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Approximate Gibbsian structure in strongly correlated point

fields and generalized Gaussian zero ensembles

Ujan Gangopadhyay∗ Subhroshekhar Ghosh† Kin Aun Tan‡

Abstract

Gibbsian structure in random point fields has been a classical tool for studying their spatial

properties. However, exact Gibbs property is available only in a relatively limited class of models,

and it does not adequately address many random fields with a strongly dependent spatial structure.

In this work, we provide a very general framework for approximate Gibbsian structure for strongly

correlated random point fields, including those with a highly singular spatial structure. These

include processes that exhibit strong spatial rigidity, in particular, a certain one-parameter family

of analytic Gaussian zero point fields, namely the α-GAFs, that are known to demonstrate a wide

range of such spatial behaviour. Our framework entails conditions that may be verified via finite

particle approximations to the process, a phenomenon that we call an approximate Gibbs property.

We show that these enable one to compare the spatial conditional measures in the infinite volume

limit with Gibbs-type densities supported on appropriate singular manifolds, a phenomenon we

refer to as a generalized Gibbs property. Our work provides a general mechanism to rigorously

understand the limiting behaviour of spatial conditioning in strongly correlated point processes

with growing system size. We demonstrate the scope and versatility of our approach by showing

that a generalized Gibbs property holds with a logarithmic pair potential for the α-GAFs for any

value of α. In this vein, we settle in the affirmative an open question regarding the existence of point

processes with any specified level of rigidity. In particular, for the α-GAF zero process, we establish

the level of rigidity to be exactly ⌊ 1

α
⌋, a fortiori demonstrating the phenomenon of spatial tolerance

subject to the local conservation of ⌊ 1

α
⌋ moments. For such processes involving complex, many-

body interactions, our results imply that the local behaviour of the random points still exhibits 2D

Coulomb-type repulsion in the short range. Our techniques can be leveraged to estimate the relative

energies of configurations under local perturbations, with possible implications for dynamics and

stochastic geometry on strongly correlated random point fields.

Keywords: Gibbs property; Quasi-Gibbs property; Random matrix; Random polynomials; Thermo-
dynamics; Equilibrium statistical mechanics; Rigidity phenomena; Gaussian analytic functions; Inter-
acting particle systems; Stochastic geometry.
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1 Introduction

1.1 Random point fields

A random point field Π, also known as a point process, on a locally compact second countable Hausdorff
space Ξ is a random locally finite point configuration on the space Ξ. In other words, a point process
Π is a random variable taking values in the space of locally finite point configurations on the ambient
space Ξ. Random point fields are objects of fundamental interest in a wide range of areas in pure
and applied mathematics, including but not limited to probability theory, statistical physics, spatial
statistics, network science and stochastic geometry; for a comprehensive treatment we refer the reader
to [13, 12].

The most basic model of randomness in stochastic systems is perhaps that of independent random
variables. In the world of random point fields, the canonical model of statistical independence is the
Poisson point process, which is characterized by point counts being independent across disjoint domains
in the ambient space. The model of statistically independent randomness has led to a vast body
of literature spanning several decades. However, some of the most interesting large-scale stochastic
phenomena turn out to be a result of the collaborative behavior of interacting particle systems, which
makes statistically independent models limited in their scope.

1.2 Local conditioning, Gibbs and quasi-Gibbs properties

Incorporating spatial interactions poses significant mathematical challenges in terms of the tractability
of the models. A classical concept that endeavors to locate a tractable structure in spatially dependent
models is the so-called Gibbs property. In the simple setting of a finite point configuration, the Gibbs
property entails that the likelihood of a point set σ (for instance, its probability density with respect to
an appropriate background measure) takes the form of exp(−βH[σ]) for a suitable energy functional H[σ]
and an inverse temperature parameter β. Concretely, the finite volume Gibbs measure on a bounded
domain D ⊂ R

d is given by ([14, 16])

dPD(·) =
1

ZD
exp (−βHD[·]) · dPD(·) , (1)

where PD is the homogeneous Poisson point process on D, ZD is a normalizing constant, and β > 0
is the inverse temperature. A significant class of such energy functionals are characterized by so-called
pairwise interactions; i.e.,

HD[σ] =
∑

{x,y}⊂σ
Ψ(x− y)
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for a potential function Ψ : Rd → R ∪ {∞} with appropriate decay properties. This class includes, in
particular, the well-known Lennard-Jones pair potential from statistical physics. In the present article,
we would not have the occasion to dwell further on the elaborate theory of Gibbsian point processes,
and instead refer the interested reader to the extensive treatments in the classic references [19, 53], and
the excellent survey [14].

An important aspect of the Gibbsian structure is the description of the local conditional behavior of
such processes. This is particularly effective for infinite volume systems, where it is not straightforward
to assign a probability density to a given (infinite) configuration of particles, but the same is much
simpler for its spatial conditionings, where we look at the conditional law of the process on a bounded
domain D given the configuration outside D∁ (the environment). To be more precise, we consider the
conditional distribution ΠD|D∁ of a Gibbsian point process Π restricted to a bounded domain D ⊂ Ξ,

given the configuration Π on D∁. The celebrated Dobrushin-Landau-Ruelle (abbrv. DLR) equations
entail that such conditional distribution is specified by a yet another Gibbs-type density, in this case
assuming the form exp(−βHD[σ]) for a so-called local energy functional HD[·] applied to the full point
configuration σ. To provide an idea of how such local energy functionals may be structured, we content
ourselves here with the setting of a pairwise interaction potential Ψ, where the local energy functional
HD decomposes neatly as a sum of two terms, one capturing the mutual interaction of the points of σ
inside D (denoted by σ|D) and the other comprising of the interactions across the boundary of D i.e.,
between points of σ inside D and points of σ outside D (denoted by σ|D∁). In particular, in this setting
we have

HD[σ] =
∑

x,y∈σ|D

Ψ(|x− y|) +
∑

x∈σ|D; z∈σ
|D∁

Ψ(|x− z|) .

We notice that this immediately leads to a multiplicative decomposition of the conditional density of
ΠD|D∁ of the form ∝ · exp(−βH1[σ|D]) · exp(−βH2[σ|D, σ|D∁ ]). In summary, the spatially conditioned
Gibbs measure has the form

dPD|D∁

[
σ|D
∣∣σ|D∁

]
=

1

ZD(σ|D∁)
· exp

(
−βH1[σ|D]

)
· exp

(
−βH2[σ|D , σ|D∁ ]

)
· dPD(σ|D) , (2)

where PD is the homogeneous Poisson point process on D, ZD(σ|D∁) is a normalizing constant (that
depends on the environment σ|D∁), and β > 0 is the inverse temperature. It remains to note that if
reasonable control on the cross-boundary interaction H2[·, ·] can be obtained, the conditional density
of ΠD|D∁ may be bounded from above and below between constant factors of a density exp(−βH1[·])
that depends solely on the finite point set σ|D inside D, and often has a tractable algebraic form. Such
tractable bounds are of great interest, in particular in the study of stochastic dynamics of such particle
systems ; c.f. [46, 47, 48].

Several difficulties beset the implementation of the broad program outlined above. Most of these
issues straddle both technical and conceptual aspects of these models, are related to problems in rig-
orously formulating Gibbsian concepts for infinite volume systems, and involve delicate questions of
existence/stability of such systems and making concrete sense of the local Gibbs structures. Some of
the difficulties include, but are not limited to, slow decay of the pair potential Ψ (e.g., logarithmic, as
in the case of Coulomb type systems in 2D), and complications that arise when the interactions are not
merely pairwise but are of higher order. For a more detailed account, we refer the reader to [14, 44, 53]
and the references therein.

In order to address these difficulties, Osada [47] introduced the concept of Quasi-Gibbs measures for
point processes. Roughly speaking, it entails that while an exact local Gibbs structure might not be
available in many models, certain consequences of such structure (in particular, inequalities on the local
conditional distributions alluded to earlier) might nonetheless suffice to understand important properties
of such systems. This is formalized in the notion of quasi-Gibbs measures.

The quasi-Gibbs property relaxes the requirement of the classical Gibbs property (c.f. (1),(2)) by
positing that we need not have an exact equality for the spatially conditioned density, but in fact we
have upper and lower bounds on it in terms of classical Gibbs measures (as in the right hand side of
(1)), and it would further suffice to have such comparison inequalities only with respect to slices of the
Poisson process on D that restrict the latter to a fixed number of particles. For a detailed description
of the quasi-Gibbs property, we refer the reader to Appendix F; for an even more general account we
refer to [46] and the expository tract [50].

The quasi-Gibbs structure is employed in [47, 48, 46, 49], among other works, to study interacting
stochastic dynamics on infinite particle systems with logarithmic interaction potentials. This approach
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is successful in understanding the dynamics of a collection of infinitely many interacting Brownian
particles with a family of equilibrium measures that include Ginibre and Airy random point fields and
Dyson’s measures, in spite of the lack of exact Gibbs structure in such models.

1.3 Singularities of conditional measures and rigidity phenomena

In recent years, the local conditional structure of random point fields have been investigated extensively,
and it has been demonstrated that the conditional measure ΠD|D∁ of a point process Π on R

d (with

D ⊂ Rd being a bounded domain) can exhibit a rich variety of singular phenomena. Introduced in [30],
the notion of rigidity phenomena formalizes this behavior. Roughly speaking, the rigidity phenomenon
for a statistic Φ on Π|D as above entails that the value of the random variableΦ(Π|D) is in fact determined
almost surely (abbrv. a.s.) by the point configuration Π|D∁ ; in other words, the random variable Φ(Π|D)
is measurable with respect to Π|D∁ . For a rigorous definition we refer the reader to Definition 2.1.

The possible nature of the rigid statistic can, in principle, be quite arbitrary. A natural class of possible
statistics is provided by various moments of the points in Π|D, and indeed, these turn out to be the
rigid statistics in many natural point processes, as was established in [30] for the Ginibre ensemble and
the zeros of the standard planar Gaussian analytic function. The infinite Ginibre ensemble is the weak
limit of the eigenvalues of non-Hermitian random matrices with independent and identically distributed
(abbrv. i.i.d.) standard complex Gaussian entries. The standard planar Gaussian analytic function

(abbrv. GAF) is the random entire function
∑∞
k=0 ξk

zk√
k!

in the complex variable z, with the coefficients

ξ being i.i.d. standard complex Gaussians ; it is well-known that its zeros form an isometry-invariant
point process on C. For more detailed descriptions of these models, we refer the reader to Appendices B
and C.

In [30], it was shown that for the Ginibre ensemble, the number of points of the process in a bounded
domain D ⊂ C is rigid, i.e., determined almost surely by the configuration of points in D∁. On the
other hand, for the GAF zero ensemble, the rigid statistics are the number as well as the center-of-mass
(i.e., the mean) of the points of the process in D. The investigation of rigidity phenomena for random
point fields has spawned an substantial literature. This entails investigation of rigidity structures in a
wide array point processes that are of interest in probability theory and statistical physics, including
the Dyson sine process [22], the Airy, Bessel and Gamma processes [3], and more generally a wide class
of determinantal point processes [4, 7, 9, 52, 45, 38]. Rigidity phenomena have also been investigated
in more general settings, such as stationary stochastic processes and random Schrodinger or stochastic
Airy operators [5, 42, 41, 33]. Related phenomena, such as appearance of forbidden regions under
spatial conditioning [29, 28], maximal rigidity [27, 39], the relationship between rigidity phenomena and
Palm measures [23, 51, 6], applications to percolation [25, 37, 32] as well as completeness problems
[22], Coulomb and Riesz gases [10, 18, 43, 17, 44], random measures and stable matchings [40, 2] and
directional effects in rigidity and dependency phenomena [1, 31] have attracted attention. Investigation
of DLR equations, especially in the context of Dyson-type processes, has been undertaken in [15, 17]; see
also [8] for spatial conditioning in general determinantal processes and its connections to the Lyons-Peres
completeness conjecture. For an overview of rigidity phenomena and its interfaces to wider themes in
statistical mechanics, we refer the reader to [26, 21, 11, 44].

It was also established in [30] that the local particle number for the Ginibre ensemble or the local
number and local center of mass for the GAF zero ensemble, form a complete set of rigid statistics for
the respective point processes. E.g., if N is the number of Ginibre points in a disk D, the conditional
distribution ΠD|D∁ is mutually absolutely continuous with respect to the Lebesgue measure on DN .
A similar result holds for the GAF zero ensemble, where given the number N and the sum s of the
GAF zeros in D, the conditional distribution ΠD|D∁ is mutually absolutely continuous with respect to

the Lebesgue measure on ΣN,s; with ΣN,s being the set {(z1, . . . , zN) ∈ DN |∑N
i=1 zi = s} ⊂ CN .

The latter class of phenomena is referred to as tolerance. In [24], a one-parameter family of general
Gaussian analytic functions (called α-GAFs) was introduced, which exhibits an increasing number of
rigid moments of the zeros in D as the parameter α varies over R+. For concrete definitions and
statements of these results, we refer the reader to Theorem D.1.

With increasing levels of rigidity, the conditional measure ΠD|D∁ becomes increasingly singular, in
the sense that their support becomes even more restricted and lower dimensional subsets of the ambient
space. The notion of quasi-Gibbs property, however, entails mutual absolute continuity of the local
conditional distribution of the point process with the Poisson process on the same domain (conditioned
on the particle number). It is thus of limited effectiveness in studying point processes with higher
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orders of singularity, where the constraints on local particle configurations are much more than the mere
conservation of their numbers.

