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Abstract

Recent experimental advances have inspired the development of theoretical tools to describe
the non-equilibrium dynamics of quantum systems. Among them an exact representation
of quantum spin systems in terms of classical stochastic processes has been proposed. Here
we provide first steps towards the extension of this stochastic approach to bosonic systems
by considering the one-dimensional quantum quartic oscillator. We show how to exactly pa-
rameterize the time evolution of this prototypical model via the dynamics of a set of classical
variables. We interpret these variables as stochastic processes, which allows us to propose
a novel way to numerically simulate the time evolution of the system. We benchmark our
findings by considering analytically solvable limits and providing alternative derivations of
known results.
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1 Introduction

Recent advances in cold atom experiments have motivated great theoretical interest in the non-
equilibrium dynamics of isolated many-body quantum systems [1–10]. With the notable exception
of integrable models [11], analytical insights into the time evolution of these systems are scarce.
This motivates the search for novel numerical and analytical tools to analyse many-body quan-
tum dynamics and to complement other widely used numerical approaches [12–14]. Some recent
works [15–18] considered an exact representation of the dynamics of many-body quantum spin
systems in terms of classical stochastic processes. This approach is based on a series of exact trans-
formations, through which an interacting many-body quantum system can be exactly represented
as non-interacting system under the action of a set of classical stochastic fields. In this stochas-
tic approach, sometimes referred to as disentanglement formalism1, physical observables can be
expressed as averages of classical functions over realizations of suitably constructed stochastic
processes. This not only breaks down the complexity of many-body quantum interactions to that
of classical stochastic differential equations but also allows one to bridge the gap between the
quantum realm and classical stochastic processes, for which powerful numerical tools have been

1This terminology originates from the fact that the approach described here “disentangles" a time-ordered exponen-
tial, featured in the time-evolution operator, into a product of ordinary exponentials, see, e.g., Refs. [17, 19]. Hence,
this term does not actually point to a relation to quantum entanglement. Here we mostly stick with the terminology
“stochastic approach".
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developed [20]. Beside this numerical application, the formalism can also be used as a field-
theoretical tool to develop analytic expansions for observables [21]. The stochastic formalism
has been mainly applied to many-body quantum spin systems [15–18, 21–23], where interac-
tions are mapped to classical stochastic fields. Here, we explore a generalization of the stochastic
approach to systems of interacting bosons. In particular we shall study the time-evolution of
a zero-dimensional bosonic system with a non-linear interaction potential. These systems have
attracted significant attention for their rich dynamical behavior and relevant experimental appli-
cations [24–29]. In particular, we shall consider the quantum quartic oscillator as a paradigmatic,
non-linear bosonic quantum system [30–37]. While any system with harmonic interactions can
be mapped to non-interacting bosons, this is no longer the case for anharmonic potentials, whose
simplest representative is arguably the quartic one.

In spite of its apparent simplicity, the quantum quartic oscillator is notoriously hard to study
and involves subtle conceptual mathematical issues, even in its equilibrium formulation: notably,
the divergence of the perturbation theory for the ground state energy in powers of the quartic
coupling λ and the fact that the energy levels have an infinite number of branch points in the
complex λ-plane around the origin λ= 0, i.e., in the harmonic limit. From a physical perspective,
these singularities are caused by level crossings in the eigenenergies [30, 31], leading to a non-
trivial perturbation theory of the energy spectrum [36,38]. The quantum quartic oscillator is also
of practical relevance, as it can be used to approximate the low-energy behavior of more general,
real-world quantum systems [39–41].

The quantum quartic oscillator has been investigated by approximation techniques, such as
the semiclassical evaluation of its propagator [32–34, 37, 42] and, more recently, by looking at
the evolution of relevant time-dependent observables [29, 43]. Interestingly, the exact form of
the wave functions of the quartic oscillator has been reported only recently [44] but there is still
no analytic expression for the corresponding quantized energy levels. Here, we show how the
stochastic approach can be used to represent the dynamics of a quantum quartic oscillator in terms
of ensembles of stochastically evolving harmonic oscillators. The representation we introduce is
formally exact and can be used to develop analytical approximations or to evaluate numerically
expectation values, providing a different viewpoint as well as a practical alternative to existing
techniques.

This manuscript is organized as follows. In section 2 we derive a field-theoretical represen-
tation of the quantum quartic oscillator following earlier applications of the stochastic approach.
This is done in two steps. First, the quartic part of the quantum quartic oscillator is decoupled
by means of a Hubbard-Stratonovich transformation [45, 46], which casts the problem into that
of the evolution of a quantum harmonic oscillator with time-dependent frequency. Second, a
Lie-algebraic transformation is used to express the time-evolution operator in terms of ordinary
exponentials featuring time-dependent classical coefficients [19, 47, 48], which we refer to as
stochastic variables. The transformation yields a set of differential equations for the stochastic
variables, which effectively describe the exact quantum dynamics of the quantum quartic oscilla-
tor. We also show that the formalism can be applied to quartic Hamiltonians with time-dependent
coefficients. In section 3 we explain how expectation values of operators are calculated within
this formalism, providing a general recipe and exact equations for a range of observables and
initial states. The classical formulas we obtain are then benchmarked by considering two exactly
solvable limits: the quantum harmonic oscillator, and the inherently classical limit in which all
operators in the Hamiltonian commute with each other, corresponding to the disappearance of
the kinetic energy in the Hamiltonian. In section 4, we elaborate on the stochastic interpretation
of the present approach and discuss the conditions under which the field theory we obtain can
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be numerically simulated by means of stochastic processes. Building on this discussion, we show
that for the quantum quartic oscillator with generic parameters (i.e., away from the two exactly
solvable limits) our method can be benchmarked by applying a numerical stochastic scheme to
evaluate time-evolved observables. In section 5 we adopt a field-theoretical viewpoint and develop
a functional expansion of the time-evolution operator about the harmonic limit; we show that this
is equivalent to the standard perturbative Dyson series. In section 6, we discuss how the semiclas-
sical propagator and the partition function of the quantum quartic oscillator can be analytically
recovered from the proposed field-theoretical picture. We present our conclusions in section 7,
summarizing our results and outlining directions for further research. Several appendices cover
mathematical details.

2 Stochastic Representation of the Quantum Quartic Oscillator

In this section, we introduce the stochastic approach briefly described in the introduction alongside
with its novel application to bosonic systems. In particular, we focus on the quantum quartic
oscillator, which is described by the Hamiltonian

Ĥ ≡
p̂2

2m
+

1
2

mω2 x̂2 +
λ

4
x̂4 . (1)

Here, the position operator x̂ and the momentum operator p̂ satisfy the canonical commutation
relation [ x̂ , p̂] = iħh. The mass of the oscillator is denoted by m, the harmonic frequency by ω and
the quartic potential is parametrized by the coupling constant λ ≥ 0. Since an exact solution is
not available for λ 6= 0, different approaches have been used in order to obtain insights on the
quantum quartic oscillator, e.g., perturbation theory [30,31,36] and semiclassical approximations
[32,33,42].

Here, we develop an alternative exact theoretical formulation of the problem, following the
disentanglement approach recently applied to an ensemble of interacting quantum spin systems
[15–18]. In particular, we investigate the unitary dynamics of the quantum quartic oscillator by
exactly mapping it to stochastically driven operators, which have spin-like properties. This is done
by employing a functional representation of the time-evolution operator

Û(t)≡ exp
�

−
i
ħh

Ĥ t
�

. (2)

First, we decouple the quartic term in the exponent of Eq. (2) via a Hubbard-Stratonovich transfor-
mation [45,46] and trotterize [49,50] the time-evolution operator on the time interval τn ≡ t/n,
in the limit n→∞, i.e.,

Û(t) = lim
n→∞

�

exp

�

−
iτn

ħh
p̂2

2m

�

exp
�

−
iτn

ħh

�

m
2
ω2 x̂2 +

λ

4
x̂4
��

�n

. (3)

To each of the n Suzuki-Trotter factors appearing in Eq.(3), we apply a Hubbard-Stratonovich
transformation which allows us to replace the quartic interaction with a quadratic one by intro-
ducing a real-valued auxiliary field φ, i.e.,

exp
�

−i
τn

ħh
λ

4
x̂4
�

=
s

τn

iλħhπ

∫ ∞

−∞
dφ exp

�

iτn

ħh

�

φ2

λ
− x̂2φ

��

, (4)
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where we fix
p

i = eiπ/4 due to the positivity of λ, in order to ensure convergence. Equation (4)
is derived in Appendix A.1. We can substitute the expression in Eq. (4) to each slice of the
Suzuki-Trotter decomposition in Eq. (3), labeling the corresponding integration variable φk by
k ∈ {1, . . . , n}. In the continuum limit n → ∞, we can express Û(t) as a functional integral
with respect to the Hubbard-Stratonovich field φ(t). The corresponding measure is given by
Dφ(t)≡

∏n
k

p

τn/(iλħhπ)dφk in the limit n→∞, and we find

Û(t) =

∫

Dφ eiS0[φ]Texp

�

−
i
ħh

∫ t

0

dτ

�

p̂2

2m
+

m
2
Ω2(τ) x̂2

��

, (5)

where Texp (·) denotes the time-ordered exponential. The quadratic coupling is absorbed into an
effective time-dependent real-valued frequency Ω2(t), defined by

Ω2(t)≡ω2 +
2φ(t)

m
, (6)

and S0[φ] denotes the Gaussian scalar action

S0[φ] =
1
ħhλ

∫ t

0

dτφ2(τ). (7)

Equation (5) casts the time-evolution operator of the quartic oscillator as an expectation value
with respect to the Gaussian action S0[φ] of the propagator of a harmonic oscillator with time-
dependent frequency Ω(t). The associated effective Hamiltonian reads

ĤS(t)≡
p̂2

2m
+

m
2
Ω2(t) x̂2. (8)

Despite the apparent simplification of dealing with the time-evolution operator of a quadratic
Hamiltonian, time-ordering prevents the direct evaluation of the action of the operator in Eq. (5).
This difficulty can be circumvented by means of a Lie-algebraic disentanglement transformation
[15–17]. We define a new set of operators, whose linear combination with suitable coefficients
reproduces the Hamiltonian in Eq. (1), i.e.,

Ŝ+ ≡
x̂2

2ħh
, Ŝz ≡ i

{ x̂ , p̂}
4ħh

, and Ŝ− ≡
p̂2

2ħh
. (9)

These operators satisfy the commutation relations of the SU(2) algebra, viz.,

[Ŝ+, Ŝ−] = 2Ŝz and [Ŝz , Ŝ±] = ±Ŝ±. (10)

However, these operators differ from the conventional spin operators, since Ŝ+ = (Ŝ+)† and
Ŝ− = (Ŝ−)† are Hermitian. The operators defined in Eq. (9) allow one to write the effective
Hamiltonian as

ĤS(t) = ħh
�

Ŝ−

m
+mΩ2(t) Ŝ+

�

. (11)

Following Refs. [19,47,48], we can express the time-ordered exponential in Eq. (5) as

ÛS ≡ Texp

�

−
i
ħh

∫ t

0

dτ

�

p̂2

2m
+

1
2

mΩ2(τ) x̂2

��

= eξ
+(t) Ŝ+eξ

z(t) Ŝz
eξ
−(t) Ŝ− , (12)
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with suitable “stochastic” variables ξ+,ξz and ξ−. In section 4 we shall discuss the interpretation
of these variables as stochastic processes, which motivates their naming.

