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Abstract. We focus on an epidemiological model (the archetypical SIR system) defined on graphs
and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges.
By relying on the theory of so called graphons we provide a characterization of the limit and establish
convergence results. We also provide approximation results for both deterministic and random dis-
cretizations.
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1. Introduction

In the present work we consider epidemiological models (that is, models describing the spreading
of an infectious disease) defined on graphs. In real-world applications, each vertex of the graph can
represent a single individual, but also a group of people living together or sharing a specific trait
(for instance, people in the same age group), or a geographical entity like a neighbourhood, a town,
a region. We are specifically interested in describing the behaviour of the model as the number
n of vertices in the graph goes to +∞ and we establish convergence and approximation results,
based on both deterministic and random algorithms. Our analysis borrows tools from the theory
of so called graphons, which plays a prominent role in modern graph theory. To the best of our
knowledge, the present work is among the very first ones using the theory of graphons to study the
asymptotic properties of epidemiological models on graphs as the number of vertices diverges (see also
[DDZ22, GC19, VFG20] for papers with a completely different focus).

Although the origin of mathematical epidemiology can be traced back to Bernoulli [Ber60], nowa-
days the archetype of epidemiological models is the celebrated SIR (Susceptible-Infected-Recovered or
Removed) system introduced by Kermack and McKendrick in [McK26, KMK27]. The dimensionless
form of the SIR system is

ds

dt
= −βsi , di

dt
= βsi− γi ,

dr

dt
= γi .

Here, the unknowns s, i, r : R+ → R represent the percentage of susceptible, infected and recovered
individuals, whereas β ≥ 0 and γ ≥ 0 denote the (possibly time-dependent) infecting and recovering
coefficients, respectively. Note furthermore that the sum s + i + r ≡ 1 remains constant in time.
The analysis of SIR models, and of more refined variants (SEIR, MSEIR, ...), has grown enormously
through the decades, resulting in a huge amount of literature (we refer e.g. to the monographs and
lecture notes [BCC01, BDW08, DG05, Mur02, Mur03], to the review [Het00] and to the references
therein for extended discussions on this subject). Note that, in its standard version above, the SIR
model implicitly assumes that contacts among individuals are uniform, i.e. that every individual has
the same probability of interacting with any other. Since this is far from being true in real life, where
social interactions are governed by complex patterns, several authors have investigated epidemiological
models defined on networks (see for instance [BBPSV05, DGM08, MPSV02, New02, PSV01] and the
reviews [NPP16, PSCMV15]). The network approach is by now regarded as a feasible tool to describe
epidemic spreads through heterogeneous populations. The importance of taking into account the
role of population heterogeneity in the modelling of an epidemics has been stressed once more with
the COVID19 pandemic, which fuelled in the last years an upsurge of research on epidemiological
models from different mathematical communities (recent works in these directions are for instance
[ABNPV21, ABS21, BRCDF20]).

In what follows, even though we are confident that the results discussed in the present work could
be applied to refined models with more compartments (SEIR, MSEIR, . . . ), to ease the exposition we
focus on the SIR model only. To discuss our main contributions we now fix a graph Gn with n vertices
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Figure 1. A simple graph G with n = 6 (leftmost), its adjacency matrix (center) and
the pixel representation (rightmost) of the graphon WG associated to G as in (1.7).

labeled {1, . . . , n}, and we consider the SIR model

dsnj
dt

= −snj (t)
1

n

n∑
k=1

βnk (t)A
n
jk(t)i

n
k(t)

dinj
dt

= snj (t)
1

n

n∑
k=1

βnk (t)A
n
jk(t)i

n
k(t)− γnj (t)i

n
j (t) j = 1, . . . , n

drnj
dt

= γnj (t)i
n
j (t) .

(1.1)

In the above system, snj , i
n
j , r

n
j represent the percentage of susceptible, infected and recovered individ-

uals at the vertex j, whereas βnj and γnj are the (possibly time dependent) infecting and recovering

coefficients. (An
jk)j,k=1,...n is the adjacency matrix which describes the connections (edges) between the

vertices: the (possibly time dependent) coefficient An
jk indicates the weight given to the edge between

the vertices j and k. If j and k are not connected, then An
jk = 0. We consider graphs which contain

no loops and no multiple edges, undirected (edges are not oriented) and with nonnegative weights.
These characteristics of Gn translate into the conditions

An
jj = 0 for every j, An

jk = An
kj ≥ 0 for every j, k = 1, . . . , n. (1.2)

Note however that in the present work we actually never use the no-loops condition An
jj = 0. Sys-

tem (1.1) is augmented with the initial conditions

snj (0) = snj,0, inj (0) = inj,0, rnj (0) = rnj,0 for every j = 1, . . . , n (1.3)

and in view of modelling considerations they are such that

0 ≤ snj,0, i
n
j,0, r

n
j,0 ≤ 1, snj,0 + inj,0 + rnj,0 = 1 for every j = 1, . . . , n, (1.4)

which as we will show (see Lemma 2.2 in §2) implies that the solution satisfies

0 ≤ snj (t), i
n
j (t), r

n
j (t) ≤ 1, snj (t)+ i

n
j (t)+r

n
j (t) ≡ 1 for every j = 1, . . . , n and every t ∈ R+. (1.5)

In a nutshell, the present paper aims at discussing the n → +∞ limit of system (1.1). To do so,
we rely on the celebrated theory of so called graphons, which has recently flourished with a series
of fundamental works like [BCCG21, BCCZ18, BCCZ19, BCL10, BCLSV06, BCLSV08, BCLSV12,
BS02, Lov12, LS07]. In general, a function W ∈ L1([0, 1]2;R) is called a graphon if W (x, y) =W (y, x)
(see Definition B.1 in Appendix B). We refer to Appendix B for some rigorous definitions and a
brief overview, mainly based on [BCCZ19], of the main results concerning graphons related to the
present paper. Here we just mention that the basic idea of the theory of graphons is to identify a
given graph Gn with n vertices and adjacency matrix (Ajk)j,k=1,...,n with a piecewise constant function
WGn : [0, 1]2 → R (the so called step-graphon) defined on the unit square. By considering a uniform
partition of ]0, 1[ into n intervals

Inj :=

]
j − 1

n
,
j

n

[
, j = 1, . . . , n, (1.6)

and setting
WGn(x, y) = An

jk if (x, y) ∈ Inj × Ink , (1.7)

for Gn satisfying (1.2), the piecewise constant function WGn fullfills WGn(x, x) = 0, WGn(x, y) =
WGn(y, x) and WGn ≥ 0. In Figure 1 is given the so called pixel picture of the graph. On the left
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there is a simple graph1 Gn with n = 6, on the middle its adjacency matrix and on the right the pixel
picture of the piecewise constant step-graphon WGn . Here, the little squares have all edge length 1/n.
The 0′s entries in A correspond to white squares, the 1′s to black squares. The origin (0, 0) is placed
at the upper left corner, in analogy with indexing matrix elements.

To apply the theory of graphons to system (1.1), we need to identify functions defined on the set of
vertices of Gn with functions defined on the unit interval. To this end, for a graph Gn with n vertices we
consider a vector valued function (uni )i=1,...,n defined say on R+, where each component unj represents
the value attained at a given vertex j of Gn. In this work, we will always identify the vector valued
function (uni )i=1,...,n with the scalar piecewise constant function un defined on R+ × [0, 1] given by

un(t, x) :=
n∑

j=1

unj (t)1Inj (x) , (1.8)

with 1Inj
denoting the characteristic function of the interval Inj , defined in (1.6).

In this framework, the (formal) limit of (1.1) is thus the system

∂ts(t, x) = −s(t, x)
∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy

∂ti(t, x) = s(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy − γ(t, x)i(t, x) (t, x) ∈ R+ × [0, 1]

∂tr(t, x) = γ(t, x)i(t, x) .

(1.9)

We augment (1.9) with the initial condition

s(0, x) = s0(x), i(0, x) = i0(x), r(0, x) = r0(x) (1.10)

and in virtue of (1.5) we assume

0 ≤ s0, i0, r0 ≤ 1, s0 + i0 + r0 = 1 a.e. on [0, 1]. (1.11)

The notion of solution for system (1.9) we will consider in this paper, which we refer to as distributional
solution, is made precise in the next definition.

Definition 1.1. Fix T ∈ (0,∞] and W ∈ L1
loc

(
[0, T ]× [0, 1]2;R

)
, β, γ ∈ L∞([0, T ] × [0, 1]) and

s0, i0, r0 ∈ L∞(0, 1). A triple (s, i, r) ∈ (L∞ ([0, T ]× [0, 1]))3 is a distributional solution of the Cauchy
problem (1.9), (1.10) if for every (φ,ψ, η) ∈ (C∞

c ([0, T )× [0, 1]))3 we have∫
R+

∫ 1

0
s(t, x)

(
∂tφ(t, x)− φ(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy

)
dxdt =

∫ 1

0
s0(x)φ(0, x) dx∫

R+

∫ 1

0
i(t, x) (∂tψ(t, x)− γ(t, x)ψ(t, x)) + s(t, x)ψ(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dydxdt

=

∫ 1

0
i0(x)ψ(0, x) dx∫

R+

∫ 1

0
r(t, x)∂tη(t, x) + γ(t, x)η(t, x)i(t, x)dxdt =

∫ 1

0
r0(x)η(0, x) dx.

(1.12)

Our first result, Proposition 1.2, guarantees the existence and uniqueness of a distributional solution
(in the sense of Definition 1.1) to the Cauchy problem (1.9), (1.10).

Proposition 1.2. Fix T > 0 andW ∈ L1
(
[0, T ]× [0, 1]2;R

)
satisfyingW ≥ 0 and s0, i0, r0 ∈ L∞(0, 1)

satisfying (1.11). Assume furthermore that γ, β ∈ L∞([0, T ]× [0, 1]) satisfy γ, β ≥ 0 almost everywhere
on [0, T ]× [0, 1]. Then if either of the following conditions hold:

• Case 1: W ∈ L2
(
[0, T ]× [0, 1]2;R

)
; or

• Case 2: there is a constant Kd > 0 such that

ess sup
t∈[0,T ], x∈[0,1]

∫ 1

0
W (t, x, y) dy ≤ Kd ; (1.13)

then the Cauchy problem (1.9), (1.10) admits exactly one distributional solution satisfying

0 ≤ s, i, r ≤ 1, s+ i+ r = 1, a.e. on [0, T ]× [0, 1]. (1.14)

1Hence Ajk ∈ {0, 1} for all j, k
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Prior to state our first main result, we recall the meaning of the so called cut norm ∥ · ∥□, which
for a graphon W is defined as

∥W∥□ := sup
S,T⊆[0,1]

∣∣∣∣∫∫
S×T

W (x, y) dxdy

∣∣∣∣ , (1.15)

where the supremum is taken over all pairs of measurable subsets S, T in [0, 1]. This norm is the
prototypical one in the theory of graphons (see the whole discussion in Appendix B). We can now
state our first main convergence result.

Theorem 1.3. Fix T > 0 and let {Gn}n∈N be a sequence of time-dependent weighted undirected graphs
with adjacency matrix satisfying (1.2) and

lim
n→+∞

∫ T

0
∥WGn(t, ·, ·)−W (t, ·, ·)∥□ dt = 0 (1.16)

for some graphonW ∈ L1([0, T ]×[0, 1]2;R). Assume furthermore that either of the following conditions
holds:

• Case 1: there is a constant K0 > 0 such that

∥WGn∥L2([0,T ]×[0,1]2;R) ≤ K0 for every n ∈ N; or (1.17)

• Case 2: there is a constant K1 > 0 such that

ess sup
t∈[0,T ], x∈[0,1]

∫ 1

0
WGn(t, x, y) dy ≤ K1 for every n ∈ N. (1.18)

Recalling the notation (1.8), assume also that the coefficients βn, γn satisfy

0 ≤ βn, γn ≤M a.e. on [0, T ]× [0, 1], βn → β, γn → γ strongly in L1([0, T ]× [0, 1]) , (1.19)

for some constant M > 0 and some functions β, γ ∈ L∞([0, T ]× [0, 1]).
If (sn, in, rn) is the solution of (1.1), (1.3) for given initial data sn0 , i

n
0 , r

n
0 satisfying (1.4) for every

n, then we have up to subsequences

(sn, in, rn)
∗
⇀ (s, i, r) weakly∗ in L∞([0, T ]× [0, 1];R3) as n→ +∞ , (1.20)

where (s, i, r) : [0, T ] × [0, 1] → [0, 1]3 is the distributional solution of (1.9), (1.10) satisfying (1.14)
and attaining the initial condition (1.10) for some data (s0, i0, r0) satisfying (1.11).

Some remarks are in order. First, assumption (1.16) is entirely natural from the point of view
of graphon theory in view of the analysis in [BCCZ19, BCLSV08]. We refer to Appendix B and in
particular to Remark B.2 for a more technical discussion, here we just mention that assumption (1.16)
is satisfied (up to subsequences and vertices relabelling) in two very relevant cases: (i) if {Gn}n∈N is
a dense2 sequence of graphs such that ∥WGn∥Lp([0,T ]×[0,1]2;R) is uniformly bounded for some p > 1; (ii)
if {Gn}n∈N is a sparse sequence of graphs satisfying suitable topological assumptions (see Appendix B
for the precise conditions), then (1.16) holds true up to renormalization3, i.e. provided we replace Gn

by Gn/∥WGn∥L1([0,T ]×[0,1]2;R).
Second, both conditions (1.17) and (1.18) pass to the limit, i.e. they are satisfied by the limit

graphon W in (1.16), see respectively Lemmas 2.4-2.5 below. This implies that the limit system (1.9)
satisfies the assumptions of Proposition 1.2 and in particular that there is a unique solution of
the Cauchy problem (1.9), (1.10) satisfying (1.14). This in turn ensures that, by fixing the initial
data (1.10) of the limit problem, then there is no need to pass to subsequences in (1.20), as the whole
sequence converges.

Third, by looking at the proof of Theorem 1.3 one realizes that, if Gn is a sequence of random graphs
satisfying (1.16) and either (1.17) or (1.18) almost surely, then (1.20) holds almost surely.

Finally, Theorem 1.3 can be regarded as a convergence result: given a sequence of graphs {Gn}n∈N
satisfying (1.16) for some W , we characterize the asymptotic behaviour of the corresponding sequence
of SIR models (1.1).

