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Abstract

Recent experimental advances have inspired the development of theoretical tools to describe
the non-equilibrium dynamics of quantum systems. Among them an exact representation
of quantum spin systems in terms of classical stochastic processes has been proposed. Here
we provide first steps towards the extension of this stochastic approach to bosonic systems
by considering the one-dimensional quantum quartic oscillator. We show how to exactly pa-
rameterize the time evolution of this prototypical model via the dynamics of a set of classical
variables. We interpret these variables as stochastic processes, which allows us to propose
a novel way to numerically simulate the time evolution of the system. We benchmark our
findings by considering analytically solvable limits and providing alternative derivations of
known results.
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1 Introduction

Recent advances in cold atom experiments have motivated great theoretical interest in the non-
equilibrium dynamics of isolated many-body quantum systems [ 1-10]. With the notable exception
of integrable models [11], analytical insights into the time evolution of these systems are scarce.
This motivates the search for novel numerical and analytical tools to analyse many-body quan-
tum dynamics and to complement other widely used numerical approaches [12-14]. Some recent
works [15-18] considered an exact representation of the dynamics of many-body quantum spin
systems in terms of classical stochastic processes. This approach is based on a series of exact trans-
formations, through which an interacting many-body quantum system can be exactly represented
as non-interacting system under the action of a set of classical stochastic fields. In this stochas-
tic approach, sometimes referred to as disentanglement formalism', physical observables can be
expressed as averages of classical functions over realizations of suitably constructed stochastic
processes. This not only breaks down the complexity of many-body quantum interactions to that
of classical stochastic differential equations but also allows one to bridge the gap between the
quantum realm and classical stochastic processes, for which powerful numerical tools have been

IThis terminology originates from the fact that the approach described here “disentangles" a time-ordered exponen-
tial, featured in the time-evolution operator, into a product of ordinary exponentials, see, e.g., Refs. [17,19]. Hence,
this term does not actually point to a relation to quantum entanglement. Here we mostly stick with the terminology
“stochastic approach".
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developed [20]. Beside this numerical application, the formalism can also be used as a field-
theoretical tool to develop analytic expansions for observables [21]. The stochastic formalism
has been mainly applied to many-body quantum spin systems [15-18, 21-23], where interac-
tions are mapped to classical stochastic fields. Here, we explore a generalization of the stochastic
approach to systems of interacting bosons. In particular we shall study the time-evolution of
a zero-dimensional bosonic system with a non-linear interaction potential. These systems have
attracted significant attention for their rich dynamical behavior and relevant experimental appli-
cations [24-29]. In particular, we shall consider the quantum quartic oscillator as a paradigmatic,
non-linear bosonic quantum system [30-37]. While any system with harmonic interactions can
be mapped to non-interacting bosons, this is no longer the case for anharmonic potentials, whose
simplest representative is arguably the quartic one.

In spite of its apparent simplicity, the quantum quartic oscillator is notoriously hard to study
and involves subtle conceptual mathematical issues, even in its equilibrium formulation: notably,
the divergence of the perturbation theory for the ground state energy in powers of the quartic
coupling A and the fact that the energy levels have an infinite number of branch points in the
complex A-plane around the origin A = 0, i.e., in the harmonic limit. From a physical perspective,
these singularities are caused by level crossings in the eigenenergies [30, 31], leading to a non-
trivial perturbation theory of the energy spectrum [36,38]. The quantum quartic oscillator is also
of practical relevance, as it can be used to approximate the low-energy behavior of more general,
real-world quantum systems [39-41].

The quantum quartic oscillator has been investigated by approximation techniques, such as
the semiclassical evaluation of its propagator [32-34, 37, 42] and, more recently, by looking at
the evolution of relevant time-dependent observables [29, 43]. Interestingly, the exact form of
the wave functions of the quartic oscillator has been reported only recently [44] but there is still
no analytic expression for the corresponding quantized energy levels. Here, we show how the
stochastic approach can be used to represent the dynamics of a quantum quartic oscillator in terms
of ensembles of stochastically evolving harmonic oscillators. The representation we introduce is
formally exact and can be used to develop analytical approximations or to evaluate numerically
expectation values, providing a different viewpoint as well as a practical alternative to existing
techniques.