The time evolution of ξ+,ξz and ξ− is obtained by imposing that the factorized expression on
the right-hand side of Eq. (12) satisfies the same Heisenberg equation as ÛS [19], leading to

i
dξ+

dt
+

1
m
(ξ+)2 = mΩ2(t), i

dξz

dt
+

2
m
ξ+ = 0, i

dξ−

dt
−

eξ
z

m
= 0. (13)

The initial condition Û(0) = 1 imposes ξ+(0) = ξz(0) = ξ−(0) = 0. Note that, for a real-valued
field φ, ξ+ and ξ− are purely imaginary while ξz is real, implying that the exponential operators
in Eq. (12) are unitary. We shall see that the stochastic variables are generally complex and thus
the product of exponential operators in Eq. (12) is not unitary. The unitarity of the time-evolution
operator is however recovered upon averaging, as described in Eq. (5). Substituting Eq. (12) into
Eq. (5), allows one to express the time-evolution operator as

Û(t) =
¬

eξ
+(t)Ŝ+eξ

z(t)Ŝz
eξ
−(t)Ŝ−

¶

φ
, (14)

where 〈. . . 〉φ denotes the average with respect to the Gaussian field φ, as defined in Eq. (5).
The representation in Eq. (14) is exact and allows us to map the quantum dynamics on the time
evolution of the stochastic parameters, see Eq. (13). Since this mapping is exact, the ensemble of
trajectories ξ+(t), ξz(t), ξ−(t) determined by the fields φ(t) encodes all the information about
the underlying quantum problem. Moreover, Eq. (14) suggests that the time evolution is given by
a weighted statistical average of successive actions of the exponential operators.

It is worth noting that the operators in Eq. (12) are the matrix elements of the covariance
matrix

�

x̂2 1
2{ x̂ , p̂}

1
2{ x̂ , p̂} p̂2

�

, (15)

customarily used in the study of the dynamics of Gaussian wave packets under a quantum oscillator
Hamiltonian [51,52]. Indeed, as we shall further discuss below, the operators in Eq. (14) preserve
the Gaussianity of a wave-packet and justifies why it is convenient to work within this setting.

We can physically understand the action of the individual exponential operators in Eq. (12),
and hence of ÛS , by studying their effect on a Gaussian wave packet |ψ〉, generally given by

|ψ〉=
∫ ∞

−∞

dx
(πσ2)1/4

exp

�

−
(x − a)2

2σ2
+ i(x − a)k

�

|x〉 . (16)

The wave packet in Eq. (16) is parametrized by its average position 〈x〉 ≡ 〈ψ| x̂ |ψ〉= a, variance
〈x2〉c ≡ 〈ψ| ( x̂−a)2 |ψ〉= σ2/2 (where 〈. . . 〉c denotes the connected component of the expectation
value) and average momentum 〈p〉 ≡ 〈ψ| p̂ |ψ〉 = k. The variance of the momentum operator is
given by 〈p2〉c ≡ 〈ψ| (p̂ − k)2 |ψ〉 = (2σ2)−1. Here |x〉 denotes an eigenstate of the position
operator and we set ħh = 1. In order to visualize the action of the operators introduced in Eq.
(12), it is convenient to see how the average and variance of the momentum and position operators
transform. Namely, an operator of the type

• exp(ξ−Ŝ−) acts on a Gaussian wave packet |ψ〉 by leaving the momentum cumulants 〈p〉
and 〈p2〉c unaltered, while shifting, respectively, the average and the variance of the position
operator

〈x〉= a− Im(ξ−)k, 〈x2〉c = σ2/2+ (Im(ξ−)/σ)2/2,

by terms that depend on the imaginary part of ξ−;
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• exp(ξz Ŝz) rescales the n−th cumulant 〈xn〉c of the position by a homogeneous constant
e−nξz/2, while the n−th momentum cumulant 〈p̂n〉c by enξz/2. For the first cumulants we
have 〈x〉 = a e−ξ

z/2, 〈x2〉c = σ2e−ξ
z
/2, 〈p〉 = keξ

z/2 and 〈p2〉c = eξ
z
/(2σ2). Thanks to the

homogeneity of the transformation, the products 〈x〉〈p〉 and 〈x2〉c〈p2〉c are preserved;

• exp(ξ+Ŝ+) leaves unaltered the position cumulants 〈x〉 and 〈x2〉c , while shifting, respec-
tively the average and the variance of the momentum operator

〈p〉= k+ Im(ξ+)a, 〈p2〉c = (2σ2)−1 + (Im(ξ+)σ)2/2,

by terms that depend on the imaginary part of ξ+.

In order to further understand the physical significance of the action of the exponential oper-
ators in Eq. (12) on a Gaussian wave packet |ψ〉, it is useful to consider the exact phase space
representation given by the Wigner function [53–55], defined as

W (x , p)≡
1
π

∫

dy e−i2yp〈x + y|ψ〉〈ψ|x − y〉. (17)

The knowledge of W (x , p) allows one to compute the expectation value of any operator O( x̂ , p̂),
expressed as a function of x̂ and p̂, as 〈ψ|O( x̂ , p̂) |ψ〉 =

∫

dx
∫

dp W (x , p)O(x , p). This general-
izes the results obtained above for the first cumulants of the wave packet, which are retrieved by
identifying the operator O( x̂ , p̂)with x̂ , p̂, x̂2, p̂2, and their connected expectation value. Figure 1
shows how the Wigner function

W (x , p) =
1
π

exp

�

−
(x − a)2

σ2
−σ2(p− k)2

�

, (18)

of a Gaussian wave packet is transformed upon the action of the three exponential operators in
Eq. (12). In general, the exponential operators in Eq. (14) transform the parameters of the
Gaussian wave packet by altering its original Heisenberg uncertainty relation 〈 x̂2〉c〈p̂2〉c = 1/2
[56], while they preserve the Gaussian structure of the relative Wigner function. For further
details, see Appendix B.

3 Physical Observables

In this section, we illustrate how expectation values of observables can be expressed in the stochas-
tic formalism by considering the position and momentum operator. In general, for a system pre-
pared in a state |ψ〉, the expectation value of an observable Ô is given by 〈ψ| Ô |ψ〉. In particular,
we refer to 〈ψ| Ôn |ψ〉 as the n-th moment of the operator Ô with respect to the state |ψ〉. We can
then express quantum expectation values as functional averages by replacing each time-evolution
operator by its exact representation given by Eq. (14). This requires introducing independent
Hubbard-Stratonovich fields φ and φ̄ for the two time-evolution operators. We refer to these
fields as forward (φ) and backward (φ̄) fields in analogy to the nomenclature of the Schwinger-
Keldysh formalism [57–59].

7
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Figure 1: Contour plots of different Wigner functions. Panel (a) shows the Wigner func-
tion W (x , p) for a Gaussian wave packet, see Eq. (18). In the x and p direction, W (x , p)
is a Gaussian centered around the phase space point (a, k) with variance σ2/2 and
(2σ2)−1, respectively. We chose a = 0, k = 1, and σ = 1. Panel (b) shows the Wigner
function W+(x , p) for the wave function |ψ+〉 ≡ exp(ξ+Ŝ+) |ψ〉, see Eq. (82). This trans-
formation shifts the p variable by an x-dependent linear term, i.e., p → p − x Im(ξ+);
here we choose ξ+ = 1.5i. Panel (c) shows the Wigner function Wz(x , p) for the wave
function |ψ〉 ≡ exp(ξz Ŝz) |ψ〉, see Eq. (77). This transformation uniformly rescales the
variables (x , p) to (x eξ

z/2, p e−ξ
z/2); here we chose ξz = 1.5. Panel (d) shows the

Wigner function W−(x , p) for the wave function |ψ〉 ≡ exp(ξ−Ŝ−) |ψ〉, see Eq. (71).
This transformation shifts the x variable by a p-dependent linear term according to
x → x + p Im(ξ−); we chose ξ− = 1.5i.

3.1 Dynamics of a Gaussian Wave Packet

The dynamics of a particle in the presence of a quartic potential can be studied via the time-
dependent moments of its position and momentum. We model the particle as a Gaussian wave
packet, see Eq. (16), whose time evolution is governed by the time-evolution operator in Eq. (14).
The evolved state is thus simply obtained by the subsequent action of the exponential operators
in Eq. (14) and we find

|ψ(t)〉=
�∫

dy

p

β(t)σ
π1/4

exp

�

−
σ2k2

2
−

y2

2
γ(t) + iσ2β(t)µ y +

σ4µ2

2
α(t)

�

|y〉
�

φ

. (19)
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Here, we have introduced the generalized initial momentum µ of the wave packet as µ≡ k−iaσ−2

and the variables α(t),β(t) and γ(t), which depend on the stochastic variables as

α(t)≡
1

σ2 − ξ−(t)
, β(t)≡

eξ
z(t)/2

σ2 − ξ−(t)
, γ(t)≡

eξ
z(t)

σ2 − ξ−(t)
− ξ+(t). (20)

The time evolution of α,β , and γ is readily obtained from Eq. (13), i.e.,

i
dγ
dt
=
γ2

m
−mΩ2, i

dβ
dt
=
βγ

m
, i

dα
dt
=
β2

m
, (21)

with initial conditions α(0) = β(0) = γ(0) = σ−2. These parameters are generally complex. No-
tably, the presence of σ2 > 0 in Eq. (20) prevents divergences otherwise occurring for ξ−(t) = 0,
e.g., for t = 0.