2We refer to Appendix B for the definitions of dense and sparse sequence of graphs
3Actually, condition (1.16) is directly satisfied with no renormalization by sparse graph sequences too, but this is of

limited interest since the limit would be the trivial function W ≡ 0
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In the next results, we somehow adopt the opposite viewpoint: given a graphon W ∈ L1([0, T ] ×
[0, 1]2;R) satisfying suitable conditions and the corresponding system (1.9), we look at discrete ap-
proximations to the solution of (1.9). Our approach here focuses on the approximation of W by
sequences of graphs constructed in such a way that the corresponding solutions of (1.1) converge to
the solution of (1.9). Obviously, different samplings of W provide different approximating graphs and
the actual convergence of the specific approximation to the limit problem depends on the considered
discretization. In this work, we study both deterministic and random approximations. However,
before discussing in detail our results in this direction, we stress immediately that all the sampling
procedures we take into account retain much more information on the limit graphonW than the rather
mild assumption (1.16) required by Theorem 1.3. As a consequence, all the convergence results we
obtain (see e.g. (1.24)-(1.25) and (1.29)-(1.31) below) hold in a much stronger topology than the one
in (1.20).

We now introduce the deterministic approximation we consider. Let n ∈ N, recall (1.6) and set

< u >Inj
:= n

∫
Inj

u(x)dx for every j = 1, . . . , n, ∀u ∈ L1(0, 1),

< U >Inj ×Ink
:= n2

∫∫
Inj ×Ink

U(x)dx for every j, k = 1, . . . , n, ∀U ∈ L1([0, 1]2).

(1.21)

Given a possibly time-dependent graphon W , for every n ∈ N we then let Gn be the possibly time-
dependent graph with n vertices and adjacency matrix

An
jk(t) :=< W (t, ·, ·) >Inj ×Ink

. (1.22)

We can now state our first approximation result.

Theorem 1.4. Fix T > 0 and assume W ∈ L1([0, T ]× [0, 1]2;R+) is a non-negative time-dependent
graphon. Let β, γ ∈ L∞ ([0, T ]× [0, 1]) and s0, i0, r0 ∈ L∞(0, 1) satisfy β, γ ≥ 0 and (1.11), respec-
tively. Set

βnj (t) :=< β(t, ·) >Inj
, γnj (t) :=< γ(t, ·) >Inj

for a.e. t ∈ R+ and every j = 1, . . . , n

snj,0 :=< s0 >Inj
, inj,0 :=< i0 >Inj

, rnj,0 :=< r0 >Inj
for every j = 1, . . . , n

(1.23)

and let Gn be the graph with adjacency matrix (An
jk)j,k=1,...,n defined in (1.22). Let (sn, in, rn) be the

solution of the Cauchy problem (1.1), (1.3) written using the notation (1.8). Then, provided (s, i, r)
is the distributional solution of (1.9), (1.10) satisfying (1.14), the following results hold:

• Case 1: if W ∈ L2([0, T ]× [0, 1]2;R+) then

lim
n→+∞

ess sup
t∈[0,T ]

(
∥s(t, ·)− sn(t, ·)∥L2(0,1) + ∥i(t, ·)− in(t, ·)∥L2(0,1) + ∥r(t, ·)− rn(t, ·)∥L2(0,1)

)
= 0;

(1.24)
• Case 2: if W satisfies (1.13) then

lim
n→+∞

ess sup
t∈[0,T ]

(
∥s(t, ·)− sn(t, ·)∥L1(0,1) + ∥i(t, ·)− in(t, ·)∥L1(0,1) + ∥r(t, ·)− rn(t, ·)∥L1(0,1)

)
= 0.

(1.25)

Note that with the sampling procedure defined by (1.22) and (1.23) the resulting discretization
coincides with a discontinuous piecewise constant Galerkin approximation to (1.9). In particular, if
for instance βnj is as in (1.23) and we define βn using the notation (1.8), then βn is exactly the L2-
orthogonal projection of β onto the space of piecewise constant functions on the uniform partition of
[0, 1] of granularity 1/n. Similarly, ifW (t, ·) ∈ L2([0, 1]2) the matrix (An

jk(t))1≤j,k≤n in (1.22) coincides

with the L2-orthogonal projection of the graphonW (t, ·) onto the space of piecewise constant functions
on the uniform cartesian grid of [0, 1]2.

We now introduce our second sampling procedure, which belongs to the family of the so called
W -random graphs introduced in [DF81], popularized by [LS06] and then widely used in the context
of graphon theory. Inspired by the construction given in [KM22, Med19], for any graphon W ∈
L1([0, 1]2;R+) and for α ∈ ]0, 1[ fixed, we introduce the scaled sparse W -random graph nαG(n,W, n−α)
as the graph with n nodes and adjacency matrix given by

P(An
jk = nα) =< Ŵn >Inj ×Ink

, where Ŵn := min{1, n−αW} , P(An
jk = 0) = 1− P(An

jk = nα) .

(1.26)
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The scaling factor n−α is the so called target edge density of the graph and it does enter in the
definition (1.26) of the matrix probability distribution. On the one hand, it dictates the level to trim
the unbounded graphon W . On the other hand, it allows to ensure that the cut-off in the minimum
acts only on part of the edges.

In the case of bounded graphons W ∈ L∞([0, 1]2; [0, 1]) it is standard to choose α = 0, so that
the adjacency matrix of the resulting graph boils down to a random matrix with entries following the
Bernoulli distribution

P(An
jk = 1) =< W >Inj ×Ink

, P(An
jk = 0) = 1− < W >Inj ×Ink

. (1.27)

Such sparse W -random graph is denoted here by G(n,W ).

Remark 1.1. The construction considered in [KM22, Med19] (and more generally the definition of
the so-called sparse W -random graph in the theory of graphons) is slightly different from (1.26).
In [KM22, Med19] the sparse W -random graph G(n,W, n−α) has adjacency matrix

P(An
jk = 1) =< Ŵn >Inj ×Ink

, where Ŵn := min{1, n−αW}, P(An
jk = 0) = 1− < Ŵn >Inj ×Ink

.

(1.28)
Here, we consider directly the scaled sparseW -random graph nαG(n,W, n−α) as defined in (1.27) since
that is the graph capable of approximating the graphon W .

We now state the main results for the random approximation to (1.9) given by the scaled sparse
W -random graphs nαG(n,W, n−α) as random samplings of W .

Theorem 1.5. Fix T > 0 and let W ∈ L1([0, 1]2;R+) be a graphon and γ, β ∈ L∞([0, T ] × [0, 1])
satisfy β, γ ≥ 0. Let α ∈ ]0, 1[ be fixed. For every n ∈ N and j = 1, . . . , n, let βnj , γ

n
j , s

n
j,0, i

n
j,0, r

n
j,0

be as in (1.23) and Gn = nαG(n,W, n−α) be the scaled sparse W -random graph given by (1.26). Let
(sn, in, rn) be the solution of the Cauchy problem (1.1), (1.3) written by using the notation (1.8). Then
the following results hold:

• Case 1: if W ∈ L2([0, 1]2;R+) and α ∈ ]0, 1/2[ then

lim
n→+∞

ess sup
t∈[0,T ]

(
∥s(t, ·)− sn(t, ·)∥L2(0,1) + ∥i(t, ·)− in(t, ·)∥L2(0,1)

+∥r(t, ·)− rn(t, ·)∥L2(0,1)

)
= 0 almost surely;

(1.29)

• Case 2: if there is a constant Ka > 0 such that

ess sup
x∈[0,1]

∫ 1

0
W (x, y) dy ≤ Ka , (1.30)

then, for α ∈ ]0, 1[,

lim
n→+∞

ess sup
t∈[0,T ]

(
∥s(t, ·)− sn(t, ·)∥L1(0,1) + ∥i(t, ·)− in(t, ·)∥L1(0,1)

+∥r(t, ·)− rn(t, ·)∥L1(0,1)

)
= 0 almost surely.

(1.31)

We wish to note (as will be evident from the proof of Theorem 1.5) that if W ∈ L∞([0, 1]2; [0, 1]),
the above theorem applies with Gn given by the sparse random graph G(n,W ) as defined in (1.27).

Prior to close this introduction we comment on the main novelties of our approximation results.
The proof of Theorems 1.4–1.5 borrow some of the techniques from the analysis in [Med19] concerning
the limit of Kuramoto systems and nonlinear/nonlocal diffusion defined on graphs (see also [Med14a,
Med14b, Med19C] and [BCD20] for a different but related problem). However, with respect to previous
analyses [KM17, Med19, MT20, KM22], the specific features of the SIR system allows here to obtain
the following improvements:

(i) we relax the regularity assumptions on W , namely we require only W ∈ L2([0, 1]2;R+) (cf.
Case 1). This in particular implies that Theorems 1.4–1.5 (contrary to [Med19, Theorem 3.1]
and the main results in [MT20, KM22]) directly apply to the power law caseW (x, y) = (xy)−µ,
µ ∈ ]0, 2−1[. As pointed out for instance in the introduction to [BCCG21, BCCZ19] (see
also the one in [MT20]), the power law case is usually considered technically challenging but
also fascinating and compelling in view of applications, as several real-world networks have a
power law structure. From the technical standpoint, when W is an L2 graphon we circumvent
condition (1.13) by a careful manipulation of the particular structure of the SIR system.
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Furthermore, unlike in [Med19, MT20, KM22], we can also go below the L2 summability
framework (cf.Case 2), provided we adopt (1.13) (resp. (1.30) in the random case). Note
that (1.13) (resp. (1.30) in the random case) is for instance satisfied by the graphonsW (x, y) =
(x+ y)−µ, µ ∈]0, 1[, which do not belong to L2([0, 1]2;R) if µ ≥ 2−1;

(ii) for the deterministic approximation in Theorem 1.4, we allow for time-dependent graphons.
This might be particularly relevant in view of applications because it allows to consider changes
in the network structure (e.g. due to the implementation of lockdown measures). However,
with the random approximation in Theorem 1.5 our results are valid only for time independent
graphons. This limitation is technical, mainly due to measurability issues on the integrals with
respect to time of certain stochastic processes arising in the computations. Hence, at present
we are not able to adapt the techniques used in the proof of Theorem 1.5 to deal with time
dependent graphons W .

Paper outline. The remainder of the paper is organized as follows. In §2 we collect some preliminary
results. In §3 we discuss the proof of Proposition 1.2 and of Theorem 1.3. §4 contains the proof of
Theorem 1.4 for the deterministic approximation, while in §5 we present the proof of Theorem 1.5 for
the random approximation. The paper is completed with two appendices. Appendix A collects the
main notation used in the paper, whereas Appendix B comprises a brief overview of some definitions
and results on graphons (providing in particular sufficient conditions for (1.16) to hold).

Norms notation. In the remainder of the paper, symbols like ∥u∥p will be used to denote the Lp

norm of u when computed with respect to all the variables u depends on. Conversely, when the Lp

norm of u is computed only with respect to some of its variables, we will use the full notation indicating
explicitly the space of integration.

2. Preliminary results

In this section we collect some subsidiary results that will be useful for the subsequent analysis.
Precisely, in §2.1 we prove existence and uniqueness of the solution for the discrete SIR system (1.1),
whereas in §2.2 we establish a priori estimates for distributional solutions of the continuum SIR
system (1.9). In §2.3 we show how conditions (1.17) and (1.18) for a sequence of graphons Wn imply
corresponding conditions on the limit graphon W . In §2.4 we recall a standard convergence results
for integral means that will be frequently used in the following.

2.1. The discrete SIR model on graphs. The following lemma is a direct consequence of the
Cauchy Lipschitz Picard Lindelöf Theorem on existence and uniqueness of solutions of ODEs. In the
statement we use the notation (1.8).

Lemma 2.1. Fix n ∈ N and assume βnj , γ
n
j , A

n
jk ∈ L∞(R+) satisfy βnj , γ

n
j , A

n
jk ≥ 0 a.e. on R+, for

every j, k = 1, . . . , n. For every given initial condition (1.3) satisfying (1.4) there are ν > 0 and a
unique solution sn, in, rn : [0, ν]× [0, 1] → R of the Cauchy problem (1.1), (1.3).

Note that the above lemma only provides local-in-time existence and uniqueness. However, the
local-in-time solution can be extended for every t ≥ 0 and hence it is actually a global in-time-solution
sn, in, rn : R+ × [0, 1] → R. This is a consequence of the following lemma. The proof is standard, but
we provide it for the sake of completeness.

Lemma 2.2. Under the assumptions of Lemma 2.1, the solution of the Cauchy problem (1.1), (1.3)
satisfies (1.5).

Proof. The equality in (1.5) follows from the fact that by adding the three lines of (1.1) we get that
the derivative of snj (t) + inj (t) + rnj (t) vanishes.

Next, we point out that snj (t) = 0 for every t ∈ R is a solution of the equation at the first line

of (1.1). By the uniqueness part of the Cauchy Lipschitz Picard Lindelöf Theorem, this implies that,
since snj,0 ≥ 0, then snj (t) ≥ 0 for every t. We now prove that inj (t) ≥ 0, for every j = 1, . . . , n. As a
first step, we establish the proof under the further assumption

An
jk > 0, for every j, k = 1, . . . , n. (2.1)

We separately consider the two possible instances:



8 B. AYUSO DE DIOS, S. DOVETTA, AND L.V. SPINOLO

Instance (a): inj,0 > 0 for every j = 1, . . . , n. We set

t̄ := sup{t ∈ R+: i
n
j (τ) > 0 for every j = 1, . . . , n and every τ ∈ [0, t[}.

We point out that t̄ > 0 and we now show that t̄ = +∞. Assume by contradiction that t̄ < +∞ and,
just to fix the ideas, assume that in1 (t̄) = 0. Note that, in this case, it must be sn1 (t̄) > 0. Indeed,
if it were sn1 (t̄) = in1 (t̄) = 0, then rn1 (t̄) = 1. However, (0, 0, 1) is an equilibrium for the component
(sn1 , i

n
1 , r

n
1 ) (as for any other component), so that it would follow sn1,0 = in1,0 = 0, rn1,0 = 1, contradicting

the assumption in1,0 > 0. Hence, sn1 (t̄) > 0. Then there are two possibilities:

(i) in2 (t̄) = · · · = inn(t̄) = 0. Since (sn1 , . . . , s
n
n, 0, . . . , 0, r

n
1 , . . . , r

n
n) is an equilibrium for (1.1) for

every (sn1 , . . . , s
n
n, r

n
1 , . . . , r

n
n), this implies in1 (0) = · · · = inn(0) = 0, which contradicts the

definition of instance (a).
(ii) there is k such that ink(t̄) > 0. Since An

jk > 0 and sn1 (t̄) > 0, this implies that din1/dt > 0 at

t = t̄ and again contradicts the definition of t̄.