This manuscript is organized as follows. In section 2 we derive a field-theoretical represen-
tation of the quantum quartic oscillator following earlier applications of the stochastic approach.
This is done in two steps. First, the quartic part of the quantum quartic oscillator is decoupled
by means of a Hubbard-Stratonovich transformation [45,46], which casts the problem into that
of the evolution of a quantum harmonic oscillator with time-dependent frequency. Second, a
Lie-algebraic transformation is used to express the time-evolution operator in terms of ordinary
exponentials featuring time-dependent classical coefficients [19, 47, 48], which we refer to as
stochastic variables. The transformation yields a set of differential equations for the stochastic
variables, which effectively describe the exact quantum dynamics of the quantum quartic oscilla-
tor. We also show that the formalism can be applied to quartic Hamiltonians with time-dependent
coefficients. In section 3 we explain how expectation values of operators are calculated within
this formalism, providing a general recipe and exact equations for a range of observables and
initial states. The classical formulas we obtain are then benchmarked by considering two exactly
solvable limits: the quantum harmonic oscillator, and the inherently classical limit in which all
operators in the Hamiltonian commute with each other, corresponding to the disappearance of
the kinetic energy in the Hamiltonian. In section 4, we elaborate on the stochastic interpretation
of the present approach and discuss the conditions under which the field theory we obtain can
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be numerically simulated by means of stochastic processes. Building on this discussion, we show
that for the quantum quartic oscillator with generic parameters (i.e., away from the two exactly
solvable limits) our method can be benchmarked by applying a numerical stochastic scheme to
evaluate time-evolved observables. In section 5 we adopt a field-theoretical viewpoint and develop
a functional expansion of the time-evolution operator about the harmonic limit; we show that this
is equivalent to the standard perturbative Dyson series. In section 6, we discuss how the semiclas-
sical propagator and the partition function of the quantum quartic oscillator can be analytically
recovered from the proposed field-theoretical picture. We present our conclusions in section 7,
summarizing our results and outlining directions for further research. Several appendices cover
mathematical details.

2 Stochastic Representation of the Quantum Quartic Oscillator

In this section, we introduce the stochastic approach briefly described in the introduction alongside
with its novel application to bosonic systems. In particular, we focus on the quantum quartic
oscillator, which is described by the Hamiltonian

£2
L
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+
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Here, the position operator X and the momentum operator p satisfy the canonical commutation
relation [X, p] = iki. The mass of the oscillator is denoted by m, the harmonic frequency by w and
the quartic potential is parametrized by the coupling constant A > 0. Since an exact solution is
not available for A # 0, different approaches have been used in order to obtain insights on the
quantum quartic oscillator, e.g., perturbation theory [30,31,36] and semiclassical approximations
[32,33,42].

Here, we develop an alternative exact theoretical formulation of the problem, following the
disentanglement approach recently applied to an ensemble of interacting quantum spin systems
[15-18]. In particular, we investigate the unitary dynamics of the quantum quartic oscillator by
exactly mapping it to stochastically driven operators, which have spin-like properties. This is done
by employing a functional representation of the time-evolution operator

U(t)=exp (—%I—AIt). (2)

First, we decouple the quartic term in the exponent of Eq. (2) via a Hubbard-Stratonovich transfor-
mation [45,46] and trotterize [49,50] the time-evolution operator on the time interval 7, = t/n,
in the limit n — oo, i.e.,

. ) . n
T = 1 _1Ta P7 _WTa(m o0 A
U(t)—nlingo(exp[ h Zm}e"l’[ (G g )D ' ©

To each of the n Suzuki-Trotter factors appearing in Eq.(3), we apply a Hubbard-Stratonovich
transformation which allows us to replace the quartic interaction with a quadratic one by intro-
ducing a real-valued auxiliary field ¢, i.e.,

2
e T L )
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where we fix Vi = e/™/# due to the positivity of A, in order to ensure convergence. Equation (4)
is derived in Appendix A.1. We can substitute the expression in Eq. (4) to each slice of the
Suzuki-Trotter decomposition in Eq. (3), labeling the corresponding integration variable ¢; by
k € {1,...,n}. In the continuum limit n — o©o0, we can express U(t) as a functional integral
with respect to the Hubbard-Stratonovich field ¢(t). The corresponding measure is given by

D¢(t) =[]} v/7,/(iARm) dey in the limit n — oo, and we find

i (" b2  m
U(t)=JD¢eiSO[¢]TeXp[—EJ dt (§—m+§§22(r)fc2)], (5)
0

where T exp (-) denotes the time-ordered exponential. The quadratic coupling is absorbed into an
effective time-dependent real-valued frequency Q2(t), defined by

