation resonances.
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