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Exploring explicit coarse-grained structure in artificial neural networks
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We propose to employ the hierarchical coarse-grained structure in the artificial neural networks
explicitly to improve the interpretability without degrading performance. The idea has been applied
in two situations. One is a neural network called TaylorNet, which aims to approximate the general
mapping from input data to output result in terms of Taylor series directly, without resorting to any
magic nonlinear activations. The other is a new setup for data distillation, which can perform multi-
level abstraction of the input dataset and generate new data that possesses the relevant features of
the original dataset and can be used as references for classification. In both cases, the coarse-grained
structure plays an important role in simplifying the network and improving both the interpretability
and efficiency. The validity has been demonstrated on MNIST and CIFAR-10 datasets. Further

improvement and some open questions related are also discussed.

I. INTRODUCTION

In the past decade, machine learning has drawn great
attention from almost all natural science and engineer-
ing communities, such as mathematics [1-3], physics [4-
10], biology [11-13], and materials sciences [14-16], and
has been widely used in various aspects of modern so-
ciety, e.g., automatic driving systems, face recognition,
fraud detection, expert recommendation system, speech
enhancement, and natural language processing, etc. Es-
pecially, the deep learning techniques based on the ar-
tificial neural networks [17, 18] have become the most
popular and dominant machine learning approaches pro-
gressively, and their interactions with many-body physics
have been intensively explored in recent years. On the
one hand, some typical neural networks, such as multi-
layer perceptron [18], restricted boltzmann machine [19],
autoencoder [20], convolutional neural network [21], and
autoregressive network [22], have been successfully ap-
plied to the study of quantum magnetization [23-26],
Fermi-Dirac statistics [27, 28], superconductivity [29, 30],
statistical averages [31] and phase transitions [5, 32, 33]
in physical systems. On the other hand, the ideas and
techniques developed in physics are introduced into neu-
ral networks to improve the performance as well as inter-
pretability [34, 35]. This approach might obtain a deeper
insight of the neural networks and is sometimes referred
to as the physics-inspired machine learning [36, 37]. A
successful example is the introduction of tensor-network
state into deep learning. It stems from quantum informa-
tion and develops fastly in quantum many-body physics,
and recently it has been used to realize the supervised
learning [38-40], generative models [41-43], and network
reconstruction [44-46], etc. Though there are some limi-
tations and difficulties in the current stage, it can still be
expected that the interplay between deep learning and
many-body physics will continue to flourish in the next
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decade.

Among the discussions about machine learning and
many-body physics, the connection between deep neu-
ral networks and the renormalization group (RG) has
been extensively studied in the literature recently [47—
53]. This relevance probably stems from the essential
similarity between the underlying hierarchical structure
of the inference process in supervised learning [18] and
the generated coarse-grained structure in the RG flow in
physical systems [54], and can be seen more clearly in
the context of tensor renormalization group, where the
tensor-network structure and the RG-based techniques
are combined together to study the many-body physics
[55-59]. In fact, it shows that not only the hierarchical
structure but also the backpropagation method employed
in the training process of neural networks resemble those
of the tensor networks very much [60], and this actually
lays the foundation of the increasing interplays between
the two fields.

In this work, we propose to explicitly employ the hi-
erarchical coarse-grained structure, as generated in the
RG process in tensor networks similarly, in neural net-
works, and apply it to image classification and data distil-
lation [61-63] for better interpretability in both physics
and mathematics. To be specific, in the classification
task, we construct a neural network called TaylorNet,
which expresses the mapping from the input data to the
output label in terms of the Taylor series approximately
without using any nonlinear activation functions. The
network is simple and can be expressed as a polynomial
manifestly in mathematics. This is very different from
the ordinary neural networks whose explicit expressions
are difficult to obtain, thus unveiling part of the myster-
ies of neural networks and providing clear direction for
further improvement. In the second part, we design a
multi-level distillation process which imitates the coarse-
graining (CG) operations in the RG flow and displays the
underlying hierarchical structure of the inference process
explicitly. It shows that the data distilled from lower-
level abstraction contains much more details than those
distilled from higher-level abstraction, and the final data
distilled from the highest-level layer can be used as good
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references for image classification directly. The results
obtained in both tasks are rather satisfying, as demon-
strated in the MNIST [64] and CIFAR-10 [65] datasets.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the coarse-grained structure generated
in the RG process in the context of the matrix prod-
uct operator. In Sec. III and Sec. IV, we introduce the
TaylorNet and the new setup for data distillation, re-
spectively, and demonstrate their validity in MNIST and
CIFAR-10 datasets. In Sec. V, we summarize our work
and discuss the possible improvement as well as promis-
ing extensions briefly.