Instance (b): there is j = 1, . . . , n such that inj,0 = 0. Note that, if snj,0 = inj,0 = 0, then rnj,0 = 1,

(snj (t), i
n
j (t), r

n
j (t)) = (0, 0, 1) for every t and the j-th component does not interact with any other

component in the system. Therefore, without loss of generality we can restrict our attention only to
the components j for which snj,0 > 0. Just to fix the ideas, we assume in1,0 = 0. If in2,0 = · · · = inn,0 = 0

then by arguing as in item (i) above we conclude that in1 (t) = · · · = inn(t) = 0 for every t, which in
particular yields our claim. If there is k such that ink,0 > 0, then dinj /dt > 0 at t = 0 for every j for

which inj,0 = 0 (since An
jk > 0 and snj,0 > 0 by assumption). This implies that inj (t) > 0 for every

j = 1, . . . , n and t ∈ ]0, σ[ for some sufficiently small σ > 0. We can then consider the Cauchy problem
obtained by coupling (1.1) with the datum assigned at σ/2 and apply the same argument as in the
previous case.

To conclude the proof of the inequality inj ≥ 0 we are left to remove the assumption (2.1). To
this end, we rely on an approximation argument: we fix ε > 0, replace An

jk with An
jk + ε, for every

j, k = 1, . . . , n, and term snεj (t), inεj (t), rnεj (t) the corresponding solution of the Cauchy problem (1.1),

(1.3). Since An
jk+ε > 0, by the previous step inεj (t) ≥ 0 for every t and every ε > 0. By the continuous

dependence of the solution of ODEs on parameters, inεj (t) converges to inj (t) as ε→ 0+ and this implies

inj (t) ≥ 0.

Finally, since for every j = 1, . . . , n we have γnj ≥ 0 and inj ≥ 0, then drnj /dt ≥ 0 and this yields
rnj ≥ 0. □

2.2. A priori estimates for distributional solutions of (1.9). We now derive a preliminary result
which will be useful in the next section to establish Proposition 1.2.

Lemma 2.3. Fix T > 0, W ∈ L1
(
[0, T ]× [0, 1]2;R

)
and β, γ ∈ L∞([0, T ] × [0, 1]). Let (s, i, r) ∈

L∞([0, T ]× [0, 1];R3) be a distributional solution of (1.9) satisfying (1.14). Then, either:

• Case 1: if W ∈ L2
(
[0, T ]× [0, 1]2;R

)
, then ∂ts, ∂ti, ∂tr ∈ L2 ([0, T ]× [0, 1]) and

∥∂ts∥2, ∥∂ti∥2, ∥∂tr∥2 ≤ C(∥W∥2, ∥β∥∞, ∥γ∥∞), (2.2)

where C(∥W∥2, ∥β∥∞, ∥γ∥∞) is a suitable constant only depending on ∥W∥2, ∥β∥∞ and ∥γ∥∞; or
• Case 2: if (1.13) holds true, then ∂ts, ∂ti, ∂tr ∈ L∞ ([0, T ]× [0, 1]) and

∥∂ts∥∞, ∥∂ti∥∞, ∥∂tr∥∞ ≤ C(Kd, ∥β∥∞, ∥γ∥∞) , (2.3)

where C(Kd, ∥β∥∞, ∥γ∥∞) is a suitable constant only depending on Kd, ∥β∥∞ and ∥γ∥∞.

Proof. Let (s, i, r) be a distributional solution of (1.9) satisfying (1.14). Owing to (1.12), the dis-
tributional derivatives (∂ts, ∂ti, ∂tr) are given by the right hand side of (1.9) and hence are locally
summable functions. We now separately consider the following two cases.
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Case 1: W ∈ L2
(
[0, T ]× [0, 1]2;R

)
. By using Jensen’s inequality we get∫ T

0

∫ 1

0
[∂ts(t, x)]

2dxdt =

∫ T

0

∫ 1

0

(
−s(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy

)2

dxdt

≤ ∥s∥2∞∥β∥2∞∥i∥2∞
∫ T

0

∫ 1

0

(∫ 1

0
W (t, x, y)dy

)2

dxdt

Jensen
≤ ∥s∥2∞∥β∥2∞∥i∥2∞

∫ T

0

∫ 1

0

∫ 1

0
W 2(t, x, y)dydxdt

(1.14)

≤ ∥β∥2∞
∫ T

0

∫ 1

0

∫ 1

0
W 2(t, x, y)dydxdt ,

which yields a control on the first term in (2.2), and relying on a similar argument we control also the
other terms in (2.2).
Case 2: W satisfies (1.13). We get

|∂ts(t, x)| =
∣∣∣∣−s(t, x) ∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy

∣∣∣∣ (1.14)≤ ∥β∥∞
∣∣∣∣∫ 1

0
W (t, x, y) dy

∣∣∣∣ (1.13)≤ Kd∥β∥∞.

By using an analogous argument we control the other terms in (2.3). □

2.3. Limit conditions coming from (1.17) and (1.18).

Lemma 2.4. Case 1. Assume (1.16) and (1.17). Then the limit graphon satisfies ∥W∥L2([0,T ]×[0,1]2;R) ≤
K0.

Proof. Owing to (1.17), we have that, as n → +∞ and up to subsequences, WGn ⇀ V weakly in
L2([0, T ] × [0, 1]2), for some limit function V ∈ L2([0, T ] × [0, 1]2) with ∥V ∥2 ≤ K0 by weak lower
semicontinuity. To conclude, we have to show that V ≡ W . By the uniqueness of the distributional
limit, it suffices to show that

lim
n→+∞

∫ T

0

∫∫
[0,1]2

ξ(t, x, y)[WGn −W ](t, x, y)dxdydt = 0 (2.4)

for every test function ξ ∈ C∞
c (]0, T [×]0, 1[2). By the Stone-Weierstrass Theorem, to verify (2.4) it

suffices to show that for every η ∈ C∞([0, T ]), φ,ψ ∈ C∞([0, 1]) we have

lim
n→+∞

∫ T

0
η(t)

∫∫
[0,1]2

φ(x)ψ(y)[WGn −W ](t, x, y)dxdydt = 0. (2.5)

To this end, we point out that∣∣∣∣∣
∫ T

0
η(t)

∫∫
[0,1]2

φ(x)ψ(y)[WGn −W ](t, x, y)dxdydt

∣∣∣∣∣ ≤
∫ T

0

∣∣∣∣∣η(t)
∫∫

[0,1]2
φ(x)ψ(y)[WGn −W ](t, x, y)dxdy

∣∣∣∣∣ dt
≤ ∥η∥C0

∫ T

0

∣∣∣∣∣
∫∫

[0,1]2
φ(x)ψ(y)[WGn −W ](t, x, y)dxdy

∣∣∣∣∣ dt
= ∥η∥C0∥φ∥C0∥ψ∥C0

∫ T

0

∣∣∣∣∣
∫∫

[0,1]2

φ(x)

∥φ∥C0

ψ(y)

∥ψ∥C0

[WGn −W ](t, x, y)dxdy

∣∣∣∣∣ dt
≤ 4∥η∥C0∥φ∥C0∥ψ∥C0

∫ T

0
∥[WGn −W ](t, ·, ·)∥□dt ,

where the last step is a consequence of the properties (B.2) of the cut norm recalled in Appendix B.
By (1.16), this yields (2.5) and concludes the proof of the lemma. □

Lemma 2.5. Case 2. Assume (1.16) and (1.18). Then the limit graphon W satisfies (1.13) with
Kd = K1.

Proof. For a.e. t ∈ [0, T ], we have W (t, ·, ·) ∈ L1([0, 1]2) and, owing to (1.16) and up to subsequences,

lim
n→+∞

∥WGn(t, ·, ·)−W (t, ·, ·)∥□ = 0. (2.6)

For any such t, we fix x̂ ∈ ]0, 1[ Lebesgue point for the map x 7→
∫ 1

0
W (t, x, y)dy, which belongs to

L1(0, 1). We fix ε < min{x̂, 1 − x̂} and point out that, by combining (2.6) with the definition of cut
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norm (1.15) we have∫ x̂+ε

x̂−ε

∫ 1

0
W (t, x, y)dydx = lim

n→+∞

∫ x̂+ε

x̂−ε

∫ 1

0
WGn(t, x, y)dydx

(1.18)

≤ 2K1ε, (2.7)

which in turn implies owing to Lebesgue’s Differentation Theorem∫ 1

0
W (t, x̂, y)dy = lim

ε→0+

1

2ε

∫ x̂+ε

x̂−ε

∫ 1

0
W (t, x, y)dydx

(2.7)

≤ K1

and this yields (1.13) with Kd = K1. □

2.4. A classical approximation result. We now recall a standard approximation result that will
be often used in the next sections. For the sake of completeness, we briefly sketch its proof.

Lemma 2.6. Assume u ∈ L1(0, 1), U ∈ L1([0, 1]2), recall (1.6) and (1.21), set

unj =< u >Inj
, An

jk =< U >Inj ×Ink

and use the notation (1.7) and (1.8). Then

un → u strongly in L1(0, 1), WGn → U strongly in L1([0, 1]2). (2.8)

If furthermore u ∈ L2(0, 1), U ∈ L2([0, 1]2), then

un → u strongly in L2(0, 1), WGn → U strongly in L2([0, 1]2). (2.9)

Proof. We only provide the proof of (2.9), the proof of (2.8) being entirely analogous and slightly
easier.
Step 1: we first establish (2.9) for u ∈ C0([0, 1]). For fixed ε > 0, by the uniform continuity of u
there is nε such that, for every n ≥ nε, if |x− y| ≤ n−1 then |u(x)− u(y)| ≤ ε. This implies that, for
every j = 1, . . . , n and x ∈ Inj , we have

|u(x)−unj | =

∣∣∣∣∣u(x)− n

∫
Inj

u(y)dy

∣∣∣∣∣ =
∣∣∣∣∣n
∫
Inj

[u(x)− u(y)]dy

∣∣∣∣∣ ≤ n

∫
Inj

|u(x)−u(y)|dy
n≥nε

≤ n

∫
Inj

εdy = ε.

This in turn yields ∥u− un∥2 ≤ ε and by the arbitrariness of ε we get the desired convergence result.
Step 2: we consider the general case. For any u, v ∈ L2(0, 1) we term un and vn the corresponding
piecewise constant approximation, so that by using Jensen’s inequality we get

∥un − vn∥22 =
n∑

j=1

∫
Inj

|unj − vnj |2dx =
n∑

j=1

∫
Inj

(
n

∫
Inj

[u− v](y)dy

)2

dx

Jensen
≤

n∑
j=1

∫
Inj

n

∫
Inj

[u− v]2(y)dydx =

n∑
j=1

∫
Inj

[u− v]2(y)dy = ∥u− v∥22.

(2.10)

We now fix ε > 0 and choose v ∈ C0([0, 1]) in such a way that ∥u− v∥2 ≤ ε. We then have

∥u− un∥2 ≤ ∥u− v∥2 + ∥v − vn∥2 + ∥vn − un∥2
(2.10)

≤ 2∥u− v∥2 + ∥v − vn∥2 ≤ 2ε+ ∥v − vn∥2.
By using Step 1, we can find nε such that if n ≥ nε then ∥v−vn∥2 ≤ ε and by plugging this inequality
into the above expression and using the arbitrariness of ε we obtain the desired convergence result. □

3. Convergence results for SIR model on graphs

This section contains the proofs of Proposition 1.2 and Theorem 1.3. The exposition is organized
as follows:

• we first establish in §3.1 the uniqueness part of Proposition 1.2, namely the uniqueness of the
distributional solution to (1.9), (1.10);

• in §3.2 we prove Theorem 1.3. As a byproduct, the proof provides a constructive argument
that yields the existence part of Proposition 1.2, contingent on showing a sequence of graphs
satisfying (1.16) and either (1.17) or (1.18);

• in §3.3, we prove the existence part of Proposition 1.2 by exhibiting a family of graphs satisfying
the above requirements. This concludes the proof Proposition 1.2.
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3.1. Proof of the uniqueness part of Proposition 1.2. We fix two distributional solutions
(s1, i1, r1) and (s2, i2, r2) satisfying (1.14) and we separately consider Cases 1 and 2 below.

Case 1: W ∈ L2
(
[0, T ]× [0, 1]2;R+

)
. We set u1 := s1 + i1, u2 := s2 + i2 and we recall that,

owing to Lemma 2.3, (s1, i1, r1) and (s2, i2, r2) have Sobolev regularity and the equalities in (1.9) are
satisfied pointwise almost everywhere. By using Hölder’s and Young’s inequalities we get

d

dt

∫ 1

0
[s1 − s2]

2(t, x)dx = 2

∫ 1

0
[s1 − s2][∂ts1 − ∂ts2](t, x)dx

(1.9)
= − 2

∫ 1

0
[s1 − s2]

2(t, x)

∫ 1

0
β(t, y)W (t, x, y)i1(t, y)dydx︸ ︷︷ ︸
≥0

− 2

∫ 1

0
s2(t, x)[s1 − s2](t, x)

∫ 1

0
β(t, y)W (t, x, y)[i1 − i2](t, y)dydx

Hölder
≤ 2∥s2∥∞∥β∥∞∥W (t, ·, ·)∥L2([0,1]2)∥s1(t, ·)− s2(t, ·)∥L2(0,1)∥i1(t, ·)− i2(t, ·)∥L2(0,1)

(1.14),ii=ui−si, Young

≤ 2∥β∥∞∥W (t, ·, ·)∥L2([0,1]2)

[
3

2
∥s1(t, ·)− s2(t, ·)∥2L2(0,1) +

1

2
∥u1(t, ·)− u2(t, ·)∥2L2(0,1)

]
.

(3.1)

Next, we point out that

∂t[u1 − u2] = γ[i1 − i2] = γ[u1 − u2]− γ[s1 − s2] (3.2)

and by using again Hölder’s and Young’s inequalities this yields

d

dt

∫ 1

0
[u1 − u2]

2(t, x)dx =

∫ 1

0
γ[u1(t, x)− u2(t, x)]

2dx−
∫ 1

0
γ[s1(t, x)− s2(t, x)][u1(t, x)− u2(t, x)]dx

Hölder, Young
≤ ∥γ∥∞

[
3

2
∥u1(t, ·)− u2(t, ·)∥2L2(0,1) +

1

2
∥s1(t, ·)− s2(t, ·)∥2L2(0,1)

]
.