Q1) = w2+ 220, ©)
m
and Sy[ ¢ ] denotes the Gaussian scalar action
1 t
Sol#]= = fo d $2(v) %

Equation (5) casts the time-evolution operator of the quartic oscillator as an expectation value
with respect to the Gaussian action Sy[ ¢ ] of the propagator of a harmonic oscillator with time-
dependent frequency €(t). The associated effective Hamiltonian reads

. p2  m
Hq(t) = 2— + —Q%()x2 (8)
2m 2
Despite the apparent simplification of dealing with the time-evolution operator of a quadratic
Hamiltonian, time-ordering prevents the direct evaluation of the action of the operator in Eq. (5).
This difficulty can be circumvented by means of a Lie-algebraic disentanglement transformation
[15-17]. We define a new set of operators, whose linear combination with suitable coefficients
reproduces the Hamiltonian in Eq. (1), i.e.,
%2 l.{fc,ﬁ} am_ D

- §7 and S =*-. 9

I\+ e
S 2h’ n’ 2h

These operators satisfy the commutation relations of the SU(2) algebra, viz.,
[8%,87]1=28% and [$%,8*]=+8* (10)
However, these operators differ from the conventional spin operators, since §t = (.§+)T and

§ = (§_)'i' are Hermitian. The operators defined in Eq. (9) allow one to write the effective
Hamiltonian as

. S~ R
Hs(r)=h[—+m92(t)s+] (11)
m
Following Refs. [19,47,48], we can express the time-ordered exponential in Eq. (5) as
i t A2 1 n n n
Us=Texp|—= | dr L “mOA(1) %2 || = e80T E (08787057 12)
rJ, 2m 2
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with suitable “stochastic” variables £*, &% and £~. In section 4 we shall discuss the interpretation
of these variables as stochastic processes, which motivates their naming.

The time evolution of £*, &% and £ is obtained by imposing that the factorized expression on
the right-hand side of Eq. (12) satisfies the same Heisenberg equation as U [19], leading to

+ 2 — &
iddit+%(§+)2=m92(t), i%+%§+=o, i%—% —0. (13)

The initial condition U/(0) = 1 imposes £+(0) = £%(0) = £7(0) = 0. Note that, for a real-valued
field ¢, & and £~ are purely imaginary while &7 is real, implying that the exponential operators
in Eq. (12) are unitary. We shall see that the stochastic variables are generally complex and thus
the product of exponential operators in Eq. (12) is not unitary. The unitarity of the time-evolution
operator is however recovered upon averaging, as described in Eq. (5). Substituting Eq. (12) into
Eq. (5), allows one to express the time-evolution operator as

U(t) = <e£+(r)§+652(t)§z eg—(r)s”-> ’ (14)
¢

where (...), denotes the average with respect to the Gaussian field ¢, as defined in Eq. (5).
The representation in Eq. (14) is exact and allows us to map the quantum dynamics on the time
evolution of the stochastic parameters, see Eq. (13). Since this mapping is exact, the ensemble of
trajectories £1(t), £%(t), £ (t) determined by the fields ¢ (t) encodes all the information about
the underlying quantum problem. Moreover, Eq. (14) suggests that the time evolution is given by
a weighted statistical average of successive actions of the exponential operators.

It is worth noting that the operators in Eq. (12) are the matrix elements of the covariance

matrix ) )
X z{fc,f)})
A A R , (15)
(%{x,p} p?

customarily used in the study of the dynamics of Gaussian wave packets under a quantum oscillator
Hamiltonian [51,52]. Indeed, as we shall further discuss below, the operators in Eq. (14) preserve
the Gaussianity of a wave-packet and justifies why it is convenient to work within this setting.

We can physically understand the action of the individual exponential operators in Eq. (12),
and hence of Us, by studying their effect on a Gaussian wave packet |v), generally given by

) = J e (—M Filx —a)k) ). (16)

oo (ma2)1/4 202

The wave packet in Eq. (16) is parametrized by its average position (x) = (3| X [{) = a, variance
(x2). = (| (x—a)? |yp) = 02 /2 (where {(...), denotes the connected component of the expectation
value) and average momentum (p) = (Y| p |y) = k. The variance of the momentum operator is
given by (p?). = (Y| (p —k)?|¢p) = (202)7'. Here |x) denotes an eigenstate of the position
operator and we set i = 1. In order to visualize the action of the operators introduced in Eq.
(12), it is convenient to see how the average and variance of the momentum and position operators
transform. Namely, an operator of the type

