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Abstract

We perform extensive Monte Carlo simulations to investigate the dynamic phase transition prop-

erties of the two-dimensional kinetic Ising model on the kagome lattice in the presence of square-

wave oscillating magnetic field. Through detailed finite-size scaling analysis, we study universality

aspects of the non-equilibrium phase transition. Obtained critical exponents indicate that the

two-dimensional kagome-lattice kinetic Ising model belongs to the same universality class with the

corresponding Ising model in equilibrium. Moreover, dynamic critical exponent of the local moves

used in simulations is determined with high precision. Our numerical results are compatible with

the previous ones on kinetic Ising models.

PACS numbers: 64.60.an, 64.60.De, 64.60.Cn, 05.70.Jk, 05.70.Ln
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I. INTRODUCTION

When a typical ferromagnet is exposed to a time-dependent oscillating magnetic field

below its Curie temperature, TC , it can display dynamically ordered and disordered phases

and a corresponding non-equilibrium dynamic phase transition (DPT) [1–3]. A basic model

to study the dynamic phase transitions is the kinetic Ising model (KIM) which, despite its

simplicity, enables us to reach the complex dynamics behind the non-equilibrium systems.

KIM can represent a ferromagnetic system subjected to a time-dependent magnetic field,

h(t), with a half-period of, t1/2, and amplitude, h0. The competition between time scales

of period of the external field and metastable lifetime of the system, which is defined as

the average time for the system to pass through the state with zero magnetization, leads

to a dynamic phase transition at the critical period of the external field. Such a symmetry

breaking between dynamically disordered (paramagnetic) phase and ordered (ferromagnetic)

phase was initially observed in a theoretical study of a mean-field model [1] and later in

kinetic Monte Carlo simulations [4, 5].

Throughout the years, many theoretical and experimental studies have been devoted to

understanding the physics behind DPTs [2, 3, 6–16]. Several analogies between thermody-

namic and dynamic phase transitions, for instance, similar phase diagrams, have been shown

in theoretical and experimental studies [6, 17–19]. In addition, DPTs have been studied in

a diversity of models such as nanoscale systems [20–22], systems with surfaces [16, 23–26].

In the last two decades, there has been a great effort towards to estimation of critical

exponents and universality classes of spin systems exposed to a time-dependent magnetic

field. Successful implementations of finite-size scaling techniques on KIM have shown that

thermodynamic and dynamic phase transitions belong to the same universality class for

both 2D and 3D cases [27–31, 34]. It is worth mentioning that these findings are also in

agreement with the symmetry arguments of Grinstein et al. [32] and the study of Ginzburg-

Landau model in an external oscillating field [33]. In Ref. [35] the authors have found

that the universality class of the Blume Capel (BC) model driven by a time-dependent

magnetic field is the same as the equilibrium BC model. KIM with a disorder in exchange

interaction couplings (random-bond KIM) [36] and crystal field strength (random-crystal-

field KIM) [37] have been the subject of recent studies and the authors have presented strong

evidence that disordered KIM belongs to the same universality class as the equilibrium Ising
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model except for double-logarithmic corrections in the specific heat scaling behavior. The

effect of surfaces on DPT has been analyzed by Park and Pleimling and remarkably, surface

exponents in non-equilibrium case are reported to be different from equilibrium surface

exponents [23]. Apart from the estimation of critical exponents, there are few attempts

to provide information about the properties of critical dynamics of algorithms used in the

simulations. For instance, the critical exponents of the 2D KIM have been estimated by

using the standard Glauber and Metropolis dynamics and it has been shown that DPT is

universal regarding to choice of the stochastic dynamics [30]. Also, the autocorrelation

function of the dynamic order parameter at the critical period shows the existence of critical

slowing down which displays itself by increasing correlation times with increasing lattice

sizes. Korniss et. al [29] have determined the dynamic exponent for the Glauber single-

spin-flip algorithm in KIM as z = 1.91(0.15) which is close to the dynamic exponent of 2D

equilibrium Ising model with local dynamics [38].