1.4 Approximate and Generalized Gibbsianity

In the present work, we put forward a new and more general paradigm of approximate Gibbsian structure
for random point fields, with the objective of mitigating the difficulties outlined above in the context
of point processes with strong spatial singularities. The precise structure of our approach is laid out in
detail in Section 2; herein, we discuss some important features thereof.

First, we proceed to define a notion of generalized Gibbs property that is primarily meant for a system
in the infinite volume limit. However, such a definition would necessarily be mostly conceptual, since
estimates can usually be obtained for finite particle systems. Thus, for a sequence of finite particle
approximations, we will subsequently introduce a notion of approximate Gibbs property, which entails
certain inequalities that can be verified via the joint probability densities of the finite particle sys-
tems. We demonstrate that the approximate Gibbsian structure on the finite particle systems implies a
generalized Gibbs property for their infinite volume limit. This is the content of Theorem 2.1.

To lay out the programme in more concrete terms, let X∞ be a point process on Rd that exhibits
rigidity of numbers, and let D be a bounded domain in Rd. Let P(F ) denote the space of locally finite
point configurations on a Borel subset F ⊂ R

d. Let X∞,in = X∞ ∩ D, X∞,out = X∞ ∩ D∁. Thus, the

particle number |X∞,in| = N(X∞,out) a.s. for some measurable function N : P(D∁) → N∪{0}. Consider
the conditional distribution of X∞,in given X∞,out, denoted by PD|D∁ [·|·], which exists by the general
theory of regular conditional distributions (c.f. [36]). Suppose that, conditioned on X∞,out = Υ, the
points of X∞,in, considered as a vector, live on a smooth symmetric submanifold Σ(Υ) ⊂ C

N(Υ) (here
symmetric entails that if ζ ∈ Σ(Υ) then π · ζ ∈ Σ(Υ) for all permutations π ∈ SN(Υ), where π · ζ is the

vector in CN(Υ) obtained by permuting the coordinates of ζ by the action of π). Let Φ,Ψ : Rd → R∪{∞}
be two potential functions. For a finite point configuration σ ⊂ Rd, define the Hamiltonian

HΦ,Ψ[σ] =
∑

x∈σ
Φ(x) +

∑

{x,y}⊂σ
Ψ(x− y) .

Let P
N(Υ),Σ(Υ)
D be the standard Poisson point process on D conditioned to have N(Υ) points, and for

those points, considered as a vector in CN(Υ), to lie on the submanifold Σ(Υ). We say that X∞ satisfies
the generalized Gibbs property with the potentials (Φ,Ψ) if for P∞,out-a.s. Υ there are positive quantities
m(Υ), M(Υ) such that for all Borel subset A ⊂ P(D)

m(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
P

N(Υ),Σ(Υ)
D (σ) ≤ PD|D∁

[
A
∣∣Υ
]
≤M(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
P

N(Υ),Σ(Υ)
D (σ) .

(3)
In the same setting, the approximate Gibbsian property for X∞ and a sequence (Xn) of finite particle

approximations of X∞ can be motivated as follows. Suppose Xn → X∞ a.s. and let Xn,in = Xn ∩
D; Xn,out = Xn ∩ D∁. Consider Borel subsets A ⊂ P(D) and B ⊂ P(D∁). Denoting by P

(n)

D|D∁
[·|·] the

conditional distribution of Xn,in given Xn,out and by Pn,out the marginal law of Xn,out we can write a
canonical expression

P

( (
Xn,in ∈ A

)
∩
(
Xn,out ∈ B

) )
=

∫

B

P
(n)

D|D∁

[
A|Υ

]
dPn,out[Υ] = E

[
P
(n)

D|D∁

[
A|Xn,out

]
·1
[
Xn,out ∈ B

]]
.

(4)
Let νΦ,Ψ,D : B(P(D))× P(D∁) 7→ [0, 1] be the probability kernel (c.f.[35]) given by

νΦ,Ψ,D(A ;Υ) :=
1

Z(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
P

N(Υ),Σ(Υ)
D (σ) .

By way of an approximate Gibbsian structure, we may begin with a somewhat naive criterion that
the quantity in (4) is comparable to (i.e., bounded from above and below up to suitable multiplicative
factors) the quantity

E

[
νΦ,Ψ,D(A ;X∞,out ) · 1

[
Xn,out ∈ B

]]
. (5)

This is, however, too strong a restriction to demand of the finite particle conditional laws P
(n)

D|D∁[·|·], and

fail to hold, especially in settings of our interest where the eventual infinite particle limit X∞ has singular
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conditional distributions. To mitigate this difficulty, we posit that the terms in (4) is comparable, in
the sense of upper and lower bounds, a term like in (5) but only in a weak sense. To be more specific,
we posit that for a certain collection of good events {Ωn(j)}j≥1 (that are measurable with respect to

Xn,out), and a rich enough class of events A ⊂ P(D) and B ⊂ P(D∁), the quantity

P

( (
Xn,in ∈ A

)
∩
(
Xn,out ∈ B

)
∩ Ωn(j)

)
(6)

is comparable, via matching upper and lower bounds, to

E

[
νΦ,Ψ,D(A ;X∞,out ) · 1

[
Xn,out ∈ B

]
· 1
[
Xn,out ∈ Ωn(j)

]]
+ ϑ(j, n) , (7)

where ϑ(j, n) is an additive error term that converges to 0 for each fixed j as n→ ∞. The Ωn(j)-s, for
each j, are finite n-particle approximation to certain events Ω(j) (measurable with respect to X∞,out),
which themselves have a desirable asymptotic behaviour (as j → ∞) in the context of the spatial
dependency structure of the infinite volume point process X∞. For a detailed, rigorous description of
these notions, we refer the reader to Section 2.

A key result that we establish in this article is that the approximate Gibbs property implies the
generalized Gibbs property, thereby enabling us to deduce the Gibbs-type comparisons on infinite volume
conditional measures (3) from the estimates on the finite particle approximations as laid out above. In
fact, we are able to deal with more general classes of comparing measures that the restricted Gibbs-type
potentials such as D within the ambit of our general framework. Further, it suffices that the approximate
Gibbs comparison inequalities hold only for a subsequence of {nk}k≥1 in the variable n. For a rigorous
discussion of this result and its attributes, we refer the reader in particular to 2.1, and to Section 2 in
general. For many random point fields of interest, such as the α-GAFs, these comparisons hold for all
bounded measurable domains in the ambient space (with appropriate choices of the potentials (Φ,Ψ)),
whence we say that the point field satisfies the generalized Gibbs property with respect to the potentials
(Φ,Ψ).

We observe that the comparison of the terms in (6) and (7) is occurring in a weak sense in two major
ways: first, the inequalities hold only up to an additive correction that decays with growing system
size ; and secondly, the comparison holds only on certain good events (namely, the Ωn(j)-s), and not in
general. These good events occupy an increasingly large fraction of the probability space with growing
system size, but yet not all of it for any finite n-particle system - indeed, for many point processes
that have strong rigidity properties in the infinite volume limit, such a requirement on finite particle
approximations would simply not be true.

1.5 Implications for strongly singular point fields

A fundamental implication of our approach to approximate Gibbs structures is that it allows us to
obtain comparison inequalities for spatial conditioning on particle systems in the infinite volume limit,
even when the latter have strong spatial singularities and might not have analytically tractable forms.
While the regular conditional distributions for spatial conditionings in point processes exist by abstract
theory, it is generally very difficult to deduce any concrete information about them in the infinite volume
limit, except in special cases, such as systems with an exact (or quasi) Gibbs structure. This is because
the singularity of the conditional distribution in the infinite volume limit is usually not observed in the
finite particle approximation, where a joint density for the entire particle system would normally exist
(see, e.g., the standard planar GAF zero process [30]).

Our approach to approximate Gibbs structures is able to address this problem in a broad class of
strongly singular point processes. This is encapsulated in Theorem 2.1, wherein a very general technique
is demonstrated for transitioning from comparison inequalities for finite particle systems to those for a
limiting infinite particle system. To our knowledge, such results pertaining to strongly singular point
processes are unknown in the literature. In fact, the most singular processes for which Gibbs-type
bounds on conditional measures are known all exhibit no further rigidity that the rigidity of local
particle numbers (in the sense of [30]); it may be noted that the spatial conditioning ΠD|D∁ for such
processes is usually absolutely continuous with respect to the canonical Poisson process (conditioned
to have the right particle number N); see e.g. the literature on the quasi-Gibbs property (c.f. [50]
and the references therein). This latter distribution is reasonably tractable; taken in uniform random
order, the points are uniformly distributed on the appropriate power DN of the domain D. Further,
the number of points in D being a desired value N for the finite particle system is usually an event of
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positive probability, and conditioning on this event gives a good approximation to the infinite particle
system conditioned to have N points in D. No such advantages are available for higher order rigidity :
e.g., for the finite particle approximations to the planar GAF zero ensemble, the event that the centre
of mass of the particles in D equals a desired value s is an event of zero probability.

Significant models of random point fields for which our framework sheds particularly useful light
include zeros of the standard planar GAF, and more generally, the zero ensembles of α-GAFs, which are
canonical generalizations of the standard GAF into a one-parameter family. Since the α-GAFs exhibit
increasingly singular conditional structure as α varies (roughly, ⌊ 1

α⌋ moments of the point configuration
in D are determined a.s. by that in D), the effectiveness of our approach for α-GAFs demonstrates its
ability to address highly singular spatial structures. In general, for any α we are able to show that
the conditional law ΠD|D∁ for such a process has a density (with respect to a canonical background
measure on its support) that is comparable to the squared Vandermonde density. Thus, we establish
in particular that even under spatial conditioning, the close-range repulsion structure of such a process
is preserved, wherein the joint density decays like the square of the Euclidean separation between
neighboring particles. The detailed statement of these results maybe obtained in Theorem 3.2. It goes
without saying that our results are also able to address the case of less singular processes, such as those
with the exact Gibbs property or random matrix type ensembles such as the Ginibre ensemble, sine
and Airy random point fields, among others. In particular, the case of the Ginibre ensemble has been
discussed in Section 5 as a demonstration of some of the main features of our approach in a relatively
simple scenario.

Indeed, one may observe that once the comparison inequalities for the finite particle ensembles are
available, Theorem 2.1 can be invoked as a black box in order to deduce comparison inequalities for
the infinite particle system which is of main interest. To our knowledge, this is the arguably the first
result that provides a general, principled toolbox to directly access Gibbs-type properties of strongly
singular particle systems in the infinite volume limit. This opens the door to potential applications
to very general classes of random point fields, where the infinite particle system of interest might be
intractable but analytical estimates on finite ensemble approximations are nonetheless available.

1.6 The emergence of singularity for limits of spatially conditioned point

fields

A fundamental problem in Gibbs-type comparisons for strongly singular processes is that the conditional

measure PD|D∁ and its approximation P
(n)

D|D∁
are supported on different sets, with the support of PD|D∁

often being a singular manifold (see Theorem C.2 for reference). As such, a direct comparison inequality
on the conditional density for finite ensembles is of limited value in such a situation, since conditional
measure for the limiting infinite ensemble will live on a different support. However, known Gibbs-
type comparison results are structurally unable to address this problem. In this context, it may be
worthwhile to note that our finite system comparison inequalities are structured in the form of upper on
lower bounds on conditional probabilities of only certain particular events, and not on the conditional
densities per se (roughly speaking, the latter would entail comparison inequalities on probabilities of all

events). This enables us to mitigate the problem of differing support sets for PD|D∁ and P
(n)

D|D∁
.

Another major difficulty in dealing with conditional measures for random point fields of growing size
is that, the conditioning events (defined in terms of the point configuration on D∁) do not have good
consistency properties in general. To be more explicit, let us consider the situation where the set of
point configurations A in (4) contains point configurations with a fixed number of points m. Then, for
n1 6= n2 > m, on the event Xn1,in ∈ A, we must have |Xn1,out| = n1 −m, and on the event Xn2,in ∈ A,
we must have |Xn2,out| = n2 −m. This implies, in particular, that the integral in (4) has to be taken

over disjoint subsets of P(D∁). This means that the conditional probabilities P
(n)

D|D∁
[A|Υ] considered as

functions of Υ ∈ P(D∁), are supported on disjoint subsets of P(D∁) as n varies. This poses a challenge
in understanding the limiting behavior of these conditional measures as n→ ∞.

A key contribution of the present work is to introduce an architecture and a toolbox to understand
such limiting of conditional measures in a rigorous manner, especially in a setting with a singular infinite
volume limit. We subsequently use this analysis to obtain results on the infinite volume conditional law
PD|D∁[·|·], which is the main goal from a statistical mechanical point of view. We believe that this
toolbox can be effectively used for studying other problems (beyond Gibbs-type properties) for strongly
singular infinite particle systems; this includes but is not limited to potential applications to invariant
dynamics thereon.
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While previous works, such as those on quasi-Gibbs properties, often used finite system comparison
inequalities largely as tools to study certain specific aspects (such as dynamics) for the infinite volume
limit (without drawing direct statistical mechanical conclusions about the limiting particle system), in
this article we obtain direct comparison inequalities for the conditional laws of infinite volume limit.
This raises the possibility of an application of our results for the study statistical mechanical properties
of strongly singular particle systems (including, in particular, their dynamics) by directly working with
the infinite volume limit.

