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Solitons in nematic liquid crystals offer intriguing opportunities for transport and sensing in
microfluidic systems. Little is known about the elementary conditions that are needed to create
solitons in nematic materials. In this work, theory, simulations and experiments are used to study
the generation and propagation of solitary waves (or ”solitons”) in nematic liquid crystals upon the
application of an alternating current (AC) electric field. We find that these solitary waves exhibit
”butterfly”-like or ”bullet”-like structures that travel in the direction perpendicular to the applied
electric field. Such structures propagate over long distances without losing their initial shape. The
theoretical model adopted here serves to identify some of the key requirements that are needed to
generate solitons in the absence of electrostatic interactions. These include surface imperfections
that introduce a twist in the director, unequal elastic constants, and negative anisotropic dielectric
permittivity. The results of simulations are shown to be in good agreement with our own exper-
imental observations, serving to establish the validity of the theoretical concepts advanced in this
work.
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I. INTRODUCTION

Solitons are travelling wave packets that propagate at constant speed over long distances without losing their shape.
A non-linear feedback mechanism during wave propagation serves to minimize their expansion (or dispersion) [1, 2].
Solitons and solitary waves are abundant in nature; examples include water solitons in narrow channels, or the
collective motion of proteins and DNA. They also arise in optical fibers, in magnets, and in nuclear physics [3–6].
Several recent studies have reported the formation of solitons in liquid crystals (LCs) when subjected to an applied
AC electric field [7]. Such studies have also outlined potential applications as long-distance information carriers for
optical signals, or particles and chemical species within nematic LCs.

Three-dimensional solitons can be generated in a nematic liquid crystal that exhibits a negative dielectric permit-
tivity anisotropy upon application of an alternating electric field [8, 9]. Such solitons are usually observed in the
vicinity of a surface imperfection, dust particles, or the edges of the electrodes, and they tend to travel over long
distances in the direction perpendicular to the director field. Experiments indicate that, at low frequencies, solitons
start as butterfly-like structures with quadrupolar symmetry. At higher applied fields and frequencies, the butterfly
structure can emit bullet-like structures - solitons - having a curved director field. Such bullets can propagate at high
speeds. In this work we introduce a model for the tensorial order parameter that is shown to be capable of predicting
the formation of these solitary waves in good agreement with experimental observations.

The results of simulations of such a model reveal that the key ingredients for soliton generation are (i) a negative
anisotropy of permittivity, (ii) an irregularity that serves to nucleate solitons, and (iii) an AC field whose intensity and
frequency must fall within a narrow range of values [10]. The results presented here are compared to experimental data
for 4’butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN − 47) [11, 12] - a liquid crystal for which detailed experimental
observations have recently become available.

II. THEORY AND SIMULATION

We consider a simple 3D thermotropic nematic liquid crystal. At each point in the material, the local orientational
order is described in terms of the director field n̂(r, t) or the nematic order tensor Qij(r, t). The local fluid flow
velocity is given by v(r, t). To solve the underlying model, we follow the method of Ref. [13, 14] in 3 dimensions. The
magnitude and the direction of the nematic order are allowed to vary, so that solitary waves and topological defects
are able to form and move freely. We quantify the nematic order through a traceless, symmetric tensor of the form
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)
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The free energy of the system can be expressed as
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The first three terms, which consist of an expansion of the free energy in powers of Q, determine the magnitude
of ξ ∼

√
cK/b2 in the bulk, where gradients are small. The next four terms serve to quantify the Frank elastic free

energy corresponding to splay, twist, bend and biaxial splay deformations of the material, respectively. In general,
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the full Oseen-Frank free energy density is written as [15]
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where the last term is the saddle-splay term. Note that, in the literature, one finds several variations in the notation for
the saddle-splay term [15]. In particular, instead of K24, the corresponding coefficient is sometimes written as 1

2K24

or as (K22 +K24). Those variations are not important for the arguments that follow. The often used approximation
of equal elastic constants corresponds to K11 = K22 = K33 = 2K24 ≡ K.

The subsequent terms in the free energy expression of Equation (3) correspond to the potential generated by the
alternating current (AC) field. The first of these terms is the dielectric energy contribution, in which ε0 is the dielectric
permittivity of vacuum and εa = ε‖ − ε⊥ is the permittivity anisotropy of the nematic material; ε‖ and ε⊥ are the
dielectric permittivity in the directions perpendicular and parallel to the director, respectively. In materials with
εa > 0, the liquid crystal aligns with the electric field, whereas in the negative case the alignment is transverse.
A negative dielectric permittivity is required in our model, so that the director field favors alignment within the
x − y plane (the plane perpendicular to the electric field), as opposed to the z−axis (the direction of the electric
field). The system experiences a sinusoidal electric field with frequency ω and maximum voltage E0 along the z−axis,
E = E0sin (ωt) ẑ.