II. COARSE-GRAINED STRUCTURE
GENERATED IN THE RG PROCESS

The RG is one of the most profound tools conceptually
of theoretical physics [66-70], and its impact spans from
high-energy to statistical and condensed matter physics
[66, 7T1-73]. Essentially, the RG is a conceptual frame-
work comprising various techniques, such as the original
block spin approach [58, 67], functional RG [73], Monte
Carlo RG [71], density matrix RG [72], and tensor net-
work RG [55-57, 59], and so on. Though these schemes
differ substantially in details, they share a same essen-
tial feature, namely the RG process aims to identify the
relevant degrees of freedom (DOFs), integrate out the ir-
relevant ones iteratively, and eventually arrive at a low-
energy effective theory. The extraction of the relevant
information is realized by a set of RG transformations,
which map the DOFs in a lower scale to those in its
neighboring higher scale. A hierarchical coarse-grained
structure is essentially generated during this kind of scale
transformation. It can be seen more clearly in the real-
space RG schemes [55, 56, 58, 67, 72|, as exemplified in
the following.

To show the coarse-grained structure mentioned above
clearly, let’s consider the real-space RG transformations
of a matrix product operator [74, 75] defined on a one-
dimensional lattice, which may represent a many-body
Hamiltonian of a quantum system or a transfer matrix
of a classical statistical model. In this context, through
a series of scale transformations, the RG process aims to
find a finite-dimensional representation of the operator,
which can preserve the low-energy part of the Hamilto-
nian or the dominant-eigenvalue part of the transfer ma-
trix approximately. For simplicity, let’s assume the MPO
is symmetric, and consider the simple case where a bi-
nary mapping is performed in each scale transformation.
Then the RG process in such a system with length L = 8
and open boundary condition can be illustrated in Fig. 1.
At the beginning, the operator is expressed in terms of
the variables {o(®)} sitting on the blue lines. The 1st
scale transformation is composed of four isometries de-
noted as U(Ms, each of which maps {o(?} sitting on two
neighboring blue lines to the variables {o(1)} sitting on
the corresponding green lines. Similarly, the 2nd scale

transformation is composed of two isometries U®s, and
each U®) maps {oM} to variables {o(?)} sitting on the
red lines. U®) constitutes the last scale transformation,
and maps {oc(®)} to variables {¢(®} sitting on the black
lines. Eventually, the operator is represented in terms of
{o®}, and this completes the full RG process.

(o}

FIG. 1. Hierarchical coarse-grained structure generated in the
RG process for a matrix product operator with open bound-
ary condition. The hollow circles connected by a dashed line
and colored by yellow denote the lattice sites where the oper-
ator is defined. As described in the main text, the local RG
transformations are represented by the rank-3 tensors Us de-
noted by solid dots, and the DOFs reside on the links between
the dots and are denoted as {o}. For the sake of clarity, the
various scales are distinguished by different colors.

In the RG transformations described above, by isome-
try we mean there are fewer DOF's after the mapping, and
the generated variables and DOFs are usually termed as
coarse-grained. As clearly sketched in Fig. 1, the whole
RG process generates a hierarchical coarse-grained struc-
ture with three levels. For a given level, the RG trans-
formations identify the relevant DOFs from lower-level
DOFs, and output the identified DOF's to a higher-level
transformation for further extraction. This CG opera-
tion is an essential gradient of the RG process, and has
been heavily employed in the original block spin numer-
ical RG calculations [76-78] and the more recent tensor
network RG proposals [57, 79, 80].