1.7 Applications of approximate Gibbsianity

1.7.1 A precise hierarchy in levels of rigidity

We demonstrate the broad scope of our approach by using it to settle an open question on the existence
of infinite point processes at arbitrary levels of rigidity. To lay out the problem, we briefly recall the
phenomena of rigidity and tolerance in random point fields and the hierarchical structure thereof. To be
succinct, we will focus on the setting of rigidity of moments for point processes defined on the complex
plane C, with regard to a bounded domain D. Suppose for a point process Π there are k rigid moments
{
∑M0

j=1 z
p
j =Mp ; 0 ≤ p ≤ k−1} of the points {zj}j∈M0 of Π inside D. Then the phenomenon of tolerance

subject to these k rigid moments entails that, on the set Σ(k) := ∩k−1
p=0Σp with Σp := {

∑M0

j=1 z
p
j = Mp},

the conditional measure ΠD|D∁ is mutually absolutely continuous with respect to the Lebesgue measure

on Σ(k). If a point process on C satisfies this condition for all bounded measurable sets D, then the
point process Π is said to be rigid at level k.

It was established in [30] that the Ginibre ensemble is rigid at level 0, whereas the zeros of the standard
planar GAF are rigid at level 1. It is a natural question as to whether there exist point processes that
are rigid at level k, for any given k ∈ N. This question turns out to be surprisingly challenging; while
it would be of great interest to show the existence of k-level rigid random point fields that have close
connections to important models in statistical physics, even toy examples are in fact hard to come by.
In [24], a one-parameter family of generalized Gaussian analytic functions was introduced, referred to
as the α-GAFs, with the parameter α ∈ (0,∞). In explicit terms, the α-GAF is defined as the random

entire function
∑∞

k=0 ξk
zk

(k!)α/2 where ξks are i.i.d. standard complex Gaussian random variables. The

family of α-GAFs includes, in particular, the standard planar GAF for the particular choice of parameter
α = 1, and thus its zero set belongs to the wider class of point processes pertaining to Coulomb type
processes and their generalizations.

It was demonstrated in [24] that the zeros of the α-GAF have k rigid moments, where k = ⌊ 1
α⌋.

However, rigidity at level k involves demonstrating that, subject to k rigid moments, there is tolerance,
as discussed above. Establishing tolerance is, in general, a challenging problem, and this was left open
for α-GAFs in [24], thereby leaving the program of investigating general k-rigidity incomplete.

In this paper, we settle this problem, by demonstrating that for any bounded measurable subset
D ⊂ C, the conditional density of the zeros of α-GAF is in fact comparable to the squared Vandermonde
density with respect to the Lebesgue measure on Σ(k) defined as above with k = ⌊ 1

α⌋. For a complete
and rigorous statement, we refer the reader to Theorem 3.2. This, in particular, implies tolerance for
the α-GAF zeros, subject to the first ⌊ 1

α⌋ moments. A fortiori, this answers the question raised in [24]
in the affirmative, and establishes the α-GAFs as a one-parameter family of planar point processes that
exhibit a complete hierarchy of rigidity structures with all possible levels of rigidity between 1 and ∞
attainable by tuning the parameter α appropriately. In particular, the present work fully subsumes as
a special case the quantitative estimates obtained for the standard planar GAF in the preprint [20] by
the second-named author. More generally, our analysis in this paper establishes a systematic framework
to investigate the technically challenging tolerance phenomena and problems of spatial conditioning at
large for general classes of point processes.

1.7.2 Bounds on relative energies

Investigating the relative energies of configurations is an important tool in statistical mechanics, espe-
cially those with long range or higher order dependencies where a simple Gibbs structure is absent (c.f.
[44] and the references therein for a discussion in the context of Coulomb type systems; see also [53]).
While the absolute energy of particular configuration may be difficult to make rigorous sense of, it is
often technically simpler to consider the energy difference between two configurations. A setting of great
significance in this context would perhaps be the energy difference between two configurations that are
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local perturbations of each other, i.e., the result of a transformation of point configurations that acts as
identity outside a suitably large compact set of the ambient space.

For a system that accords a simple local Gibbs structure with a local Hamiltonian HD (on a bounded
domain D) (c.f. Section 1.2), the energy can be taken to be simply HD. Additionally, we may consider
the canonical decomposition HD[σ] = H1[σ|D]− βH2[σ|D, σ|D∁ ], with the boundary effect H2[·, ·] being
controlled (possibly in terms of the outside configuration σ|D∁). In this setting, the energy difference

between two configurations σ(1) and σ(2) with σ
(1)

|D∁ = σ
(2)

|D∁ = ω would simply be H1[σ
(1)
|D ]−H1[σ

(2)
|D ] (up

to a bounded additive term that depends on ω). This form is particularly convenient, since H1 is an
internal energy term that depends only on the finite configuration of points inside the bounded domain
D, and in well-structured models, can often have a very explicit and tractable algebraic form (c.f. the
Ising spin system in the discrete setting). For more general point fields, log conditional density of a
configuration on a bounded domain would be a natural substitute for the local energy, and the difference
between such log conditional densities would provide a indication of the change in energy between two
comparable configurations.

Random point fields with long-ranged correlations and singularities in their conditional structure
admit hardly any of this simplistic description. Yet, for motivations stemming from statistical physics as
well as stochastic geometry, it would be of great interest to obtain similar tractable bounds on the relative
energy of configurations when they are obtained from each other via a local perturbation (as discussed
above). While the physical motivations are of classical interest ([44, 53]), the stochastic geometric
considerations are also significant in the context of recent advances in those directions, for instance see
[25] for an investigation of continuum percolation on the Ginibre and Gaussian zero models. The classic
Burton and Keane argument, as an illustrative example, obtains stochastic geometric consequences
(in particular, uniqueness of infinite cluster in percolation) via local perturbations of configurations in
a bounded domain while freezing the environment (i.e., the configuration outside the said domain).
In spatially singular models, such as the Ginibre or Gaussian zeros process, this can only be done in a
manner that respects the rigidity structure of local statistics of these processes (e.g., preserving the mass
and the centre of mass for the GAF zeros) [25]. While the vanilla Burton and Keane type argument relies
on existence of such desirable local perturbations, the study of finer, quantitative stochastic geometric
properties would call forth estimates on the energy cost of such local perturbations, which is our object
of interest herein.

It is a consequence of Theorem 3.2 that the relative energy between two configurations (α(1), ω) and
(α(2), ω) (with α(1), α(2) supported on a bounded domain D and ω supported on D∁) will be bounded
by | log ν(·;ω) − log ν(·;ω)| + A(ω), where ν(·;ω) is the comparing conditional density and A(ω) is an
additive constant that depends only on the environment ω. This assumes particular significance in a
setting where, as we shall see in the case of α-GAF zero processes, the comparing density ν has a simple,
tractable form.

For the α-GAF zero processes, Theorem 3.2 (in particular, Corollary 3.3 thereof) implies that the rela-
tive energy would be bounded above, upto an additive constant that depends only on the environment ω,
by the difference between the logarithmic energies of the configurations α(1) and α(2). Here the logarith-
mic energy of a finite point configuration α, denoted by Elog(α), is defined as −∑x,y∈α;x 6=y log |x − y|.
This demonstrates the fact that, while the α-GAF zeros have an intricate, many body interaction
structure entailing arbitrary orders of spatial singularity, perturbations between legitimate local con-
figurations are nonetheless energetically inexpensive, and their relative energies are bounded above by
that of simple 2D Coulomb type system with only two body interactions. This reveals an intriguing
interplay between the spatial rigidities of the α-GAF zeros on a global scale, and a certain regularity
on the local scale, wherein the impact of the strong dependency structure can nonetheless be effectively
dominated locally by a simple logarithmic Coulomb system.

2 The generalized and approximate Gibbs properties

In this section, our objective is to state the key technical result, which is Theorem 2.1. We prove this
result in Section 4. We describe the general setup of this result now. Consider a probability space Ж
equipped with a probability measure P. We will consider point processes from Ж to Rd for some d ∈ N.
For any Borel subset F ⊂ Rd, let P(F ) denote the space of locally finite point configurations on F . Let
B(P(F )) denote the Borel sigma-algebra on P(F ). Let D denote the set of all bounded open subsets
of Rd whose boundary has zero Lebesgue measure. Let us recall the definition of rigidity.
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Definition 2.1 (Rigidity). Consider a point process X : Ж → P(Rd) whose first intensity measure
is absolutely continuous with respect to the Lebesgue measure on Rd. Consider a set D ∈ D. A
measurable function φ : P(D) → R is said to be rigid with respect to X if there exists a measurable
function ψ : P(D∁) → R such that ψ

(
X ∩ D∁

)
= φ

(
X ∩ D

)
a.s. The point process X is said to be

number-rigid if the number of points of X ∩ D is rigid for all D ∈ D.

2.1 The generalized Gibbs property

In this section, our objective is to define the generalized Gibbs property. Let X : Ж → P(Rd) be a point
process whose first intensity measure is absolutely continuous with respect to the Lebesgue measure on
Rd. Consider D ∈ D. Let Pin be the distribution of Xin := X ∩ D. Let Pout be the distribution of
Xout := X ∩ D∁. Let PD|D∁ [·|·] be the conditional measure of Xin given Xout.

Definition 2.2 (The generalized Gibbs property with respect to a probability kernel). Let ν : B(P(D))×
P(D∁) → [0, 1] be a probability kernel (see [36] for reference). We say X satisfies the generalized Gibbs
property with respect to ν on the domain D if there exists measurable functions m,M : P(D∁) → (0,∞)
such that

m
(
Xout

)
ν( · ;Xout ) ≤ PD|D∁ [·|Xout] ≤ M

(
Xout

)
ν( · ;Xout ) a.s. (8)

Definition 2.3 (The generalized Gibbs property with respect to potentials). Assume that X is number-
rigid i.e., |Xin| = N(Xout) for some measurable function N : P(D∁) → N∪{0}. Suppose that, conditioned
on Xout = Υ ∈ P(D∁), the points of Xin considered as a vector in CN(Υ), live on a smooth symmetric

submanifold Σ(Υ) ⊂ CN(Υ). Let P
N(Υ),Σ(Υ)
D be the standard Poisson point process on D conditioned

to have N(Υ) points and for those points as a vector in C
N(Υ) to lie on the submanifold Σ(Υ). Let

Φ,Ψ : Rd → R ∪ {∞} be two potential functions. For a finite point configuration σ ⊂ Rd, define the
Hamiltonian

HΦ,Ψ[σ] =
∑

x∈σ
Φ(x) +

∑

x,y∈σ
Ψ(x− y) .

We say X satisfies the generalized Gibbs property with the potentials (Φ,Ψ) on the domain D if there
exists measurable functions m,M : P(D∁) → (0,∞) such that for P∞,out-a.s. Υ we have for all A ∈
B(P(D))

m(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
dP

N(Υ),Σ(Υ)
D (σ) ≤ PD|D∁ [A|Υ] ≤ M(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
dP

N(Υ),Σ(Υ)
D (σ) .

We say X satisfies the generalized Gibbs property with the potentials (Φ,Ψ) if it satisfies the generalized
Gibbs property with the potentials (Φ,Ψ) on all D ∈ D.

Remark 2.1. If X satisfies the generalized Gibbs property with respect to the potentials (Φ,Ψ) as in
Definition 2.3, then X satisfies the generalized Gibbs property, as in Definition 2.2, with respect to the
probability kernel νΦ,Ψ,D : B(P(D))× P(D∁) → [0, 1] given by

νΦ,Ψ,D(A ;Υ) =
1

Z(Υ)

∫

A

exp
(
−HΦ,Ψ[σ]

)
dP

N(Υ),Σ(Υ)
D (σ) , (9)

where Z(Υ) is the appropriate normalizing factor.

2.2 The approximate Gibbs property

In this section, our objective is to define the approximate Gibbs property. Consider D ∈ D. First We
introduce some notations related to point configurations inside D.

Notation 2.1. Consider m ∈ N.
(a) Consider m-disjoint open balls B1, . . . , Bm with rational centers and rational radii in D. Let

Ψ(B1, . . . , Bm) := {Υ ∈ P(D) | |Υ ∩Bi| = 1 for all 1 ≤ i ≤ m}

Then the countable collection

Amin := {Ψ(B1, . . . , Bm) |B1, . . . , Bm as above}

is a countable basis of the Borel σ-algebra of point configurations on D with exactly m points.
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(b) Let Âmin be the collection of sets which are finite union of the elements of the basis Amin i.e.,

Âmin :=

{ k⋃

i=1

Ai

∣∣∣∣Ai ∈ Amin for all k ≥ 1 and 1 ≤ i ≤ k

}
.

(c) Let A
m

in be the corresponding Borel σ-algebra.

Now let us introduce some notations related to point configurations outside D.

Notation 2.2.
(a) Let n be a positive integer. Let B ⊂ D∁ be a closed annulus whose center is the origin and

whose inradius and outradius are both rational. Consider a collection of n disjoint open balls
Bi with rational radii and centres having rational co-ordinates such that Bi ∩ D∁ ⊂ B. Let
Ψ
(
n,B,B1, · · · , Bn

)
be the Borel subset of P(D∁) defined as follows:

Ψ
(
n,B,B1, · · · , Bn

)
:=
{
Υ ∈ P(D∁)

∣∣ |Υ ∩B| = n, |Υ ∩Bi| = 1
}
.

Then the countable collection

Bout :=
{
Ψ
(
n,B,B1, . . . , Bn

) ∣∣∣ n,B,Bi as above
}

is a basis for the topology of P(D∁).

(b) Let B̂out be the collection of sets which are finite union of the sets in the basis Bout i.e.,

B̂out :=
{
∪ki=1Ψi

∣∣Ψi ∈ Bout for all k ≥ 1 and 1 ≤ i ≤ k
}
.