The moments of the position operator on the Gaussian wave packet in Eq. (16) can be explic-
itly obtained by computing the expectation values 〈ψ(t)| x̂n |ψ(t)〉. To this end, we replace the
time-evolved state |ψ(t)〉 by its representation involving the functional average 〈. . . 〉φ , derived in
Eq. (14). A similar procedure is applied to Û†(t), associated with the field φ̄ with action −S0[φ̄].
We denote by α, β and γ the solutions of Eqs. (21) that depend on the forward field φ, and simi-
larly we write ᾱ, β̄ , and γ̄ for the solutions of the complex conjugates of Eqs. (21) associated with
the backward field φ̄. Note that the fields φ and φ̄ are independent. The n-th moment of the
position operator is finally found as

〈ψ(t)| x̂n |ψ(t)〉=
�

2σin
Æ

ββ̄

(2Γ )(n+1)/2
Hn

�

σ2∆
p

2Γ

�

exp

�

−σ2k2 +
σ4

2

�

A−
∆2

Γ

���

φ, φ̄

, (22)

where we defined the auxiliary variables Γ ≡ γ + γ̄, ∆ ≡ µβ − µ∗β̄ , A ≡ µ2α + (µ∗)2ᾱ, and Hn
denotes the n-th degree Hermite polynomial and µ∗ the complex conjugate of µ. Similarly, the
expression of the moments of the momentum operator are found to be

〈ψ(t)| p̂n |ψ(t)〉=
�

2σ
�

2
�

1
γ
+

1
γ̄

��−(n+1)/2
in

√

√

√ββ̄

γγ̄
Hn



−i
σ2
�

µ
β
γ +µ

∗ β̄
γ̄

�

r

2
�

1
γ +

1
γ̄

�





× exp







−σ2k2 +
σ4

2



A−µ2β
2

γ
− (µ∗)2

β̄2

γ̄
+

�

µ
β
γ +µ

∗ β̄
γ̄

�2

�

1
γ +

1
γ̄

�











�

φ, φ̄

.

(23)

Note that these moments are formally retrieved from Eq. (22) by substituting

γ→ γ−1, β →−iβ/γ, and α→ α− β2/γ.

As in the case of the time-evolution operator and the wave packet evolution, it is possible to express
the dynamics of an observable as the expectation value of functions of the auxiliary parameters α,
β and γ, which depend on the field φ. Below, we will see how we may use these expressions for
numerical calculations. As a final remark, we note that the convergence of Eq. (19) requires that
Re(γ)> 0, which follows naturally from the unitarity of the exponential operators in Eq. (12), see
Appendix C for further details.
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3.2 Exactly Solvable Cases

To the best of our knowledge, the non-linear evolution of the system of Eqs. (13) cannot in general
be solved exactly. However, exact solutions can be found in two cases: the harmonic limit, in
which Eqs. (13) become purely deterministic, and the commuting limit, in which the solutions
of Eqs. (13) can be expressed in terms of the time integral of the field φ. We use these exactly
solvable instances as benchmarks for the stochastic formalism as well as for developing a physical
intuition of its significance.

3.2.1 Harmonic case

In the case λ= 0 of the harmonic oscillator, the absence of the quartic term implies that Eqs. (13)
reduce to the system of ordinary differential equations

i
dξ+

dt
+

1
m
(ξ+)2 = mω2, i

dξz

dt
+

2
m
ξ+ = 0, i

dξ−

dt
−

eξ
z

m
= 0, (24)

which can be solved explicitly, i.e.,

ξ+ = −imω tan(ωt), ξ− = −
i

mω
tan(ωt), ξz = − log cos2(ωt). (25)

This amounts to a known, exact parameterization of the quantum harmonic oscillator in terms
of classical variables [19]. The time evolution of the stochastic variables ξ+,−,z for the harmonic
oscillator shows periodic divergences at t = tn = π(1 + 2n)/(2ω) with integer n, which, how-
ever, cancel out in the analytic computations of observables. This issue can be circumvented by
equivalently considering the time evolution of the variables α, β , γ, introduced in section 3.1.
The solutions (25) can be plugged in the expressions of the observables, obtained in section 3, in
order to compute exactly the corresponding dynamics. For instance, by inserting Eqs. (25) into
Eq. (22), we retrieve the expressions of the moments of the position and momentum operator for
the Gaussian wave packet:

〈 x̂n〉=
�

i
2σ

�n
�

σ4 cos2(ωt) + x4
0 sin2(ωt)

�
n
2 Hn

 

−
iσ[a cos(ωt) + kx2

0 sin(ωt)]
q

σ4 cos2(ωt) + x4
0 sin2(ωt)

!

,

〈p̂n〉=
�

i
2x2

0σ

�n
�

x4
0 cos2(ωt) +σ4 sin2(ωt)

�
n
2 Hn

 

−
iσ[kx2

0 cos(ωt)− a sin(ωt)]
q

x4
0 cos2(ωt) +σ4 sin2(ωt)

!

,

(26)

where we introduced the typical harmonic oscillator length x0 ≡ (mω)−1/2.

3.2.2 Commuting limit

We study a particular case of the Hamiltonian in Eq. (1) in which the time evolution of the stochas-
tic variables in Eq. (13) can be exactly solved. We consider the limit m → ∞ with mω2 held
constant in order to ensure a constant finite energy. In this limit, the kinetic part of the Hamil-
tonian is suppressed and it coincides with the quartic potential. Accordingly, the Hamiltonian is
only a function of the position operator and does not contain the momentum operator. In this
sense we refer to this scenario as the commuting limit. Correspondingly, the non-linear terms in
the differential equations (13) vanish, allowing us to express the explicit solution as

ξ+ = −iω2mt − 2i

∫ t

0

dτφ(τ), ξ− = ξz = 0, (27)

10
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where ξ+ depends on the variable W ≡
∫ t

0 dsφ(s), and allows us to express the average 〈· · · 〉φ in
Eq. (14) as an average with respect to the Gaussian weight of W , i.e.,

Û(t) =

∫ +∞

−∞
dW eiW2/(λt)

p
iπλt

exp
�

−i
�

2W +mω2 t
�

Ŝ+
�

. (28)

From Eq. (28), it is apparent that, as expected in this case, the time evolution operator commutes
with operators that depend only on the position operator x̂ . This implies the absence of dynamics
for the particle position, compatibly with the vanishing kinetic energy. On the other hand, the
moments of the momentum p̂ grow in time, as a consequence of the Heisenberg uncertainty prin-
ciple. We compute these moments by setting the auxiliary variables in Eq. (20) to α = β = σ−2

and γ= σ−2 − i(2W +ω2mt) in Eq. (23) and by substituting the average 〈· · · 〉 with the integral
∫ +∞
−∞ dW eiW2/(λt)/

p
iπλt and similarly for the dual variables ᾱ, β̄ and γ̄. These expectation

values can then be evaluated numerically, as we discuss in the next section.
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Figure 2: Panels (a) and (b) display a numerical estimate of the average value 〈tγ〉 and

the standard deviation σγ ≡
q

〈t2
γ〉 − 〈tγ〉2 of the random variable tγ, respectively, for

the quartic oscillator, where tγ is the time at which Re(γ(tγ)) = 0 for the first time. We
have used the Euler scheme with time step∆t = 2/π×10−3 to simulate the time evolu-
tion of γ with physical parameters are ω = 1, m = 10, and extracted the value of tγ for
N = 104 trajectories. Panels (c) and (d) show the same quantities and parameters except
for the presence of a time-dependent potential ω2(t) = sin2(t) and λ(t) = λ0 sin2(t).
Note that, in general, 〈tγ〉 ∼ σγ at large values of λ: these strong fluctuations increase
the probability of Re(γ(tγ)) = 0 at smaller values of tγ as the coupling λ increases.
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4 Stochastic interpretation and numerical benchmark

In this section we show how the formalism presented above can be interpreted in terms of stochas-
tic processes, which also allows us to benchmark our approach in cases where the model is not
exactly solvable. In particular, by rotating the integration contour of the variableφ in the Hubbard-
Stratonovich transformation in Eq. (4), after a generalization to the case of time-dependent cou-
plings as in Eq. (68) of, cf., Appendix A.2, it is possible to show that

exp
�

−i
τn

ħh
λn

4
x̂4
�

=
s

τn

ħhπ

∫ ∞

−∞
dφ exp

h

−
τn

ħh

�

φ2 + i
Æ

iλn x̂2φ
�
i

, (29)

which follows from the change of variable φ/
p

i → φ in Eq. (68). Equation (29) allows one to
represent Û as

Û(t) =

∫

Dφ e−S0[φ] ÛS[φ], (30)

where S0 is given by Eq. (7) and the time-evolution operator ÛS in Eq. (12) displays the corre-
sponding effective frequencyΩ2(t)≡ω2(t)+2

p

iλ(t)φ(t)/m. The exponential of the action S0 in
Eq. (7) can be identified as a Gaussian probability measure for the field φ(t), whose time integral
can be interpreted as a Wiener process [20]. Accordingly, Eqs. (13) can be understood as complex
stochastic differential equations with a Gaussian white noise φ. In this reformulation, however,
the stochastic variables are generally complex, and do not preserve the unitarity of ÛS , which is
only retrieved upon averaging. As a consequence, the expression inside the average 〈· · · 〉φ of the
observable expressions in Eq. (19) does not have to be convergent at all times and for all values
of the quartic coupling. More precisely, since the effective frequency Ω2(t) is complex, Re(γ) may
attain a negative value after a certain time tγ > 0, even though the initial value γ(0) = σ−2 > 0
is positive and real. One can numerically check that the average value 〈tγ〉 of tγ, interpreted as
a random variable, decreases upon increasing the strength of the quartic coupling λ, see Fig. 2.
Indeed, tγ is the first-passage time to the origin for the random variable Re(γ). This constitutes
a limitation to the numerical application of the stochastic approach in the large-λ regime, where
〈tγ〉 is comparable with the standard deviation σγ ≡

q

〈t2
γ〉 − 〈tγ〉2. In this stochastic description,

as reported in Appendix C, the divergences originate from the non-commutativity of the average
〈· · · 〉φ over trajectories and the action of the operator ÛS on a prescribed initial state |ψ〉 since,
due to the non-unitarity of ÛS , the relation 〈ÛS〉φ |ψ〉 = 〈ÛS |ψ〉〉φ may not be satisfied. In the
commuting limit, the above considerations translate in the simple change of variable W/

p
i ≡W ′

in Eq. (28), where this new W ′ can be interpreted a Gaussian random number with variance λt/2.
In spite of this limitation, the possibility to evaluate observables numerically by simulating classical
stochastic dynamics allows us to further benchmark our approach. As a first check, we determine
numerically the dynamics of the average momentum 〈p〉 for a Gaussian wave packet in the com-
muting limit. As we have shown, the stochastic differential equations are exactly solvable in this
limit. It is thus possible to obtain directly the expressions for observables at a given time t without
having to integrate the time evolution numerically. These expressions are known functions of the
time integral ξ+ = −2

p
iW ′ − iω2mt, which can be numerically simulated by drawing Gaussian

random numbers with zero mean and variance given by λt/2. Figure 3 shows the comparison
of the numerical prediction of the dynamics of the first two moments of the position of a wave
packet between the Crank-Nicholson method (dashed line) [60] used to integrate the Schrödinger
equation numerically, and the prediction based on the stochastic interpretation of Eq. (30) (dots),