Without discussing the RG flow in the parameter space
and the corresponding fixed-point properties, in this
work, we just focus on the hierarchical coarse-grained
structure described above and emphasize its similarity
to the inference process in supervised learning tasks like
image classification. Deep learning falls in the category of
representation learning, whose central task is to extract
high-level abstract features relevant to the final target
from the raw data possessing many irrelevant details and
variations [18], and it solves this problem by construct-
ing higher-level representations out of simpler lower-level
representations. More specifically, a representation in a
given level is characterized by the output of the previ-
ous lower-level neural network layer, and is regarded as
the input of a new hidden layer to construct the more
abstract higher-level representation. The desired repre-
sentation is eventually obtained by multistep abstraction,



each step of which is realized by a hidden layer and ex-
tracts increasingly abstract features from the original in-
put data. This multistep abstraction process is very sim-
ilar to the RG process discussed before and illustrated in
Fig. 1, and also shows an underlying hierarchical coarse-
grained structure. This similarity is more evident for the
convolutional neural network, where the local structure
is emphasized by convolution operations [21].

In the following sections, we introduce this hierarchi-
cal coarse-grained structure into neural networks mani-
festly, which makes the conceptual similarity described
here more explicit, and the resulting networks are much
more easier to understand in both physics and mathe-
matics.

III. TAYLORNET

The quintessential example of a deep learning model is
the deep feedforward neural network, and sometimes is
referred to as multilayer perceptron model [18]. It rep-
resents a mapping F from the input data to the output
result, and generally can be expressed as a composite
function of many linear (£) and nonlinear (N') transfor-
mations ordered alternately. For example, a feedforward
neural network with n layers can be represented as

F=NoLy- - NoLoNiL (1)
where the linear mappings £s contain many variational
parameters that need to be determined, while the non-
linear mappings N's contain almost no free parameters
and are realized by some known operations called activa-
tions, such as rectified linear unit, logistic sigmoid, max-
poolings, and so on. The nonlinear mappings N's are
indispensable to approximate a nonlinear F [18]. Appar-
ently, Eq. (1) seems oversimplified, but fortunately, when
F is Borel measurable, the validity is guaranteed by the
universal approximation theorem [81, 82|, as long as the
neural network is sufficiently wide and at least one A is
squashing in some sense. Therefore, Eq. (1) provides a
quite general belief to approximate an actual mapping in
practical applications of neural networks. However, for
a given mapping F, generally, there is no clue on either
how wide the neural network is or how we can obtain the
desired Ls. In order to determine the parameters effec-
tively, much effort has been devoted to designing special
structures, and this greatly boosted the development of
deep neural networks. Successful structures include the
convolution operation [21], shortcut connection in resid-
ual network [83, 84], attention structure in the trans-
former model [85], etc. Nevertheless, the specific design
of structures relies mainly on empirical experience, and
there is no theoretical guidance generally, and this is why
deep learning is usually regarded as a magic black box.

To reduce the mystery in the structure design, in this
work, we propose to use another universal expansion, i.e.,
the multi-variable Taylor formula valid for an arbitrary

analytic function f. Expanded at a certain point, the
expression can be written as
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where X is the input vector with N elements denoted
as {x1,x2,...,2x}, a™ is the coefficient related to the
corresponding n-th order derivative, and fj is a collected
constant. Eq. (2) is also universal, since the nonana-
lytic functions encountered in our daily life are always ex-
pected to have a finite number of singular points and thus
can be well approximated by Eq. (2) arguably. Hereafter,
just for convenience, we simply refer to a and x;x;x...
as the Taylor coefficient and Taylor term, respectively.