* exp(£787) acts on a Gaussian wave packet |1p) by leaving the momentum cumulants (p)
and (p?), unaltered, while shifting, respectively, the average and the variance of the position
operator

(x)=a—Im(E)k,  (x?).=0?/2+(Im(£7)/0)?/2,
by terms that depend on the imaginary part of £~

6
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* exp(£%87) rescales the n—th cumulant (x"), of the position by a homogeneous constant
e "¢"/2 while the n—th momentum cumulant (p"), by e"® /2. For the first cumulants we
have (x) =ae 5 /2, (x?). = 0275 /2, (p) = ke /? and (p?), = €% /(20%). Thanks to the
homogeneity of the transformation, the products (x){p) and (x2).(p?), are preserved;

* exp(£*8*) leaves unaltered the position cumulants (x) and (x2)., while shifting, respec-
tively the average and the variance of the momentum operator

{p) =k+Im(E)a,  (p*)c=(20*) 7" +(Im(£")0)?/2,
by terms that depend on the imaginary part of .

In order to further understand the physical significance of the action of the exponential oper-
ators in Eq. (12) on a Gaussian wave packet |¢), it is useful to consider the exact phase space
representation given by the Wigner function [53-55], defined as

W(x,p) = %fdye‘izyp<x+y|¢)<¢|x—y)- (17)

The knowledge of W(x, p) allows one to compute the expectation value of any operator O(%, p),
expressed as a function of X and p, as (Y| O0(%,p) |y) = fdx f dp W(x,p)O(x,p). This general-
izes the results obtained above for the first cumulants of the wave packet, which are retrieved by
identifying the operator O(%, p) with %, p, £2, p2, and their connected expectation value. Figure 1
shows how the Wigner function

N2
W(x,p) = %exp [—(xa—za)—Gz(p—k)Z], (18)

of a Gaussian wave packet is transformed upon the action of the three exponential operators in
Eq. (12). In general, the exponential operators in Eq. (14) transform the parameters of the
Gaussian wave packet by altering its original Heisenberg uncertainty relation (%2).(p2). = 1/2
[56], while they preserve the Gaussian structure of the relative Wigner function. For further

details, see Appendix B.

3 Physical Observables

In this section, we illustrate how expectation values of observables can be expressed in the stochas-
tic formalism by considering the position and momentum operator. In general, for a system pre-
pared in a state |v)), the expectation value of an observable O is given by (1| O |v). In particular,
we refer to (1| O™ |¢) as the n-th moment of the operator O with respect to the state |1). We can
then express quantum expectation values as functional averages by replacing each time-evolution
operator by its exact representation given by Eq. (14). This requires introducing independent
Hubbard-Stratonovich fields ¢ and ¢ for the two time-evolution operators. We refer to these
fields as forward (¢) and backward (¢) fields in analogy to the nomenclature of the Schwinger-
Keldysh formalism [57-59].
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Figure 1: Contour plots of different Wigner functions. Panel (a) shows the Wigner func-
tion W(x, p) for a Gaussian wave packet, see Eq. (18). In the x and p direction, W(x, p)
is a Gaussian centered around the phase space point (a,k) with variance o2/2 and
(202)71, respectively. We chose a =0, k = 1, and o = 1. Panel (b) shows the Wigner
function W, (x, p) for the wave function |1}, ) = exp(§*$+)|y)), see Eq. (82). This trans-
formation shifts the p variable by an x-dependent linear term, i.e., p — p —x Im(&™);
here we choose " = 1.5i. Panel (c) shows the Wigner function W, (x, p) for the wave
function [1p) = exp(E28%) |p), see Eq. (77). This transformation uniformly rescales the
variables (x,p) to (xe /2 pe=¢/2); here we chose & = 1.5. Panel (d) shows the
Wigner function W_(x, p) for the wave function |} = exp(§787)|v), see Eq. (71).
This transformation shifts the x variable by a p-dependent linear term according to
x — x +p Im(E7); we chose £~ = 1.5i.