(c) Let Bout be the corresponding σ-algebra.

Notation 2.3. Let p and q be indices which take values in potentially infinite abstract sets. Let F (p, q)
and G(p, q) be non-negative functions of these indices. We write

F (p, q)
q≍G(p, q)

if there exist positive numbers k(q) and k(q) such that for all p and q

k(q)F (p, q) ≤ G(p, q) ≤ k(q)F (p, q) .

Definition 2.4 (A sequence of events exhausts another event). A sequence of events (Ej)j≥1 is said to

exhaust another event E if Ej ⊂ Ej+1 ⊂ E for all j ≥ 1, and P( E \ Ej ) → 0 as j → ∞.

The approximate Gibbs property is defined for a sequence of point processes (Xn)
∞
n=1 and a limiting

point process X∞ such that Xn → X∞ a.s. All the point processes are from Ж to P(Rd). We assume
that the first intensity measures of these processes are absolutely continuous with respect to the Lebesgue
measure on Rd. Further, we assume that X∞ is number-rigid i.e., for every D ∈ D, there is a measurable
function N : P(D∁) → N ∪ {0} such that |X∞ ∩D| = N(X∞ ∩D∁) a.s. Now consider a fixed D ∈ D.

Notation 2.4. For n ∈ N ∪ {∞}, let Xn,in := Xn ∩ D, Xn,out := Xn ∩ D∁, X∞,in := X∞ ∩ D, X∞,out :=

X∞ ∩ D∁, and let Pn, Pn,in, Pn,out be the distributions of Xn, Xn,in, Xn,out respectively.

Definition 2.5 (The events Ωm∞ and Ωmn ). For m ∈ N, let Ωm∞ be the event that the number of points
in X∞,in is m. For n,m ∈ N with n ≥ m let Ωmn be the event that the number of points in Xn,in is m.

Definition 2.6 (The approximate Gibbs property with respect to a probability kernel). We say that
((Xn)

∞
n=1,X∞) satisfies the approximate Gibbs property on the domain D with respect to the probability

kernel ν : B(P(D))× P(D∁) → [0, 1] if for every m for which P(Ωm∞ ) > 0, we have the following:
(a) There exists a sequence of events (Ω(j))

∞
j=1 such that each Ω(j) is measurable with respect to

X∞,out and (Ω(j))
∞
j=1 exhausts Ωm∞.

(b) For each j ≥ 1 there exists a sequence of positive integers (nk)
∞
k=1, a sequence of events

(
Ωnk

(j)
)∞
k=1

,

and a sequence of real numbers
(
ϑ(j, k)

)∞
k=1

such that the following hold:

11



(1) For each j ≥ 1 we have limk→∞ ϑ(j, k) = 0.

(2) For each j ≥ 1 and k ≥ 1 the event Ωnk
(j) is measurable with respect to Xnk,out.

(3) For each j ≥ 1 and k ≥ 1 we have Ωnk
(j) ⊂ Ωmnk

.

(4) For each j ≥ 1 we have Ω(j) ⊂ lim infk→∞ Ωnk
(j).

(5) As functions of the quantities A ∈ Âmin , B ∈ B̂out, j ≥ 1, k ≥ 1 we have

P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ B

)
∩ Ωnk

(j)
)

j≍ E

(
ν(A ;X∞,out )1

[
Xnk,out ∈ B

]
1

[
Ωnk

(j)
])

+ ϑ(j, k) . (10)

That is, the ratio of the left hand side and the right hand side is bounded above and below
by functions of only j - the quantities A, B, k are not involved in the bounds.

Definition 2.7 (The approximate Gibbs property with respect to potentials). We say ((Xn)
∞
n=1,X∞)

satisfies the approximate Gibbs property on the domain D with the potentials (Φ,Ψ) if ((Xn)
∞
n=1,X∞)

satisfies the approximate Gibbs property on the domain D with the probability kernel νΦ,Ψ,D given by
(9). We say ((Xn)

∞
n=1,X∞) satisfies the approximate Gibbs property with the potentials (Φ,Ψ) if it

satisfies the approximate Gibbs property with the potentials (Φ,Ψ) on all domains D ∈ D.

Remark 2.2. Note that the left hand side of (10) can be written as

E

(
P
(nk)

D|D∁

[
A|Xnk,out

]
1

[
Xnk,out ∈ B

]
1

[
Ωnk

(j)
])

where P
(nk)

D|D∁

[
·|·
]

is the conditional distribution of Xnk,in given Xnk,out. This demonstrates that the two

sides of (10) are of a similar nature, with the left hand side being computable purely in terms of the
distribution of the finite particle system Xnk

. On the other hand, if the target conditional measure
ν( · ;X∞,out ) has a reasonably tractable form, then the right hand side may also be well-estimated (up
to additive and multiplicative errors), and thus (10) can be verified. This programme is indeed possible
to carry out for a substantial class of models, including those with arbitrarily high levels of spatial
rigidity, as we shall see later in this article.

Remark 2.3. Observe that the right hand side of (10) involves the full point process X∞ in the form
of X∞,out. This is, in fact, essential, since for strongly rigid point processes X, any measure that is
comparable to the infinite volume conditional law PD|D∁[·|X∞,out] must almost surely be supported on
the non-trivial submanifold Σ(X∞,out) (as in Definition 2.2). This information must somehow be incor-
porated into the finite particle comparison inequalities (10), which is the reason for this phenomenon.

2.3 From approximate Gibbs to generalized Gibbs

We are now ready to state a key technical theorem that drives the subsequent major results in the paper.
Broadly speaking, it connects the approximate Gibbs property, which is largely dependent on the finite
particle approximations, to the generalized Gibbs property, which entails a comparison for the spatially
conditional distribution for the infinite volume limit.

Theorem 2.1. If ((Xn)
∞
n=1,X∞) satisfies the approximate Gibbs property with respect to a probability

kernel ν on a domain D, then X∞ satisfies the generalized Gibbs property with respect to ν on the domain
D.

Corollary 2.2. If ((Xn)
∞
n=1,X∞) satisfies the approximate Gibbs property with the potentials (Φ,Ψ) on

a domain D, then X∞ satisfies the generalized Gibbs property with the potentials (Φ,Ψ) on the domain
D.

Remark 2.4. From the proof of Theorem 2.1 it will be clear that Theorem 2.1 remains valid if in
the definition of approximate Gibbs property (Definition 2.6) we replace the condition that Ω(j) is

measurable with respect to X∞,out by the condition that there exists an event Ω̃(j) which is measurable

with respect to X∞,out and which satisfies P

(
Ω(j)△ Ω̃(j)

)
= 0. Additionally, Theorem 2.1 remains

valid if the condition Ω(j) ⊂ lim infk→∞ Ωnk
(j) only holds a.s.
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3 Gibbsian structures for strongly singular point fields on C

In this article, we will investigate approximate and generalized Gibbsianity in the context of point pro-
cesses on C; we note in passing that our approach in fact applies to point processes on very general
spaces. In particular, we will establish generalized Gibbsian structure for point processes with arbi-
trarily high levels of spatial rigidity (equivalently, arbitrarily high degrees of singularity in their spatial
conditioning), thereby demonstrating the power and scope of the approach outlined in this article.

As a preparation to tackle the higher order singularities present, e.g., in the α-GAF zeros, we first
discuss the approximate Gibbsian structure of Ginibre ensemble. The Ginibre ensemble accords only a
mild degree of spatial singularity (namely, the rigidity of numbers); being a determinantal point process
its spatial conditioning can also be accessed via other methods (see, e.g., [8] among others). Nonetheless,
a discussion on approximate Gibbsianity of the Ginibre ensemble allows us to lay out some of the major
ingredients of our approach, and prepares the reader for the more delicate considerations that are called
forth by the α-GAF zero ensembles in the subsequent sections.

3.1 Gibbsian structure of the Ginibre ensemble

Consider the Ginibre ensemble G∞ (see Appendix B for reference). Consider D ∈ D (as an abuse of
notation, here we treat D as consisting of subsets of C as opposed to R2.) Let G∞,in := G∞ ∩ D i.e.,

it is the restriction of G∞ inside the domain D. Let G∞,out := G∞ ∩ D∁ i.e., it is the restriction of
G∞ outside the domain D. Let N(G∞,out) be the number of points in G∞,in. The number of points
in G∞,in is measurable with respect to G∞,out due to the number rigidity of the Ginibre ensemble (see
Theorem B.1 in Appendix B for reference). Let ρ

(
· ;G∞,out

)
be the conditional distribution of G∞,in

given G∞,out where we identify the configuration G∞,in with an element in DN(G∞,out) by taking the
points in uniform random order. This distribution has a density with respect to the Lebesgue measure
on DN(G∞,out) (see Theorem B.2 in Appendix B for reference).

Notation 3.1. For a vector x = (x1, . . . , xN ) ∈ CN let

△
(
x
)
:=

∏

1≤i<j≤N
(xi − xj) .

For two vectors x = (x1, . . . , xN1) ∈ CN1 and y = (y1, . . . , yN1) ∈ CN2 let

Γ
(
x ; y

)
:=

N1∏

i=1

N2∏

j=1

(xi − yj) .

Therefore
△
(
x , y

)
= △

(
x
)
· △
(
y
)
· Γ
(
x ; y

)
.

Here x , y denotes the concatenated vector.

Theorem 3.1 (The generalized Gibbsian structure of the Ginibre ensemble). There exist positive quan-
tities m(G∞,out) and M(G∞,out), measurable with respect to G∞,out, such that G∞,out-a.s. we have

m(G∞,out)
∣∣△
(
ζ
)∣∣2 ≤ dρ

(
· ;G∞,out

)

dL (ζ) ≤ M(G∞,out)
∣∣△
(
ζ
)∣∣2 (11)

for a.e. ζ with respect to the Lebesgue measure L on DN(G∞,out). In other words, the generalized Gibbs
property is satisfied with the potentials (Φ,Ψ) given by Φ ≡ 0 and Ψ(z) = −2 log |z|.

Theorem 3.1 shows that even after the configuration outside D that is G∞,out is fixed, the points
inside D namely the points of G∞,in have repulsion among them. The nature of the repulsion is similar
to the repulsion between points of a generic G∞ configuration.

3.2 Gibbsian structure of the zeros of α-GAF

We are now ready to delve into the approximate Gibbsian structure of the α-GAF zero ensemble. Recall
that it is known that the α-GAF zero ensemble has ⌊ 1

α⌋ rigid moments, so these point fields can be
highly singular depending on the value of the parameter α. The following theorem demonstrates the
full power and generality of our approach in the context of these highly singular processes, and unveils
an approximate Gibbsian structure for them via a comparison of their spatially conditioned densities
(on appropriate submaniforlds) to the squared Vandermonde density.
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Notation 3.2. For a vector of complex numbers s = (s1, · · · , sk) ∈ Ck and m ∈ N, define the manifold

Σm,s :=

{
(ζ1, · · · , ζm) ∈ Dm

∣∣∣∣∣

m∑

i=1

ζji = sj for all 1 ≤ j ≤ k

}
.

Consider the ensemble Zα,∞ of zeros of α-GAF Fα,∞ (see Appendix D for reference). Consider D ∈ D.
Let Zα,∞,in be the restriction of the point configuration Zα,∞ inside the domain D. Let Zα,∞,out be
the restriction of the point configuration Zα,∞ outside the domain D. Let N(Zα,∞,out) be the number
of points in Zα,∞,in. The number of points in Zα,∞,in is measurable with respect to Zα,∞,out due
to the number rigidity of the ensemble Zα,∞ (see Theorem D.1 in Appendix D for reference). Let
Cα,out(Zα,∞,out) be the array of the first ⌊1/α⌋ moments of Zα,∞,in. This is measurable with respect
to Zα,∞,out due to rigidity of the ensemble Zα,∞ up to order rα := 1 + ⌊1/α⌋ (see Theorem D.1 in
Appendix D for reference). To be more precise, if (ζ1, . . . , ζm) are the points of Zα,∞,in in some order,

then Cα,out(Zα,∞,out) = (s1, . . . , srα−1) where for 1 ≤ j ≤ rα−1, sj = ζj1 + · · ·+ζjm. Let ρ
(
· ;Zα,∞,out

)

be the conditional distribution of Zα,∞,in given Zα,∞,out where we identify Zα,∞,in with a vector in
DN(Zα,∞,out) by taking the points in uniform random order. This distribution is supported on the set
Σm,s where m = N(Zα,∞,out), s = Cα,out(Zα,∞,out). This distribution has a density with respect to the
Lebesgue measure on Σm,s (see Theorem D.1 in Appendix D for reference).

Theorem 3.2 (The generalized Gibbsian structure of the α-GAF zero ensembles). There exist positive
quantities m

(
Zα,∞,out

)
and M

(
Zα,∞,out

)
, measurable with respect to Zα,∞,out, such that Zα,∞,out-a.s.

we have:

m
(
Zα,∞,out

)∣∣△
(
ζ
)∣∣2 ≤ dρ

(
· ;Zα,∞,out

)

dL (ζ) ≤ M
(
Zα,∞,out

)∣∣△
(
ζ
)∣∣2 (12)

for a.e. ζ with respect to the measure L on Σm,s, where m = N(Zα,∞,out), and s = Cα,out(Zα,∞,out).
In other words, the generalized Gibbs property is satisfied with the potentials (Φ,Ψ) given by Φ ≡ 0 and
Ψ(z) = −2 log |z|.