The validity of Eq. (2) can be directly verified by an
experiment on the classification of MNIST dataset. In
the experiment, we regard each image as a vector X, and
assume f((X ) can be expanded as Eq. (2), where
@ (X @) denotes the probability of the i-th image be-
longs to the a-th category. The whole neural network
has only a linear layer that holds the coefficients, and
the output can be expressed as

FOXD) =3 W, X[, (3)
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In the above equation, X is a vector containing p indi-
vidual Taylor terms corresponding to X (9 which are re-
tained in Eq. (2), and W is a 10xp weight matrix with el-

ement W, ; the Taylor coeflicient corresponding to X ]@.
To make the calculation feasible, we resize the original
28x28 images into 7x7 through the well-established bi-
linear interpolation technique [86], do expansion up to
the fourth order, and collect all possible terms in X.
The result is shown in Fig. 2. It is clear that the test
accuracy can be systematically improved as the expan-
sion order n is increased. When n = 4, the number
of total terms retained is about 293 thousand, and the
obtained accuracy is about 98%. As a comparison, on
the same 7x7 MNIST dataset, a residual network with
1.3 million parameters can achieve an accuracy of about
99%. The performance can be further improved by some
detailed analysis. Especially, it shows that, though there
are about totally 293 thousand terms retained in the ex-
pansion, the contribution of a great number of terms is
very small. For example, the distribution of weight cor-
responding to the quadratic terms is displayed in Fig. 3.
For a given term x;x;, Fig. 3(a) tells the dominant weight
always consumes the least portion no matter how far x;
and z; are separated, and Fig. 3(b) tells that all the
weights have a preferred distribution as a function of the
distance between z; and x;. This reminds us that there
is much redundancy in W, and thus the number of pa-
rameters, Ny, can be greatly reduced by discarding the



small weights. In fact, experiments show that the accu-
racy remains unchanged when Ny is reduced by half, and
drops only by 0.83 percent when Ny is reduced to 30%.
Even if Ny is reduced to 10%, we can still obtain an ac-
curacy of about 85%. This actually reflects the spirit
of Taylor expansion, since it means the accuracy can be
systematically improved by adding more subtle terms.
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FIG. 2. Test accuracy of the experiment on direct Taylor
expansion, as expressed in Eq. (3). The data is obtained on
the MNIST dataset with resized 7 x 7 images.
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FIG. 3. Distribution of the obtained weight corresponding to
the quadratic terms z;x;, as a function of distance d;; between
the two pixels in images of the 7x7 MNIST dataset. Weights
are ordered by value in ascending order, and equally divided
into five groups that are referred to as level-1 (L1) to level-5
(L5), respectively. (a) Weight distribution at each distance
di;. (b) Weight ratio distribution for each level as a function
of dij. The details of the distribution can be found in Fig. 13
in App. D.

To extend Eq. (2) to large scale computer tasks, and
to make the above procedure more practical and efficient,
we propose the TaylorNet, which realizes Eq. (2) in a mul-
tistep manner by utilizing the hierarchical coarse-grained
structure described in Sec. II. Based on the assumption
that the dominant parts in the Taylor series mainly cor-
respond to the product of zs in local clusters, as has

been partially evidenced in Fig. 3, we introduce a series
of intermediate variables x, with the new index « indi-
cating the hierarchical levels. The variables at a higher
level are to be expressed in terms of Taylor series with
respect to the variables at the neighboring lower level,
and constitute the Taylor expansions of the variables at
the neighboring higher level. To be specific, if expanded
to the second order, a local cluster indexed as « with

m n-th level variables denoted as {acgn) a:(gn), ...,x,(ﬁ)} is

mapped to a variable 2 at the (n+1)-th level, i.e.,

x(();n—i—l) :c(n+1,0) + Z C§n+1’1)$£—n) 4o
=1

Z (n+12 (n) (n) (4)

where ¢(™?) denotes the coefficients introduced in the o-
th order terms in the expansion of variables at the n-th
level, and xEO) is defined as the original input data x;.
Hereafter, Eq. (4) is referred to as a CG operation, and
it is illustrated in Fig. 4, in which the usual convolution
operation is also illustrated for comparison. Suppose we
are considering the simplest case, i.e., the sizes of the lo-
cal cluster is 2x2; and there is no overlap between the
clusters. In the language of neural networks, this means
the size of both the kernel and the stride is 2x2. In
Fig. 4(a) and (b), the variables at two neighboring levels
are denoted as dots and squares, respectively, and the
variables associated with a single local mapping are in-
dicated by the same color. In a convolution operation,
a square is a linear combination of four dots, which cor-
responds to the linear terms in Eq. (4). While in the
CG operation, a square is a nonlinear combination of the
same four dots, which corresponds to Eq. (4) exactly. To
indicate the nonlinear feature, an oval plate is added to
distinguish from the convolution, as shown in Fig. 4(b).