3.1 Dynamics of a Gaussian Wave Packet

The dynamics of a particle in the presence of a quartic potential can be studied via the time-
dependent moments of its position and momentum. We model the particle as a Gaussian wave
packet, see Eq. (16), whose time evolution is governed by the time-evolution operator in Eq. (14).
The evolved state is thus simply obtained by the subsequent action of the exponential operators
in Eq. (14) and we find

21.2 2 4 2
o) ={ [y Y2 exp (<205 - L riotpouy + T a0 )in) a9
¢

ml/4 2
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Here, we have introduced the generalized initial momentum u of the wave packet as u = k—iaoc™
and the variables a(t), 8(t) and y(t), which depend on the stochastic variables as

2

1 £ ()2 £(1)

e
) ——, ) ——, t)= —— —&(¢t). 20
0= ey PO mray 0= e SO @O
The time evolution of a, 3, and y is readily obtained from Eq. (13), i.e.,
2 2
T e 4P _Pr de 7 21
dt m dt m dt m

with initial conditions a(0) = 3(0) = y(0) = o ~2. These parameters are generally complex. No-
tably, the presence of o2 > 0 in Eq. (20) prevents divergences otherwise occurring for £~ (t) = 0,
e.g., for t =0.

The moments of the position operator on the Gaussian wave packet in Eq. (16) can be explic-
itly obtained by computing the expectation values (y(t)| X" |y (t)). To this end, we replace the
time-evolved state [1)(t)) by its representation involving the functional average (...),, derived in
Eq. (14). A similar procedure is applied to UT(t), associated with the field ¢ with action —Sy[¢ ].
We denote by a, 8 and y the solutions of Egs. (21) that depend on the forward field ¢, and simi-
larly we write @, 3, and ¥ for the solutions of the complex conjugates of Egs. (21) associated with
the backward field ¢. Note that the fields ¢ and ¢ are independent. The n-th moment of the
position operator is finally found as

o4 2
<”’(t)'f“n"“t»=<(zrl)(3{; (%ot )| 2k2+7(A_ATH>M’ -

where we defined the auxiliary variables T = y + 7, A = uf — u*B, A = u?a + (u*)%a, and H,,
denotes the n-th degree Hermite polynomial and u* the complex conjugate of u. Similarly, the
expression of the moments of the momentum operator are found to be

—(n+ > 2(,,B *é
(O] p" |w(t)>:<za[z(%+l)] T BBy o? (uf+wf)

Y YY 1.1
( 2(Y+;))2 (23)
o, 0t zﬁz 2/5 wy >
X exp ak+2 A—u —(u") —(%+%) ¢¢;.

Note that these moments are formally retrieved from Eq. (22) by substituting

r—>r' B-o—if/y, and a—a—p?/y.

As in the case of the time-evolution operator and the wave packet evolution, it is possible to express
the dynamics of an observable as the expectation value of functions of the auxiliary parameters a,
p and y, which depend on the field ¢. Below, we will see how we may use these expressions for
numerical calculations. As a final remark, we note that the convergence of Eq. (19) requires that
Re(y) > 0, which follows naturally from the unitarity of the exponential operators in Eq. (12), see
Appendix C for further details.
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3.2 Exactly Solvable Cases

To the best of our knowledge, the non-linear evolution of the system of Egs. (13) cannot in general
be solved exactly. However, exact solutions can be found in two cases: the harmonic limit, in
which Egs. (13) become purely deterministic, and the commuting limit, in which the solutions
of Egs. (13) can be expressed in terms of the time integral of the field ¢. We use these exactly
solvable instances as benchmarks for the stochastic formalism as well as for developing a physical
intuition of its significance.

3.2.1 Harmonic case

In the case A = 0 of the harmonic oscillator, the absence of the quartic term implies that Egs. (13)
reduce to the system of ordinary differential equations

et 1L, ; dez 2 dem eF
== = mw?, — + 2t =0, — _—— =0, 24
! dt m(g y=me ldt mg ! dt m 24
which can be solved explicitly; i.e.,
£ =—imwtan(wt), &= _b tan(wt), &% = —logcos?(wt). (25)
mew

This amounts to a known, exact parameterization of the quantum harmonic oscillator in terms
of classical variables [19]. The time evolution of the stochastic variables ™% for the harmonic
oscillator shows periodic divergences at t = t, = 7(1 + 2n)/(2w) with integer n, which, how-
ever, cancel out in the analytic computations of observables. This issue can be circumvented by
equivalently considering the time evolution of the variables a, 8, v, introduced in section 3.1.
The solutions (25) can be plugged in the expressions of the observables, obtained in section 3, in
order to compute exactly the corresponding dynamics. For instance, by inserting Egs. (25) into
Eq. (22), we retrieve the expressions of the moments of the position and momentum operator for
the Gaussian wave packet:
i

(x") = (—)n [04 cos?(wt) + xg sinz(wt)]% H, (

ic[acos(wt) + kxg sin(wt)]
20 ’

\/04 cos2(wt) + xé’ sin?(wt)
io[kxg cos(wt) —asin(wt)] )

\/xg cos2(wt) + o4sin®(wt)

(26)

2
2x00

(p") = ( i ) I:xg cos?(wt) + o* sinz(cot)]% H, (

where we introduced the typical harmonic oscillator length x, = (mw)™1/2.