Despite the above-mentioned attempts for the characterization of the universality class

of KIM, there are still some unanswered points related to the critical properties of the

model. For instance, critical exponents and the universality class of the KIM have not been

determined on lattices which correspond to realistic materials. Additionally, as far as we

know, there has not been a precise estimate of the dynamic exponent z of local dynamics

used in the simulations for the systems subjected to a sinusoidal external drive except for

the result for square-lattice KIM [29]. Therefore, the objective of the present work is to

provide detailed estimates of the critical exponents of 2D KIM located on a kagome lattice,

using extensive MC simulations based on the Metropolis algorithm and finite-size scaling

tools. Kagome lattice is an appropriate model to represent the recent 2D ferromagnetic

materials that are promising candidates for the development of spintronic devices [39]. In

addition to the critical exponents, we have determined the dynamic exponent of single-spin-

flip Metropolis algorithm at the dynamic phase transition. In a nutshell, it is possible to

say that our estimate on the dynamic exponent is found to be very close to the dynamic

exponent of 2D equilibrium counterpart supporting the previous estimate [29].

The remainder part of the paper is organized as follows: In Sec. II we present the model

and details of MC simulations. Also, the thermodynamic quantities measured in the simula-

tions are introduced. Sec. III includes our numerical results and discussion. Our conclusions

are presented in Sec. IV.
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II. MODEL AND SIMULATION DETAILS

In this study, we consider 2D kinetic Ising model located on a kagome lattice in the

presence of a time-dependent oscillating magnetic field. The Hamiltonian of the system can

be written as

H = −J
∑
〈xy〉

σxσy − h(t)
∑
x

σx, (1)

where the spin variable σx takes the values {±1}. J > 0 represents the ferromagnetic

exchange coupling constant and 〈xy〉 denotes the summation over nearest-neighbor spins.

The final term h(t) represents periodically oscillating magnetic field that is spatially uniform

such that all lattice sites in the system are subjected to a square-wave magnetic field with

amplitude h0 and half period t1/2 [23, 29]. The time-dependent magnetization per site is

given by

M(t) =
1

N

N∑
x=1

σx(t), (2)

where N is the number of total sites in the system. In order to observe dynamic phase

transitions, we shall study various thermodynamic quantities with varying half-period of

the external field. One of them is dynamic order parameter which is the period-averaged

magnetization [2, 3]

Q =
1

2t1/2

∮
M(t)dt. (3)

Here, the integration is over one cycle of the oscillating magnetic field. Since the probability

density of the order parameter is bimodal with two opposite peaks for such finite systems,

we measure the average norm of the order parameter, 〈|Q|〉 in our calculations.

In order to determine and characterize dynamic phase transition and also extract critical

exponents using finite-size scaling tools, one has to calculate the scaled variance of the

dynamic order parameter which is analogous to the static susceptibility [27–29].

χQL = N
[
〈Q2〉L − 〈|Q|〉2L

]
, (4)

The usage of χQL has been confirmed as a proxy for the nonequilibrium susceptibility by

fluctuation-dissipation relations [40]. In the same way, one can measure the scaled variance

of the period-averaged energy

χEL = N
[
〈E2〉L − 〈E〉2L

]
. (5)
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χEL can be considered as the relevant heat capacity of the dynamic system. Here, E denotes

the cycle-averaged energy corresponding to the cooperative part of the Hamiltonian (1).

Moreover, we measure the fourth-order Binder cumulant

UQ
L = 1− 〈Q

4〉L
3〈Q2〉2L

, (6)

via the dynamic order parameter Q to determine the dynamic phase transition point [41].

Monte Carlo simulations on the kagome lattice have been performed based on single-

spin flip Metropolis algorithm [42–44] which is proven to be successful in Kinetic MC

simulations. We carry out simulations on kagome lattices by updating the lattice sites

randomly and enforcing helical boundary conditions. Kagome lattice is a regular ar-

ray including hexagons and triangles (see Fig. 1). Its unit cell contains three sites con-

structing an equilateral triangle [44]. Simulations are performed on lattices with L ∈

{15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210} where L is the dimension of the lattice in unit

cells. The total number of lattice sites is N = 3L2. For the system to reach thermodynamic

equilibrium, the first 2500 periods of the oscillating field have been discarded and thermal

average of several quantities is calculated from next 25000 periods. The unit of time in

our simulations is Monte Carlo step per site (MCSS). For each lattice size, 100 independent

computer experiments are performed and error calculations have been carried out by using

the jackknife method [44].