The local introduction of the nonlinear mapping has a
great advantage over the initial proposals of Taylor ex-
pansion, as expressed in Eq. (2) and Eq. (3). On the
one hand, the locality puts a strong constraint on the
distance among the variables showing up in the Taylor
terms retained in the expansion. This greatly reduces
the number of parameters that need to be determined,
and also removes some unnecessary redundency, since the
contribution from the terms involving variables faraway
separated is expected to be small, as partially evidenced
in Fig. 3(b). On the other hand, the higher-order terms,
as well as the terms involving variables belonging to dif-
ferent local clusters, can emerge naturally in the next
several CG operations, which can be seen from Fig. 4(c)
explicitly. For example, more complex terms like 3, z}
T1T3, T1Tox3, T1T2x3x4 Show up in the expression of z,
though y; and y- are only expanded to the second order
locally. The full expression of z can be found in App. A.
Thus by introducing the nonlinear terms locally, we can
generate long-range and very complicated terms in the
actual expansions of the variables at the highest level,



and there is no need to invoke any magic activations at
all.
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FIG. 4. Illustration of the CG operation in TaylorNet. (a)
Convolution operation. (b) CG operation. Clearly, the prod-
uct of 1 and x16 will emerge in the next CG after the next
CG operation. (c) Two successive CG operations on four vari-
ables divided into two local clusters. Very complicated terms

of x emerge in the expression of z, as shown in Fig. 10 in
App. A.

In our experiment on MNIST, we use a TaylorNet with
four CG layers, each of which maps a 2x2 cluster to a sin-
gle variable according to second-order Taylor expansion,
and then use a linear layer that maps the resulting 2x2
variables to a vector with 10 elements representing the
probabilities. The detailed TaylorNet structure is shown
in Fig. 5. The obtained accuracy is about 99.2%, which
is quite satisfying. On the resized 7x7 MNIST dataset,
we can obtain an accuracy of about 97.9% with about
248 thousand parameters in total, which is much less
than the parameters in both the original Taylor expan-
sions (1.46 million) and the residual network (1.3 million)
described before. As to the CIFAR-10 dataset, we can
obtain an accuracy of about 71.7% with only 1.2 million
parameters, and this is also more efficient than the recent
MLP-Mixer proposal [87] without pre-training process,
which combines the information from the inter-cluster
and intra-cluster variables in a similar way. The detailed
TaylorNet structure for CIFAR-10 dataset can be found
in in Fig. 12 in App. C. Furthermore, it shows that if
we replace the CG operations with the convolution op-
erations in the whole neural network, the accuracy will
drop by about 7.3% and 30% immediately as expected,
on MNIST and CIFAR-10 datasets, respectively. This
clearly demonstrates the power of CG operations in the
representations of nonlinear mappings.

Similar to the convolution operation, the above CG
operation can be performed in slightly different manners.
Firstly, the size of the local clusters can be different, and
there can be overlaps between different clusters. More-
over, the translation and/or scale invariance of the CG
kernels can be employed, that is, the Taylor coefficients in
Eq. (4) for CG operations performed at different clusters
and/or in different scales can be assumed identical. Sec-
ondly, the expansion order in Eq. (4) can be larger than
2, and this depends on the strength of the nonlinearity
in the expansion of the actual F.