Remark 3.1. It was shown in [30] that for proving the rigidity and tolerance of the Ginibre ensemble
and the ensemble of the roots of standard GAF, it is enough to consider D to be a disk centered at the
origin. This is also true for establishing the generalized Gibbs property as in Theorems 3.1 and 3.2. We
show this in Appendix A. Therefore, in the proofs of Theorems 3.1 and 3.2 we will assume that D is a
disk centered at the origin. We will denote the radius of the disk by r0.

As an immediate consequence of Theorem 3.2 we get the following.

Corollary 3.3. For a point configuration ζ = (ζ1, . . . , ζm) ∈ Dm, define the logarithmic energy as

Elog
(
ζ
)
:=
∑

i6=j
log

1

|ζi − ζj |
.

This is well-defined for a.e. ζ with respect to the Lebesgue measure on Dm. Then, for Zα,∞,out-a.s. the
following is true. Let m = N(Zα,∞,out) and s = Cα,out(Zα,∞,out). Let ̺(·;Zα,∞,out) be the density of
the conditional measure of Zα,∞,in given Zα,∞,out with respect to the Lebesgue measure on Σm,s. Then
for any two configurations ζ, ζ ′ ∈ Σm,s we have

∣∣log ̺
(
ζ;Zα,∞,out

)
− log ̺

(
ζ′;Zα,∞,out

)∣∣ ≤ 2
∣∣Elog(ζ)− Elog(ζ ′)

∣∣+ C

where C depends only on the conditioning Zα,∞,out configuration and not on ζ, ζ′.

4 Proof of Theorem 2.1

In this section our objective is to prove Theorem 2.1. We need to prove (8) from (10). We rewrite (10)
as

P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ B

)
∩ Ωnk

(j)
)

j≍
( ∫

X
−1
nk,out(B) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP

)
+ ϑ(j, k) . (13)
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First, we propose a sufficient criterion for (8) to hold. From (13) we get that there exists functions

L,U : N → (0,∞) such that for A ∈ Âmin , B ∈ B̂out, j ≥ 1, k ≥ 1

L(j) ≤
P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ B

)
∩ Ωnk

(j)
)

( ∫

X
−1
nk,out(B) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP
)
+ ϑ(j, k)

≤ U(j) . (14)

Recall that Ω(j) is measurable with respect to X∞,out. Let E(j) ⊂ P(D∁) be such that X−1
∞,out(E(j)) =

Ω(j). The sufficient criterion is the following.

Lemma 4.1. If for all j ∈ N, A ∈ Âmin, and B ∈ Bout we have

L(j) ≤
P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)

∫

X
−1
∞,out(B) ∩ Ω(j)

ν(A ;X∞,out ) dP
≤ U(j) , (15)

then (8) holds with

m(X∞,out) = L(J (X∞,out)), M(X∞,out) = U(J (X∞,out)), J (X∞,out) = inf{j ≥ 1 | X∞,out ∈ E(j)} .

Proof of Theorem 2.1. By Lemma 4.1 it is enough to prove (15) for all j ∈ N, A ∈ Âmin , and B ∈ Bout.

Let us fix j ∈ N, A ∈ Âmin, B ∈ Bout. Since A ∈ Âmin , we have

lim
k→∞

1

[
Xnk,in ∈ A

]
= 1

[
X∞,in ∈ A

]
a.s. (16)

Given any ǫ > 0 there exists a set Bǫ ∈ B̂out such that

P

(((
X∞,out ∈ B

)
∩ Ω(j)

)
△
(
X∞,out ∈ Bǫ

))
< ǫ . (17)

Here we use the fact that Ω(j) is measurable with respect to X∞,out. This step also justifies Remark 2.4.
The set Bǫ depends on B, ǫ, and j. But since we are treating j as fixed, we suppress it from the notation.
Since Bǫ ∈ B̂out, we have

lim
k→∞

1

[
Xnk,out ∈ Bǫ

]
= 1

[
X∞,out ∈ Bǫ

]
a.s. (18)

We start from (14) applied to A, Bǫ, j. That is,

L(j) ≤
P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ Bǫ

)
∩ Ωnk

(j)
)

(∫

X
−1
nk,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP
)
+ ϑ(j, k)

≤ U(j) . (19)

We want to derive (15) for A, B, j. We begin with the numerator of the term in the middle of (19).
Using (16) and (18) we get

∣∣∣∣P
( (

Xnk,in ∈ A
)
∩
(
Xnk,out ∈ Bǫ

)
∩ Ωnk

(j)
)
− P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ Bǫ

)
∩ Ωnk

(j)
)∣∣∣∣

≤ P

(((
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ Bǫ

) )
△
( (

X∞,in ∈ A
)
∩
(
X∞,out ∈ Bǫ

)))

= ok
(
1 ; ǫ

)
, (20)

where by ok
(
1 ; ǫ

)
we mean a term which goes to 0 as k → ∞ for every fixed ǫ. Using (17) we get

∣∣∣∣P
( (

X∞,in ∈ A
)
∩
(
X∞,out ∈ Bǫ

)
∩ Ωnk

(j)
)
− P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩ Ωnk

(j)
)∣∣∣∣

≤ P

(( (
X∞,out ∈ B

)
∩ Ω(j)

)
△
(
X∞,out ∈ Bǫ

))
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= oǫ(1) , (21)

where oǫ(1) denotes a term which goes to 0 as ǫ goes to 0. Combining (20) and (21) we get

P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ Bǫ

)
∩ Ωnk

(j)
)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ Bǫ

)
∩ Ωnk

(j)
)
+ ok

(
1 ; ǫ

)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩ Ωnk

(j)
)
+ oǫ(1) + ok

(
1 ; ǫ

)
. (22)

Recall from the statement of this theorem that

Ω(j) ⊂ lim inf
k→∞

Ωnk
(j) . (23)

Also observe that
P

( (
lim inf
l→∞

Ωnl
(j)
)
△
(
∩l≥kΩnl

(j)
) )

= ok(1) , (24)

where ok(1) denotes a quantity that tends to 0 as k → ∞. Therefore using (23) and (24)

P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩ Ωnk

(j)
)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩ Ωnk

(j) ∩
(
lim inf
l→∞

Ωnl
(j)
) )

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩ Ωnk

(j) ∩
(
∩l≥kΩnl

(j)
) )

+ ok(1)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩

(
∩l≥kΩnl

(j)
) )

+ ok(1)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j) ∩

(
lim inf
l→∞

Ωnl
(j)
) )

+ ok(1)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)
+ ok(1) . (25)

Combining (22) and (25) we get

P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ Bǫ

)
∩ Ωnk

(j)
)

= P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)
+ ok

(
1 ; ǫ

)
+ ok(1) + oǫ(1) . (26)

Now we will carry out a similar procedure for the denominator of the term in the middle of (19). Using
(18) we get

∣∣∣∣
∫

X
−1
nk,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP−
∫

X
−1
∞,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP

∣∣∣∣

≤
∫ ∣∣∣1

[
X

−1
nk,out

(Bǫ)
]
1

[
Ωnk

(j)
]
ν(A ;X∞,out )− 1

[
X

−1
∞,out(Bǫ)

]
1

[
Ωnk

(j)
]
ν(A ;X∞,out )

∣∣∣ dP

≤
∫ ∣∣∣1

[
X

−1
nk,out(Bǫ)

]
− 1

[
X

−1
∞,out(Bǫ)

]∣∣∣ dP

= ok
(
1 ; ǫ

)
, (27)

Using (17) we get

∣∣∣∣
∫

X
−1
∞,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP−
∫

X
−1
∞,out(B) ∩ Ωnk

(j) ∩ Ω(j)

ν(A ;X∞,out ) dP

∣∣∣∣

≤
∫

(X−1
∞,out(Bǫ)) △ (X−1

∞,out(B) ∩ Ω(j))

ν(A ;X∞,out ) dP

≤ P

(((
X∞,out ∈ B

)
∩ Ω(j)

)
△
(
X∞,out ∈ Bǫ

))
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= oǫ(1) , (28)

Combining (27) and (28) we get

∫

X
−1
nk,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP

=

∫

X
−1
∞,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP+ ok
(
1 ; ǫ

)

=

∫

X
−1
∞,out(B) ∩ Ωnk

(j) ∩ Ω(j)

ν(A ;X∞,out ) dP+ oǫ(1) + ok
(
1 ; ǫ

)
. (29)

Using (23) and (24) we get

∫

X
−1
∞,out(B) ∩ Ωnk

(j) ∩ Ω(j)

ν(A ;X∞,out ) dP

=

∫

X
−1
∞,out(B) ∩ Ωnk

(j) ∩ Ω(j) ∩ lim infl→∞ Ωnl
(j)

ν(A ;X∞,out ) dP

=

∫

X
−1
∞,out(B) ∩ Ωnk

(j) ∩ Ω(j) ∩l≥kΩnl
(j)

ν(A ;X∞,out ) dP+ ok(1)

=

∫

X
−1
∞,out(B) ∩ Ω(j) ∩l≥kΩnl

(j)

ν(A ;X∞,out ) dP+ ok(1)

=

∫

X
−1
∞,out(B) ∩ Ω(j) ∩ lim infl→∞ Ωnl

(j)

ν(A ;X∞,out ) dP+ ok(1)

=

∫

X
−1
∞,out(B) ∩ Ω(j)

ν(A ;X∞,out ) dP+ ok(1) . (30)

Combining (29) and (30) we get

∫

X
−1
nk,out(Bǫ) ∩ Ωnk

(j)

ν(A ;X∞,out ) dP

=

∫

X
−1
∞,out(B) ∩ Ω(j)

ν(A ;X∞,out ) dP+ ok
(
1 ; ǫ

)
+ ok(1) + oǫ(1) . (31)

Thus, combining (26), (31), and (19) we get

L(j) ≤
P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)
++oǫ(1) + ok

(
1 ; ǫ

)
+ ok(1)

(∫

(X∞,out)−1(B) ∩ Ω(j)

ν(A ;X∞,out ) dP

)
+ oǫ(1) + ok

(
1 ; ǫ

)
+ ok(1) + ϑ(j, k)

≤ U(j) . (32)

Recall from the statement of this theorem that ϑ(j, k) → 0 as k → ∞. First letting k → ∞ in (32),
with ǫ held fixed, and then letting ǫ→ 0 we get

L(j) ≤
P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)

∫

(X∞,out)−1(B) ∩ Ω(j)

ν(A ;X∞,out ) dP

≤ U(j) .

This concludes the proof of Theorem 2.1. �

Now it remains to prove Lemma 4.1 for which we will need another lemma.

Lemma 4.2. Let (A, T ) be a second countable topological space. Let B be a countable basis of open sets.
Let F :=

{
∪ki=1Bi

∣∣Bi ∈ B for all 1 ≤ i ≤ k, k ≥ 1
}
. Let µ1 and µ2 be two non-negative, regular, Borel

measures on (A, T ). If for some constant c > 0, µ1(B) ≤ cµ2(B) for all B ∈ F , then µ1(B) ≤ cµ2(B)
for all B ∈ T .
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Now we prove Lemma 4.1 using Lemma 4.2.

Proof of Lemma 4.1. For j ≥ 1, let X (j) be the σ-algebra formed by intersecting the sets of Bout

with E(j). Consider the finite measure space (E(j),X (j),P∞,out). For all A ∈ Âmin and B ∈ Bout we
have

P

( (
X∞,in ∈ A

)
∩
(
X∞,out ∈ B

)
∩ Ω(j)

)
=

∫

B ∩ E(j)
ρ
(
A ;Υ

)
dP∞,out[Υ] .

Thus, from (15) we get that for all A ∈ Âmin and B ∈ Bout

L(j) ≤

∫

B ∩ E(j)
ρ
(
A ;Υ

)
dP∞,out[Υ]

∫

B ∩ E(j)
ν(A ;Υ) dP∞,out[Υ]

≤ U(j) .

Thus, for all A ∈ Âmin we get

L(j) ≤ ρ
(
A ;Υ

)

ν(A ;Υ)
≤ U(j) (33)

for P∞,out-a.s. Υ ∈ E(j). Since Âmin is countable, we get (33) holds for P∞,out-a.s. Υ ∈ E(j), and for all

A ∈ Âmin. Using Lemma 4.2 on the measure space (E(j),X (j),P∞,out) we have (33) holds for P∞,out-
a.s. Υ, for all A ∈ Amin . Therefore, we get (8) with m(X∞,out) = L(J (X∞,out)) and M(X∞,out) =
U(J (X∞,out)) where J (X∞,out) = inf{j ≥ 1 | X∞,out ∈ E(j)}. �

Now we prove Lemma 4.2.

Proof of Lemma 4.2. Suppose µ1(B) ≤ cµ2(B) for all B ∈ F . Since B is a basis, all U ∈ T are
countable union of sets in B. Therefore, µ1(U) ≤ cµ2(U) for all U ∈ T . Therefore, for any Borel set B
and an open set U containing B we have µ1(B) ≤ µ1(U) ≤ cµ2(U). Since µ2 is a regular measure, for
any Borel set B, we have µ2(B) = inf{µ2(V ) |B ⊂ V, V ∈ T }. Therefore, we get µ1(B) ≤ cµ2(B). �

5 The approximate Gibbsian structure of the Ginibre Ensemble

In this section our objective is to prove Theorem 3.1. Recall from Remark 3.1 that we assume D to be
a disk of radius r0 centered at the origin. Recall that ρ

(
· ;G∞,out

)
is the conditional measure of G∞,in

given G∞,out where we identify G∞,in with a vector in DN(G∞,out). Also recall that Ωm∞ is the event
that N(G∞,out) = m. For each m ∈ N we have P(Ωm∞ ) > 0, because for the ensemble G∞ the number
of points in a domain is a sum of Bernoulli random variables, each with success probability strictly
between 0 and 1. Our objective is to show that G∞,out-a.s. ρ

(
· ;G∞,out

)
has a density with respect

to the Lebesgue measure on DN(G∞,out), and this density satisfies (11). The fact that this density exists
is already known from [30]. It is also known from [30] that a bound similar to (11) but without the
Vandermonde terms holds. We want to show that the same procedure yields the stronger bound in (11)
by using Theorem 2.1.