The terms with the χ coefficients represent the contributions of flexoelectricity [16]. The χ0 and χ+ terms depend
on spatial variations of the nematic order parameter and the electric field. Both terms are negligible due to the absence
of spatial differences. The nematic order parameter, denoted by S, decreases at the location of topological defects
or solitary waves. These regions are small (by a factor of about 103) when compared to the entire sample size. The
nematic order parameter can therefore be viewed as approximately uniform. The χ2 term vanishes when we calculate
the relaxational dynamics by taking a partial derivative of the free energy. The χ− term is a crucial component;
the penalties for splay and bend deformations of the director field help amplify any irregularities created by surface
imperfections, dust particles or inhomogeneities, which give rise to the nucleation of solitary waves. We note here that
previous studies have also taken into account the e11 and e33 terms representing the effects of flexoelectricity in the
director field [17, 18], where the polarization is given by P = e11 (n̂∇ · n̂)− e33 (∇× n̂)× n̂. Here e11 = 2χ0 + Sχ+,
e33 = Sχ−, where S is the nematic order parameter.

To model the time evolution, we use the following equations for dynamic relaxation

∂Qij(r, t)

∂t
= − 1

γ1

δF

δQij(r, t)
, (5)

where γ1 is the rotational viscosity. Hydrodynamic effects are not included in this first attempt to model nematic
solitons.

III. FORMATION AND PROPAGATION OF SOLITONS

To facilitate comparison of the predictions of our model to experiments we introduce several dimensionless quantities.
In simulations, a characteristic length is defined by ξ ∼

√
cK/b2, based on our free energy (3). A characteristic time

τ is defined by the average time required by a bullet to propagate by one unit length, which amounts to 106s steps.
In experiments, the characteristic length is the size of a bullet, approximately 20 ∼ 50µm. The characteristic time τ
is the response time required by the nematic to return to equilibrium upon cessation of the electric field, 10−2s; that
time is commensurate with the period of the AC field in our experiments. The electric field and frequency can be

rewritten as Ẽ = ξχ−
K E and ω̃ = τω.

Both experiments and simulations reveal the existence of two types of solitary waves [17]. The first type consists of
”butterfly” structures that, as already pointed out, tend to form around surface irregularities at low-to-intermediate
applied fields and frequencies. The second consists of ”bullet” structures, which are elongated entities that move
rapidly and are observed at higher frequencies and voltages. Both structures bend along the direction of electric field
(z−axis), and show an asymmetry in the direction of propagation of the solitons (y−direction).
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FIG. 1: Director field induced by a DC field. The initial state, shown in (a), is completely uniform. (b) A small patch
on the top surface is used to create a local tilt in the director in that region. (c) and (d) show the director patterns
that arise above the surface patch as the direction of the electric field is alternated.

The results of our simulations confirm that several conditions are necessary for solitons to emerge in a nematic
liquid crystal. These are (1) a negative dielectric permittivity, (2) flexoelectricity, (3) a surface irregularity, (4)
distinct Frank elastic constants for different deformation modes, and, (5) a periodic electric field. The dielectric
permittivity, as mentioned the in last section, must be negative in order for the liquid crystal to align in the direction
perpendicular to the electric field. At 45◦C, the elastic constants for splay, bend and twist deformations of CCN −47
are K11 = 7pN , K22 = 1pN and K33 = 5pN based on experimental measurements [10, 19]. The CCN − 47 liquid
crystal offers a large, negative dielectric permittivity (−6) at 45◦C Ref. [20]. The dominant term of the flexoelectricity,
χ−, is taken as 10−11C/m [8, 21]. FIG. 1 shows the director pattern in the center of the sample (x− y plane at z = 0
and x − z plane at y = 0); one can appreciate the combined effects of flexoelectricity and surface irregularities. In
the figure, we use rods to represent the 3D character of the director field. The color is light yellow when the director
field aligns along the x-y plane, and it is dark when the director field aligns along the z-axis. The structures form in
a short period of time after turning on the electric field. In FIG. 1a, the system is initially uniform. After applying
a constant electric field, E = E0ẑ, the flexoelectricity acts to splay and bend the director field, and an asymmetry
in the z−axis appears in the lower region of FIG. 1a. FIG. 1 b shows that a small random tilt is induced in the
center of the surface, which breaks the symmetry along the y−axis and generates a periodic pattern similar to that
observed in experiments at low-frequency. FIG. 1 c and d show the same system as in b, but with the direction of
the electric field reversed (E = E0ẑ and E = −E0ẑ respectively). The x − z plane in FIGS. 1 a and c are similar
because the electric field is the same, but the structures are quite different when compared to c and d. In these two
cases, a different direction of bending along the z-axis can be observed. One can appreciate that the patterns in the
x-y plane are splayed and bent towards the opposite direction, but they are not complete mirror images of each other.
A bias in the configuration appears, which is caused by the difference of the Frank constants. Under a one-constant
assumption, that asymmetry would not arise.
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FIG. 2: Director field induced by an electric field as it reverses direction. (a) Simulated system and (b) applied electric
field. (c) Director field within the dashed area in (a) on the central x-y plane (z = 0) at different times.