(3.3)

Combining (3.1) and (3.3) we get

d

dt

[
∥u1(t, ·)− u2(t, ·)∥2L2(0,1) + ∥s1(t, ·)− s2(t, ·)∥2L2(0,1)

]
≤ 7

2

[
∥β∥∞∥W (t, ·, ·)∥L2([0,1]2) + ∥γ∥∞

][
∥s1(t, ·)− s2(t, ·)∥2L2(0,1) + ∥u1(t, ·)− u2(t, ·)∥2L2(0,1)

]
and by Grönwall Lemma this implies ∥u1(t, ·)− u2(t, ·)∥2L2(0,1) + ∥s1(t, ·)− s2(t, ·)∥2L2(0,1) = 0 for every

t ∈ [0, T ]. Since i1 = u1 − s1, i2 = u2 − s2 this in turn implies s1 = s2, i1 = i2 a.e. on [0, T ] × [0, 1]
and, since r1 = 1− s1 − i1, r2 = 1− s2 − i2, it also implies r1 = r2 a.e. on [0, T ]× [0, 1].

Case 2: W ∈ L1
(
[0, T ]× [0, 1]2;R+

)
satisfies (1.13). As before we set u1 := s1 + i1, u2 := s2 + i2

and we get

d

dt
|s1 − s2|(t, x) = sign[s1 − s2][∂ts1 − ∂ts2|(t, x)

= − sign[s1 − s2][s1 − s2](t, x)

∫ 1

0
β(t, y)W (t, x, y)i1(t, y)dy︸ ︷︷ ︸

≥0

+ sign[s1 − s2]s2(t, x)

∫ 1

0
β(t, y)W (t, x, y)[i1 − i2](t, y)dy

(1.13),(1.14),W≥0

≤ Kd∥β∥∞∥[i1 − i2](t, ·)∥L∞(0,1)

(1.13),(1.14)

≤ Kd∥β∥∞
[
∥[s1 − s2](t, ·)∥L∞(0,1) + ∥[u1 − u2](t, ·)∥L∞(0,1)

]
.

(3.4)
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By (3.2) we get

d

dt
∥[u1 − u2](t, ·)∥L∞(0,1) ≤ ∥γ∥∞

[
∥[s1 − s2](t, ·)∥L∞(0,1) + ∥[u1 − u2](t, ·)∥L∞(0,1)

]
(3.5)

and combining (3.4) and (3.5) with Grönwall Lemma we get ∥[s1 − s2](t, ·)∥L∞(0,1) = 0 and ∥[u1 −
u2](t, ·)∥L∞(0,1) = 0 for every t ∈ [0, T ]. Arguing as in the previous case this in turn implies s1 = s2,
i1 = i2, r1 = r2 a.e. on [0, T ]× [0, 1].

3.2. Proof of Theorem 1.3. We now provide the proof of Theorem 1.3. Let {Gn}n∈N, {βn}n∈N and
{γn}n∈N be fixed as in the statement of the theorem. Recalling the notation (1.8) we observe that
(sn, in, rn) is a distributional solution of

∂ts
n(t, x) = −sn(t, x)

∫ 1

0
βn(t, y)WGn(t, x, y)i

n(t, y) dy

∂ti
n(t, x) = sn(t, x)

∫ 1

0
βn(t, y)WGn(t, x, y)i

n(t, y) dy − γn(t, x)in(t, x) x ∈ [0, 1]

∂tr
n(t, x) = γn(t, x)in(t, x)

(3.6)

and satisfies the initial condition sn(0, ·) = sn0 , i
n(0, ·) = in0 , r

n(0, ·) = rn0 . This implies that for every

(φ,ψ, η) ∈ (C∞
c ([0, T ]× [0, 1]))3 we have∫ T

0

∫ 1

0
sn(t, x)

(
∂tφ(t, x)− φ(t, x)

∫ 1

0
βn(t, y)WGn(t, x, y)i

n(t, y) dy

)
dxdt =

∫ 1

0
sn0 (x)φ(0, x) dx∫ T

0

∫ 1

0
in(t, x) (∂tψ(t, x)− γn(t, x)ψ(t, x))+sn(t, x)ψ(t, x)

∫ 1

0
βn(t, y)WGn(t, x, y)i

n(t, y) dydxdt

=

∫ 1

0
in0 (x)ψ(0, x) dx∫ T

0

∫ 1

0
rn(t, x)∂tη(t, x) + γn(t, x)η(t, x)in(t, x)dxdt =

∫ 1

0
rn0 (x)η(0, x) dx .

(3.7)

We recall the bounds (1.5), which owing to the notation (1.8) imply

∥sn∥∞, ∥in∥∞, ∥rn∥∞ ≤ 1 (3.8)

and we conclude that, up to subsequences,

sn ⇀∗ s, in ⇀∗ i, rn ⇀∗ r weakly∗ in L∞([0, T ]× [0, 1]), (3.9)

for some limit function (s, i, r) ∈ L∞([0, T ]× [0, 1];R3). Also,

sn0 ⇀
∗ s0, in0 ⇀

∗ i0, rn0 ⇀
∗ r0 weakly∗ in L∞(0, 1), (3.10)

for some limit function (s0, i0, r0) ∈ L∞([0, 1];R3). We now pass to the limit in (3.7) by separately
considering the two cases.

Case 1: we assume (1.17) and proceed according to the following steps.
Step 1A: since (sn, in, rn) is a distributional solution of (3.6), by (2.2) and recalling (1.17) and (1.19)

we conclude that

∥∂tsn∥2, ∥∂tin∥2, ∥∂trn∥2 ≤ C(K0,M). (3.11)

We now show that this implies that, up to subsequences, for every ψ ∈ L2([0, T ]× [0, 1]2)∫ T

0

∫ 1

0

∫ 1

0
ψ(t, x, y)sn(t, x)in(t, y)dxdydt→

∫ T

0

∫ 1

0

∫ 1

0
ψ(t, x, y)s(t, x)i(t, y)dxdydt, (3.12)

that is the product sn(t, x)in(t, y) weakly converges to s(t, x)i(t, y) in L2([0, T ]× [0, 1]2). To this end,
we point out that for every fixed n ∈ N, since ∂tsn, ∂tin, ∂trn are all L2 functions owing to (3.11),
we can select a representative of (sn, in, rn) (which a priori as L∞ functions are only defined up to
negligible sets) such that the map t 7→ (sn, in, rn)(t, ·) is continuous from [0, T ] to L2(0, 1) endowed
with the strong topology. In the following we will always work with this representative, which allows
us to give a meaning to the value (sn, in, rn)(t, ·) ∈ L2(0, 1) for every t ∈ [0, T ].
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Using the L∞ bounds and a standard diagonal argument we can extract a further subsequence such
that

sn(q, ·)⇀∗ s(q, ·), in(q, ·)⇀∗ i(q, ·), rn(q, ·)⇀∗ r(q, ·) weakly∗ in L∞(0, 1), for every q ∈ [0, T ] ∩Q.
(3.13)

Next, we fix t ∈ [0, T ] and a test function ψ ∈ L2([0, T ] × [0, 1]2). We also fix a sequence of rational
numbers qk → t as k → +∞. We then have∣∣∣∣∣

∫∫
[0,1]2

ψ(t, x, y)sn(t, x)in(t, y)dxdy −
∫∫

[0,1]2
ψ(t, x, y)s(t, x)i(t, y)dxdy

∣∣∣∣∣
≤

∣∣∣∣∣
∫∫

[0,1]2
ψ(t, x, y)sn(t, x)in(t, y)dxdy −

∫∫
[0,1]2

ψ(t, x, y)sn(qk, x)i
n(t, y)dxdy

∣∣∣∣∣︸ ︷︷ ︸
En

k

+

∣∣∣∣∣
∫∫

[0,1]2
ψ(t, x, y)sn(qk, x)i

n(t, y)dxdy −
∫∫

[0,1]2
ψ(t, x, y)sn(qk, x)i

n(qk, y)dxdy

∣∣∣∣∣︸ ︷︷ ︸
Bn

k

+

∣∣∣∣∣
∫∫

[0,1]2
ψ(t, x, y)sn(qk, x)i

n(qk, y)dxdy −
∫∫

[0,1]2
ψ(t, x, y)s(qk, x)i(qk, y)dxdy

∣∣∣∣∣︸ ︷︷ ︸
Cn

k

+

∣∣∣∣∣
∫∫

[0,1]2
ψ(t, x, y)s(qk, x)i(qk, y)dxdy −

∫∫
[0,1]2

ψ(t, x, y)s(t, x)i(t, y)dxdy

∣∣∣∣∣︸ ︷︷ ︸
Dn

k

.

(3.14)

We now estimate each of the above terms separately. Note that

En
k ≤ ∥ψ(t, ·, ·)∥L2([0,1]2) ∥in∥∞︸ ︷︷ ︸

≤1

∥sn(t, ·)− sn(qk, ·)∥L2(0,1) (3.15)

and, owing to Jensen’s inequality,

∥sn(t, ·)− sn(qk, ·)∥2L2(0,1) =

∫ 1

0
[sn(t, ·)− sn(qk, ·)]2dx =

∫ 1

0

[∫ t

qk

∂τs
n(τ, ·)dτ

]2
dx

Jensen
≤ |qk − t|

∫ 1

0

∫ t

qk

(∂τs
n(τ, ·))2dτdx

(3.11)

≤ C(K0,M)|qk − t| ,
(3.16)

so that plugging the above inequality into (3.15) we get

Ek
n ≤ C(K0,M)∥ψ(t, ·, ·)∥L2([0,1]2)

√
|qk − t|, for every n.

By an analogous argument, we get Bk
n ≤ C(K0,M)∥ψ(t, ·, ·)∥L2([0,1]2)

√
|qk − t|.

Owing to (3.11), we have

∂ts
n ⇀ ∂ts, ∂ti

n ⇀ ∂ti weakly in L2([0, T ]× [0, 1]),

and by recalling (3.16) and using the lower semicontinuity of the norm with respect to the weak
convergence we get∫ 1

0

∫ t

qk

(∂τs(τ, ·))2dτdx ≤ C(K0,M),

∫ 1

0

∫ t

qk

(∂τ i(τ, ·))2dτdx ≤ C(K0,M).

Hence, arguing as before this yields Dn
k ≤ C(K0,M)∥ψ(t, ·, ·)∥L2([0,1]2)

√
|qk − t|, for every n ∈ N. To

conclude, we fix ε > 0 and choose k in such a way that En
k + Bn

k + Dn
k ≤ ε, for every n. Next, we

recall (3.13) and choose nε in such a way that Cn
k ≤ ε for every n ≥ nε. By the arbitrariness of ε,

this implies that the left hand side of (3.14) vanishes in the n → +∞ limit for a.e. t ∈ [0, T ]. By
Lebesgue’s Dominated Convergence Theorem this yields (3.12).
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Step 1B: we show that the limit (s, i, r) in (3.9) is a distributional solution of (1.9), (1.10). We
subtract (1.12) from (3.7) and in particular we get∣∣∣∣∫ T

0

∫ 1

0

(
sn(t, x)

∫ 1

0
βn(t, y)WGn(t, x, y)i

n(t, y) dy − s(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy

)
φ(t, x) dxdt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫ 1

0

∫ 1

0
(WGn(t, x, y)−W (t, x, y))βn(t, y)sn(t, x)in(t, y)φ(t, x) dydxdt

∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣∫ T

0

∫ 1

0

∫ 1

0
W (t, x, y) (βn(t, y)sn(t, x)in(t, y)− β(t, y)s(t, x)i(t, y))φ(t, x) dydxdt

∣∣∣∣︸ ︷︷ ︸
I2

(3.17)

for every φ ∈ C∞
c ([0, T ]× [0, 1]2). We first control I2:

I2 ≤
∣∣∣∣∫ T

0

∫ 1

0

∫ 1

0
W (t, x, y)[βn(t, y)− β(t, y)]sn(t, x)in(t, y)φ(t, x) dydxdt

∣∣∣∣︸ ︷︷ ︸
:=I21

+

∣∣∣∣∫ T

0

∫ 1

0

∫ 1

0
W (t, x, y)β(t, y)[sn(t, x)in(t, y)− s(t, x)i(t, y)]φ(t, x) dydxdt

∣∣∣∣︸ ︷︷ ︸
:=I22

.

To see that I22 vanishes in the n → +∞ limit it suffices to point out that Wβ ∈ L2([0, T ] × [0, 1]2)
and then use (3.12). To deal with I21 we observe that

I21
∥sn∥∞,∥in∥∞≤1

≤
∫ T

0

∫ 1

0

∫ 1

0
W (t, x, y)|βn(t, y)− β(t, y)|dydxdt

Hölder
≤ ∥W∥L2([0,T ]×[0,1]2)

(∫ T

0

∫ 1

0
|βn(t, y)− β(t, y)|2dydt

)1/2

(1.17)

≤ K0

(∫ T

0

∫ 1

0
|βn(t, y)− β(t, y)|2dydt

)1/2 (1.19)

≤
√
2MK0

(∫ T

0

∫ 1

0
|βn(t, y)− β(t, y)|dydt

)1/2

and by (1.19) the right-hand side of the above equation vanishes in the n → +∞ limit. Going back
to (3.17), this shows that I2 converges to 0. Let us focus now on I1. We set

L := ∥βn∥∞∥sn∥∞∥in∥∞∥φ∥∞
∥sn∥∞,∥in∥∞≤1

≤ ∥β∥∞∥φ∥∞
(1.23)

≤ M∥φ∥∞ .

By multiplying and dividing I1 by L and making use of (B.2) in Appendix B, we get

I1 =L

∣∣∣∣∫ T

0

∫ 1

0

∫ 1

0
(WGn(t, x, y)−W (t, x, y)) · s

n(t, x)

∥sn∥∞
φ(t, x)

∥φ∥∞
βn(t, y)

∥βn∥∞
in(t, y)

∥in∥∞
dydxdt

∣∣∣∣
≤L

∫ T

0
sup

∥f(t,·)∥∞≤1
∥g(t,·)∥∞≤1

∣∣∣∣∣
∫
[0,1]2

(WGn(t, x, y)−W (t, x, y))f(t, x)g(t, y) dydx

∣∣∣∣∣ dt
(B.2)

≤ 4L

∫ T

0
∥WGn −W∥□ dt

(1.16)→ 0 as n→ +∞.

This implies that I1 → 0 as n → +∞ and hence that the left hand side of (3.17) vanishes in the
n → +∞ limit. By relying on similar arguments, one can pass to the limit in all the other terms
in (3.7) and show that (s, i, r) is a distributional solution of (1.9), (1.10).