Notation 5.1. Let π(·) be the map from ⊔∞
m=1C

m → P(C) which takes a vector (of variable length)
to the point configuration on C consisting of the coordinates of the vector. If two coordinates of the
vector are same, we do not distinguish them in the point configuration.

Consider the potentials (Φ,Ψ) given by Φ ≡ 0 and Ψ(z) = −2 log |z|. The corresponding probabil-
ity kernel νΦ,Ψ,D is as follows. Given Υ ∈ P(D∁), the measure νΦ,Ψ,D( · ;Υ) is supported on point

configurations having m = N(Υ) number of points, and for A ∈ A
m

in we have

νΦ,Ψ,D(A ;Υ) =

∫

π
−1(A)

∣∣△
(
ζ
)∣∣2 dL(ζ)

∫

Dm

∣∣△
(
ζ
)∣∣2 dL(ζ)

, (34)

where L is the Lebesgue measure on Dm. Recall that PD|D∁[·|Υ] is supported on point configurations

having m points, and for A ∈ A
m

in

PD|D∁[A|Υ] = ρ
(
π

−1(A) ;Υ
)
.
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If we can establish the generalized Gibbs property, then we get that for all m ∈ N and all A ∈ A
m

in

m1

(
G∞,out

)
νΦ,Ψ,D(A ;G∞,out ) ≤ PD|D∁[A|G∞,out] ≤ M1

(
G∞,out

)
νΦ,Ψ,D(A ;G∞,out ) ,

for some measurable functions m1,M1 : P(D∁) → (0,∞). Then, by the Radon-Nikodym Theorem we
will have

m2

(
G∞,out

)∣∣△
(
ζ
)∣∣2 ≤ dρ

(
· ;G∞,out

)

dL (ζ) ≤ M2

(
G∞,out

)∣∣△
(
ζ
)∣∣2 ,

for some measurable functions m2,M2 : P(D∁) → (0,∞). Thus we get (11). Consider the finite
dimensional approximations of the Ginibre ensemble (Gn) which converge to G∞ a.s. (see Appendix B
for reference). Due to Theorem 2.1, it is enough to verify the conditions of approximate Gibbsianity
for ((Gn)

∞
n=1,G∞) with respect to νΦ,Ψ,D on the domain D. We will not present the proof in full detail

because we will see that the procedure that was used in [30] for proving tolerance of the Ginibre ensemble
also yields the approximate Gibbsian structure.

5.1 The limiting procedure for the Ginibre ensemble

We will present the proof in three steps. Here we outline the three steps. For n ≥ 1, let Gn,in := Gn∩D,

Gn,out := Gn ∩D∁.

Step 1 In this step we will define the sequence of events (Ω(j))
∞
j=1. We will also define, for each j ≥ 1,

the sequence of positive integers (nk)
∞
k=1 and the sequence of events (Ωnk

(j))
∞
k=1. We will verify

the following conditions:

(i) Ω(j) ⊂ Ω(j + 1) for all j ≥ 1;

(ii) Ω(j) ⊂ Ωm∞ for all j ≥ 1;

(iii) Ωnk
(j) ⊂ Ωmnk

for all j ≥ 1 and k ≥ 1;

(iv) Ωnk
(j) is measurable with respect to Gnk,out for all j ≥ 1 and k ≥ 1;

(v) Ω(j) ⊂ lim infk→∞ Ωnk
(j) for all j ≥ 1.

The event Ω(j) is not going to be measurable with respect to G∞,out. We will define another event
Ωcorr(j), which is measurable with respect to G∞,out, and which satisfies P(Ω(j)△Ωcorr(j) ) = 0.
Here we utilize Remark 2.4.

Step 2 In this step we will establish that (10) for some (ϑ(j, k))k≥1,j≥1 satisfying limk→∞ ϑ(j, k) = 0
for all j ≥ 1. Recall that the probability kernel ν is given by (34).

Step 3 In this step we will show that limj→∞ P(Ωm∞ \ Ω(j) ) = 0.

5.1.1 Step 1

Notation 5.2. For n ∈ N let

S1(n) :=
∑

ω∈Gn,out

1

ω
, S2(n) :=

∑

ω∈Gn,out

1

ω2
, S̃3(n) :=

∑

ω∈Gn,out

1

|ω|3 .

Let
Xn := |S1(n)|+ |S2(n)|+ S̃3(n) .

Definition 5.1 (The events Θmn [θ] and Θm∞[θ]). For n,m ∈ N, and θ ∈ (0, 1), let Θmn [θ] be the event
that:

(i) the number of points in Gn,in is m;

(ii) and there is a gap of at least θ between the boundary of D and the points of Gn,out i.e., for all
x ∈ ∂D and y ∈ Gn,out, |x− y| ≥ θ.

Let Θm∞[θ] be the analogous event for G∞. The event Θmn [θ] is a subset of the event Ωmn and is measurable
with respect to Gn,out. Similarly, the event Θm∞[θ] is a subset of the event Ωm∞ and is measurable with
respect to G∞,out.
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In [30] (see Appendix E for reference), it was shown that there exists random variables S1, S2, S̃3,
such that

S1(n) −→ S1 , S2(n) −→ S2 , S̃3(n) −→ S̃3 in probability.

Thus, we get a sequence (nk)
∞
k=1 such that

S1(nk) −→ S1 , S2(nk) −→ S2 , S̃3(nk) −→ S̃3 a.s.

Further, we choose an increasing sequence (Mj)
∞
j=1 diverging to ∞ such that none of the Mj-s is an

atom of the distributions of |S1|, |S2|, S̃3. We also choose a sequence (θj)
∞
j=1 such that θj ≥ θj+1 > 0

for all j ∈ N and θ → 0 as j → ∞. Now we define the events (Ωnk
(j))j≥1,k≥1.

Definition 5.2 (The event Ωnk
(j)). For j ≥ 1 and k ≥ 1, let Ωnk

(j) be the event in which all of the
following conditions are satisfied:

(i) Θmnk
[θj ] occurs;

(ii) |S1(nk)| ≤Mj, |S2(nk)| ≤Mj , S̃3(nk) ≤Mj.

The event Ωnk
(j) is measurable with respect to Gnk,out, as required in condition (iv) in Step 1. Also,

the event Ωnk
(j) is a subset of the event Ωmnk

, as required in condition (iii) in Step 1.
Next, we define the events (Ω(j))j≥1.

Definition 5.3 (The event Ω(j)). For j ≥ 1, let Ω(j) := lim infk→∞ Ωnk
(j). Thus, Ω(j) is the event in

which all of the following conditions are satisfied:
(i) Θmnk

[θj ] occurs for all large enough (random) k;

(ii) for all large enough (random) k, |S1(nk)| ≤Mj, |S2(nk)| ≤Mj , S̃3(nk) ≤Mj.

Thus, condition (v) in Step 1 is satisfied by definition. And since (Mj)
∞
j=1 is increasing, condition (i)

in Step 1 is also satisfied. Since Gn → G∞ a.s., we have lim infk→∞ Ωmnk
⊂ Ωm∞. Since each Ωnk

(j) is a
subset of Ωmnk

, we have Ω(j) ⊂ Ωm∞, as required by condition (ii) in Step 1.
The event Ω(j) is not measurable with respect to G∞,out. So we construct another event Ωcorr(j),

which is measurable with respect to G∞,out, and which also satisfies P(Ωcorr(j)△Ω(j) ) = 0. This is
sufficient by Remark 2.4.

Definition 5.4 (The event Ωcorr(j)). For j ≥ 1, let Ωcorr(j) be the event in which all of the following
conditions are satisfied:

(i) Θm∞[θj ] occurs;

(ii) |S1| ≤Mj, |S2| ≤Mj, S̃3 ≤Mj.
The event Ωcorr(j) is measurable with respect to G∞,out.

To show P(Ωcorr(j)△Ω(j) ) = 0, we construct another family of events {Aǫ(j) : ǫ > 0}. Each Aǫ(j)
depends on a function δ(ǫ) of ǫ. This function δ(·) needs to be chosen appropriately.

Definition 5.5 (The event Aǫ(j)). For j ≥ 1 and ǫ > 0 let Aǫ(j) be the event in which all of the
following conditions are satisfied:

(i) Θm∞[θj ] occurs;

(ii) |S1| < Mj − δ(ǫ), |S2| < Mj − δ(ǫ), S̃3 < Mj − δ(ǫ).
Each Aǫ(j) is measurable with respect to G∞,out, and Aǫ(j) ⊂ Ωcorr(j).

The function δ(·) can be chosen in such a way that

P
(
Aǫ(j)△Ω(j)

)
≤ ǫ .

If we let ǫ→ 0 through the sequence (2−n)
∞
n=1, then we get (A2−n(j))

∞
n=1 exhausts Ωcorr(j). Therefore

P
(
Ωcorr(j)△Ω(j)

)
= 0 .

For the detailed procedure of choosing δ(·) we refer to [30].
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5.1.2 Step 2

In this step we verify (10) holds for some (ϑ(j, k))k≥1,j≥1 satisfying limk→∞ ϑ(j, k) = 0 for all j ≥ 1.
Suppose that the event Ωnk

(j) occurs for some j ≥ 1, k ≥ 1. Let ω be a vector consisting of the
points of Gnk,out. Let ρnk

ω

(
·
)

denote the density with respect to the Lebesgue measure on Dm of the
conditional distribution of a vector consisting of the points of Gnk,out taken in uniform random order
given Gnk,out. Since the event Ωnk

(j) is a subset of the event Θmnk
[θj ], using Proposition E.1 we get that

for all ζ, ζ′ ∈ Dm

exp
(
−mK2(D)θ−1

j Mj

)
∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

≤
ρnk
ω

(
ζ′
)

ρ
nk
ω

(
ζ
) ≤

∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

exp
(
mK2(D)θ−1

j Mj

)
,

for some constant K2(D) > 0. Thus on the event Ωnk
(j) we have for all ζ, ζ ′ ∈ Dm

ρnk
ω

(
ζ′
)
·
∣∣△
(
ζ
)∣∣2 ≤ exp

(
mK2(D)θ−1

j Mj

)
· ρnk
ω

(
ζ
)
·
∣∣△
(
ζ ′
)∣∣2 .

Thus for all A ∈ Âmin

∣∣△
(
ζ
)∣∣2 ·

∫

π
−1(A)

ρnk
ω

(
ζ′
)
dL
(
ζ ′
)
≤ exp

(
mK2(D)θ−1

j Mj

)
· ρnk
ω

(
ζ
)
·
∫

π
−1(A)

∣∣△
(
ζ′
)∣∣2 dL(ζ ′) .

Thus for all B ∈ B̂out we get

(∫

Dm

∣∣△
(
ζ
)∣∣2 dL(ζ)

)
· P
( (

Gnk,in ∈ A
)
∩
(
Gnk,out ∈ B

)
∩ Ωnk

(j)
)

≤ exp
(
mK2(D)θ−1

j Mj

)
·
∫

(Gnk,out)−1(B) ∩ Ωnk
(j)

(∫

π
−1(A)

∣∣△
(
ζ ′
)∣∣ dL(ζ ′)

)
dP .

Thus, using (34) we get

P

( (
Gnk,in ∈ A

)
∩
(
Gnk,out ∈ B

)
∩ Ωnk

(j)
)

≤ exp
(
mK2(D)θ−1

j Mj

)
·
∫

(Gnk,out)−1(B) ∩ Ωnk
(j)

νΦ,Ψ,D(A ;G∞,out ) dP . (35)

Similarly, we also get

P

( (
Gnk,in ∈ A

)
∩
(
Gnk,out ∈ B

)
∩ Ωnk

(j)
)

≥ exp
(
−mK2(D)θ−1

j Mj

)
·
∫

(Gnk,out)−1(B) ∩ Ωnk
(j)

νΦ,Ψ,D(A ;G∞,out ) dP . (36)

Combining (35) and (36) we get (10) with ϑ(j, k) = 0 for all j ≥ 1, k ≥ 1. This concludes Step 2.

5.1.3 Step 3

In this step we will verify that limj→∞ P(Ωm∞ \ Ω(j) ) = 0. We need to define a sequence of events
(A(j))j≥1.

Definition 5.6 (The event A(j)). For j ∈ N let A(j) be the event in which all of the following conditions
are satisfied:

(i) Θm∞[θj ] occurs;

(ii) |S1| < Mj − 1, |S2| < Mj − 1, S̃3 < Mj − 1.