It is worth mentioning that, in Fig. 5, we have em-
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FIG. 5. Sketch of the TaylorNet used in the classification task
on MNIST dataset. Hereafter, the numbers in the box denote
the representation form of the data, e.g., 28 x 28 x 64 denotes
64 feature maps with size 28 x 28, and the operations sit
on the arrows correspond to different neural network layers,
e.g., Conv(ly,l2,c,s1,52,p) means convolutional layer with ker-
nel size [; X l2, channels ¢, stride size s1 X s2, and padding num-
ber p (default 0), similar for CG operation and dilated CG op-
eration as discussed in the main text and Fig. 6. Here, all the
four convolutional layers have structure Conv(3,3,64,1,1,1),
both CG layers have structure CG(2,2,64,2,2), diCG1 and
diCG2 have structures CG(2,2,64,1,1,7) and CG(2,2,64,1,1,3),
respectively. The action of a multi-channel convolution oper-
ation is illustrated in Fig. 11 in App. B, and more details can
also be found in Ref. [18].

ployed two simple ways to further enlarge the effective
receptive fields [88] of the CG operations, without chang-
ing the size of the local clusters manifestly. One is the
introduction of the dilated CG operation, as shown in
Fig. 6. In the dilated CG, the variables need to be coarse
grained scatter separately in different clusters instead of
aggregating locally, which is very similar to the structure
of the dilated convolution [89]. The other is performing
convolution before the CG operation. This is easy to un-
dertand, since the convolution turns each dot in Fig. 4(b)
as the linear combination of several dots nearby before
the CG operation, and thus each square is effectively ex-
pressed in terms of more dots actually. These two tech-
niques might be advantageous in some situations where
the inter-cluster product is more important in Eq. (3),
and are also considered in Ref. [87] similarly.
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FIG. 6. Sketch of a dilated CG operation, used in Fig. 5. The
structure shown in this figure is denoted as CG(2,2,n,1,1,2)
which means the kernel size is 2 x 2, number of channels is n,
stride size is 1 x 1, and the dilation is 2 in both directions.



IV. DATA DISTILLATION

The concept of knowledge distillation was originally
proposed by Hinton et al. [61], and it aims to train a
simpler neural network called student, which is expected
to have the same performance approximately to a com-
plex model referred to as teacher. Later, data distilla-
tion is proposed to train a smaller dataset from a larger
dataset, and expect that the obtained distilled dataset
can be used to efficiently train a neural network that has
a similar performance to that of a neural network trained
from the original larger dataset [62, 63]. Though the pro-
cess of distillation is somewhat complicated, the idea is
very simple and reasonable, namely the neural-network-
based deep learning is believed to be able to extract some
essential features from the original dataset.

In order to make the above idea clearer, and display
the inference or abstraction process more explicitly, we
propose a new setup of data distillation. Utilizing the
hierarchical coarse-grained structure, the new proposal
aims to extract the essential features through a multistep
process, in which the abstraction is performed progres-
sively from lower levels to higher levels. This is actually
the essential spirit of deep learning [18], as discussed in
Sec. II. It shows that the distilled dataset can be indeed
used as references to perform classification task directly.

For concreteness, in the following we describe the dis-
tillation strategy applied to the MNIST dataset. The
original dataset is composed of ten classes, each of which
contains 6000 images, and is denoted as D(®) (10, 6000)
hereafter. Firstly we divide each class into 600 groups
equally, and select one group from each class to consti-
tute a subset which contains 10 images for each class.
Thus totally we obtain 600 subsets, and for simplicity,

the i-th subset is denoted as D(O)(IO, 10) and has 100

images in total. Then perform thle usual distillation pro-
cess on each subset DEO) by neural networks, as will be
described later, and distill 10 images corresponding to
the 10 classes out of each subset. This completes the
first level distillation procedure, from which 600 images
for each class are distilled, and we denote the distilled

dataset as D(1)(10,600) as a whole. Similarly, we fur-
ther divide D()(10,600) into 100 subsets D'"(10,6) on
each of which the distillation process is performed and
10 distilled images are obtained, and then we obtain the
distilled dataset D(?)(10,100) which contains 100 images
for each class at the second level. Repeat this divide-
and-conquer strategy, we can obtain dataset D(*) (10, 20),
D™ (10,4), and finally reach the highest distilled dataset
D®)(10,1), which contains only a single distilled image
for each class and can be regarded as the typical rep-
resentatives hosting the essential features of that class.
The whole process is illustrated in Fig. 7.