Case 2: we assume the family of graphs satisfy (1.18). The proof follows the same argument as in
the previous case, so we only provide a sketch and highlight the points where there is some difference.
By using the proof of Lemma 2.3 and recalling (1.19) we conclude that

∥∂tsn∥∞, ∥∂tin∥∞, ∥∂trn∥∞ ≤ C(K1,M),
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which implies that there is a representative of (s, i, r) such that the maps t 7→ s(t, ·), t 7→ i(t, ·),
t 7→ r(t, ·) are continuous from [0, T ] in L∞(0, 1) endowed with the ess sup (strong) topology. The goal
is now to show that this implies that, up to subsequences, for every ψ ∈ L1([0, T ]× [0, 1]2)∫ T

0

∫ 1

0

∫ 1

0
ψ(t, x, y)sn(t, x)in(t, y)dxdydt→

∫ T

0

∫ 1

0

∫ 1

0
ψ(t, x, y)s(t, x)i(t, y)dxdydt. (3.18)

The proof follows the same lines as the proof of (3.12): up to subsequences, we have (3.13) and hence,
for a given t ∈ [0, T ], we have the splitting as in (3.14), where now

En
k ≤ ∥ψ(t, ·, ·)∥L1([0,1]2)∥sn(t, ·)− sn(qk, ·)∥L∞(0,1)

and by using the continuity of the map t 7→ s(t, ·) from [0, T ] → L∞(0, 1) we conclude that ∥sn(t, ·)−
sn(qk, ·)∥L∞(0,1) is arbitrarily small, provided qk is sufficiently close to t. By reasoning similarly
we can show that the other terms on the right hand side of (3.14) are arbitrarily small and hence
establish (3.18). The rest of the proof in Case 2 works as in Case 1.

Remark 3.1. In system (1.1) the term snj only interacts with n−1
∑n

k=1 β
n
k (t)A

n
jki

n
k . This allows us

to pass to the limit in the integral term in the first equation of (1.9). From the point of view of
applications it would be also meaningful to consider the following SIR system:

dsj(t)

dt
= −sj(t)

1

n

n∑
k=1

βnk (t)A
n
jk(t)ik(t)− βnj (t)s

n
j (t)i

n
j (t)

dij(t)

dt
= sj(t)

1

n

n∑
k=1

βnk (t)A
n
jk(t)ik(t) + βnj (t)s

n
j (t)i

n
j (t)− γnj (t)ij(t) j = 1, . . . , n

drj(t)

dt
= γnj (t)ij(t)

(3.19)
where the interaction of the node j with itself is not scaled by the factor n−1 since it is somehow
independent from the size of the network. The proof of Theorem 1.3 does not directly extend to (3.19)
because from the weak∗ convergence of sn and in alone we cannot infer that the product sn(t, x)in(t, x)
converges to s(t, x)i(t, x). As a matter of fact, the argument in the proof of Theorem 1.3 shows that
there is π ∈ L∞ ([0, T ]× [0, 1]), 0 ≤ π ≤ 1, such that (sn, in, rn) converge weakly∗ in L∞ ([0, T ]× [0, 1])
to a distributional solution of

∂ts(t, x) = −s(t, x)
∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy − β(t, x)π(t, x)

∂ti(t, x) = s(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy + β(t, x)π(t, x)− γ(t, x)i(t, x) x ∈ [0, 1]

∂tr(t, x) = γ(t, x)i(t, x)

satisfying the initial condition (1.3).

3.3. Existence of distributional solution of (1.9). We can now provide the proof of the existence
part of Proposition 1.2. Let W , T , γ, β, s0, i0, r0 be as in the statement of Proposition 1.2. Owing
to the proof of Theorem 1.3, to establish the existence part of Proposition 1.2 it suffices to exhibit
sequences of graphs {Gn}n∈N, coefficients {βn}n∈N and {γn}n∈N and initial data {(sn0 , in0 , rn0 )}n∈N such
that (1.16), (1.19), (3.10) and either (1.17) or (1.18) are satisfied.

We define βn, γn and (sn0 , i
n
0 , r

n
0 ) by using (1.21), (1.23) and the notation (1.8). Note that, if βnk

and γnk are as in (1.23), then

|βnk (t)| ≤ ∥β∥∞, |γnk (t)| ≤ ∥γ∥∞, for every k = 1, . . . , n and a.e. t ∈ [0, T ] (3.20)

and, by using (2.8),

lim
n→+∞

∥γ(t, ·)− γn(t, ·)∥L1(0,1) = 0, lim
n→+∞

∥β(t, ·)− βn(t, ·)∥L1(0,1) = 0 for a.e. t ∈ [0, T ].

Owing to Lebesgue’s Dominated Convergence Theorem and to (3.20) this yields

lim
n→+∞

∫ T

0
∥β(s, ·)− βn(s, ·)∥L1(0,1)ds = 0, lim

n→+∞

∫ T

0
∥γ(s, ·)− γn(s, ·)∥L1(0,1)ds = 0. (3.21)
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This implies that both conditions in (1.19) are satisfied. To establish (3.10) we use again (2.8). We
now verify the assumptions on WGn . If W ∈ L2([0, T ]× [0, 1]2;R+), then by Jensen’s inequality

∥WGn(t, ·, ·)∥2L2([0,1]2) =

n∑
j,k=1

∫∫
Inj ×Ink

(An
jk)

2dxdy
(1.22)
=

n∑
j,k=1

∫∫
Inj ×Ink

(< W (t, ·, ·) >Inj ×Ink
)2dxdy

Jensen
≤

n∑
j,k=1

∫∫
Inj ×Ink

< W 2(t, ·, ·) >Inj ×Ink
dxdy =

n∑
j,k=1

∫∫
Inj ×Ink

W 2(t, x, y)dxdy = ∥W (t, ·, ·)∥2L2([0,1]2)

(3.22)

for a.e. t ∈ [0, T ], and this yields (1.17) withK0 = ∥W∥2. IfW ∈ L1([0, T ]×[0, 1]2;R+) satisfies (1.13),
we have

ess sup
t∈[0,T ], x∈[0,1]

∫ 1

0
WGn(t, x, y) dy

(1.22)
= ess sup

t∈[0,T ], j=1,...,n

n∑
k=1

∫
Ink

< W (t, ·, ·) >Inj ×Ink
dy

= ess sup
t∈[0,T ], j=1,...,n

n∑
k=1

n

∫∫
Inj ×Ink

W (t, x, y)dxdy = ess sup
t∈[0,T ], j=1,...,n

n

∫
Inj

∫ 1

0
W (t, x, y)dydx

(1.13)

≤ ess sup
t∈[0,T ], j=1,...,n

n

∫
Inj

Kd dx = Kd,

(3.23)

which yields (1.18) with K1 = Kd. We are left to verify (1.16). To this end, we recall that, owing
to (B.2) in Appendix B,

∥U(t, ·, ·)∥□ ≤ ∥U(t, ·, ·)∥L1([0,1]2) for a.e. t ∈ [0, T ] (3.24)

for every time-dependent graphon U ∈ L1([0, T ] × [0, 1]2). Next, we combine (2.8) and either (3.22)
or (3.23) with Lebesgue’s Dominated Convergence Theorem to get

lim
n→+∞

∫ T

0
∥WGn(s, ·, ·)−W (s, ·, ·)∥L1([0,1]2)ds = 0,

which owing to (3.24) yields (1.16).

4. Deterministic Approximation to SIR on Graphons

This section presents the convergence analysis for the deterministic approximations to (1.9), i.e.
the proof of Theorem 1.4. We consider each case of the theorem separately.

4.1. Proof of Theorem 1.4 (Case 1). We first prove the following a priori estimate on the L2-error
of the approximation at each fixed time.

Lemma 4.1. Under the same assumptions as in the statement of Theorem 1.4 (Case 1) we have

∥s(t, ·)− sn(t, ·)∥2L2(0,1)+ ∥i(t, ·)− in(t, ·)∥2L2(0,1) + ∥r(t, ·)− rn(t, ·)∥2L2(0,1)

≤B
(
∥s0 − sn0∥22+ ∥i0 − in0∥22+ ∥r0 − rn0 ∥22

)
+B

∫ t

0

(
∥[βW − βnWGn ](s, ·, ·)∥2L2([0,1]2) + ∥γ(s, ·)− γn(s, ·)∥2L2(0,1)

)
ds

(4.1)

for every t ∈ [0, T ], where B is a suitable constant only depending on T, ∥β∥∞, ∥γ∥∞ and ∥W∥2.

Proof. We rely on a Grönwall type argument and proceed according to the following steps.
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Step 1: we subtract the first line of (3.6) from the first line of (1.9) and multiply the result
by 2[s− sn]. This yields

∂t[s− sn]2(t, x) =−2[s− sn]2(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y)dy︸ ︷︷ ︸

J1(t,x)

−2sn(t, x)[s− sn](t, x)

∫ 1

0
(β(t, y)W (t, x, y)i(t, y)− βn(t, y)WGn(t, x, y)i

n(t, y)) dy︸ ︷︷ ︸
J2(t,x)

.

(4.2)

Recalling that β,W ≥ 0 by assumption and that i ≥ 0 owing to (1.14) we have

J1(t, x) ≤ 0 for a.e. (t, x) ∈ [0, T ]× [0, 1]. (4.3)

To control J2, we split it as

|J2(t, x)| ≤ 2

∣∣∣∣sn(t, x)[s− sn](t, x)

∫ 1

0
β(t, y)W (t, x, y)[i− in](t, y)dy

∣∣∣∣︸ ︷︷ ︸
J21

+

∣∣∣∣2sn(t, x)[s− sn](t, x)

∫ 1

0
in(t, y)[β(t, y)W (t, x, y)− βn(t, y)WGn(t, x, y)]dy

∣∣∣∣︸ ︷︷ ︸
J22

.

(4.4)

By using Hölder’s and Young’s inequalities we get∫ 1

0
J21(t, x)dx

(3.8)

≤ 2

∫ 1

0
|s− sn|(t, x)

∫ 1

0
β(t, y)W (t, x, y)|i− in|(t, y)dydx

Hölder
≤ 2∥β∥∞∥[s− sn](t, ·)∥L2(0,1)∥[i− in](t, ·)∥L2(0,1)∥W (t, ·, ·)∥L2([0,1]2)

Young
≤ ∥β∥∞∥W (t, ·, ·)∥L2([0,1]2)

[
∥[s− sn](t, ·)∥2L2(0,1) + ∥[i− in](t, ·)∥2L2(0,1)

]
.

(4.5)

To control J22, we point out that∫ 1

0
in(t, y)

∣∣∣β(t, y)W (t, x, y)− βn(t, y)WGn(t, x, y)
∣∣∣dy

≤∥in(t, ·)∥L2(0,1)∥[βW − βnWGn ](t, x, ·)∥L2(0,1)

(3.8)

≤ ∥[βW − βnWGn ](t, x, ·)∥L2(0,1),

and combining (3.8) with Young’s Inequality we get∫ 1

0
J22(t, x)dx ≤ ∥s− sn∥2L2(0,1) + ∥[βW − βnWGn ](t, ·, ·)∥2L2([0,1]2) . (4.6)

Coupling (4.2), (4.3), (4.4), (4.5), (4.6) we get

d

dt

∫ 1

0
|s− sn|2(t, x)dx ≤ ∥β∥∞∥W (t, ·, ·)∥L2([0,1]2)

[
∥[s− sn](t, ·)∥2L2(0,1) + ∥[i− in](t, ·)∥2L2(0,1)

]
+ ∥[s− sn](t, ·)∥2L2(0,1) + ∥[βW − βnWGn ](t, ·, ·)∥2L2([0,1]2).

(4.7)

Step 2: we set v := s+ i, vn := sn + in and point out that owing to (3.6) we have

∂t[v − vn] = −γi+ γnin = −γ[v − s] + γn[vn − sn] = −γ[v − vn] + γ[s− sn]− vn[γ − γn] + sn[γ − γn].

This yields

∂t[v − vn]2 = −2γ[v − vn]
2︸ ︷︷ ︸

≤0

+2γ[v − vn][s− sn]− 2vn[v − vn][γ − γn] + 2sn[v − vn][γ − γn]
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and by integrating, recalling (3.8), noting that 0 ≤ v, vn ≤ 1 and using Hölder’s and Young’s inequal-
ities we get

d

dt

∫ 1

0
[v − vn]2(t, x)dx ≤ ∥γ∥∞

[
∥[v − vn](t, ·)∥2L2(0,1) + ∥[s− sn](t, ·)∥2L2(0,1)

]
+ 2∥[v − vn](t, ·)∥2L2(0,1) + 2∥[γ − γn](t, ·)∥2L2(0,1).

(4.8)

Step 3: by combining (4.7) and (4.8) and pointing out that ∥[i − in](t, ·)∥2L2(0,1) ≤ 2
(
∥[v −

vn](t, ·)∥2L2(0,1) + ∥[s− sn](t, ·)∥2L2(0,1)

)
we get

d

dt

[
∥[s− sn](t, ·)∥2L2(0,1) + ∥[v − vn](t, ·)∥2L2(0,1)

]
≤ ∥[βW − βnWGn ](t, ·, ·)∥2L2([0,1]2) + 2∥[γ − γn](t, ·)∥2L2(0,1)

+ ∥[s− sn](t, ·)∥2L2(0,1)

[
3∥β∥∞∥W (t, ·, ·)∥L2([0,1]2) + ∥γ∥∞ + 1

]
+ ∥[v − vn](t, ·)∥2L2(0,1)

[
2∥β∥∞∥W (t, ·, ·)∥L2([0,1]2) + ∥γ∥∞ + 2

]
.

Owing to Grönwall Lemma and to the identities i = v − s, in = vn − sn, r = 1 − v, rn = 1 − vn we
eventually arrive at (4.1). □

4.1.1. Conclusion of the proof of Theorem 1.4 (Case 1). In view of Lemma 4.1, to establish Theo-
rem 1.4 (Case 1) we are left to show that the right hand side of (4.1) converges to 0 as n → +∞
uniformly in t ∈ [0, T ]. Owing to Lemma 2.6, we get for the initial data

lim
n→+∞

∥s0 − sn0∥22 = 0, lim
n→+∞

∥i0 − in0∥22 = 0, lim
n→+∞

∥r0 − rn0 ∥22 = 0 . (4.9)

Arguing analogously as in (3.22), we obtain

∥βn(t, ·)∥L2(0,1) ≤ ∥β(t, ·)∥L2(0,1), ∥γn(t, ·)∥L2(0,1) ≤ ∥γ(t, ·)∥L2(0,1) for a.e. t ∈ [0, T ] . (4.10)

Using again (2.9) from Lemma 2.6, we get

lim
n→+∞

∥β(t, ·)− βn(t, ·)∥2L2(0,1) = 0, lim
n→+∞

∥γ(t, ·)− γn(t, ·)∥2L2(0,1) = 0 for a.e. t ∈ [0, T ]

and by virtue of the Lebesgue’s Dominated Convergence Theorem together with (4.10) this yields

lim
n→+∞

∫ T

0
∥β(t, ·)− βn(t, ·)∥2L2(0,1)dt = 0, lim

n→+∞

∫ T

0
∥γ(s, ·)− γn(s, ·)∥2L2(0,1)ds = 0 . (4.11)

Next, we use Hölder’s inequality and point out that

∥[βW − βnWGn ](t, ·, ·)∥2L2([0,1]2) ≤
(
∥[βW − βnW ](t, ·, ·)∥L2([0,1]2) + ∥[βnW − βnWGn ](t, ·, ·)∥L2([0,1]2)

)2
≤
(
∥[βW − βnW ](t, ·, ·)∥L2([0,1]2) + ∥βn(t, ·)∥L∞(0,1)∥[W −WGn ](t, ·, ·)∥L2[0,1]2

)2
≤ 2∥[βW − βnW ](t, ·, ·)∥2L2([0,1]2) + 2∥βn(t, ·)∥2L∞(0,1)∥[W −WGn ](t, ·, ·)∥2L2([0,1]2) .