We have Mj+1 ≥Mj for all j ∈ N and Mj → ∞ as j → ∞. We also have θj ≥ θj+1 > 0 for all j ∈ N

and θj → 0 as j → ∞. Therefore, we get (A(j))
∞
j=1 exhausts Ωm∞. From the definition of the events

A(j), Aǫ(j), and Ωcorr(j) we get

A(j) ⊂ Aǫ(j) ⊂ Ωcorr(j) ⊂ Ωm∞ .
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Therefore (Ωcorr(j))
∞
j=1 exhausts Ωm∞. Since P(Ωcorr(j)△Ω(j) ) = 0 and Ω(j) ⊂ Ωm∞, we have limj→∞ P(Ωm∞ \

Ω(j) ) = 0. This concludes Step 3. The relationships between the events defined in this step are as fol-
lows:

Ωm∞ Ω(j)

A(j) A2−n(j) Ωcorr(j)

as j→∞
exhaust

exhaust as j→∞

⊂ exhaust
as n→∞

almost equal

6 Estimates for the finite-dimensional α-GAFs

In Sections 6 and 7 our objective is to lay down the steps of proving Theorem 3.2 using Theorem 2.1. The
detailed proofs are in Sections 8-11. In Section 7, we will carry out a three step procedure for verifying
the conditions of Theorem 2.1, analogous to what we did for the Ginibre ensemble in Section 5. In this
section we derive some estimates regarding finite dimensional approximations of the α-GAF which we will
use in Section 7. These are estimates analogous to estimates for the finite dimensional approximations
of the Ginibre ensemble in Appendix E.

6.1 Ratio of conditional densities

Consider the sequence (Fα,n)
∞
n=1 of finite dimensional approximations of Fα,∞ (see Appendix D for

reference). For n ≥ 1, Zα,n denotes the ensemble of roots of Fα,n. Let Zα,n,in := Zα,n ∩ D, Zα,n,out :=
Zα,n ∩ D∁. Consider m ≥ rα, ω ∈

(
D∁
)n−m

, and s ∈ Crα−1. The conditional density of Zα,n,in given

Zα,n,out = ω at some ζ ∈ Σm,s is

ρnω , s
(
ζ
)

:= C(ω, s)
∣∣△
(
ζ , ω

)∣∣2



n∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)
((
n
k

)
k!
)α/2

∣∣∣∣∣

2



−(n+1)

. (37)

Here σk
(
·
)

is the kth elementary symmetric function of degree k. Let

D
(
ζ , ω

)
:=

n∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)
((
n
k

)
k!
)α/2

∣∣∣∣∣

2

. (38)

So the ratio of the conditional densities at two locations ζ, ζ′ ∈ Σm,s is

ρnω , s
(
ζ′
)

ρnω , s
(
ζ
) =

∣∣∣∣∣
△
(
ζ ′ , ω

)

△
(
ζ , ω

)
∣∣∣∣∣

2(
D
(
ζ′ , ω

)

D
(
ζ , ω

)
)−(n+1)

. (39)

We need bounds for this ratio. We will bound the ratio of the Vandermonde terms and the ratio of the
symmetric functions separately. To bound the ratio of the Vandermonde terms we need some estimates
for sum of inverse powers of zeros of Fα,n and Fα,∞.

Notation 6.1. Let n,N ∈ N and let v ∈ CN . We define S
[
n ; i ; v

]
,S
[
n ; i ; v

]
∈ Cn+1 as

S
[
n ; i ; v

]
:=

(
σk−i

(
v
)

((
n
k

)
k!
)α/2

)n

k=0

, S
[
n ; i ; v

]
:=

(
σk−i

(
v
)

((
n
k

)
k!
)α/2

)n

k=0

,

where we use the convention that if k− i < 0 or if k− i > N then σk−i
(
v
)
= 0. Utilizing this notation

we can write D
(
ζ , ω

)
from (38) as

D
(
ζ , ω

)
=
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2
.

Thus, an alternative form of (37) is

ρnω , s
(
ζ
)
= C(ω, s)

∣∣△
(
ζ , ω

)∣∣2
(∥∥∥S

[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

)−(n+1)

.
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6.2 Estimates for inverse power sums of zeroes

Now our objective is to state some estimates for the sum of inverse power of zeros. We start by
constructing a partition of unity on D∁. Recall from Remark 3.1 that we assume D to be a disk of
radius r0 centered at the origin.

The functions ϕ, ϕ̃ and the partition of unity (φj)j≥0 on D∁: Let

x1 :=
1 + e

2
, x2 := e , x3 :=

e(1 + e)

2
.

Let ϕ be a non-negative radial C∞
c -function supported on [r0, x3r0] such that ϕ = 1 on [x1r0, x2r0] and

ϕ(r0 + yr0) = 1 − ϕ(er0 + yer0), for 0 ≤ y ≤ e/2. Let ϕ̃ be another non-negative radial C∞
c function

with the same support as ϕ, satisfying ϕ̃(r0+yr0) = 1 for 0 ≤ y ≤ e/2 and ϕ̃ = ϕ otherwise. Let φ0 = ϕ̃
and for j ≥ 1 let φj(z) = ϕ(|z|/ej). Then the collection of functions (φj)j≥0 is a partition of unity on

D∁.

Notation 6.2. For j ≥ 0, and for F either Fα,n for some n ∈ N or Fα,∞, we define

I
[
F ; l ;

(
j, j + 1

)]
:=

∑

F(ω)=0
φj(ω) 6=0

φj(ω)

ωl
, I|·|

[
F ; l ;

(
j, j + 1

)]
:=

∑

F(ω)=0
φj(ω) 6=0

φj(ω)

|ω|l .

For j ≥ 1, and F same as above, let

I
[
F ; l ;

(
0, j
)]

:=

j−1∑

j′=0

I
[
F ; l ;

(
j′, j′ + 1

)]
, I|·|

[
F ; l ;

(
0, j
)]

:=

j−1∑

j′=0

I
[
F ; l ;

(
j′, j′ + 1

)]
.

Suppose F = Fα,n for some n ∈ N. Since (φj)
∞
j=0 is a partition of unity, for sufficiently large j,

I
[
F ; l ;

(
0, j
)]

is the sum of inverse l’th power of all the zeroes of Fα,n of which there are finitely many.

So we can define I
[
Fα,n ; l ;

(
0,∞

)]
as the limit of I

[
Fα,n ; l ;

(
0, j
)]

as j → ∞ (in a.s. sense). We

cannot do this immediately for F = Fα,∞. To do this we derive some L1 bounds.

Proposition 6.1. Let Φ be a C∞
c radial function supported on the annulus {z ∈ C : r0 ≤ |z| ≤ x3r0}.

Then, for R ≥ 1, l ∈ N, n ∈ N we have:

E

[∣∣∣∣
∫

Φ
( z
R

) 1

zl
d[Zα,n](z)

∣∣∣∣
]
≤ C1(Φ) · l2 ·

1

rl0
· 1

Rl
, (40)

E

[∫
Φ
( z
R

) 1

|z|l
d[Zα,n](z)

]
≤ C1(Φ) · l2 ·

1

rl0
· 1

R−l+⌊ 2
α⌋

. (41)

Here C1(Φ) > 0 is a constant depending on Φ. The same bounds also hold for Zα,∞.

We prove Proposition 6.1 in Section 8.1.

Proposition 6.2. For l ∈ N and n ∈ N

E

[∣∣∣∣
∫
ϕ̃(z)

zl
d[Zα,n](z)

∣∣∣∣
]
≤ E

[ ∫
ϕ̃(z)

|z|l d[Zα,n](z)
]
≤ C2 · l2 ·

1

rl0
,

for some constant C2 > 0. The same bounds also hold for Zα,∞.

We prove Proposition 6.2 in Section 8.2.

Proposition 6.3 (Uniform bounds on sum of inverse powers). For l ≥ 1, and F either Fα,n for some
n ∈ N or Fα,∞, the following are true:
(a) For all j ≥ 0 the following is well-defined

I
[
F ; l ;

(
j,∞

)]
:=

∞∑

j′=j

I
[
F ; l ;

(
j′, j′ + 1

)]

i.e., the infinite sum converges absolutely a.s.
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(b) For all j ≥ 0

E

[ ∣∣∣∣I
[
F ; l ;

(
j,∞

)]∣∣∣∣
]
< C3 · l2 ·

1

rl0
· exp

(
−jl
)

for some constant C3 > 0.

(c) For all j ≥ 0

P

(∣∣∣∣I
[
F ; l ;

(
j,∞

)]∣∣∣∣ > C3 · l2 ·
1

rl0
· exp

(
−j l

2

))
≤ exp

(
−j l

2

)
.

We prove Proposition 6.3 in Section 8.3.

Proposition 6.4 (Uniform bounds on sum of absolute value of inverse powers). Let

sα := 1 +

⌊
2

α

⌋
.

For l ≥ sα, and F either Fα,n or Fα,∞, the following are true:
(a) For all j ≥ 0 the following is well-defined

I|·|
[
F ; l ;

(
j,∞

)]
:=

∞∑

j′=j

I|·|
[
Fα,n ; l ;

(
j′, j′ + 1

)]
.

i.e., the sum converges a.s.

(b) For all j ≥ 0

E

[
I|·|
[
F ; l ;

(
j,∞

)] ]
< C4 · l2 ·

1

rl0
· exp

(
−jl
)

for some constant C4 > 0.

(c) For all j ≥ 0

P

(
I|·|
[
F ; l ;

(
j,∞

)]
> C4 · l2 ·

1

rl0
· exp

(
−j l

2

))
≤ exp

(
−j l

2

)
.

Proposition 6.4 can be proved in a way similar to the proof of Proposition 6.3. So we omit the proof.

6.3 Bound on the ratio of the Vandermonde terms

Definition 6.1 (The events Θmn [θ] and Θm∞[θ]). Let Θmn [θ] be the event that Ωmn occurs and the points
of Zα,n outside D are at least θ distance away from the boundary of D. Let Θm∞[θ] be the event that
Ωm∞ occurs and the points of Zα,∞ outside D are at least θ distance away from the boundary of D.

Notation 6.3. For n ∈ N let

Xn :=

sα−1∑

k=1

∣∣∣∣∣∣

∑

ωj∈Zα,n,out

1

ωkj

∣∣∣∣∣∣
+

∑

ωj∈Zα,n,out

1

|ωj|sα

=

sα−1∑

k=1

∣∣∣∣I
[
Fα,n ; k ;

(
0,∞

)]∣∣∣∣ + I|·|
[
Fα,n ; sα ;

(
0,∞

)]
.

Proposition 6.5 (Bounding ratio of the Vandermonde terms). Suppose for some n,m ∈ N with n ≥ m,
and θ ∈ (0, 1), the event Θmn [θ] occurs. Let ω be a vector consisting of the roots of Fα,n outside D. Then
for all ζ, ζ′ ∈ Dm

exp
(
−mK3(D)θ−1

Xn

)∣∣∣∣∣
△
(
ζ ′
)

△
(
ζ
)
∣∣∣∣∣ ≤

∣∣∣∣∣
△
(
ζ′ , ω

)

△
(
ζ , ω

)
∣∣∣∣∣ ≤ exp

(
mK3(D)θ−1

Xn

)∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

for some constant K3(D) > 0.

We prove Proposition 6.5 in Section 8.4.
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6.4 Bound on the ratio of the symmetric functions

In this section our objective is to bound the ratio D
(
ζ′ , ω

)
/D
(
ζ , ω

)
appearing (38).

Proposition 6.6. Consider n,m ∈ N with n ≥ m ≥ rα. Let s = (s1, . . . , srα−1) be an element of Crα−1.
Let ω be an element of (D∁)n−m. Let ζ and ζ′ be elements of Σm,s. For 0 ≤ i ≤ m and rα ≤ j ≤ m let

Di,j
(
ζ , ω

)
:=

∣∣∣
〈
S
[
n ; i ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

=

∣∣∣∣∣

n∑

k=0

σk−i
(
ω
)

((
n
k

)
k!
)α/2

σk−j
(
ω
)

((
n
k

)
k!
)α/2

∣∣∣∣∣
n∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)
((
n
k

)
k!
)α/2

∣∣∣∣∣

2 . (42)

Let
D̂
(
ζ , ω

)
:= max

0≤i≤m
max

rα≤j≤m
Di,j

(
ζ , ω

)
. (43)

Then, there exists a constant K1(D,m) > 0 such that

1−K1(D,m) · D̂
(
ζ , ω

)
≤

D
(
ζ ′ , ω

)

D
(
ζ , ω

) ≤ 1 +K1(D,m) · D̂
(
ζ , ω

)
.

We prove Proposition 6.6 in Section 8.5. In the next proposition we bound the terms σk−i
(
ω
)

which

appears in the expression of Di,j
(
ζ , ω

)
in (42). We introduce a notation first.

Notation 6.4. For non-negative integer i and positive integer j let

πα[i ; j] :=
(
(i+ 1) · · · (i+ j)

)α/2
.

When i = 0, we have πα[0; j] = (j!)α/2. Note that, for fixed j,

lim
i→∞

πα[i; j]

ijα/2
= 1 .

Thus
∑∞

i=1 1/(πα[i ; j])
2 and

∑∞
i=1 1/

(
ijα/2πα[i : j]

)
are finite if and only if j ≥ rα.

Proposition 6.7 (Expansion of the elementary symmetric functions of the outside roots). Let m be a
positive integer. There exist positive constants K2(D,m), K3(D,m), K4(D,m), such that the following
holds. Consider the ensemble Zα,n for some n ≥ m. There exists random variables (wr)

n
r=0 such that

the following hold:

(i) On the event Ωmn (ref. Definition 2.5) we have for all m ≤ l ≤ n

σn−l
(
ω
)

((
n
n−l
)
(n− l)!

)α/2 =
1

ξn

n−l∑

r=0

(−1)n−l−r · wr ·
ξl+r

πα[l ; r]
,

where ω is the vector consisting of points of the ensemble Zα,n,out taken in uniform random order.

(ii) On the event Ωmn we have |wr| ≤
(
K2(D,m)

)r
for all 0 ≤ r ≤ n.