FIG. 2 shows the director pattern when the electric field is reversed. In this figure, the directors adopt a structure
similar to that of a butterfly-like soliton as a result of the surface pattern and the flexoelectricity. This structure
shrinks when the field is reduced, and it increases again when the electric field is raised again. The soliton propagates
along the direction perpendicular to the alignment of the director field and the electric field. The flexoelectricity bends
and splays the director field and breaks the symmetry in z, but the director field is mostly aligned along the plane
perpendicular to the electric field (x − y plane) due to the negative dielectric permittivity. The surface irregularity
breaks the symmetry along y, and creates a butterfly-like pattern around the patch. This structure can expand
into a periodic pattern of the director field at locations far from the surface patch due to the effects of flexoelectric
polarization. A slightly different pattern can be seen if the direction of the electric field is reversed because of the
different Frank constants. As a result, an asymmetric structure occurs under the influence of the AC field.
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FIG. 3: (a) State diagram showing the system’s morphology as a function of voltage and frequency for a nematic
liquid crystal under an applied AC field. (b)∼(g) Starting from a uniform state (b), as the voltage is increased one
observes the formation of ”butterflies” in (c), followed by the formation of bullets emitted from the butterflies in (d).
At higher voltages one enters a chaotic regime in (f). (g) represents the R-state that arises at low frequencies.

In simulations we consider a channel with periodic boundaries in the x and y directions. The system size is
300 × 200 × 10. A butterfly-like irregularity is fixed on the top surface, and the director field everywhere else is

initially aligned along the x−axis. A sinusoidal electric field E = E0sin (ωt) ẑ is applied, with voltage Ẽ0 = 0 ∼ 100,
and frequency ω̃ = 0 ∼ 800. Different states can be observed for different values and frequency of the electric field.
One can construct a phase diagram as a function of the electric field (FIG. 3). Different states arise for different
magnitudes of the frequency and field. We use red lines to represent the director field in a plane; the black color
means the director field is uniform, and yellow and green represent different orientations when the director field is
aligned along the z-axis [17]. Section (I) and (V ) correspond to cases with a small electric strength and a small
frequency, respectively. In Section (I), the field is too small to perturb the director field, which remains almost
uniform. In Section (V ), the electric field is high enough to alter the director field, but the oscillation time of the field
is longer than the response time of the material and a periodic pattern appears. This pattern is referred to as the
R-state [9] and it is similar to the structure observed under a DC field. Section (IV ) shows that under high voltage,
solitary waves are rarely observed, and the pattern is chaotic. In Section (II) we observe butterfly-like structures,
which upon further strengthening of the field start to emit bullets in the orange region between Section (II) and
Section (III). When the voltage is increased even more, in Section (III), a state with more bullets and stripes but
fewer butterflies can be observed.
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FIG. 4: (a) Free energy of the system in the state corresponding to bullets emitted from a stable butterfly (orange
band in FIG. 3). The inset shows a zoomed-in portion of the free energy corresponding to the emission of an
individual bullet. The panels on the right show director field configurations through cross polarizers corresponding to
different times in the figure shown in the inset. (b) Results of simulations for the threshold voltage for bullet emission
from a butterfly for different sample thicknesses. (c) Experimental results for threshold voltage for different sample
thicknesses.