3.2.2 Commuting limit

We study a particular case of the Hamiltonian in Eq. (1) in which the time evolution of the stochas-
tic variables in Eq. (13) can be exactly solved. We consider the limit m — oo with mw? held
constant in order to ensure a constant finite energy. In this limit, the kinetic part of the Hamil-
tonian is suppressed and it coincides with the quartic potential. Accordingly, the Hamiltonian is
only a function of the position operator and does not contain the momentum operator. In this
sense we refer to this scenario as the commuting limit. Correspondingly, the non-linear terms in
the differential equations (13) vanish, allowing us to express the explicit solution as

£ =—iw’mt —2if dt ¢(7), ET=&=0, 27

0

10
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where £* depends on the variable W = fot ds ¢(s), and allows us to express the average (---) in
Eq. (14) as an average with respect to the Gaussian weight of W, i.e.,

. too V(A1) .
U(t) =f dW ———exp[—i (2W + mw?t) §*]. (28)

ViTAt

From Eq. (28), it is apparent that, as expected in this case, the time evolution operator commutes
with operators that depend only on the position operator x. This implies the absence of dynamics
for the particle position, compatibly with the vanishing kinetic energy. On the other hand, the
moments of the momentum p grow in time, as a consequence of the Heisenberg uncertainty prin-
ciple. We compute these moments by setting the auxiliary variables in Eq. (20) to a = 8 = 02
and y = 02 —i(2W + w?mt) in Eq. (23) and by substituting the average (---) with the integral
f j;o AW eV /(0 /VinAt and similarly for the dual variables @, 8 and 7. These expectation
values can then be evaluated numerically, as we discuss in the next section.
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Figure 2: Panels (a) and (b) display a numerical estimate of the average value (ty) and

the standard deviation o, = (t}%) — (t,)? of the random variable t,, respectively, for
the quartic oscillator, where t, is the time at which Re(y(t,)) = O for the first time. We
have used the Euler scheme with time step At = 2/m x 1072 to simulate the time evolu-
tion of y with physical parameters are w =1, m = 10, and extracted the value of ¢, for
N = 10* trajectories. Panels (c) and (d) show the same quantities and parameters except
for the presence of a time-dependent potential w?(t) = sin?(t) and A(t) = A, sin?(t).
Note that, in general, (t,) ~ o, at large values of A: these strong fluctuations increase
the probability of Re(y(t,)) = 0 at smaller values of t, as the coupling A increases.

11
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4 Stochastic interpretation and numerical benchmark

In this section we show how the formalism presented above can be interpreted in terms of stochas-
tic processes, which also allows us to benchmark our approach in cases where the model is not
exactly solvable. In particular, by rotating the integration contour of the variable ¢ in the Hubbard-
Stratonovich transformation in Eq. (4), after a generalization to the case of time-dependent cou-
plings as in Eq. (68) of, cf., Appendix A.2, it is possible to show that

exp (—i%%fc“) = \/%J:: d¢ exp [—% (¢2 +iy/id, %2 qb)} , (29)

which follows from the change of variable ¢ /vi — ¢ in Eq. (68). Equation (29) allows one to
represent U as

O(t) = f Do e 5?10 o], (30)