In this work, to perform the distillation procedure on
each subsets Dga)(lo,m), we employ the distribution
matching method and a similar neural network archi-
tecture proposed in Ref. [63], as is illustrated in Fig. 8
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FIG. 7. The data distillation strategy described in the main
text, designed for MNIST dataset. The whole distillation
process has a five-level structure. The correspondence in the
five distillation procedures can be represented as 10-to-1, 6-
to-1, 5-to-1, 5-to-1, and 4-to-1 mappings, respectively.

in detail. The goal of the procedure is to determine n
(distilled) images, denoted as Y's, which minimize a lost
function defined in the following

L= i Moo — i da.p
a=1

B#a

dop = Z 1F(Ya) = (Xp.0)]? (5)

where Y, denotes the desired image for the a-th class,
X, denotes the i-th image in the a-th class of the
dataset, f denotes the nonlinear mapping represented by
the neural network which produces the embedding vector
for any given image, as illustrated in Fig. 8. In Eq. (5), n
is the number of classes in the dataset, m, is the number
of images belonging to the a-th class, and A is a hyperpa-
rameter to balance the two terms in the bracket, which
is set to be 19 in our calculations. In essence, d, g mea-
sures the Euclidean distance between the reference Y,
and the images belonging to the 8-th class of the original
dataset, in the space where the embedding vectors are
defined. Therefore, physically the lost function means
that each desired reference is required to resemble the
images in the same class to the greatest extent, and at
the meanwhile differ from the images in the other classes
as much as possible.

The distilled images at different levels are sketched in
Fig. 9(a). As expected, it seems that the obtained images
obtained from lower-level distillations contain more de-
tails and are clearer. When the level of distillation goes
up, the details gradually blur and only some indescrib-
able features remain. This tendency is more evident for
CIFAR-10 dataset, as is shown in Fig. 9(b).

It is reasonable to regard the remaining features in the
final distilled images as essential ones which characterize,
or even define the dataset in the perfect case. To check
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FIG. 8. The neural network structure used in the distillation
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Conv(3,3,128,1,1,3), both Conv2 and Conv3 have structure
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layers, each of which is composed of instance normalization,
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embedded space, and the result is a vector with length 16 and
channels 128.
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FIG. 9. Distilled figures at each abstraction level. For com-
parison, one sample of each class in the original dataset is
shown in L0.

this, firstly we train two residual networks, i.e., ResNet18
and ResNet50 on MNIST and CIFAR-10 datasets, re-
spectively, through the usual classification task, and then
use the trained models to collect the output embedding
vectors [18] of both the test and distilled images. With-
out resorting to neural networks further, the final clas-
sification is performed by directly comparing the simi-
larity between the embedding vectors of an test image
and that of the distilled images, according to the angles
in between, and the image is classified into a category
whose distilled reference image has the highest similar-
ity to it. It shows that this direct comparison can al-

ready give test accuracies of about 98.7% and 86.9% for
MNIST and CIFAR-10, respectively. This confirms that
the above distillation process can indeed capture some
essential features of the original dataset, from lower-level
abstraction to higher-level abstraction gradually, and this
reflects exactly the spirit of deep learning.

The performance can be further improved in several
ways. Firstly, in each distillation procedure, the lost
function plays an important role and can be designed
more smartly. In this work, the distance between two
images is defined as the Euclidean distance in the em-
bedded space, and one can use other measures, such as
the Arcface loss [90], which emphasizes the angular sep-
aration and is frequently used in facial-recognition tasks.
A preliminary experiment utilizing this lost function can
produce an accuracy of about 99% for MNIST, and 89%
for CIFAR-10. Secondly, the partition of the dataset, as
well as the choice of the hyperparameter A, might affect
the result of the whole distillation. An optimal choice
should consider the balance between performance and ef-
ficiency in a better way, while in this work, we just adopt
the most convenient choice.