It is of interest to examine the contributions of elastic energy Fe, the free energy of dielectric polarization Fdi, and
the flexoelectric polarization (equation (3)), as bullets are emitted from the wings of a stable butterfly. We show

this process for Ẽ0 = 38 and ω̃ = 400 in FIG. 4(a). These energies are set to zero in the uniform state (the director
field is completely aligned along the x−axis). The elastic energy Fe includes a combination of splay, bend, and twist
contributions. Since the electric field is along the z−axis, the free energy of dielectric polarization Fdi should increase
when more regions of the director field are aligned along the z−axis. From the discussion of the flexoelectric free
energy Fflex in Section (II), it is apparent that splay and bend deformations are key contributors. In FIG. 4(a), we
show the data at the time when Ez = E0, so that Fflex is always positive. In the circle and the zoomed in panel in
the figure, we focus on the peak of the free energy. The energies are small before t = 3.4, where no bullet is emitted
from the butterfly. They then increase (t = 3.4 to t = 3.7) as a new bullet is generated from the upper branch of the
butterfly. The peak reaches a maximum (t = 3.5) when the bullet is about to be emitted from the butterfly, and it
decreases when the bullet moves away. There are multiply peaks in the figure; each peak represents a new-born bullet
emitted from a stationary butterfly.

We also consider the effect of anchoring on soliton formation. FIG. 4(b) and (c) show the state in which the
butterfly structure starts to emit bullets for channels of different thickness. We include results from simulations and
experiments. Both sets of results show that, in a narrower channel, where anchoring has a stronger influence, a higher
electric field is needed to emit bullets. We find that a linear relationship exists between the frequency and the electric
field strength. When the voltage is large, the system can rearrange its structure in a shorter time interval. If the
frequency is low, the material has sufficient time to undergo a complete structure change, and the solitary structure
is broken. As a result, a higher voltage requires that a higher frequency be used if we want to generate a solitary
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structure. The inverse relationship between thickness and voltage is only observed over a small range of thickness.
For higher thickness, the effect of the confining surfaces is reduced, and solitons are no longer observed regardless of
the applied voltage is. This is also seen in experiments [8].

FIG. 5: Comparison of results from simulations (left) and experiments (right) corresponding to the director field as
observed through cross polarizers for nematic liquid crystal under different applied fields. In (a), several butterflies
are observed. In (b), bullets are emitted from the butterfly. In (c), rapidly moving bullets are observed.

FIG. 5 focuses on the three most relevant regions of the phase diagram. We show results from simulations and

experiments. When Ẽ0 = 36 and ω̃ = 400 (FIG. 5 (a)), stable butterflies are observed and they move at very low

speed. When the electric field reaches Ẽ0 = 39 at the same frequency (FIG. 5 (c)), the butterflies shrink, and the

system consists mostly of stripes and bullets. For electric fields between these two cases, e.g. Ẽ0 = 38 (FIG. 5 (b)),
we can observe that the bullets emerge from the butterfly created by the irregularity on the surface. The bullets may
emanate from any wing of the butterfly. The bullets travel over a long distance in a direction perpendicular to the
director. In experiments, the same structures are observed for the same frequency but at slightly higher voltages [10].
We attribute the discrepancy to the simplicity of our model and the fact that hydrodynamic effects have not been
included in our model and calculations.

IV. CONCLUSIONS

In this work we have investigated the formation and propagation of solitons in a 3D nematic liquid crystal confined
between to planar surfaces with planar anchoring. A minimal model of the nematic LC has been used to show that
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solitons are nucleated at a surface inhomogeneity with perpendicular anchoring, and are generated upon exposure
to an AC field. A negative dielectric permittivity and flexoelectricity have been shown to be critical elements of the
model required for soliton generation. The AC field causes the director field to adopt distinct states periodically and,
for sufficiently high frequencies, the material is unable to relax to its stationary structure, thereby emitting solitons
that travel at large speeds throughout the system.

The model has been used to construct a state diagram as a function of the strength of the applied field and its
frequency. Several regimes are predicted in simulations, including a uniform state, a stripe state, a chaotic state,
and a soliton state, which only occurs over a narrow range of electric field strength. Good agreement is obtained
between the results of simulations and our own experimental observations, serving to establish the validity of the
model. Importantly, the findings presented in this work provide foundational knowledge with which to design new
systems for the controlled production of solitons, thereby opening new opportunities for their use for applications in
microfluidic transport, optical, and sensing technologies.
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