(4.12)

We now want to show that

lim
n→+∞

∫ T

0
∥βW (s, ·, ·)− βnW (s, ·, ·)∥2L2([0,1]2)ds︸ ︷︷ ︸

:=Hn

= 0 . (4.13)

To this end, it suffices to show that, for every subsequence {Hnj}j∈N, there is a further subsubsequence
{Hnjh

}h∈N such that limh→+∞Hnjh
= 0. We therefore fix an arbitrary subsubsequence {Hnj}j∈N

and notice that from (3.21) it follows that there is a subsubsequence βnjh (t, x) that converges to
β(t, x) for a.e. (t, x) ∈ [0, T ] × [0, 1]. This implies that Wβnjh (t, x) converges to Wβ(t, x) for a.e.
(t, x) ∈ [0, T ]× [0, 1]. Hence, the bound

|W [βnjh − β]|2 ≤ |W |2[∥βnjh∥∞ + ∥β∥∞]2 ≤ 4|W |2∥β∥2∞ a.e. on [0, T ]× [0, 1]2
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together with the Lebesgue’s Dominated Convergence Theorem yields limh→+∞Hnjh
= 0 and con-

cludes the proof of (4.13). Owing to (2.9), (3.22) and to the Lebesgue’s Dominated Convergence
Theorem we also have

lim
n→+∞

∫ T

0
∥W (s, ·, ·)−WGn(s, ·, ·)∥2L2([0,1]2)ds = 0. (4.14)

Substituting (4.13) and (4.14) into (4.12), using (4.11) and (4.9) and recalling (4.1) we eventually
arrive at (1.24).

4.2. Proof of Theorem 1.4 (Case 2). The proof follows the same argument as for (Case 1) ,so
we only sketch and highlight the points where there are differences. We subtract the first line of (3.6)
from the first line of (1.9) and multiply the result by sign[s − sn]. Next, we integrate in space and
arguing as in Step 1 of the proof of Lemma 4.1 we get

d

dt

∫ 1

0
|s− sn|(t, x)dx ≤

∫ 1

0

∫ 1

0
β(t, y)W (t, x, y)|i− in|(t, y)dydx+

∫ 1

0

∫ 1

0
|βW − βnWGn |(t, x, y)dydx.

(4.15)
From the symmetry property W (t, x, y) =W (t, y, x) we immediately get∫ 1

0

∫ 1

0
β(t, y)W (t, x, y)|i− in|(t, y)dxdy ≤ ∥β∥∞

∫ 1

0
|i− in|(t, y)

∫ 1

0
W (t, x, y)dxdy

(1.13)

≤ Kd∥β∥∞∥[i− in](t, ·)∥L1(0,1).

By plugging the above inequality in (4.15) and then arguing as in the proof of Lemma 4.1 we arrive
at

∥[s− sn](t, ·)∥L1(0,1)+ ∥[i− in](t, ·)∥L1(0,1) + ∥[r − rn](t, ·)∥L1(0,1)

≤D
(
∥s0 − sn0∥1+ ∥i0 − in0∥1+ ∥r0 − rn0 ∥1

)
+D

∫ t

0

(
∥[βW − βnWGn ](s, ·, ·)∥L1([0,1]2) + ∥[γ − γn](s, ·)∥L1(0,1)

)
ds for every t ∈ [0, T ],

for a suitable constant D only depending on T,Kd, ∥β∥∞ and ∥γ∥∞. Hence, we need to ensure
convergence of the right hand side of the above expression. We first point out that

∥[βW − βnWGn ](s, ·, ·)∥L1([0,1]2) ≤ ∥[β − βn]W (s, ·, ·)∥L1([0,1]2) + ∥[βn[W −WGn ](s, ·, ·)∥L1([0,1]2) .

The first term in the above sum can be further estimated by

∥[β − βn]W (s, ·, ·)∥L1([0,1]2) =

∫ 1

0
|β − βn|(t, y)

∫ 1

0
W (s, x, y)dxdy

(1.13)

≤ Kd∥[β − βn](s, ·)∥L1(0,1),

while to control the second term it suffices to note that, by construction, ∥βn∥∞ ≤ ∥β∥∞ and this
implies ∥[βn(W −WGn)](s, ·, ·)∥L1([0,1]2) ≤ ∥β∥∞∥[W −WGn ](s, ·, ·)∥L1([0,1]2).

The rest of the argument is basically the same as for Case 1 in §4.1.1, the main difference is that
to control ∥[W −WGn ](s, ·, ·)∥L1([0,1]2) we use (2.8) from Lemma 2.6 instead of (2.9).

Remark 4.1. As pointed out in Remark 3.1, from the point of view of applications it would be also
reasonable to consider the SIR model (3.19). As a matter of fact, the proof of Theorem 1.4 does extend
to (3.19). More precisely, under the same assumptions as in Theorem 1.4, the solution (sn, in, rn) of
(3.19) satisfies (1.24), provided s, i, r : [0, T ]× [0, 1] → [0, 1] is the distributional solution of

∂ts(t, x) = −s(t, x)
∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy − β(t, x)s(t, x)i(t, x)

∂ti(t, x) = s(t, x)

∫ 1

0
β(t, y)W (t, x, y)i(t, y) dy + β(t, x)s(t, x)i(t, x)− γ(t, x)i(t, x) x ∈ [0, 1]

∂tr(t, x) = γ(t, x)i(t, x)

coupled with the initial condition (1.10).



20 B. AYUSO DE DIOS, S. DOVETTA, AND L.V. SPINOLO

5. Random approximation: convergence analysis of the random samplings

In this section we present the convergence analysis for the random approximation as stated in
Theorem 1.5.

The proof is inspired by the argument used in [Med19] for Kuramoto systems. In short, at each
step of the approximation, we will introduce an auxiliary deterministic SIR system on an averaged
graph and split the total error of the approximation in two components: a random error (between
the original random model and the auxiliary averaged one) and a deterministic error (between the
averaged model and the limit one).

The exposition in §5 is organized as follows. In §5.1 we review some preliminary probability results.
In §5.2 we pass from the random to the averaged model. The proof of Theorem 1.5 is carried out in
§5.3 for Case 1 and in §5.4 for Case 2.

5.1. Preliminary results. We begin by stating (without proof) three classical results in Probability
Theory. The first one is the Borel–Cantelli Lemma (see for instance [Cin11, Chapter 3]).

Lemma 5.1 (Borel-Cantelli). Let {En}n∈N be a sequence of events in a probability space (Ω,F ,P) and
set E := lim supn→+∞ En =

⋂∞
k=1

⋃
n≥k En. If

∑
n∈N P(En) <∞, then P (E) = 0.

The second tool is Chebyshev’s inequality: let X be a random variable on a probability space
(Ω,F ,P) with bounded second moment. Then,

P (|X − EX| ≥ t) ≤ Var(X)

t2
for every t > 0, (5.1)

where Var(X) := E
((
X − E(X)

)2)
= E(X2)− E(X)2.

The third tool is Hoeffding’s inequality: let X1, . . . , Xm be independent randon variables on a
probability space (Ω,F ,P) such that a ≤ Xi ≤ b almost surely for every i = 1, . . . ,m, for some
a, b ∈ R. Then, for every t > 0 it holds

P

(
m∑
i=1

Xi −
m∑
i=1

E(Xi) ≥ t

)
≤ exp

[
− 2t2

m(b− a)2

]
, for every t > 0,

P

(∣∣∣∣∣ 1m
m∑
i=1

Xi −
1

m

m∑
i=1

E(Xi)

∣∣∣∣∣ ≥ t

)
≤ exp

[
− 2mt2

(b− a)2

]
for every t > 0.

(5.2)

We now recall that, for un as in (1.8), the L2 and L1 discrete norms are defined by

∥un∥2 =

 1

n

n∑
j=1

|unj |2
1/2

, ∥un∥1 =
1

n

n∑
j=1

|unj |, (5.3)

and the discrete Hölder’s inequality reads

n∑
i=1

xiyi ≤

(
n∑

i=1

x2i

)1/2( n∑
i=1

y2i

)1/2

for every x1, . . . , xn, y1, . . . , yn ∈ R. (5.4)

Furthermore, note that, adapting the argument given in Lemma 2.2 to prove (1.5), if An
jk is the

random variable (1.26) and (sn, in, rn) is the solution of the Cauchy problem (1.1), (1.3), written
according to the notation (1.8), then

0 ≤ snj , i
n
j , r

n
j ≤ 1, snj + inj + rnj = 1 almost surely and for a.e. (t, x) ∈ [0, T ]× [0, 1]. (5.5)

5.2. From a random to a deterministic model: the SIR system on the averaged graph.
For any given n ∈ N and starting from the sparse W -random graph Gn = nαG(n,W, n−α) (or Gn =
G(n,W )) we consider the averaged graph, denoted by Ḡn, defined by setting

Ān
jk := E(An

jk)
(1.26)
= nα < Ŵn >Inj ×Ink

, where Ŵn = min{1, n−αW} . (5.6)
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Using always the notation (1.8) we denote by (s̄n, īn, r̄n) the solution of the SIR system on Ḡn

ds̄nj (t)

dt
= −s̄nj (t)

1

n

n∑
k=1

βnk (t)Ā
n
jk ī

n
k(t),

dīnj (t)

dt
= s̄nj (t)

1

n

n∑
k=1

βnk (t)Ā
n
jk ī

n
k(t)− γnj (t)̄i

n
j (t) j = 1, . . . , n,

dr̄nj (t)

dt
= γnj (t)̄i

n
j (t) ,

(5.7)

coupled with the initial conditions (1.3). Note that the coefficients βnj and γnj and the initial data

snj,0, i
n
j,0, r

n
j,0 are as in (1.23). Note that the above system (5.7) is indeed a deterministic approximation

to (1.9).
From the definition of the averaged graph Ḡn, and depending on the regularity of W , we can derive

the following estimates that will be useful for our analysis:

• Case 1: : if W ∈ L2([0, 1]2;R+) then

n∑
j,k=1

[Ān
jk]

2

n2
(5.6)
=

n∑
j,k=1

1

n2

(
n2
∫
Inj

∫
Ink

nαŴn(x, y)dxdy

)2

Jensen
≤

n∑
j,k=1

1

n2
n2
∫
Inj

∫
Ink

[nαŴn(x, y)]2dxdy ≤
n∑

j,k=1

∫
Inj

∫
Ink

[W (x, y)]2dxdy = ∥W∥22 ;

(5.8)

• Case 2: : if W ∈ L1([0, 1]2;R+) satisfies (1.30) then

1

n

n∑
j=1

Ān
jk

(5.6)
=

1

n

n∑
j=1

nα < Ŵn >Inj ×Ink
≤ 1

n

n∑
j=1

< W >Inj ×Ink
=

1

n

n∑
j=1

n2
∫
Inj

∫
Ink

W (x, y)dxdy

= n

∫
Inj

∫ 1

0
W (x, y)dxdy

(1.30)

≤ Ka .

(5.9)

Note furthermore that, by construction,

E(Ān
jk −An

jk)
(5.6)
= 0. (5.10)

5.3. Proof of Theorem 1.5 (Case 1). In what follows we always assume W ∈ L2([0, 1]2;R+).
We start by proving the following lemma, which provides an estimate (with probability one) on
the difference between the random approximation (sn, in, rn) and the deterministic approximation
(s̄n, īn, r̄n) solution of the associated averaged model.

Lemma 5.2. Under the same assumptions as in the statement of Theorem 1.5 (Case 1), let s̄n, īn, r̄n :
[0, T ]× [0, 1] → R be the solution of the Cauchy problem (5.7), (1.3). Then

lim
n→+∞

[
∥[sn − s̄n](t, ·)∥L2(0,1) + ∥[in − īn](t, ·)∥L2(0,1) + ∥[rn − r̄n](t, ·)∥L2(0,1)

]
= 0 (5.11)

P-almost surely and for a.e. t ∈ [0, T ].

Proof. We proceed according to the following steps.

Step 1: we subtract (1.1) from (5.7), multiply the result by 2[s̄nj − snj ], use discrete Hölder (5.4) to
obtain

d

dt
[s̄nj − snj ]

2 = −
2[s̄nj − snj ]

2

n

n∑
k=1

βnk Ā
n
jk ī

n
k︸ ︷︷ ︸

≥0

−
2snj [s̄

n
j − snj ]

n

n∑
k=1

βnk

[
Ān

jk ī
n
k −An

jki
n
k

]

(3.20),(5.5)

≤ 2∥β∥∞
|s̄nj − snj |

n

n∑
k=1

Ān
jk |̄ink − ink |+

2snj [s̄
n
j − snj ]

n

n∑
k=1

βnk i
n
k

[
Ān

jk −An
jk

]
(5.4),(5.5)

≤ 2∥β∥∞
|s̄nj − snj |

n

(
n∑

k=1

[Ān
jk]

2

)1/2( n∑
k=1

|̄ink − ink |2
)1/2

+ 2[s̄nj − snj ]Z
n
j (t) ,
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where we have set

Zn
j (t) :=

snj (t)

n

n∑
k=1

βnk (t)i
n
k(t)

[
Ān

jk −An
jk

]
. (5.12)

Hence, summing over all nodes and using the discrete Hölder Inequality (5.4), we have

d

dt

n∑
j=1

[s̄nj − snj ]
2 ≤ 2∥β∥∞

(
n∑

k=1

|̄ink − ink |2
)1/2 n∑

j=1

|s̄nj − snj |

(
n∑

k=1

[Ān
jk]

2

n2

)1/2

+ 2
n∑

j=1

[s̄nj − snj ]Z
n
j

(5.4)

≤ 2∥β∥∞

(
n∑

k=1

|̄ink − ink |2
)1/2

 n∑
j=1

|s̄nj − snj |2
1/2 n∑

j,k=1

[Ān
jk]

2

n2

1/2

︸ ︷︷ ︸
≤∥W∥2 by (5.8)

+2

 n∑
j=1

[s̄nj − snj ]
2

1/2 n∑
j=1

(Zn
j )

2

1/2

Young
≤ ∥β∥∞∥W∥2

n∑
j=1

|̄inj − inj |2 + ∥β∥∞
[
∥W∥2 + 1

] n∑
j=1

|s̄nj − snj |2 +
n∑

j=1

(Zn
j )

2 .