It is known that metastable decay of the system in field-reversals depends on the tem-

perature, field, and system size. DPT occurs in the multi-droplet (MD) regime where the

metastable decay of the system takes place through the nucleation and growth of many

droplets [27, 45]. In order to study in MD regime, the amplitude of the external square-

wave magnetic field is chosen as h0 = 0.3 and temperature is fixed as T = 0.8 × Tc where

Tc is the critical temperature of the corresponding equilibrium model [29]. The critical tem-

perature of the 2D kagome lattice is available as Tc = 2.14332J/kB (kB is the Boltzmann

constant) which has been calculated exactly by Syôzi [46].

In order to measure the metastable lifetime, 〈τ〉, we choose the initial configuration as

a fully ordered state. When a constant magnetic field is applied in the opposite direction

of the spin alignment at a temperature below the Curie temperature of the system, the

magnetization changes by nucleating droplets that align in the same direction as the constant

field. Determination of metastable lifetime is shown in Fig. 2 for a lattice size of L = 180.
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Here, we have performed 25000 independent simulations and according to our simulations,

metastable lifetime is determined as 〈τ〉 = 55.8 (in terms of MCSS) at T = 0.8Tc for the

considered system. Metastable lifetime has been also determined for various lattice sizes

and it has been found that 〈τ〉 is independent of the system size in agreement with earlier

results [31].

Throughout the paper, we present the thermodynamic quantities as a function of the

competition parameter, which is defined as the ratio of the half-period of the external field

to metastable lifetime 〈τ〉

Θ =
t1/2
〈τ〉

, (7)

which is analogous to temperature in thermodynamic phase transitions.

In addition to the above thermodynamic quantities, we measure other useful quantities

in order to provide further insight about the properties of dynamics used in the simulations.

One of them is the time-displayed autocorrelation function of the order parameter at nth

period which is defined as [29, 30]

CQ
L (n) =

〈Q(i)Q(i+ n)〉 − 〈Q(i)〉2

〈Q2(i)〉 − 〈Q(i)〉2
, (8)

where Q(i) is the value of the order parameter at ith period. By benefiting from the

autocorrelation function, we also calculate integrated correlation time [44],

τQL =
1

2
+
∞∑
n=1

CQ
L (n), (9)

which enables us to calculate the dynamic exponent z.

We use the data for L ≥ Lmin for the employment of finite-size scaling laws. In our

fittings, we apply the standard χ2 goodness of fit test. In order to obtain an acceptable fit,

we consider a fit as being acceptable if the probability Q values are 10% ≤ Q ≤ 90%.

III. RESULTS AND DISCUSSION

In this section, critical properties of 2D KIM located on the kagome lattice have been

presented. It is now well-established that finite-size scaling tools can be implemented for

the non-equilibrium models [29–31, 34–37]. Accordingly, we carried out large-scale MC

simulations and use finite-size scaling tools to extract the critical exponents of the present

system.
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We start our analysis by showing the dependency of the dynamic order parameter (main

panel) and the corresponding dynamic susceptibility (inset) on the competition parameter

in Fig. 3. The order parameter takes finite values corresponding to a robust dynamically

ordered phase for small half-period values whereas it approaches zero as Θ increases. Apart

from the small system sizes, the dynamic susceptibility has a divergent behavior and a typical

peak near the phase transition indicating the existence of second-order phase transition in

the system. This characteristic peak takes larger values with increasing system size. Fig. 4

displays the maxima of dynamic susceptibility, (χQL )∗, as a function of system size. The solid

line is fit of the form

(χQL )∗ ∼ Lγ/ν . (10)

Based on our numerical data, the exponent is found as γ/ν = 1.744(8) with a good agreement

with the 2D Ising universality class value of γ/ν = 7/4.