12
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Figure 3: Time evolution of the first and second moment of the p̂-operator for a Gaussian
wavepacket with σ = 0.5, k = 1.0, a = 0.5 and evolving according to Eq. (1) with
λ= 0.2 in the commuting limit. The dashed line is computed by integrating numerically
the Schrödinger equation with the Crank-Nicholson method [60] with lattice spacing
∆x = 6×10−4 and time step∆t = π×10−4. Blue dots are computed with the stochastic
method with ∆t = 10−4, and by sampling N = 1.2 × 106 Gaussian random numbers.
Error bars, corresponding to the statistical standard deviation over the sampling average,
are not visible on the scale of the plot.

finding good agreement. As a further validation of the presented stochastic description, we eval-
uate the dynamics of the expectation values in Eq. (22) within a range of parameters where no
exact solutions are available. We determine our numerical results up to a time t < 〈tγ〉, where no
divergences are actually detected. For this purpose, we use an Euler discretization scheme [20]
with time step ∆τ = 10−5 to solve the complex-valued stochastic differential equations (13) for
a given realization of the Wiener process φ(t). Once a sufficiently large number of realizations
for the stochastic variables ξ+, ξz , and ξ− or α, β , and γ are known, by averaging with respect to
them, it is possible to compute the expectation value of a desired observable, see e.g., Eq. (22) or
(23). Figure 4 shows the time evolution of the first moments of the position operator for a Gaus-
sian wave packet for various choices of the parameters. In particular, we compare the numerical
prediction of the stochastic method (dots) with standard integration of the Schrödinger equation
with the Cranck-Nicholson method (dashed line). Numerically, the proposed stochastic method
has the advantage that the time-evolution of the many trajectories of the stochastic parameters,
e.g., ξ+,−,z , can be straightforwardly parallelized. On the other hand, an increasing large number
of realizations is needed in order to have accurate predictions for observables at longer times or
larger quartic coupling strength λ, since fluctuations due to the noise grow correspondingly. This
is similar to the behavior found for quantum spins systems [22].

In summary, we have demonstrated that our formalism allows one to compute quantum ob-
servables for an interacting bosonic system from averaging classical stochastic processes, but we
found that there are limitations to the applicability of this numerical technique. The mapping
to stochastic processes also made it possible to further benchmark our approach in non-solvable
cases. Since the stochastic description discussed in this section is formally identical to the field the-
ory introduced in section 2, we refer to the present method as the “stochastic approach", although
only its numerical application discussed here makes explicit use of stochastic processes.
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Figure 4: Time evolution of the expected (a) position 〈 x 〉 and (b) squared position
〈 x2 〉 of a Gaussian wave packet with σ = 0.5, k = 1.0,, and a = 0.5, evolving according
to Eq. (1) with m = 10, ω = 1, λ = 0.2. The dashed line corresponds to the numer-
ics performed with the Crank-Nicholson method with space bin ∆x = 10−5 and time
step ∆t = 10−3, while the blue dots are computed with the stochastic method with
∆t = 10−4, and sampling N = 1.2× 105 trajectories. The time t has been chosen such
that t < 〈tγ〉 with 〈tγ〉 ' 27, and σγ ' 19, see Fig. 2a-b . Similarly, panels (c) and
(d) display the evolution of 〈x〉 and 〈x2〉, respectively, in the case of ω2(t) =ω2

0 sin2(t)
and λ(t) = λ0 sin2(t) with ω0 = 1, λ0 = 0.2, and 〈tγ〉 ' 31, with σγ ' 18, see Fig.
2c-d. As above, the dashed line corresponds to the numerics performed with the Crank-
Nicholson method with space bin ∆x = 10−6 and time step ∆t = 10−3, while blue dots
are computed with the stochastic method with ∆t = 10−4, and sampling N = 1.2× 105

trajectories. Error bars are given by statistical standard deviation over the trajectories
average and are only visible in panel (d).
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5 Perturbative Expansion

In the stochastic approach, the time-evolution operator Û in Eq. (14) is represented as a func-
tional average over classical fields φ. In this section, we show how this can be used to derive a
perturbative expansion of Û for the quartic oscillator in terms of the time-evolution operator Û0(t)
of the harmonic case obtained for λ = 0. We start by rescaling the Hubbard-Stratonovich field as
φ =

p
λϕ in the functional integral representation of Û(t) in Eq. (5), yielding

Û(t) =

∫

Dϕ ei
∫ t

0 dsϕ2(s) ÛS

�p

λϕ
�

. (31)

Here, the functional ÛS[φ] (which is also a function of time) is identified with the time-evolution
operator of a harmonic oscillator with time-dependent frequency, given by Eq. (12). By Taylor-
expanding the functional ÛS around φ = 0, corresponding to the harmonic time-evolution op-
erator Û0, and calculating the resulting Gaussian integrals, we get an asymptotic series for the
propagator

Û(t) =
∞
∑

n=0

�

i
λ

4

�n
� n
∏

m=1

∫ t

0

dtm

�

δ2nÛS[φ]
δφ(s1) · · ·δφ(s2n)

�

�

�

�

φ=0
s2n−1=s2n=tn

, (32)

where, on the right-hand side, only even orders of functional derivatives appear as a consequence
of Wick’s theorem, leaving the functional derivative of ÛS evaluated atφ = 0 as the only unknown.
The series in Eq. (32) can be shown to be equivalent term by term to the Dyson series, see Appendix
D. The equivalence of the functional expansion about φ = 0 with the Dyson series allows us to
use this functional formulation to calculate perturbative approximations of observables by field-
theoretical means: we express the time evolution operators in the stochastic formalism, such that
all operators are replaced by classical functionals, and then functionally expand about the non-
interacting case. As it is usually the case in perturbative calculations, the asymptotic series in
Eq. (32) is expected to fail whenever we consider states for which the quartic term λ x̂4/4 is not
negligible relative to the harmonic Hamiltonian. Indeed, it is a well-known fact that the Dyson
series of the quartic oscillator has a vanishing radius of convergence [30,31].

6 Semiclassical Approximation

In this section, we show how the semiclassical approximation for the propagator associated with
Û(t) in the representation of Eq. (14) and the partition function of the system in Eq. (1) can be
expressed within the present formalism. Other than giving us an additional benchmark for the
theory, this shows that it is possible to find an alternative description of the stationary trajectories
contributing to the semiclassical approximation for the quartic oscillator.

6.1 Propagator

The propagator G(x f , t|x i , 0), which gives the probability amplitude for a particle located at x i at
the initial time t i = 0 to reach the position x f at time t f = t, is defined by

G(x f , t|x i , 0)≡ 〈x f | Û(t) |x i〉 . (33)
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The semiclassical approximation of the propagator for the quantum quartic oscillator has been
extensively studied in the literature, see, e.g., Ref. [32] for an overview. Here, we show how to
express G(x f , t|x i , 0) in terms of the stochastic variables. This expression can be derived by insert-
ing the representation of Û in Eq. (14), by acting on an eigenstate of the position |x i〉 according
to Eq. (86) in Appendix C, and finally by projecting on 〈x f |. This leads to

G(x f , t|x i , 0) =

�

1
p

−2πħhξ−
exp

�

ξz

4
+
ξ+x2

f

2ħh
+
(x f eξ

z/2 − x i)2

2ħhξ−

�

�

φ

, (34)

where ξ+,−,z are evaluated at time t. Note that the stochastic variables in the above expression
are functions of φ evaluated at the final time t = t f − t i , while the initial and final position x i and
x f are fixed parameters.

In the harmonic case λ = 0, by explicit substitution of Eq. (25) into Eq. (34), we retrieve the
known expression of the harmonic propagator GHO, i.e.,

GHO(x f , t|x i , 0) =
√

√ mω
2iπħh sin(ωt)

exp
�

imω
2ħh sin(ωt)

�

(x2
f + x2

i ) cos(ωt)− 2x i x f

�

�

. (35)

In the quartic case, inside the average in Eq. (34) we recognize a different way of representing the
propagator of an harmonic oscillator with time-dependent frequency Ω2(t). It is well-known that
in the case of quadratic interactions, even in the time-dependent case, the propagator can be ex-
pressed in a closed form through the contributions arising from classical paths, see, e.g., Ref. [32].
Accordingly, the propagator of a harmonic oscillator with generic time-dependent frequency can
be reformulated as

GHO(x f , t|x i , 0) = GHO(0, t|0, 0)exp
�

i
ħh

SHO(x f , t|x i , 0)
�

. (36)

Here, the classical action SHO of the harmonic oscillator is given by

SHO(x f , t|x i , 0)≡
m
2

∫ t

0

dτ
�

ẋ2(τ)−Ω2(τ)x2(τ)
�

, (37)

and is computed along the classical path x(τ) which satisfies the Euler-Lagrange equation

ẍ(τ) +Ω2(τ) x(τ) = 0, (38)

with boundary conditions x(0) = x i and x(t) = x f . The prefactor GHO(0, t|0,0) is given by

GHO(0, t|0, 0) =
√

√ m
2πiħhf (t)

, (39)

where the density of paths f (t) is obtained, according to Gelfand-Yaglom formula [61], as a so-
lution of the differential equation in Eq. (38) with x → f , with initial conditions f (0) = 0 and
ḟ (0) = 1. Note that the propagator GHO(0, t|0,0) can be represented via the Feynman path inte-
gral associated to the quadratic action in Eq. (37) with boundary conditions x f = x i = 0, which
entails that the function f (t) is proportional to the determinant of the linear operator d2

t +Ω
2(t)

expressed through Eq. (39) [32].
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The solutions of Eq. (38) depend on the realization of the field φ which enters Ω according to
Eq. (6). Alternatively, they can be expressed in terms of the stochastic variables according to

x(τ|t) =
e−ξ

z(τ)/2

ξ−(t)

�

x f ξ
−(τ)eξ

z(t)/2 + x i

�

ξ−(t)− ξ−(τ)
�	

,

f (τ) = imξ−(τ) e−ξ
z(τ)/2,

(40)

where we emphasize that t, x i , and x f are fixed parameters, and τ ∈ [0, t] is a variable. In turn,
ξ+,−,z depend on φ via Eq. (13). In order to simplify the notation, the dependence of x and f on
x i and x f and the functional dependence on φ are omitted.