(5.13)

Next, we use an argument similar to the one in the proof of Proposition 1.2 in §3.1. We sum the first
two equations in (1.1), subtract it from the sum of the first two equations in (5.7) and set v̄nj := s̄nj + ī

n
j ,

vnj := snj + inj to get

d

dt
[v̄nj − vnj ] = −γnj [v̄nj − vnj ] + γnj [s̄

n
j − snj ] . (5.14)

Multiplying the above equation by 2[v̄nj − vnj ] we find

d

dt
[v̄nj − vnj ]

2 = − 2γnj [v̄
n
j − vnj ]

2︸ ︷︷ ︸
≥0

+2γnj [s̄
n
j − snj ][v̄

n
j − vnj ]

(3.20),Young

≤ ∥γ∥∞
[
[s̄nj − snj ]

2 + [v̄nj − vnj ]
2
]
,

which in turn entails

d

dt

n∑
j=1

[v̄nj − vnj ]
2 ≤ ∥γ∥∞

 n∑
j=1

[s̄nj − snj ]
2 +

n∑
j=1

[v̄nj − vnj ]
2

 . (5.15)

Step 2: we combine the estimates (5.13) and (5.15), and note that

n∑
k=1

|̄ink − ink |2 ≤ 2
n∑

k=1

|v̄nk − vnk |2 + 2
n∑

k=1

|s̄nk − snk |2 .

Recalling now the expression of the L2 norm (5.3) and applying Grönwall Lemma, we eventually arrive
at

∥[v̄n − vn](t, ·)∥2L2(0,1) + ∥[s̄n − sn](t, ·)∥2L2(0,1)

≤ exp[B̄t]
1

n

∫ t

0
exp[−B̄τ ]

n∑
j=1

(Zn
j )

2(τ)dτ almost surely and for every t ∈ [0, T ],

(5.16)

for a suitable constant B̄ only depending on ∥β∥∞, ∥γ∥∞ and ∥W∥2. Owing to the equalities v̄nj :=

s̄nj + īnj , v
n
j := snj + inj , r̄

n
j = 1− v̄nj , r

n
j = 1− vnj , to establish (5.11) it suffices to show that the right

hand side of (5.16) vanishes in the n→ +∞ limit, almost surely. To this end we notice that

1

n

∫ T

0
exp[−B̄s]

n∑
j=1

(Zn
j )

2(s)ds
(5.12)
=

1

n3

n∑
j=1

n∑
k=1

|Ān
jk −An

jk|2
∫ T

0
exp[−B̄τ ][snj (τ)]2[βnk ink ]2(τ)dτ

+
2

n3

n∑
j=1

n∑
k,ℓ=1
k ̸=ℓ

(Ān
jk −An

jk)(Ā
n
jℓ −An

jℓ)

∫ T

0
[snj (τ)]

2[βnk i
n
kβ

n
ℓ i

n
ℓ ](τ) exp[−B̄τ ]dτ .

(5.17)
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To control the first term in the above sum, we point out that almost surely we have

0 ≤ 1

n3

∫ T

0
exp[−B̄τ ]

n∑
j=1

[snj (τ)]
2
[ n∑
k=1

[βnk i
n
k ]

2(τ)|Ān
jk −An

jk|2
]
dτ

(5.5),(3.20)

≤ ∥β∥∞
1

n3

n∑
j,k=1

|Ān
jk −An

jk|2
∫ T

0
exp[−B̄τ ]dτ.

Note that {|Ān
jk − An

jk|2}j,k=1,...,n are independent random variables and, thanks to (1.26) and (5.6),
satisfy

0 ≤ |Ān
jk −An

jk|2 ≤ n2α almost surely

together with

E(|Ān
jk −An

jk|2) = E([An
jk]

2)− [E(An
jk)]

2 (1.26)
= n2α < Ŵn >Inj ×Inj

[1− < Ŵn >Inj ×Inj
] ≤ n2α. (5.18)

Hoeffding’s inequality (5.2) then yields

P

 n∑
j,k=1

|Ān
jk −An

jk|2 −
n∑

j,k=1

E(|Ān
jk −An

jk|2) ≥ t

 ≤ exp

(
−2

[
t

n2α+1

]2)
. (5.19)

Setting t := nβ with β ∈ ]1 + 2α, 3[ in (5.19), we apply Borel-Cantelli Lemma to the event

En :=


n∑

j,k=1

|Ān
jk −An

jk|2 ≥
n∑

j,k=1

E(|Ān
jk −An

jk|2) + nβ

 ,

to obtain

lim
n→+∞

n−3
n∑

j,k=1

|Ān
jk −An

jk|2 ≤ lim
n→+∞

n−3
n∑

j,k=1

E(|Ān
jk −An

jk|2) + lim
n→+∞

nβ−3

(5.18)

≤ lim
n→+∞

n2α−1 + lim
n→+∞

nβ−3 = 0 almost surely.

We now turn our attention to the second term in (5.17). We first observe that, owing to (5.5) and
(3.20), we have

0 ≤
∫ T

0
[snj (τ)]

2[βnk i
n
kβ

n
ℓ i

n
ℓ ](τ) exp[−B̄τ ]dτ ≤ ∥β∥∞

∫ T

0
exp[−B̄τ ]dτ almost surely.

Next, notice that for k ̸= ℓ the random variables Ān
jk − An

jk and Ān
jℓ − An

jℓ are independent, which
together with the linearity of the expectation implies

E

 n∑
j=1

n∑
k,ℓ=1,k ̸=ℓ

(Ān
jk −An

jk)(Ā
n
jℓ −An

jℓ)

 =
n∑

j=1

n∑
k,ℓ=1,k ̸=ℓ

E
(
Ān

jk −An
jk

)
E
(
Ān

jℓ −An
jℓ

) (5.10)
= 0 .

Hence, Chebyshev’s inequality (5.1) yields

P

 n∑
j=1

n∑
k,ℓ=1,k ̸=ℓ

(Ān
jk −An

jk)(Ā
n
jℓ −An

jℓ) ≥ t

 ≤ 1

t2
E

 n∑
j=1

n∑
k,ℓ=1,k ̸=ℓ

(Ān
jk −An

jk)(Ā
n
jℓ −An

jℓ)

2 .

(5.20)
The linearity of the expectation allows us to write

E

 n∑
j=1

n∑
k,ℓ=1k ̸=ℓ

[Ān
jk −An

jk][Ā
n
jℓ −An

jℓ]

2 =

n∑
j=1

n∑
k,ℓ=1
k ̸=ℓ

E([Ān
jk −An

jk]
2[Ān

jℓ −An
jℓ]

2)

+ 2
n∑

i,j=1

n∑
k,ℓ,h,m=1
k,ℓ,h,m∈I

E([Ān
jk −An

jk][Ā
n
jℓ −An

jℓ][Ā
n
ih −An

ih][Ā
n
im −An

jm])
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with the set of indices I :=
{
k, ℓ, h,m = 1, . . . , n : k ̸= ℓ, h ̸= m, [k ̸= h ∨ ℓ ̸= m] ∧ [k ̸= m ∨ ℓ ̸= h]

}
.

Observe that the independence of Ān
jk − An

jk and (5.10) guarantee that all the terms in the second
sum above vanish. Precisely, if k ̸= ℓ, h ̸= m, k ̸= h, k ̸= m

E((Ān
jk−An

jk)(Ā
n
jℓ−An

jℓ)(Ā
n
ih−An

ih)(Ā
n
im−An

im))=E(Ān
jk−An

jk)E(Ān
jℓ−An

jℓ)E(Ān
ih−An

ih)E(Ān
im−An

im)
(5.10)
= 0,

and arguing similarly one finds

E((Ān
jk −An

jk)(Ā
n
jℓ −An

jℓ)(Ā
n
ih −An

ih)(Ā
n
im −An

im)) = 0 for every (k, ℓ, h,m) ∈ I. (5.21)

As for the terms in the first sum, since k ̸= ℓ, the independence together with (5.18) gives

E([Ān
jk −An

jk]
2[Ān

jℓ −An
jℓ]

2) = E([Ān
jk −An

jk]
2)E([Ān

jℓ −An
jℓ]

2)
(5.18)

≤ n4α. (5.22)

Plugging (5.22) and (5.21) into (5.20) we arrive at

P

n−3
n∑

j=1

n∑
k,ℓ=1,k ̸=ℓ

|Ān
jk −An

jk||Ān
jℓ −An

jℓ| ≥ t

 ≤ 1

n6t2
n4α+3 =

1

t2
n4α−3 .

By setting t := nσ, with σ ∈ ]2(α − 1), 0[, the right hand side of the above expression boils down to
n4α−3−2σ. Then, since 4α− 3− 2σ < −1 we can apply the Borel-Cantelli Lemma and conclude that

lim
n→+∞

n−3
n∑

j=1

n∑
k,ℓ=1,k ̸=ℓ

|Ān
jk −An

jk||Ān
jℓ −An

jℓ| ≤ lim
n→+∞

nσ = 0 almost surely.

This eventually implies that the right hand side of (5.16) vanishes almost surely in the n→ +∞ limit
and completes the proof of Lemma 5.2. □

We consider the splitting of the error

s− sn = (s− s̄n) + (s̄n − sn) i− in = (i− īn) + (̄in − in) r − rn = (r − r̄n) + (r̄n − rn) .

Hence, by virtue of triangle inequality and Lemma 5.2, to conclude the proof of Theorem 1.5 it suffices
to show that

lim
n→+∞

[
∥[s− s̄n](t, ·)∥L2(0,1) + ∥[i− īn](t, ·)∥L2(0,1) + ∥[r − r̄n](t, ·)∥L2(0,1)

]
= 0 for every t ∈ [0, T ].

Observe that (s̄n, īn, r̄n) is a deterministic approximation (with a particular sampling of the graphon
W ) of (1.9) and in particular the proof of Lemma 4.1 works for (s̄n, īn, r̄n) provided we replaceWGn by
the step graphon WḠn

of the averaged graph Ḡn (with (Ājk)j,k=1,...,n defined in (5.6))) and guarantee

that WḠn
converges to W in the L2-norm (corresponding to (4.14) in §4.1.1). Therefore, arguing

exactly as in §4.1.1, the only point we need to show is that

lim
n→+∞

∥W −WḠn
∥2 = 0 . (5.23)

Now recall Ḡn is the averaged graph of the scaled sparse W -random graph defined through (1.26) and
based on the trimmed graphon with target edge density nα. We now introduce an auxiliary graph,

denoted by G̃n, defined through the adjacency matrix as in (1.22), i.e., the L2-orthogonal projection
of W on the space of piecewise constant functions on [0, 1]2. Then, considering the associated step-
graphons, the standard triangle inequality gives

∥W −WḠn
∥2 ≤ ∥W −WG̃n

∥2 + ∥WG̃n
−WḠn

∥2 .

Owing to estimate (2.9) from Lemma 2.6, the first term in the above sum vanishes in the n → +∞
limit. To control the limit of the second term, Jensen’s inequality directly gives

∥WG̃n
−WḠn

∥2 =
n∑

j,k=1

| < W >Inj ×Ink
−nα < Ŵn >Inj ×Ink

|2

n2

Jensen
≤

n∑
j,k=1

∫∫
Inj ×Ink

[
W −min{nα,W}

]2
(x, y)dxdy=

∫∫
[0,1]2

[
W −min{nα,W}

]2
(x, y)dxdy .

As limn→+∞
[
W −min{nα,W}

]2
(x, y) = 0 for a.e. (x, y) ∈ [0, 1]2 and |W −min{nα,W}| ≤ 2W on

[0, 1]2, then Lebesgue’s Dominated Convergence Theorem yields (5.23) and this concludes the proof
of Theorem 1.5 (Case 1).
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5.4. Proof of Theorem 1.5 (Case 2). In this subsection we assume W ∈ L1([0, 1];R+) to satisfy
(1.30). The proof in this case follows the same lines as that of Case 1 above, so we only provide a
sketch focusing on the points where the arguments are different. We first show that

lim
n→+∞

[
∥[sn − s̄n](t, ·)∥L1(0,1) + ∥[in − īn](t, ·)∥L1(0,1) + ∥[rn − r̄n](t, ·)∥L1(0,1)

]
=0 (5.24)

P-almost surely and for a.e. t ∈ [0, T ]. To this end, we subtract (1.1) from (5.7), multiply the result
by sign(s̄nj − snj ) and get

d

dt
|s̄nj − snj | ≤ −

|s̄nj − snj |
n

n∑
k=1

βnk Ā
n
jk ī

n
k︸ ︷︷ ︸

≥0

+
|snj |
n

n∑
k=1

βnk Ā
n
jk |̄ink − ink |+

sign[s̄nj − snj ]sj

n

n∑
k=1

βnk i
n
k(Ā

n
jk −An

jk)

(5.5),(3.20)

≤ ∥β∥∞
n

n∑
k=1

Ān
jk |̄ink − ink |+Hn

j ,

where we have set

Hn
j (t) :=

sign[s̄nj − snj ]s
n
j

n

n∑
k=1

βnk i
n
k(Ā

n
jk −An

jk) .

This implies

d

dt

n∑
j=1

|s̄nj − snj | ≤
∥β∥∞
n

n∑
k=1

|̄ink − ink |
n∑

j=1

Ān
jk +

n∑
j=1

Hn
j

(5.9)

≤ Ka∥β∥∞
n∑

k=1

|̄ink − ink |+
n∑

j=1

Hn
j . (5.25)

We then set v̄nj := s̄nj + īnj , v
n
j := snj + inj and point out that owing to (5.14) we have

d

dt
|v̄nj − vnj | ≤ − γnj |v̄nj − vnj |︸ ︷︷ ︸

≥0

+γnj |s̄nj − snj | ,

so that summing the above expression over j, recalling (5.25), using the inequality |̄inj − inj | ≤ |v̄nj −
vnj |+ |s̄nj − snj |, the definition of the L1 norm as in (5.3) and applying Grönwall’s Lemma we arrive at

∥[sn − s̄n](t, ·)∥L1(0,1) + ∥[in − īn](t, ·)∥L1(0,1) ≤
1

n
exp[D̄t]

∫ T

0
exp[−D̄τ ]

n∑
j=1

Hn
j (τ)dτ

=
1

n2

n∑
j,k=1

(Ān
jk −An

jk) exp[D̄t]

∫ T

0
exp[−D̄τ ]sign[s̄nj − snj ][s

n
j β

n
k i

n
k ](τ)dτ almost surely.