The locations of the peaks of the dynamic susceptibility, Θ∗, obtained in finite-size systems

can be used to estimate the critical competition parameter Θc, at which an infinite system

undergoes a phase transition, with a relation given below [35]

Θ∗ = Θc + bL−1/ν . (11)

Fig. 5 shows Θ∗ as a function of system size. The solid line is a fit of the form of Eq. 11

which provides the critical competition parameter of Θc = 0.911(3). This value is very close

to unity implying that the DPT takes place when the metastable lifetime of the system

is comparable with the half-period of the external field. Also, the critical exponent of the

correlation length is estimated as ν = 1.00(2) with a clear agreement with the value ν = 1

of 2D Ising universality class [43, 47–49]. In addition to the shift-behavior technique, we

use the intersection method of the fourth-order Binder cumulant of the order parameter,

UQ
L , to determine Θc accurately [41]. We present UQ

L defined in Eq. 6 as a function of Θ

for various lattice sizes in Fig. 6. The vertical dashed line in the figure indicates a critical

value of Θc = 0.911 in agreement with our analysis of Fig 5. Also, the obtained Θc values

are compatible with the peak position of the response function χQL illustrated in Fig 3.

Estimation of the exponent of order parameter β/ν is performed by determining the order

parameter at the positions of (χQL )∗ for all the system sizes considered as shown in Fig. 7.

The scaling behavior

〈|Q|〉L ∼ L−β/ν (12)
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helps us to estimate critical exponent as β/ν = 0.125(5). This value is again very close to

β/ν = 1/8 of 2D equilibrium Ising model within errors [43, 47–49].

In order to give a complete description of universal aspects of the present system, we

continue our finite-size scaling analysis by considering period averaged internal energy and

the corresponding scaled variance which are displayed in the main panel and inset of Fig. 8,

respectively. A slow increment in the scaled variance of energy with increasing system size

can be explicitly observed from the figure. Moreover, it is expected to observe a logarithmic

scaling behavior of the maxima of the heat capacity (χEL )∗ if the specific-heat critical expo-

nent α = 0. Variation of maxima of scaled energy variance (χEL )∗ as a function of system

size in log-lin scale is demonstrated in Fig. 9. The numerical data represented here to show

a clear logarithmic divergence of the form [50]

(χEL )∗ ∝ c1 + c2 ln(L) (13)

as it is for the equilibrium Ising universality class.

It is possible to say that the overall critical exponents estimated above are in good

agreement with the previous results for KIM on two-dimensional lattices [29, 30, 34–37].

Accordingly, one can conclude that the universality properties in DPT are independent of

the topology of lattice. Our results together with the earlier ones in the literature imply

that non-equilibrium phase transitions in KIM fall into the same universality class with its

equilibrium counterpart, except for the systems including surface [23].

Having the determined critical value of Θc, it is worthwhile to study the details about

the characteristics of dynamics used in our MC simulations. The period dependency of

time-displaced normalized autocorrelation function for magnetization defined in Eq. 8 at

the critical point, Θc, is shown in Fig. 10. The increment in correlation time with system

size can be explicitly observed. This also indicates the existence of critical slowing down as

anticipated in systems evolve under local Metropolis moves. Correlation time is expected to

decay exponentially as:

CL(n) ∼ exp(−n/τQ,ExpL ), (14)

which can be checked by plotting the autocorrelation function in lin-log scale as shown

in Fig. 11. Here, τQ,ExpL is the exponential correlation time. The correlation time gets

higher with increasing L. The curves show that there is a clear critical slowing down in the

system at the critical competition parameter. An alternative way to provide insight about
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characteristics of simulations is to calculate integrated correlation time, τQL , defined in Eq. 9.

Lattice size dependence of τQL is depicted in Fig. 12. The correlation time is expected to

obey [44]

τQL ∼ Lz (15)

at the critical point. A fit of the form of Eq. 15 gives a dynamic exponent as z = 2.17(3).

Precise value of the dynamic exponent of the 2D equilibrium Ising model obtained with

single-spin flip dynamics is available as z = 2.1665(12) [38]. To the best of our knowledge,

there is no detailed estimation of the dynamic critical exponent for KIM simulated with

single-spin flip dynamics except for the result reported by Korniss et al. when the system

evolves under Glauber dynamics as z = 1.91(0.15) [29] on the square lattice. Therefore,

combining the previous result in literature [29] and our z value, one may conclude that

the dynamic critical exponent for single-spin flip dynamics in KIM is compatible with its

equilibrium counterpart despite the presence of a time-dependent oscillating magnetic field.