Finally, by inserting Eq. (36) into (34), the propagator G(x f , t|x i , 0) for the quartic oscillator
reads

G(x f , t|x i , 0) =

∫

Dφ
√

√ m
2πiħhf (t)

exp

�

i
ħhλ

∫ t

0

φ2(τ)dτ+
i
ħh

SHO(x f , t|x i , 0)

�

=

∫

Dφ exp

�

i
ħhλ

∫ t

0

φ2(τ)dτ

�

GHO[{ξ(t)}].
(41)

As anticipated, Eq. (41) illustrates the fact that the propagator for the quartic oscillator is given
by an infinite collection of classical path contributions of harmonic oscillators with different time
dependent frequencies. Moreover, Eq. (41) provides the starting point to perform the semiclassical
approximation, corresponding to the limit ħhλ → 0. We start by rescaling spatial coordinates as
y ≡ x

p
λ, and we set y f ≡

p
λ x f , yi ≡

p
λ x i . Due to the homogeneity of SHO with respect to x i

and x f , this rescaling allows us to cast the propagator G as

G(x f , t|x i , 0) =

∫

Dφ
√

√ m
2πiħhf (t)

exp

�

i
ħhλ

�∫ t

0

φ2(τ)dτ+ SHO(y f , t|yi , 0)

��

. (42)

In the limit ħhλ→ 0, we can approximate the functional integral by applying the stationary phase
method [62]. We obtain

φ̄(τ) = −
1
2

δSHO(y f , t; yi , 0)

δφ(τ)

�

�

�

φ̄
=

ȳ2(τ)
2
= λ

x̄2(τ)
2

. (43)

By inserting Eq. (43) in Eq. (38) we retrieve the equation for the classical trajectories of the quartic
oscillator

¨̄x(τ) +ω2 x̄(τ) +
x̄3(τ)

m
= 0, (44)

with boundary conditions x̄(0) = x i and x̄(t) = x f . The solution of Eq. (44) can be expressed in
terms of Jacobi elliptic functions [42]. Note that, according to Eqs. (43) and (44), the stationary
field φ̄ is continuous and twice differentiable, meaning that among all possible realizations of
φ only a subset with sufficient regularity contributes in the semiclassical limit. As reported in
Ref. [33], the associated stationary trajectories x̄ can be classified in terms of the sign of the
momentum p̂ of the particles p̄ = m ˙̄x at the boundary points x i and x f .

The semiclassical approximation is obtained by considering terms of the expansion in
p
ħhλ up

to the second order around the stationary phase solution. In this spirit, we introduce the change
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of variable φ = φ̄+
p
ħhλϕ and truncate the expansion around φ̄ at second order in ϕ, leading to

G(x f , t|x i , 0) =
∑

k

√

√ m
2πiħhfk(t)

e
i
ħh Sk(x f ,t|x i ,0)

∫

Dϕ exp

�

i

∫∫ t

0

dt1dt2ϕ(t1)Hk(t1, t2)ϕ(t2)

�

(45)
with Dϕ ≡

∏

n dφn/
p

iπ, where the second functional derivative of the action computed at φ̄
corresponds to the operator

Hk(t1, t2)≡ δ(t1 − t2) +
1
2

δ2 SHO(y f , t|yi , 0)

δφ(t1)δφ(t2)

�

�

�

φ̄k

; (46)

the zeroth order of the expansion renders the classical action Sk(x f , t|x i , 0) of the quartic oscillator

Sk(x f , t|x i , 0) =

∫ t

0

dτ
�

m
2
( ẋk)

2 −
1
2

mω2 x2
k −

λ

4
x4

k

�

, (47)

evaluated on xk, the k-th solution of Eq. (44) with φk ≡ φ̄[xk], and fk ≡ f [φk]. In order to
determine the functional Gaussian integral in Eq. (45) it is necessary to calculate the determinant
of the operator Hk. As shown in Appendix E, this computation can be done explicitly, leading to
the final expression of the semiclassical propagator as

G(x f , t|x i , 0) =
∑

k

√

√ m
2πiħh Fk(t)

eiSk(x f ,t|x i ,0)/ħh, (48)

where Fk ≡ F[φk], similarly to fk, satisfies the differential equation

F̈k(τ) +
�

ω2 + 3
λ

m
x2

k(τ)
�

Fk(τ) = 0, (49)

with Fk(0) = 0 and Ḟk(0) = 1, being Fk proportional to the determinant of the Hk operator.
In the process of deriving Eq. (47) within the present approach, we relate the operator Hk(t1, t2)

to the functional derivative of (38) according to Eq. (110) in Appendix E, leading to det(Hk) =
p

fk(t)/Fk(t).
In summary, we have derived an alternative representation of the propagator G(x f , t|x i , 0) of the
quartic oscillator, expressed as a weighted collection of the propagators of effective harmonic os-
cillators GHO(x f , t|x i , 0). Moreover, we provided a parametrization of the time-evolution of these
harmonic oscillators in terms of the stochastic variables. Finally, we have proven that the semi-
classical approximation of G(x f , t|x i , 0) relies on the calculation of the determinant of the second
variation of the effective action SHO, and how this determinant is linked to the density of paths
along the classical trajectory x̄k of the quartic oscillator.

6.2 Partition Function

In this section we show that our formulation is not only restricted to non-equilibrium problems,
but it can be used to extract finite-temperature [15,16] or ground state [21] properties by Wick-
rotating to imaginary time. Here we provide an additional confirmation of the validity of the
stochastic representation of the quantum quartic oscillator by obtaining the semiclassical limit
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(ħh→ 0) of its partition function Z(β), where β is the inverse temperature. The partition function
Z(β) is obtained from the propagator G(x f , t|x i , 0) in Eq. (34) according to [62]

Z(β) =

∫ +∞

−∞
dx G(x , t = −iħhβ |x , 0) =

∫ +∞

−∞
dx

�

1
p

−2πħhξ−
exp

�

ξz

4
+

x2

2ħh

�

ξ+ +
(eξ

z/2 − 1)2

ξ−

���

φ

.

(50)
The associated evolution of the stochastic variables as functions of β is determined by the set of

differential equations

1
ħh

dξ+

dβ
−
(ξ+)2

m
+mω2 + 2φ = 0,

1
ħh

dξz

dβ
−

2
m
ξ+ = 0,

1
ħh

dξ−

dβ
+

eξ
z

m
= 0, (51)

with the usual initial conditions ξ+,−,z(0) = 0. Equations (51) suggest that we may retrieve the
semiclassical limit by retaining the leading-order contributions of the series expansion of ξ+,−,z in
integer powers of ħh, i.e.,

ξ+(β) =
∞
∑

k=1

ħhk fk(β), ξz(β) =
∞
∑

k=1

ħhk gk(β), ξ−(β) =
∞
∑

k=1

ħhk lk(β). (52)

By inserting these expansions in Eq. (51) and by retaining terms up to order O(ħh3), we get closed-
form expressions for the first coefficients. We find that f2 = g1 = g3 = l2 = 0 vanish and the
non-vanishing contributions read

f1 = −mω2β − 2

∫ β

0

dτφ(τ),

f3 =
1
m

∫ β

0

dτ( f1(τ))
2,

g2 =
2
m

∫ β

0

dτ f1(τ),

l1 = −
β

m
,

l3 = −
2

m2

∫ β

0

dτ

∫ τ

0

ds f1(s).
(53)

It follows that all the coefficients in Eq. (53) are expressed in terms of f1(β), so that the calculation
reduces to the evaluation of moments of f1. We now consider the leading contribution up to order
O(ħh2) of Eq. (50) by explicitly inserting the expansions in Eq. (52):

Z(β) =

∫ +∞

−∞
dx

�

1
ħh

√

√ m
2πβ

exp

�

f1
x2

2

��

1+
ħh2

2

�

g2

2
−

l3
l1
+

x2

2

�

f3 +
g2

2

4l1

��

+ o(ħh2)

��

φ

. (54)

The expectation value with respect to the Gaussian field φ is then easily calculated and it is given
by the sum of the following expressions

¬

exp

�

f1
x2

2

�

g2

2

¶

φ
= −e−βV (x)β

2(mω2 +λx2)
2m

,

¬

exp

�

f1
x2

2

�

l3
l1

¶

φ
= −e−βV (x)β

2(mω2 +λx2)
3m

,

¬

exp

�

f1
x2

2

�

f3
¶

φ
= β2 e−βV (x)

m

�

β(mω2 +λx2)2

3
−λ

�

,

¬

exp

�

f1
x2

2

�

g2
2

4l1

¶

φ
= β2 e−βV (x)

m

�

−
β(mω2 +λx2)2

4
+

2
3
λ

�

,

(55)
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where V (x) ≡ 1
2 mω2 x2 + λ

4 x4. Given that the average is computed with respect to a quadratic
measure with zero average, the odd moments vanish and the contributions in Eq. (55) are real-
valued. By collecting all of the above terms, we finally obtain the semiclassical expansion of the
partition function Z(β):

Z(β) =

∫ +∞

−∞
dx e−βV (x)

�

1+
ħh2β2

12m

�

x2β
(mω2 +λx2)2

2
− (mω2 + 3λx2)

�

+ o(ħh2)

�

=

∫ +∞

−∞
dx e−βV (x)

�

1+
ħh2β2

12m

�

β
(V ′(x))2

2
− V ′′(x)

�

+ o(ħh2)

�

,

(56)

which matches the expression reported in the literature, see, e.g., Ref. [62]. As in the case of
the propagator G(x f , t|x i , 0) discussed in the previous section, we have shown how it is possible
to represent the partition function Z(β) of the quartic oscillator in terms of the imaginary-time
version of the stochastic variables.

7 Summary and outlook

In this work we generalized the stochastic formalism recently introduced for quantum spin sys-
tems [15–18] to the case of non-linear bosonic systems, explicitly considering the quantum quartic
oscillator. We derived the exact disentangled representation of the time-evolution operator of the
quartic oscillator in Eq. (14) and provided exact formulas for the time evolution of Gaussian wave
packets. In particular, we considered the time evolution of the expectation values of the position
and of the momentum operator and their corresponding higher moments. We benchmarked our
approach (i) in the harmonic and the commuting limit by comparison with the respective analytic
solutions and (ii) for a quartic anharmonicity the comparison was done numerically by using the
stochastic interpretation of the formalism. We further use the stochastic formalism to derive a
perturbative expansion of the time-evolution operator in powers of the quartic term. We recover
the usual Dyson series for the quantum quartic oscillator which thus implies that our formalism is
viable for evaluating perturbative expansions of observables. Finally, we provided a semiclassical
expansion of the propagator and the partition function. Our results agree with known expressions,
proving the validity of this alternative formulation.