where S, is given by Eq. (7) and the time-evolution operator U in Eq. (12) displays the corre-
sponding effective frequency Q2(t) = w?(t)+24/iA(t)¢(t)/m. The exponential of the action S, in
Eq. (7) can be identified as a Gaussian probability measure for the field ¢ (t), whose time integral
can be interpreted as a Wiener process [20]. Accordingly, Eqs. (13) can be understood as complex
stochastic differential equations with a Gaussian white noise ¢. In this reformulation, however,
the stochastic variables are generally complex, and do not preserve the unitarity of Us, which is
only retrieved upon averaging. As a consequence, the expression inside the average (---) of the
observable expressions in Eq. (19) does not have to be convergent at all times and for all values
of the quartic coupling. More precisely, since the effective frequency Q2(t) is complex, Re(y) may
attain a negative value after a certain time ¢, > 0, even though the initial value y(0) = 0c2>0
is positive and real. One can numerically check that the average value (t,) of t,, interpreted as
a random variable, decreases upon increasing the strength of the quartic coupling A, see Fig. 2.
Indeed, t, is the first-passage time to the origin for the random variable Re(y). This constitutes
a limitation to the numerical application of the stochastic approach in the large-A regime, where
(t,) is comparable with the standard deviation o, = (t?) — (t,)2. In this stochastic description,
as reported in Appendix C, the divergences originate from the non-commutativity of the average
(-++)¢ over trajectories and the action of the operator Us on a prescribed initial state |+) since,
due to the non-unitarity of Us, the relation (Us) o ) = (Us 1)) » may not be satisfied. In the
commuting limit, the above considerations translate in the simple change of variable W/+/i = W’
in Eq. (28), where this new W’ can be interpreted a Gaussian random number with variance At /2.
In spite of this limitation, the possibility to evaluate observables numerically by simulating classical
stochastic dynamics allows us to further benchmark our approach. As a first check, we determine
numerically the dynamics of the average momentum (p) for a Gaussian wave packet in the com-
muting limit. As we have shown, the stochastic differential equations are exactly solvable in this
limit. It is thus possible to obtain directly the expressions for observables at a given time t without
having to integrate the time evolution numerically. These expressions are known functions of the
time integral £ = —24/iW}’ —iw?mt, which can be numerically simulated by drawing Gaussian
random numbers with zero mean and variance given by At/2. Figure 3 shows the comparison
of the numerical prediction of the dynamics of the first two moments of the position of a wave
packet between the Crank-Nicholson method (dashed line) [60] used to integrate the Schrédinger
equation numerically, and the prediction based on the stochastic interpretation of Eq. (30) (dots),

12
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Figure 3: Time evolution of the first and second moment of the p-operator for a Gaussian
wavepacket with o = 0.5, k = 1.0, a = 0.5 and evolving according to Eq. (1) with
A = 0.2 in the commuting limit. The dashed line is computed by integrating numerically
the Schrodinger equation with the Crank-Nicholson method [60] with lattice spacing
Ax = 6x107* and time step At = 1 x 10~*. Blue dots are computed with the stochastic
method with At = 107%, and by sampling N = 1.2 x 10® Gaussian random numbers.
Error bars, corresponding to the statistical standard deviation over the sampling average,
are not visible on the scale of the plot.

finding good agreement. As a further validation of the presented stochastic description, we eval-
uate the dynamics of the expectation values in Eq. (22) within a range of parameters where no
exact solutions are available. We determine our numerical results up to a time t < (t, ), where no
divergences are actually detected. For this purpose, we use an Euler discretization scheme [20]
with time step At = 107° to solve the complex-valued stochastic differential equations (13) for
a given realization of the Wiener process ¢ (t). Once a sufficiently large number of realizations
for the stochastic variables £*, €%, and £~ or a, f3, and y are known, by averaging with respect to
them, it is possible to compute the expectation value of a desired observable, see e.g., Eq. (22) or
(23). Figure 4 shows the time evolution of the first moments of the position operator for a Gaus-
sian wave packet for various choices of the parameters. In particular, we compare the numerical
prediction of the stochastic method (dots) with standard integration of the Schrodinger equation
with the Cranck-Nicholson method (dashed line). Numerically, the proposed stochastic method
has the advantage that the time-evolution of the many trajectories of the stochastic parameters,
e.g., E77%, can be straightforwardly parallelized. On the other hand, an increasing large number
of realizations is needed in order to have accurate predictions for observables at longer times or
larger quartic coupling strength A, since fluctuations due to the noise grow correspondingly. This
is similar to the behavior found for quantum spins systems [22].