IV. CONCLUSIONS

In the present work, we studied the universality properties of KIM in two dimensions by

extensive MC simulations. We particularly considered kagome lattice subjected to a periodic

square-wave magnetic field below the Curie temperature of the system. By benefiting from

finite-size scaling tools, we determined the critical exponent of the correlation length ν,

critical exponents ratios of magnetic susceptibility γ/ν and magnetization β/ν with high

accuracy. The critical competition parameter at which a DPT occurs was obtained. Also,

a logarithmic divergence in finite-size behavior of the specific heat was observed. Obtained

numerical results were found to be compatible with the critical exponents reported for 2D

square-lattice KIM [29]. We additionally studied properties of the local dynamics used in

MC calculations at the critical competition parameter. The dynamic exponent value was

found as z = 2.17(3) which is comparable with that of equilibrium Ising model in 2D [38]

confirming the previous result obtained for square-lattice KIM [29].

In summary, our numerical findings indicate that 2D KIM on the kagome lattice belongs

to the same universality class as 2D equilibrium Ising model. Despite the fact that our

knowledge about critical phenomena in equilibrium systems have been well established,

the same is not the case for non-equilibrium systems since there are very limited studies

9



regarding the dynamic critical exponent of the model systems under the presence of a time-

dependent magnetic field. It is worth noting that further studies are needed to have a better

understanding of DPT and its relevant critical properties. Therefore, we believe that this

work contributes for the classification of universal properties of non-equilibrium systems and

trigger further theoretical and experimental studies in the field.
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FIG. 1: (Color online) Representation of kagome lattice with L = 5. The lattice includes 3L2

sites.
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FIG. 2: (Color online) Magnetization as a function of time at T = 0.8Tc for a lattice size of

L = 180. The system was initially in a state with all spins up. Then, a constant magnetic field in

the opposite direction of the initial spin alignment is applied.
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FIG. 3: (Color online) (Main panel) Dynamic order parameter as a function of Θ for various

system sizes L. The inset shows the finite-size scaling behavior of the corresponding dynamic

susceptibility χQL . The error bars are smaller than the symbol sizes.
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FIG. 4: (Color online) Dynamic susceptibility maxima (χQL )∗ as a function of lattice size. The

results are shown in log-log scale. The error bars are smaller than the symbol sizes.
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FIG. 5: (Color online) Shift behavior of pseudocritical competition parameter Θ∗ obtained from

the maxima of dynamic susceptiblity.
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FIG. 6: (Color online) The competition parameter dependency of fourth-order Binder cumulant

UQL for various lattice sizes. The vertical dashed line implies a critical value of Θc = 0.911. The

error bars are smaller than the symbol sizes.
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FIG. 7: (Color online) Order parameter at the positions (χQL )∗ as a function of system size in

log-log scale. The error bars are smaller than the symbol sizes.
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FIG. 8: (Color online) The competition parameter dependency of period-average internal energy

for various lattice sizes. The inset shows finite-size behavior of the corresponding scaled energy

variance (XE
L ). The error bars are smaller than the symbol sizes.
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FIG. 9: (Color online) Finite-size-scaling behavior of the maxima of scaled energy variance (XE
L )∗.

The error bars are smaller than the symbol sizes.
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FIG. 10: (Color online) Period dependence of normalized time-displaced autocorrelation function

of the order parameter, CL(n), at the critical point Θc.
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FIG. 11: (Color online) Time dependence of normalized time-displaced autocorrelation function

for the order parameter on lin-log scale at the critical point Θc.

1 5 3 0 6 0 9 0 1 5 0 2 1 00 . 1

1

1 0

1 0 0

1 0 0 0

τ L
Q [pe

rio
ds]

L

z  =  2 . 1 7 ( 3 )

L m i n  =  1 5

FIG. 12: (Color online) Estimation of critical exponent z. Integrated correlation time as a function

system size is shown in log-log scale. The error bars are smaller than the symbol sizes.
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