The stochastic approach presented in this work provides a novel theoretical formulation of the
quantum quartic oscillator as a paradigm of non-linear bosonic systems. We described the quar-
tic oscillator by an ensemble of harmonic oscillators under the influence of classical (stochastic)
fields. This exact representation is a suitable starting point for developing a range of approxi-
mations, which we illustrated in sections 5 and 6. Furthermore, the realizations of the classical
stochastic fields fully encode the underlying quantum problem. Hence, their study should provide
information about the dynamical properties of the corresponding quantum system, as recently
found for spin systems [18]. Finally, the stochastic approach establishes a connection between
bosonic quantum systems and the theory of classical stochastic processes. In particular, this con-
nection allows us to evaluate the evolution of physical observables numerically in a novel fashion,
e.g., our method does not require a truncation of the Hilbert space dimension. However, despite
this numerical strategy being quite intuitive and simple to implement, the non-unitarity of the
effective time-evolution operator leads to artificial divergences such that simulations break down
after a finite time which depends on the strength of the quartic coupling.
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Possible further directions include the generalization of our approach to coupled oscillators
[63] and bosonic lattice systems. This could be done by decoupling interactions between different
sites by means of additional Hubbard-Stratonovich fields, as is done for quantum spin systems
[15–18]. The disentanglement approach could then provide a numerical technique to simulate
bosonic dynamics as well as an analytical framework based on which further approximations can
be developed.
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A Stochastic integral and time-dependent quartic Hamiltonian

A.1 Gaussian integral

In this section, we derive Eq. (4), which is fundamental for the construction of the stochastic
description of the quartic potential. First, we evaluate the integral

∮

C
dz eiaz2

, (57)

where a > 0 and the contour C is displayed in Fig. 5, see, e.g., [64]. Because of the absence of

Re(z)

Im(z)

π
4

0

SD

R

Figure 5: Integration contour C of Eq. (57). C consists of a circular section of angle π/4
and radius R, including the arc S and the segment D, in addition to the segment [0, R]
on the real line.
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singularities inside the contour C , the residue theorem immediately implies
∮

C
dz eiaz2

= 0, (58)

which results from the sum of the following contributions:

∮

C
dz eiaz2

=

∫ R

0

dx eiax2
+

∫

S
dz eiaz2

+

∫

D
dz eiaz2

= 0, (59)

where S represents the circular arc of radius R, parametrized as z = R eiφ with φ ∈ (0,π/4), and
D the radial contribution corresponding to z = r eiπ/4 with r ∈ (0, R), in the direction shown in
Fig. 5. Finally, we are interested in the limit R→∞. The integral along D can be expressed as

∫

D
dz eiaz2

= eiπ/4

∫ 0

R
dr exp

¦

ia
�

r eiπ/4
�2©
= − eiπ/4

∫ R

0

dr e−ar2
, (60)

coming from the change of variables z = r eiπ/4. Similarly, the integral along S is given by

∫

S
dz eiaz2

= iR

∫ π/4

0

dφ exp
�

iaR2 [cos(2φ) + i sin(2φ)]
	

, (61)

and it can be shown to vanish in the limit R→∞. In fact, we start from the inequality

�

�

�

�

∫

S
dz eiaz2

�

�

�

�

≤ R

∫ π/4

0

dφ e−aR2 sin(2φ) =
R
2

∫ π/2

0

dθ e−aR2 sinθ , (62)

where last equality follows from introducing θ ≡ 2φ. Moreover, for θ ∈ (0,π/2), we have that
2θ/π≤ sinθ ≤ θ , yielding

�

�

�

�

∫

S
dz eiaz2

�

�

�

�

≤
R
2

∫ π/2

0

dθ e−aR2 sinθ ≤
R
2

∫ π/2

0

dθ e−2aR2θ/π =
π

4aR

�

1− e−aR2
�

, (63)

which vanishes for R→∞. Finally, we get
∫ ∞

0

dx eiax2
= eiπ/4

∫ ∞

0

dr e−ar2
= eiπ/4

s

π

4a
=

√

√ iπ
4a

, (64)

where we have fixed
p

i = eiπ/4. This last result can be generalized to

∫ +∞

−∞
dx ei(ax2+bx) =

√

√ iπ
a

e−i b2/(4a). (65)

A.2 Time-dependent quartic Hamiltonian

In the framework discussed in section 2, it is natural to generalise the expression of Eq. (14) to
the case of the time-dependent Hamiltonian

Ĥ(t) =
p̂2

2m
+

1
2

mω2(t) x̂2 +
λ(t)

4
x̂4, (66)

with a non-negative quartic coupling, λ(t) ≥ 0. The procedure follows the same steps as in the
time-independent case, i.e.,
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(i) we perform a Trotter-Suzuki splitting of the time-evolution operator, yielding

Û(t) = lim
n→∞

�

exp

�

−
iτn

ħh
p̂2

2m

�

exp
�

−
iτn

ħh

�

m
2
ω2

n x̂2 +
λn

4
x̂4
��

�n

, (67)

with ω2
n ≡ω

2(nτn) and λn ≡ λ(nτn);

(ii) this is followed by the Hubbard-Stratonovich transformation, performed through an integral
of the type

exp
�

−i
τn

ħh
λn

4
x̂4
�

=
s

τn

iħhπ

∫ ∞

−∞
dφ exp

�

iτn

ħh

�

φ2 −
Æ

λn x̂2φ
�

�

; (68)

(iii) Finally, combining all previous steps, we retrieve Eq. (14) withΩ2(t)≡ω2(t)+2
p

λ(t)φ(t)/m
and S0[φ] = ħh−1

∫ t
0 dτφ2(τ).

Once again, this allows one to study the dynamics of a quantum problem by studying a set of
classical differential equations.

B Action of exp(w Ŝ±,z) on a Gaussian wave packet

We now investigate the action of the operators appearing in Eq. (12), i.e.,

Ûα ≡ exp(w Ŝα) (69)

with complex w and α ∈ {+,−, z}, on the Gaussian wave packet |ψ〉, reported in Eq. (16). For
a general complex-valued w, the exponential operators are not unitary and do not conserve the
normalization of the state. For simplicity, we consider here values of w for which the corresponding
Ûα conserves the state normalization. Note that the Ŝα operators in Eqs. (9) are, at most, of
quadratic order with respect to the operators x̂ and p̂. In what follows, we assume ħh = 1 and a
real-valued w. In order to analyse the action of Ûα in Eq. (69), we have introduced in Eq. (17)
the Wigner function W (x , p) for the generic state |ψ〉.

W (x , p) provides a phase space description of the state, and allows us to compute expectation
values of operators of the type O( x̂ , p̂) as

∫

dx
∫

dp O(x , p)W (x , p) [53–55]. The evaluation of
the Wigner function in Eq. (18) for the Gaussian wave packet |ψ〉 in Eq. (16) is obtained by
substitution of Eq. (16) into Eq. (17) and integrating with respect to y . First, we consider the
action of the operator Û+ = exp(iwŜ+) on |ψ〉, that we denote as |ψ+〉 ≡ U+ |ψ〉. The state |ψ+〉
is simply given by

|ψ+〉=
∫

dx
4p
πσ2

exp

�

−
(x − a)2

2σ2
+ iw

x2

2
+ ik(x − a)

�

|x〉 , (70)

which follows from the fact that Ŝ+ acts trivially on its eigenstate |x〉.
By substituting Eq. (70) into (17) we get the Wigner function for |ψ+〉

W+(x , p) =
1
π

exp

�

−
(x − a)2

σ2
−σ2(p− k−wx)2

�

, (71)
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which is equal to W up to position-dependent shift in the momentum. Accordingly, the expectation
value of operators of the form O( x̂) is unaffected by the Û+ transformation, i.e., 〈ψ|O( x̂) |ψ〉= 〈ψ+|O( x̂) |ψ+〉.
On the other hand, the expectation value of a momentum-dependent operator O(p̂) can be ex-
pressed as

〈ψ+|O(p̂) |ψ+〉=
∫

dx

∫

dp O(p)W+(x , p)

=

√

√ σ2

π(1+σ4w2)

∫

dp O(p)exp

�

−σ2 (p− k−wa)2

1+σ4w2

�

=

√

√σ2

π

∫

dq O
�p

1+σ4w2 (q− k) +wa+ k
�

e−σ
2(q−k)2

= 〈ψ|O
�p

1+σ4w2 (p̂− k) +wa+ k
�

|ψ〉 ,

(72)

where the second line comes from direct substitution of Eq. (71) and the final result from the
change of variable p−wa− k = (q− k)

p
1+σ4w2. Equation (72) tells us that expectation values

with respect to the state |ψ+〉 of operators depending only on p are equivalent to expectation
values with respect to the Gaussian wave packet |ψ〉 with the rescaled and shifted momentum
operator

p
1+σ4w2 (p̂−k)+wa+k. In particular, for the mean and the variance of the momentum

operator we can immediately read off from Eq. (72) that

〈p〉 ≡ 〈ψ+| p̂ |ψ+〉= k+wa,

〈p2〉c ≡ 〈ψ+| p̂2 |ψ+〉 − 〈ψ+| p̂ |ψ+〉
2 =

1+σ4w2

2σ2
.

(73)

These parameters, together with the unaltered cumulants of the position operator, allow us to fully
characterize the state |ψ+〉. As an explicit time-dependent example, we consider the evolution of
the wave packet under the action of the harmonic oscillator Hamiltonian. Referring to Eqs. (25),
we find that

w(t) = −mω tan(ωt),

〈p(t)〉= k− amω tan(ωt),

〈p2(t)〉c =
1+ (mωσ2)2 tan2(ωt)

2σ2
.

(74)

Next, we consider the case of the operator Ûz = exp (iw{ x̂ , p̂}/4)whose action on the Gaussian
wave packet |ψ〉, which we denote by |ψz〉 ≡ Ûz |ψ〉, reads

|ψz〉=
∫

dx
4p
πσ2

exp

�

w
4
−
(x ew/2 − a)2

2σ2
+ ik(x ew/2 − a)

�

|x〉 . (75)

This is computed considering the direct action of Ŝz on |x〉 according the property of the dilation

operator eb y d
d y f (y) = f (eb y), where f is any sufficiently smooth function, similarly to what has

been done for Eq. (86). The Wigner function Wz(x , p) of the state |ψz〉 can be directly evaluated
as

Wz(x , p) =
1
π

exp

�

−
(x ew/2 − a)2

σ2
−σ2(p e−w/2 − k)2

�

. (76)
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Equation (75) shows that the action of Ûz consists in a uniform rescaling all the x variables by a
factor ew/2.