In summary, we have demonstrated that our formalism allows one to compute quantum ob-
servables for an interacting bosonic system from averaging classical stochastic processes, but we
found that there are limitations to the applicability of this numerical technique. The mapping
to stochastic processes also made it possible to further benchmark our approach in non-solvable
cases. Since the stochastic description discussed in this section is formally identical to the field the-
ory introduced in section 2, we refer to the present method as the “stochastic approach", although
only its numerical application discussed here makes explicit use of stochastic processes.
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Figure 4: Time evolution of the expected (a) position (x) and (b) squared position
(x?) of a Gaussian wave packet with o = 0.5, k = 1.0,, and a = 0.5, evolving according
to Eq. (1) with m = 10, w = 1, A = 0.2. The dashed line corresponds to the numer-
ics performed with the Crank-Nicholson method with space bin Ax = 10 and time
step At = 1072, while the blue dots are computed with the stochastic method with
At =107* and sampling N = 1.2 x 10° trajectories. The time t has been chosen such
that t < (t,) with (t,) ~ 27, and o, ~ 19, see Fig. 2a-b . Similarly, panels (c) and
(d) display the evolution of (x) and (x?), respectively, in the case of w?(t) = w3 sin?(¢)
and A(t) = Ay sin?(t) with wg = 1, A, = 0.2, and (t,) ~ 31, with o, ~ 18, see Fig.
2c-d. As above, the dashed line corresponds to the numerics performed with the Crank-
Nicholson method with space bin Ax = 107° and time step At = 1072, while blue dots
are computed with the stochastic method with At = 10™*, and sampling N = 1.2 x 10°
trajectories. Error bars are given by statistical standard deviation over the trajectories

average and are only visible in panel (d).
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5 Perturbative Expansion

In the stochastic approach, the time-evolution operator U in Eq. (14) is represented as a func-
tional average over classical fields ¢. In this section, we show how this can be used to derive a
perturbative expansion of U for the quartic oscillator in terms of the time-evolution operator Up(t)
of the harmonic case obtained for A = 0. We start by rescaling the Hubbard-Stratonovich field as
¢ = vA ¢ in the functional integral representation of U(t) in Eq. (5), yielding

U(t):JDLpeifotds‘pz(s) ﬁs[ﬁw] (31)

Here, the functional ﬁs[¢] (which is also a function of time) is identified with the time-evolution
operator of a harmonic oscillator with time-dependent frequency, given by Eq. (12). By Taylor-
expanding the functional U around ¢ = 0, corresponding to the harmonic time-evolution op-
erator U,, and calculating the resulting Gaussian integrals, we get an asymptotic series for the
propagator

. AN [ 52" Us[ 4]
= = d
00=2(i%) (,,Dl L tm)6¢(s1)---6¢(s2n) p=0_ 2

n=0 e —
Son—1=S2n=1n

where, on the right-hand side, only even orders of functional derivatives appear as a consequence
of Wick’s theorem, leaving the functional derivative of Us evaluated at ¢ = 0 as the only unknown.
The series in Eq. (32) can be shown to be equivalent term by term to the Dyson series, see Appendix
D. The equivalence of the functional expansion about ¢ = 0 with the Dyson series allows us to
use this functional formulation to calculate perturbative approximations of observables by field-
theoretical means: we express the time evolution operators in the stochastic formalism, such that
all operators are replaced by classical functionals, and then functionally expand about the non-
interacting case. As it is usually the case in perturbative calculations, the asymptotic series in
Eq. (32) is expected to fail whenever we consider states for which the quartic term A £*/4 is not
negligible relative to the harmonic Hamiltonian. Indeed, it is a well-known fact that the Dyson
series of the quartic oscillator has a vanishing radius of convergence [30,31].

6 Semiclassical Approximation

In this section, we show how the semiclassical approximation for the propagator associated with
U(t) in the representation of Eq. (14) and the partition function of the system in Eq. (1) can be
expressed within the present formalism. Other than giving us an additional benchmark for the
theory, this shows that it is possible to find an alternative description of the stationary trajectories
contributing to the semiclassical approximation for the quartic oscillator.

6.1 Propagator

The propagator G(xy, t|x;,0), which gives the probability amplitude for a particle located at x; at
the initial time ¢; = 0 to reach the position x; at time t; = t, is defined by

G(xp, tlx;,0) = (xp | U(6) Ix;) . (33)
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The semiclassical approximation of the propagator for the quantum quartic oscillator has been
extensively studied in the literature, see, e.g., Ref. [32] for an overview. Here, we show how to
express G(x¢, t|x;, 0) in terms of the stochastic variables. This expression can be derived by insert-

ing the representation of U in Eq. (14), by acting on an eigenstate of the position |x;) according
to Eq. (86) in Appendix C, and finally by projecting on (x¢/|. This leads to

1 g2 ETxp (xpef2—x)?
——————exp L ,
/omhe- C| 4 on 2nE- )

where £ are evaluated at time t. Note that the stochastic variables in the above expression
are functions of ¢ evaluated at the final time t = t; —t;, while the initial and final position x; and
xy are fixed parameters.

In the harmonic case A = 0, by explicit substitution of