V. SUMMARY

To summarize, inspired by the similarity between the
RG flow in physical systems and the inference process
in deep neural networks, we introduce the hierarchical
coarse-grained structure into the artificial neural net-
works manifestly to improve the interpretability without
degrading performance. To be specific, in the first part,
we propose the TaylorNet by introducing the CG opera-
tion locally and hierarchically, which extends the linear
convolution operation to nonlinear polynomial combina-
tions. It approximates the mapping from the input signal
to output result by Taylor expansions effectively, without
resorting to the activation functions, and achieves satis-
fying results in the classification experiments on MNIST
and CIFAR-10 datasets. In the distillation task, we pro-
pose a setup with a hierarchical coarse-grained structure,
and make the inference process from lower levels to higher
levels more transparent. It seems that the multistep dis-
tillation process is able to capture some essential features
of the original dataset, and the distilled images possess
less irrelevant details and can be used as reference images
in classification tasks. In both cases, the resulting pro-
cesses represented by the neural networks are more un-
derstandable, and the performance are very acceptable
compared to the conventional neural networks.

Besides the specific issues discussed separately in
Sec. IIT and Sec. IV, there are some other aspects that
can be explored to further improve the performance. For
example, we can use more than one TaylorNets to ap-
proximate a single mapping, and put the orthogonality
constraint on these networks appropriately for higher ef-
ficiency. This might be achieved by adding penalties in
the lost functions, training in momentum space, or using



other orthogonal complete sets like spherical functions.
All these topics are interesting and have been discussed
in physical systems, but are far beyond the scope of this
paper, and we would like to leave them as pursuits in the
near future.

As to the TaylorNet, it is also worth mentioning that
our proposal is very different from the previous work in
the literature [91-95], which have also explored the Tay-
lor series in neural networks. Most of them have specific
motivations and work in different frameworks, and there
is no explicit hierarchical structure employed there. For
example, Chen et al. [91] used a single-layer neural net-
work similar to Eq. (3) to approximate the Taylor expan-
sion of a single-variable function. Montavon et al. [92]
explored the role of Taylor coefficients as derivatives in an
ordinary neural network to analyze the importance of a
single pixel in the classification task. Tong et al. [94] used
the Taylor series to approximate the quadratic form of a
Hermitian matrix. Rao et al. [95] expressed part of the
nonlinearity in terms of a direct-product operation and
applied it to the study of partial differential equations.
The closest one to our work is probably Ref. [93], where
Novikov et al. used the neural network to approximate
the Taylor expansions; however, in their work both the
Taylor terms and Taylor coeflicients are represented as
compact matrix product operators approximately; thus
there is no coarse-grained structure emphasized in this
work at all.

At last, though the fixed-point is not discussed at all

tence. It is possible to study the fixed point of the scale
transformations introduced in the TaylorNet, as well as
the fixed point of the iterative distillation procedure in-
troduced in Sec. IV. Whether the scale invariance can
be related to some interesting critical phenomena in this
context, as explored in Ref. [47], is an open question de-
serving attention.
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Appendix A: Complete expression of z

As illustrated in Fig. 4(c), if each local mapping is ex-
panded to the second order, then the complete expression
of z in terms of z;, with i = 1,2, 3,4, can be written as

in this work, the introduction of the hierarchical coarse- z =aWb’, (A1)
grained structure does provide the possibility of its exis- where the two vectors a and b are defined as
|
a= [ 1 oy 22 23 2] xo 23 23 25 x170 21235 23wo 2373 12l wiae ]
b=[1 23 23 x3 x5 x4 af 2} 2§ xswy wsxl a3zy a3a] wsad xday . (A2)

The weight W can be represented as a 15x15 matrix,
whose nonzero elements are denoted as 1 in Fig. 10, just
for clarity.

Appendix B: The action of multi-channel
convolutions

For concreteness, the convolutional layer with four
three-channel kernels will turn the three-channel input
data into four-channel output, as illustrated in Fig. 11,
where the + sign means equal-weight superposition of
the three dot-product results.

(

Appendix C: TaylorNet structure used in the
classification on CIFAR-10 dataset

The detailed structure of the TaylorNet used in Sec. IT1
in the classification on CIFRA-10 dataset, is shown in
Fig. 12.

Appendix D: Weight details of the quadratic terms
in the experiment on MNIST dataset

As to the direct experiment on the Taylor expansion,
Eq. (3), on MNIST dataset in Sec. III, the trained weight
of the quadratic terms are sketched in detail in Fig. 13.
The statistics are shown in Fig. 3.
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