As for |ψz〉, the Wigner function Wz is equivalent to W up to a rescaling of the variables. It
follows that the expectation value of an operator O( x̂), depending only on x , is given by

〈ψz|O( x̂) |ψz〉=
∫

dx

∫

dp O(x)Wz(x , p)

=
ew/2

p
πσ2

∫

dx O(x)exp

�

−
(x ew/2 − a)2

σ2

�

= 〈ψ|O( x̂ e−w/2) |ψ〉 ,

(77)

and, analogously, for a p−dependent operator O(p̂), we get

〈ψz|O(p̂) |ψz〉= 〈ψ|O(p̂ ew/2) |ψ〉 , (78)

which reflects the rescaling action of Ûz . It follows that the first connected moments of x̂ and p̂
on |ψz〉 are given by

〈x〉 ≡ 〈ψz| x̂ |ψz〉= a e−w/2,

〈x2〉c ≡ 〈ψz| x̂2 |ψz〉 − 〈ψz| x̂ |ψz〉
2 =

σ2

2
e−w,

〈p〉 ≡ 〈ψz| p̂ |ψz〉= k ew/2,

〈p2〉c ≡ 〈ψz| p̂2 |ψz〉 − 〈ψz| p̂ |ψz〉
2 =

ew

2σ2
.

(79)

These quantities fully characterize the state |ψz〉. According to Eqs. (25), for a |ψ〉 evolving under
the effect of an harmonic oscillator Hamiltonian, we have

w(t) = − log cos2(ωt),

〈x(t)〉= a cos(ωt), 〈p〉(t) =
k

cos(ωt)
,

〈x2(t)〉c =
σ2

2
cos2(ωt), 〈p2(t)〉c =

1
2σ2 cos2(ωt)

.

(80)

Finally, we consider the action of the operator Û− = exp
�

iwp̂2/2
�

on the wave packet |ψ〉;
the resulting state |ψ−〉 ≡ Û− |ψ〉 is found to be

|ψ−〉=

√

√ σ2

σ2 − iw

∫

dx
(πσ2)1/4

exp

�

−
(x − a− ikσ2)2

2(σ2 − iw)
−
σ2k2

2

�

|x〉 . (81)

The associated Wigner function W−(x , p) reads

W−(x , p) =
1
π

exp

�

−σ2(p− k)2 −
(x − a+ pw)2

σ2

�

, (82)

that is equivalent to W up to a p−dependent rescaling of the x variable. In this case expectation
values of p−dependent operators are invariant under the action of Û−, i.e., 〈ψ−|O(p̂) |ψ−〉= 〈ψ|O(p̂) |ψ〉,
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while the expectation value of an x−dependent operator O( x̂) transforms as

〈ψ−|O( x̂) |ψ−〉=
∫

dx

∫

dp O(x)W−(x , p)

=

√

√ σ2

π(σ4 +w2)

∫

dx O(x)exp

�

−σ2 (x − a+wk)2

σ4 +w2

�

=
1

p
σ2π

∫

dy O
� y − a
σ2

p

σ4 +w2 + a−wk
�

e−(y−a)2/σ2

= 〈ψ|O
�

x̂ − a
σ2

p

σ4 +w2 + a−wk
�

|ψ〉 ,

(83)

where the second line is found by integrating W−(x , p) in Eq. (82) with respect to p, and the last
two lines are obtained by performing the change of variable x = (y − a)σ−2

p
σ4 +w2 + a− wk.

We deduce that, in case of x−dependent operators, the expectation value with respect to |ψ−〉
is equivalent to the expectation value with respect to |ψ〉 where the position operator has been
rescaled and shifted according to the final line of Eq. (83). In particular, the first two cumulants
of the position operator x̂ read

〈x〉 ≡ 〈ψ−| x̂ |ψ−〉= a−wk,

〈x2〉c ≡ 〈ψ−| x̂ |ψ−〉 − 〈ψ−| x̂2 |ψ−〉
2 =

σ4 +w2

2σ2
.

(84)

The evolution of the state |ψ−〉 under the harmonic oscillator dynamics can be explicitly deter-
mined from Eq. (25):

w(t) = −
tan(ωt)

mω
,

〈x(t)〉= a+ k
tan(ωt)

mω
,

〈x2(t)〉c =
(mωσ2)2 + tan2(ωt)

2(mωσ)2
.

(85)

As a last remark, we note that by combining the results in Eqs. (74), (80), and (85) into the
factorised expression for the time evolution of the harmonic oscillator, Eq. (12), we can construct
the time evolution of observable, e.g., the position and momentum moments in Eqs. (26).

C Time evolution of a Gaussian wave packet

Here we report the detailed calculations of the expectation values of the moments of the position
and momentum operators on the Gaussian wave packet in Eq. (16). As a preliminary step to the
calculation of Eq. (19), we consider the action of the operator Û(t) on an eigenstate |x〉 of the
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position operator, given by

Û(t) |x〉=
�∫

dp
p

2π
eξ
+(t) x̂2/2 eiξz(t){ x̂ ,p̂}/4 eξ

−(t)p2/2−ipx |p〉
�

φ
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�

e−ξ
z/4

∫
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2π
eξ
+(t) x̂2/2 e−(ξ

z(t)/2)p ∂
∂ p eξ

−(t) p2/2−ipx |p〉
�

φ
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�

e−ξ
z/4

∫

dp
p

2π
eξ
+(t) x̂2/2 exp

�

ξ−(t)
p2

2
e−ξ

z
− ipxe−ξ

z/2

�

|p〉
�

φ

=

�

e−ξ
z/4

∫

dp
p

2π

∫

dy eξ
+(t)y2/2 |y〉 〈y|exp

�

ξ−(t)
p2

2
e−ξ

z
− ipxe−ξ

z/2

�

|p〉
�

φ

=

�

e−ξ
z/4

∫

dy
p

2π
eξ
+(t)y2/2

∫

dp
p

2π
exp

�

ξ−(t)
p2

2
e−ξ

z
− ipxe−ξ

z/2 + ip y

�

|y〉
�

φ

=

�

exp
�

ξz/4+ x2/(2ξ−)
�

p

−2πξ−

∫

dy exp

�

y2

2

�

eξ
z

ξ−
+ ξ+(t)

�

− y
xeξ

z/2

ξ−

�

|y〉
�

φ

(86)

where 〈. . . 〉φ denotes the expectation value with respect to the Gaussian action S0.
In the first line a completeness relation for the momentum basis,

∫

dp |p〉 〈p|= I, was inserted
between the last exponential operator and the position eigenket, leading to the appearance of the
plane wave 〈p|x〉 = e−ipx/

p
2π, where ħh = 1. In the second line, we substituted x̂ |p〉 = i ∂∂ p |p〉

and the consequent action of the dilation operator was written explicitly, i.e., eb y d
d y f (y) = f (eb y).

Finally, a further position completeness relation insertion and a Gaussian integration was per-
formed. The convergence of the Gaussian integral is ensured by the fact that the argument of the
exponential is purely imaginary. Analogously, the corresponding dual vector evolves according to

〈x |U†(t) =

�

exp
�

ξ̄z/4+ x2/(2ξ̄−)
�

Æ

−2πξ̄−

∫

dz exp

�

z2

2

�

eξ̄z

ξ̄−
+ ξ̄+(t)

�

− z
xeξ̄

z/2

ξ̄−

�

〈z|
�

φ̄

, (87)

with 〈. . . 〉φ̄ denoting the expectation value with respect to the Gaussian action S0[φ̄], and ξ̄≡ [ξ(φ̄(t))]∗

the complex conjugate of ξ+,−,z . Finally, Eq. (19) follows by plugging Eq. (86) into Eq. (16) and
integrating the Gaussian integral with respect to x .

Finally, the evolution of the wave packet, reported in Eq. (19), is eventually computed by
integrating the expression of Û(t) |x〉 over the variable x with respect to the Gaussian measure

exp
�

−(x − a)2/(2σ2)2 + i(x − a)k
�

(πσ2)−1/4. (88)

The convergence is ensured by requiring that Re(γ)> 0. In our description we have ξ± ∈ iR and
real ξz , so that it is useful to define ξ± ≡ iξ±i with ξ±i ∈ R, which, together with Eq. (20), leads to

Re(γ) =
σ2eξ

z

σ4 + (ξ−i )
2
≥ 0. (89)
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A better understanding of the behavior of Re(γ) can be achieved by considering the following
real-valued auxiliary variables:

X ≡ ξ−i e−ξ
z/2,

Y ≡ e−ξ
z/2.

(90)

These variables evolve according to the harmonic equations with time-dependent frequency given
in Eq. (6),

Ẍ (t) +Ω2(t)X (t) = 0,

Ÿ (t) +Ω2(t)Y (t) = 0,
(91)

with initial conditions X (0) = 0, Ẋ (0) = −m−1, Y (0) = 1 and Ẏ (0) = 0. These new variables
allow one to write Re(γ) = σ2(σ4Y 2+X 2)−1, making it apparent that Re(γ(t)) = 0 if X (t) or Y (t)
are infinite. In either case, β(t) = [σ2Y (t)− iX (t)]−1 which multiplies Eq. (19), vanishes, i.e.,
|ψ(t)〉 = 0. Accordingly, the convergence of the Gaussian integral in Eq. (19) is guaranteed by
the fact that Re(γ)≥ 0 and that whenever Re(γ) = 0 the whole |ψ〉 vanishes.

As a last remark, we point out that the introduction of the variables X and Y in Eq. (90)
explains why in the case of the harmonic oscillator, in which the ξ+,−,z are found to be periodically
divergent according to the Eqs. (25), there are no divergences in the expectation values of Eqs.
(26). In fact, these values depend on a well-behaved combination of the ξ+,−,z , satisfying an
harmonic equation with constant frequency but different initial conditions.