(5.26)

In the above expression D̄ is a suitable constant depending only on ∥β∥∞, ∥γ∥∞ and Ka. To control
the right hand side of (5.26), note that∣∣∣∣∫ T

0
exp[−D̄τ ]sign[s̄nj − snj ][s

n
j β

n
k i

n
k ](τ)dτ

∣∣∣∣ (5.5),(3.20)≤ ∥β∥∞
∫ T

0
exp[−D̄τ ]dτ almost surely. (5.27)

Also,

E

 n∑
j,k=1

(Ān
jk −An

jk)

 =
n∑

j,k=1

E(Ān
jk −An

jk)
(5.10)
= 0

and
nα[< Ŵn >Inj ×Ink

−1] ≤ Ān
jk −An

jk ≤ nα < Ŵn >Inj ×Ink
.

Hence, Hoeffding’s inequality (5.2) yields

P

 1

n2

∣∣∣∣∣∣
n∑

j,k=1

(Ān
jk −An

jk)

∣∣∣∣∣∣ ≥ t

 ≤ exp

(
−2

[
n2t

n1+α

]2)
.

By choosing now t = nη with η ∈ ]α− 1, 0[ and applying Borel-Cantelli Lemma we obtain

lim
n→+∞

1

n2

∣∣∣∣∣∣
n∑

j,k=1

(Ān
jk −An

jk)

∣∣∣∣∣∣ ≤ lim
n→+∞

nη = 0 almost surely.
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Coupling with (5.27) implies that the right hand side of (5.26) vanishes almost surely in the n→ +∞
limit, establishing (5.24). The rest of the proof of Theorem 1.5 (Case 2) follows mutatis mutandis as
in the proof of Theorem 1.5 (Case 1) and is therefore omitted.
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dependent random variables. S.D. is supported by the INdAM GNAMPA 2023 Project Modelli non-
lineari in presenza di interazioni puntuali and by the PRIN 2022 Project E53D23005450006. L.V.S.
is a member of the GNAMPA group of INDAM, of the PRIN 2020 Project 20204NT8W4, PRIN 2022
Project 2022YXWSLR, PRIN 2022 PNRR Project P2022XJ9SX, and of the CNR FOE 2022 Project
STRIVE.

Appendix A. Notation

For the reader’s convenience we collect here the main notation used in the present paper.

• R+ := [0,+∞[
• a.e., for a.e x: almost everywhere, for almost every x, with respect to the standard Lebesgue
measure

• 1E : the characteristic function of the set E
• ∥ · ∥□ : the cut norm defined by (1.15)
• δ□: the cut metric defined by (B.1)
• WG : a step-graphon associated to the undirected graph G as in (1.7)
• Inj :: see (1.6)

• < u >Inj
, < U >Inj ×Ink

: see (1.21)

• G(n,W ): the sparse W -random graph as in (1.27)
• G(n,W, n−α): the sparse W -random graph as in (1.28)
• nαG(n,W, n−α): the scaled sparse W -random graph as in (1.26)
• Kd: the constant in (1.13)
• K0: the constant in (1.17)
• K1: the constant in (1.18)
• Ka: the constant in (1.30)
• C∞

c (Ω): the set of infinitely differentiable, compactly supported functions on the open set Ω
• C0([0, T ]): the Banach space of continuous functions defined on the interval [0, T ], endowed
with the norm

∥u∥C0 := max
t∈[0,T ]

|u(t)|.

Appendix B. Graphons and converging graph sequences

In this appendix we briefly overview some notions and results in the theory of graphs and graphons
that we need in the present paper. The exposition mainly follows the work [BCCZ19].

B.1. Graphons and cut distance.

Definition B.1. A graphon is a summable function W : [0, 1]2 → R satisfying W (x, y) =W (y, x) for
a.e. x, y ∈ [0, 1]. In the following we denote by W the set of graphons.

Given a weighted undirected graph Gn with n vertices and adjacency matrix (Ajk)j,k=1,...,n, we can
define a step-graphon WGn associated to Gn by using formula (1.7) (see also Figure 1).

As anticipated in the Introduction, the theory of graphons makes crucial use of the cut norm
defined by (1.15). The notion of cut norm was first introduced by Frieze and Kannan [FK99], and
its key importance for graphons has been recently highlighted in a series of papers (see [BCCZ18,
BCCZ19, BCLSV06, BCLSV08, BCLSV12] and the references therein). In particular, as pointed out
in [BCLSV08] the cut norm is intimately connected with the notion of left convergence for graph
sequences (see Remark B.1 below for a very brief discussion of this point and §B.2 for some comments
about the analytic properties of the cut norm).
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From the graph theory viewpoint, a serious drawback of the notion of cut norm is the following.
Assume G and G′ are the very same graph, but have different vertex labeling. Then in general
the adjacency matrices of G and G′ are not the same and hence owing to (1.7) and (1.15) we have
∥WG −WG′∥□ ̸= 0. A way out this issue is the notion of cut distance. To define it, we first introduce
some notation. First, we recall that a map ϕ : [0, 1] → [0, 1] is measure–preserving if, for every
measurable set A ⊆ [0, 1], the set ϕ−1(A) is also measurable and furthermore

∣∣ϕ−1(A)
∣∣ = |ϕ(A)|.

Given a graphon W and a measure preserving map ϕ, we set W ϕ(x, y) := W (ϕ(x), ϕ(y)), for every
x, y ∈ [0, 1].

Definition B.2. For every U,W ∈ W, the cut distance δ□ between U and W is defined as

δ□(U,W ) := inf
ϕ

∥U −W ϕ∥□ (B.1)

where the infimum is taken over all measure preserving maps ϕ : [0, 1] → [0, 1].

Note that, strictly speaking, δ□ is only a pseudometric and not a distance since the equality
δ□(U,W ) = 0 does not imply that U ≡ W . As a matter of fact, δ□(W,W

ϕ) = 0, for every fixed
W ∈ W and any given measure preserving map ϕ. For this reason, we will always tacitly identify two
graphons with zero cut distance.

Remark B.1 (Cut distance and left convergence of graph sequences). Let us briefly recall the link
between the cut metric and the so called left convergence of graph sequences, redirecting to [BCLSV08]
for an extended discussion. Very loosely speaking, a sequence of graphs {Gn}n∈N is left convergent
if the local structure of the graphs somehow stabilizes in the n → +∞ limit, in the sense that the
(suitably normalized) number of copies in Gn of any given finite subgraph tends to a limit value
as n → +∞ (see [BCLSV08] for the rigorous definition). The connection between left convergence
and cut distance is unveiled by [BCLSV08, Theorem 3.8]: if {Gn}n∈N is a sequence of undirected
graphs with uniformly bounded adjacency matrices, then {Gn}n∈N is left convergent if and only if
limn→+∞ δ□(WGn ,W ) = 0, for some bounded graphon W .

B.2. Analytic properties of the cut distance. We refer to [Jan14] for a detailed discussion of the
cut norm from the point of view of mathematical analysis. Since we have used it in the paper, we
recall the relation from [Jan14, equation (4.1)]

∥W∥□ ≤ sup
∥f∥∞,∥g∥∞≤1

∣∣∣∣∣
∫
[0,1]2

W (x, y)f(x)g(y) dxdy

∣∣∣∣∣ ≤ 4∥W∥□. (B.2)

where the supremum is taken over all real–valued, measurable functions f, g defined on [0, 1].
It is also interesting to point out that convergence in the cut norm is in between strong and weak

convergence in L1([0, 1]2). Indeed, the cut norm induces a weaker topology than the strong one,
see [Lov12, Section 8.3]. On the other hand, one can show that convergence in the cut norm is
strictly stronger than the weak convergence, see [Jan14, Appendix F]. Loosely speaking, the reason
why convergence in the cut norm is strictly stronger than weak convergence is the following. Weak
convergence in L1([0, 1]2) can be characterized as convergence tested against characteristic functions
in the form 1S×T , with S, T ⊆ [0, 1]. Convergence in the cut norm requires that this convergence is
uniform with respect to S and T .

B.3. Compactness results for dense and sparse graph sequences. We now quote [BCCZ19,
Theorem 2.13] (see also [LS07, Theorem 5.1] for the case p = ∞).

Theorem B.3. Assume 1 < p ≤ ∞ and C > 0 and consider a sequence of graphons {Wn}n∈N ⊂ W
such that ∥Wn∥p ≤ C for every n ∈ N. Then there is W ∈ W such that, up to subsequences,

lim
n→+∞

δ□(Wn,W ) = 0.

The analogous of Theorem B.3 for p = 1 is false in general, but compactness of bounded L1 balls
can be recovered by adding a uniform integrability assumption, see [BCCZ19, Theorem C.7]. We now
recall the following fundamental definitions.

Definition B.4. A sequence of undirected graphs {Gn}n∈N is said to be dense or sparse if

lim inf
n→+∞

∥WGn∥1 > 0 or lim
n→+∞

∥WGn∥1 = 0,

respectively. In the previous expression, WGn is the step graphon defined as in (1.7).
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The quantity ∥WGn∥1 essentially represents the edge density of the graph. According to the previous
definition, if Gn is a sequence of dense simple graphs then the number of edges is O(n2) as n is large
enough, whereas if Gn is a sequence of sparse simple graphs then the number of edges is o(n2) as
n→ +∞. Given a sequence of dense graphs {Gn}n∈N, by applying Theorem B.3 and its analogue in the
case p = 1 [BCCZ19, Theorem C.7] to the sequence {WGn}n∈N we obtain useful compactness results.
The same results apply to sequences of sparse graphs, but in this case the associated sequence of
graphons converges to the uninformative limitW ≡ 0. As a matter of fact, however, most of the graph
sequences relevant for real-world applications are sparse, see the introduction to [BCCZ19]. As pointed
out in [BCCZ19], a way to circumvent this obstruction and extract information on the asymptotic
behavior of sparse sequences is to normalize Gn and consider the sequence {Gn/∥WGn∥1}n∈N. Before
discussing a selection of the main results in [BCCZ19] we have to introduce some further notation.

Definition B.5 ((C, η) − Lp upper regular graph). Fix C, η > 0. Given p ∈ ]1,+∞[ and a graph G
with |V (G)| = n ≥ η−1 vertices and weighted adjacency matrix A = (Akℓ)

n
k,ℓ=1, we say that G is a

(C, η) − Lp upper regular graph if the following holds. Let P := {V1, . . . , Vm} be any partition of
V (G) into disjoint sets such that |Vj | ≥ ηn for every j = 1, . . . , m. Then

m∑
i,j=1

|Vi||Vj |
n2

∣∣∣∣∣∣
∑

k∈Vi,ℓ∈Vj

Akℓ

|Vi||Vj |

∣∣∣∣∣∣
p

≤ Cp∥WG∥p1. (B.3)

For p = ∞, the definition is analogous: it suffices to replace (B.3) with

max
1≤i,j≤m

∣∣∣∣∣∣
∑

k∈Vi,ℓ∈Vj

Akℓ

|Vi||Vj |

∣∣∣∣∣∣ ≤ C∥WG∥1.

Very loosely speaking, a graph G is (C, η) − Lp upper regular if, whenever its vertices are divided
into a certain number of groups none of which is too small, then averaging the edge weights with
respect to the partition gives a weighted graph with bounded Lp norm. Note furthermore that if p = 1
then equation (B.3) is always satisfied with C = 1, so the definition is only meaningful if p > 1. We
now quote [BCCZ19, Definition 2.7].

Definition B.6. Fix p ∈ ]1,+∞] and assume that {Gn}n∈N is a sequence of sparse graphs such that
|V (Gn)| = n. We say that {Gn}n∈N is a C–upper Lp regular sequence if, for every η > 0, there is
n0 = n0(η) so that Gn is (C + η, η)− upper Lp regular, for every n ≥ n0.

Note that [BCCZ19, Proposition A.1] implies that, if {Gn}n∈N is a C–upper Lp regular sequence of
simple graphs for some p > 1, then the average degree of Gn blows up as n → +∞. The importance
of Definition B.6 is given by the next result [BCCZ19, Theorem 2.8, Proposition 2.10].

Theorem B.7. Fix p ∈ ]1,+∞] and C > 0. Assume that {Gn}n∈N is a C–upper Lp regular sequence
of graphs. Then there is W ∈ W such that ∥W∥p ≤ C and up to subsequences

lim
n→+∞

δ□

(
WGn

∥WGn∥1
,W

)
= 0. (B.4)

Conversely, if {Gn}n∈N is a sequence of graphs such that for some W ∈ W with ∥W∥p < +∞ equa-
tion (B.4) holds true, then {Gn}n∈N is a ∥W∥p–upper Lp regular sequence.

In the case p = 1 the compactness result is still true provided we replace the assumption that
{Gn}n∈N is a C–upper Lp regular sequence of graphs with the assumption that {Gn}n∈N is a uniformly
upper regular sequence, see [BCCZ19, Theorem C.13].

B.3.1. Convergence in the cut metric and convergence in the cut norm. Summing up, cut–metric
convergence provides a convenient framework to discuss the asymptotic properties of sequences of
both dense and sparse large graphs. As a matter of fact, however, one often consider sequences
converging in the cut norm. Although this might sound like a stronger assumption, the following
proposition states that the two conditions are equivalent, up to a relabeling of the vertices. For the
proof we refer to [BCLSV08, Lemma 5.3] in the case p = +∞ and [BCCZ19, Proposition 5.2] in the
case 1 < p <∞.
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Proposition B.8. If {Gn}n∈N is a sequence of graphs satisfying the assumptions of either Theorem
B.3 or Theorem B.7, then there are W ∈ W and, for every n, a labeling of the vertices of Gn such that

∥WGn −W∥□ → 0 or

∥∥∥∥ WGn

∥WGn∥1
−W

∥∥∥∥
□

→ 0

as n→ +∞, respectively.

Remark B.2. By combining Theorems B.3–B.7 we can conclude that assumption (1.16) is satisfied by
a large class of sequences of undirected graphs. In particular, owing to Theorem B.3 it is satisfied
up to subsequences and vertex relabelings by any sequence {Gn}n∈N such that ∥WGn∥p is uniformly
bounded. If the sequence {Gn}n∈N is dense, then the limitW we obtain this way is already meaningful.
If the sequence {Gn}n∈N is sparse, then the limit is the uninformative trivial graphonW ≡ 0. However,
Theorem B.7 implies that, in the sparse case, assumption (1.16) is satisfied (up to subsequences and
vertex relabelings) by the normalized sequence {Gn/∥WGn∥1}n∈N provided {Gn}n∈N is C–upper Lp

regular for some C > 0 and p > 1.
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