D Derivations of the Dyson Series

In order to prove the equivalence of the Dyson series for the quantum quartic oscillator and the
asymptotic expansion of Û(t) around the harmonic case according to Eq. (32), we begin by cal-
culating the second variation of the time-evolution operator of the harmonic oscillator, which will
be useful to determine the first-order correction according to Eq. (32), namely

Û (1)(t)≡ i
λ

4

∫ t

0

ds
δ2ÛS[φ]

δφ(s1)δφ(s2)

�

�

�

�

φ=0
s1=s2=s

. (92)

This expression involves the first functional derivative of ÛS , given by

δÛS[φ]
δφ(s)

≡ G(1)(s|t)ÛS[φ], (93)

where G(1) is explicitly computed by exploiting the SU(2) commutation relations (10) of the S
operators and ÛS , leading to

G(1)(s)≡
�

δξ+

δφ
− ξ+

δξz

δφ
− (ξ+)2e−ξ

z δξ−

δφ

�

Ŝ+ +
�

δξz

δφ
+ 2ξ+e−ξ

z δξ−

δφ

�

Ŝz +
δξ−

δφ
e−ξ

z
Ŝ−, (94)

where the parametric dependence on the final time t is understood.
Similarly, the second order functional derivative δ2ÛS[φ]/δφ(s1)δφ(s2), required to be sym-

metric under the exchange s1↔ s2, can be expressed as

δ2ÛS[φ]
δφ(s1)δφ(s2)

=
�

G(1)(s1)G
(1)(s2) + G(2)(s1, s2)

�

ÛS[φ], (95)
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where G(2)(s1, s2) is found to be

G(2) ≡
§

ξ+1,2 − ξ
+ξz

1,2 −
1
2

�

ξz
1ξ
+
2 + ξ

z
2ξ
+
1

�

− ξ+e−ξ
z
�

ξ−1ξ
+
2 + ξ

−
2ξ
+
1 −

ξ+

2

�

ξz
1ξ
−
2 + ξ

z
2ξ
−
1

�

+ ξ+ξ−1,2

�ª

Ŝ+

+ e−ξ
z
�

ξ−1,2 −
1
2

�

ξz
1ξ
−
2 + ξ

z
2ξ
−
1

�

�

Ŝ−

+
¦

ξz
1,2 + e−ξ

z
�

ξ−1ξ
+
2 + ξ

−
2ξ
+
1 − ξ

+
�

ξz
1ξ
−
2 + ξ

z
2ξ
−
1

�

+ 2ξ+ξ−1,2

�©

Ŝz;
(96)

in order to streamline the formulas, the subscripts {1,2} above are used to denote the functional
differentiation with respect to φ(s1) and φ(s2), i.e., δξ(t)/δφ(s1) ≡ ξ(s1|t) = ξ1. By taking
the functional derivative of Eqs. (13) we obtain a system of differential equations for the first
functional derivatives ξ1,2, namely

i
d
dt
ξ+(s|t) + 2

ξ+

m
ξ+(s|t) = 2δ(t − s),

i
d
dt
ξz(s|t) +

2
m
ξ+(s|t) = 0,

i
d
dt
ξ−(s|t)−

eξ
z

m
ξz(s|t) = 0,

(97)

with initial conditions ξ(s|s) = 0 for t ≤ s, reflecting the fact that we assume an Itô-like discretiza-
tion in deriving Eqs. (13) [20]. The solution to these equations reads

ξ+(s|t) = −θ (t − s)2i exp

�

2i
m

∫ t

s
dτξ+(τ)

�

,

ξz(s|t) = θ (t − s)
2i
m

∫ t

s
dτξ+(s|τ),

ξ−(s|t) = −θ (t − s)
i
m

∫ t

s
dτξz(s|τ) eξ

z(τ).

(98)

For φ = 0 they reduce to

δξ+(t)
δφ(s)

�

�

�

�

φ=0

= −iθ (t − s)2
cos2(ωs)
cos2(ωt)

,

δξz(t)
δφ(s)

�

�

�

�

φ=0

= θ (t − s)
4

mω
cos2(ωs) [tan(ωt)− tan(ωs)] ,

δξ−(t)
δφ(s)

�

�

�

�

φ=0

= −iθ (t − s)
2

m2ω2
cos2(ωs) [tan(ωt)− tan(ωs)]2 .

(99)

As expected, the functional derivative ξ+(s|t) vanishes for t < s, as a consequence of the fact that
the differential equation at time t does not depend on the realizations ofφ at later times, reflecting
the causality of the problem. Following the same line of reasoning as before, the second functional
derivatives can be computed directly from their differential equations and can be expressed in
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terms of first functional derivative according to

ξ+1,2 =
ξz

1ξ
+
2 + ξ

z
2ξ
+
1

2
,

ξz
1,2 = −e−ξ

z(t)
�

ξ−1ξ
+
2 + ξ

−
2ξ
+
1

�

,

ξ−1,2 =
ξz

1ξ
−
2 + ξ

z
2ξ
−
1

2
,

(100)

and they are non-zero only if t >max(s1, s2). Moreover, by plugging Eqs. (100) into Eq. (96), we
get G(2)(s1, s2) = 0, such that the only contributing term in the functional derivative in Eq. (95) is

G(1)(s)|φ=0 = −iθ (t − s) x2
0

�

cos(ω(t − s))
x̂
x0
− sin(ω(t − s))x0 p̂

�2

, (101)

which finally yields

δ2ÛS[φ]
δφ(s1)δφ(s2)

�

�

�

�

φ=0,
s1=s2=s

= −θ (t − s) x4
0

�

cos(ω(t − s))
x̂
x0
− sin(ω(t − s))x0 p̂

�4

Û0(t)

= −θ (t − s)Û0(t − s) x̂4 Û0(s),

(102)

where the time ordering t > s arises naturally from the fact that the equation for ξ+ depends
linearly on φ. Collecting the above results of Eqs. (92) and (102), the first-order correction to
Û(t) reads

Û (1) = −i
λ

4
Û0(t)

∫ t

0

ds Û†
0(s) x̂4 Û0(s), (103)

which is nothing but the first order term in the Dyson series [56]. This can be seen by noticing
that the time-evolution operator in the Schrödinger picture Û(t) can be written in terms of the
interaction time-evolution operator in the interaction picture ÛI as

ÛI(t)≡ Û†
0(t) Û(t) Û0(0), (104)

so that, since Û0(0) = I,

Û(t) = Û0(t) ÛI(t). (105)

The fact that G(2) = 0 makes all functional derivatives of order larger than one to depend only
on G(1). This allows one to easily generalize the result above to an arbitrary order n, leading to

δ2nÛS[φ]
δφ(s1) · · ·δφ(s2n)

�

�

�

�

φ=0
s1=s2=t1
···

s2n−1=s2n=tn

= [G(1)(t1)]
2[G(1)(t2)]

2 · · · [G(1)(tn)]
2Û0(t), (106)

with t > tn > tn−1 > · · ·> 0. Using the expression for G(n), this readily yields

Û (n)(t) =
�

−i
λ

4

�n

Û0(t)

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1 x̂4(tn) · · · x̂4(t1), (107)

where x̂4(t) = Û†
0(t) x̂4 Û0(t). Equation (107) is precisely the n-th order contribution to the Dyson

series in the Schrödinger picture.
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E Semiclassical limit

In this section we provide details of the computation of the semiclassical approximation for the
propagator. The stationary path in Eq. (43) is computed considering the first functional derivative
of Eq. (36), namely

δSHO(y f , t|yi , 0)

δφ(τ)
=
δ

δφ(τ)
m
2

∫ t

0

ds
�

ẏ2(s)−Ω2(s)y2(s)
�

= −y2(τ) +m

∫ t

0

ds
�

ẏ(s) ẏ1(τ|s)−Ω2(s)y(s)y1(τ|s)
�

= −y2(τ) +m [ ẏ(t)y1(τ|t)− ẏ(0)y1(τ|0)]−m

∫ t

0

ds y1(τ|s)
�

ÿ(s) +Ω2(s)y(s)
�

= −y2(τ),
(108)

where y1(τ|s) ≡ δ y(t)/δφ(τ), y f =
p
λ x f , yi =

p
λ x i , and the t dependence is understood.

In the third line of Eq. (108) we integrated by parts the right-hand side and finally we exploited
Eq. (38) and the explicit expression of y1(τ|s)

y1(τ|s) =−
�

ξ−1 (τ|t)
ξ−(t)

+
ξz

1(τ|s)
2

�

y(τ|t)

+
e−ξ

z(s)/2

ξ−(t)

�

y f e−ξ
z(t)/2

�

ξ−(τ)
2

ξz
1(τ|t) + ξ

−
1 (τ|s)

�

+ yi

�

ξ−1 (τ|t)− ξ
−
1 (τ|s)

�

�

,

(109)

where ξ1(t1|t2) is null if t1 ≥ t2, so that y1(τ|t) = y1(τ|0) = 0. Note that by taking the functional
derivative of Eq. (38) computed along the stationary solution φ̄ in Eq. (43) one has

¨̄y1(t2|t1) +

�

ω2 +
ȳ2(t1)

m

�

ȳ1(t2|t1) +
2
m

ȳ(t1)δ(t1 − t2) = 0, (110)

with boundary conditions ȳ1(t2|0) = ȳ1(t2|0) = 0. The path integral in the second line of Eq. (45)
can be expressed in terms of the determinant of the operator H(t1, t2) , defined in Eq. (46) as

H(t1, t2)≡ δ(t1 − t2) +
1
2

δ2 SHO(y f , t|yi , 0)

δφ(t1)δφ(t2)

�

�

�

φ̄k

= δ(t1 − t2)− ȳ(t1) ȳ1(t2|t1), (111)

where last equality follows from direct functional derivation of Eq. (108). The determinant of
H can be evaluated by relying on the fact that this operator can be recast as the product of two
operators whose determinant can be computed exactly. We start by defining the operators

O1(t1, t2)≡ δ(t1 − t2)
1

ȳ(t1)

�

d2

d t2
1

+ω2 +
ȳ2(t1)

m

�

,

O2(t1, t2)≡ δ(t1 − t2)
1

ȳ(t1)

�

d2

d t2
1

+ω2 + 3
ȳ2(t1)

m

�

= O1(t1, t2) + 2δ(t1 − t2)
ȳ(t1)

m
.

(112)

It follows that, given Eqs. (112), one can recast H(t1, t2) in Eq. (111) as

H(t1, t2) =

∫ t

0

dτO2(t1,τ)O−1
1 (τ, t2) = δ(t1 − t2) + 2

ȳ(t1)
m

O−1
1 (t1, t2), (113)

31



SciPost Physics Submission

where the inverse operator satisfies the following relation
∫ t

0

dτO1(t1,τ)O−1
1 (τ, t2) = δ(t1 − t2). (114)

By plugging Eq. (110) in the inverse operator definition in Eq. (114) we identify O−1
1 (t1, t2) as

O−1
1 (t1, t2) = −

m
2

ȳ1(t2|t1). (115)

Hence, we have proved Eq. (111) to be true. It then follows that the path integral evaluates to
∫

Dϕ exp

�

−
∫ t

0

dt1

∫ t

0

dt2ϕ(t1)H(t1, t2)ϕ(t2)

�

=
�

det
�

O2 O−1
1

��−1/2
=

√

√det O1

det O2
=

√

√ f (t)
F(t)

,

(116)

where in the last relation we exploited the fact that f (t) and F(t) are respectively proportional to
the determinant of O1 and O2 with the same proportionality constant, according to Eq. (39) and
the fact that the determinant of a product of operators is given by the product of the determinants
of the individual operators.
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