(iii) For m ≤ l ≤ n− rα define

η
[n]
l :=

n−l∑

r=rα

(−1)r
wr · ξl+r
πα[l ; r]

.

For l > n− rα let η
[n]
l := 0. Therefore, for all m ≤ l ≤ n

σn−l
(
ω
)

((
n
n−l
)
(n− l)!

)α/2 =
(−1)(n−l)

ξn



(n−l)∧(rα−1)∑

r=0

(−1)r
wr · ξl+r
πα[l ; r]

+ η
[n]
l


 .

(iv) If l ≥ K3(D,m), then (
E

(∣∣∣η[n]l

∣∣∣
2

1

[
Ωmn

]))1/2

≤
(
K4(D,m)

)rα

lrαα/2
.

We prove Proposition 6.7 in Section 8.6.
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7 The limiting procedure for α-GAF zeroes

In Sections 6 and 7 our objective is to lay down the steps of proving Theorem 3.2 using Theorem 2.1
with X∞ = Zα,∞ and Xn = Zα,n. In Section 6 we have obtained the necessary estimates for Zα,n. In
this section we will lay down the steps to verify the conditions of Theorem 2.1, and obtain (12) from
(8). The detailed proofs are in later sections.

7.1 Overview

For Υ ∈ P(D∁), the probability measure PD|D∁ [·|Υ] is supported on the set of configurations {σ ∈ P(D)|
π

−1(σ) ⊂ Σm,s}, where m = N(Υ) and s = Cα,out(Υ). Therefore, for A ∈ B(P(D)) satisfying
π

−1(A) ⊂ Σm,s
PD|D∁[A|Υ] = ρ

(
π

−1(A) ;Υ
)
.

Let (Φ,Ψ) be the potentials given by Φ ≡ 0 and Ψ(z) = −2 log |z|. Consider the corresponding prob-
ability kernel νΦ,Ψ,D. For Υ ∈ P(D∁), the probability measure νΦ,Ψ,D( · ;Υ) is also supported on
{σ ∈ P(D) | π−1(σ) ⊂ Σm,s}, where m = N(Υ) and s = Cα,out

(
Υ
)
. For A ∈ B(P(D)) satisfying

π
−1(A) ⊂ Σm,s we have from (9)

νΦ,Ψ,D(A ;Υ) :=

∫

π
−1(A)

∣∣△
(
ζ
)∣∣2 dLΣm,s(ζ)

∫

Σm,s

∣∣△
(
ζ
)∣∣2 dLΣm,s(ζ)

, (44)

where LΣm,s is the Lebesgue measure on Σm,s. If we can establish the generalized Gibbs property, then

we get that for all m ∈ N and all A ∈ A
m

in

m1

(
Zα,∞,out

)
νφ,ψ,D(A ;Zα,∞,out ) ≤ PD|D∁[A|Zα,∞,out] ≤ M1

(
Zα,∞,out

)
νφ,ψ,D(A ;Zα,∞,out ) ,

for some measurable functions m1,M1 : P(D∁) → (0,∞). Then, by the Radon-Nikodym Theorem we
will have

m2

(
Zα,∞,out

)∣∣△
(
ζ
)∣∣2 ≤ dρ

(
· ;Zα,∞,out

)

dL (ζ) ≤ M2

(
Zα,∞,out

)∣∣△
(
ζ
)∣∣2 ,

for some measurable functions m2,M2 : P(D∁) → (0,∞). Thus we get (11). Due to Theorem 2.1, it is
enough to verify the conditions of approximate Gibbsianity for Xn = Zα,n and X∞ = Zα,∞ with respect
to the probability kernel νΦ,Ψ,D. As in the case of the Ginibre ensemble, here also we treat the Zα,∞,out

configurations separately depending on m = N
(
Zα,∞,out

)
. Since the α-GAF zero ensemble is rigid up

to order rα, the cases m = 0, . . . , rα − 1 are trivial (Σm,s is either the empty set or a singleton.) So we
consider m ≥ rα. From now on we fix a value of m ≥ rα.

The three step procedure: We will verify the conditions of approximate Gibbsianity in three steps.
◮ In the first step we define the events (Ω(j))j≥1 and also define, for each j ≥ 1, the sequence (nk)

∞
k=1

and the sequence of events (Ωnk
(j))

∞
k=1. We also verify that

- Ω(j) ⊂ Ω(j + 1) for all j;

- Ω(j) ⊂ Ωm∞;

- Ω(j) is measurable with respect to Zα,∞,out;

- Ωnk
(j) is measurable with respect to Zα,nk,out;

- Ωnk
(j) ⊂ Ωmnk

;

- Ω(j) ⊂ lim infk→∞ Ωnk
(j) a.s.

◮ In the second step we verify condition (b)-(5) of the definition of approximate Gibbsianity holds with
respect to the probability kernel νΦ,Ψ,D and some (ϑ(j, k))j≥1,k≥1 which satisfies condition (b)-(1).

◮ In the third step we verify P
(
Ωm∞ \ Ω(j)

)
→ 0.
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Parameters M , θ, δ: In each step we will define various events and prove relations between them.
These events will involve three parameters M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). The parameter M is to be
thought of as large. The parameter θ is to be thought of as small. The parameter δ is also to be thought
of as small. Our analysis will proceed by first fixing M and θ, and then taking δ sufficiently small.

Convention of naming events: We will name the events in the form Ωi:jn
[
δ ; θ ;M

]
. The subscript

n indicates that the event is measurable with respect to the roots of Fα,n. Here the subscript n can be
either a positive integer or ∞. The superscript i : j indicates that the event is the j’th event with the
subscript n defined in the i’th step. In step 3 we define the event Ω3:2

∞
[
• ; θ ;M

]
which doesn’t depend

on the parameter δ. The sign • indicates that the parameter δ is not involved.

δ3-negligible events and δ3-inclusion: Let us now introduce the notion of “δ3-negligible event”
and “δ3-inclusion,” where δ ∈ (0, 1). The reason for using δ3 as opposed to just δ will be clear from
Theorem 7.8.

Definition 7.1 (δ3-negligible event). For δ ∈ (0, 1), we say an event E is δ3-negligible if there exists a
constant C > 0 such that

P(E) ≤ Cδ3.

The constant C can involve m and D.

Definition 7.2 (δ3-inclusion). For δ ∈ (0, 1) we say an event E1 is δ3-included in an event E2 if there
exists a δ3-negligible event E3 such that

E1 \ E3 ⊂ E2.
We denote this relation by

E1 E2 .E3

If E2 is obtained by excluding the δ3-negligible event E3 from E1 i.e., E1 \ E3 = E2, then we denote this
relation by

E1 E2 .E3

⊃

7.1.1 Outline of Step 1

In the first step our objectives are: to define the sequence of events (Ω(j))
∞
j=1; for each j ≥ 1 define

the sequence (nk)
∞
k=1; for each j and k define the event Ωnk

(j); show the conditions on these events as
stated in Theorem 13 are satisfied; show that Ω(j) ⊂ lim infk→∞ Ωnk

(j).
Step 1.1: In Definition 7.3 we introduce the event Ω1:1

∞
[
δ ; θ ;M

]
. This event is measurable with

respect to the roots of Fα,∞ in the annulus

An(δ) :=
{
z ∈ C

∣∣∣ r0 < |z| < R(δ)
}
, (45)

where we define R(δ) appropriately in Section 7.2.8. Recall that r0 is the radius of D. Hence
Ω1:1

∞
[
δ ; θ ;M

]
is measurable with respect to the roots of Fα,∞ outside D.

Step 1.2: In Definition 7.4 we define the event Ω1:1
nδ

[
δ ; θ ;M

]
. This event is measurable with respect

to the roots of Fα,nδ
in the annulus An(δ), where nδ is defined in Section 7.2. Thus, this event

is measurable with respect to the roots of Fα,nδ
outside D. The parameter nδ depends θ, but in

the notation we suppress the dependence on θ since our analysis proceeds by first fixing M and
θ and then taking δ sufficiently small.

Step 1.3: In Proposition 7.1 we show that for all M > 3, θ ∈ (0, 1) and for δ > 0 sufficiently small
depending on M , the event Ω1:1

∞
[
δ ; θ ;M

]
is δ3-included in the event Ω1:1

nδ

[
δ ; θ ;M

]
. So there is

a δ3-negligible event E1:1
δ such that

Ω1:1
∞
[
δ ; θ ;M

]
\ E1:1

δ ⊂ Ω1:1
nδ

[
δ ; θ ;M

]
.

Note that, the event E1:1
δ depends on θ. But as in the case of nδ, we refrain from writing it

explicitly. Although the event E1:1
δ doesn’t depend on M , the relationship between the events as

above holds for δ small enough depending on M .
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Step 1.4: Let (Mj)
∞
j=1 be a sequence of positive real numbers which is monotonically increasing

and diverges to ∞. Let (θj)
∞
j=1 be a sequence of positive real numbers which is monotonically

decreasing and converges to 0. Let (δk)
∞
k=1 be a sequence of positive real numbers which is

monotonically decreasing, converges to 0, and

∑

k

δk <∞ . (46)

For each j ≥ 1 let
Ω(j) := lim inf

k→∞
Ω1:1

∞
[
δk ; θj ;Mj

]
. (47)

For each j ≥ 1, let (nk)
∞
k=1 be the sequence (nδk)

∞
k=1 where we construct nδ using θj . Finally,

for each j ≥ 1 and k ≥ 1 let
Ωnk

(j) := Ω1:1
nδk

[
δk ; θj ;Mj

]
. (48)

Recall from the statement of Theorem 2.1 that we need Ω(j) to be measurable with respect to
Zα,∞,out. This is true because for each j and k the event Ω1:1

∞
[
δk ; θj ;Mj

]
is measurable with

respect to Zα,∞,out. Similarly, we need Ωnk
(j) to be measurable with respect to Zα,nk,out. This is

true because for each j and k the event Ω1:1
nδk

[
δk ; θj ;Mj

]
is measurable with respect to Zα,nk,out.

Each Ω(j) is a subset of Ωm∞. And each Ωnk
(j) is a subset of Ωmnk

.

Step 1.5: In Theorem 7.2 we show that Ω(j) ⊂ lim infk→∞ Ωnk
(j) a.s.

The relationship between the events defined in this step is

Ω1:1
∞
[
δ ; θ ;M

]
Ω1:1
nδ

[
δ ; θ ;M

]
.

E1:1
δ

7.1.2 Outline of Step 2

In this step our objective is to show that (13) holds for some (ϑ(j, k))j≥1,k≥1 satisfying limk→∞ ϑ(j, k) =
0 for all j ≥ 1.
Step 2.1: In Definition 7.5 we introduce an event Ω2:1

nδ

[
δ ; θ ;M

]
. This event is measurable with

respect to the roots of Fα,nδ
outside D.

Step 2.2: In Proposition 7.3 we show that there exists a δ3-negligible event E2:1
δ such that

Ω1:1
nδ

[
δ ; θ ;M

]
\ E2:1

δ ⊂ Ω2:1
nδ

[
δ ; θ ;M

]
. Thus Ω1:1

nδ

[
δ ; θ ;M

]
Ω2:1
nδ

[
δ ; θ ;M

]
.

E2:1
δ

Both events Ω1:1
nδ

[
δ ; θ ;M

]
and Ω2:1

nδ

[
δ ; θ ;M

]
are measurable with respect to the roots of Fα,nδ

outside D. But the crucial difference between the events is that the event Ω1:1
nδ

[
δ ; θ ;M

]
involves

the roots of Fα,nδ
in the annulus An(δ) (defined in (45)), whereas the event Ω2:1

nδ

[
δ ; θ ;M

]
involves

all the roots of Fα,nδ
outside D.

Step 2.3: In Proposition 7.4 we define the event Ω2:2
nδ

[
δ ; θ ;M

]
as a subset of the event Ω2:1

nδ

[
δ ; θ ;M

]

obtained by removing a δ3-negligible set E2:2
δ :

Ω2:2
nδ

[
δ ; θ ;M

]
= Ω2:1

nδ

[
δ ; θ ;M

]
\ E2:2

δ . Thus Ω2:2
nδ

[
δ ; θ ;M

]
Ω2:1
nδ

[
δ ; θ ;M

]
.

E2:2
δ

⊃

Step 2.4: In Proposition 7.5 we define the event Ω2:3
nδ

[
δ ; θ ;M

]
as a subset of the event Ω2:2

nδ

[
δ ; θ ;M

]

obtained by removing a δ3-negligible set E2:3
δ :

Ω2:3
nδ

[
δ ; θ ;M

]
= Ω2:2

nδ

[
δ ; θ ;M

]
\ E2:3

δ . Thus Ω2:2
nδ

[
δ ; θ ;M

]
Ω2:3
nδ

[
δ ; θ ;M

]
.

E2:3
δ

⊃

Step 2.5: In Proposition 7.6 we define Ω2:4
nδ

[
δ ; θ ;M

]
as a subset of Ω2:3

nδ

[
δ ; θ ;M

]
obtained by re-

moving a δ3-negligible set E2:4
δ :

Ω2:4
nδ

[
δ ; θ ;M

]
= Ω2:3

nδ

[
δ ; θ ;M

]
\ E2:4

δ . Thus Ω2:3
nδ

[
δ ; θ ;M

]
Ω2:4
nδ

[
δ ; θ ;M

]
.

E2:4
δ

⊃
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Step 2.6: In Proposition 7.7 we show that on the event Ω2:4
nδ

[
δ ; θ ;M

]
the following holds. Consider

the conditional density ρnδ
ω , s

(
·
)
, where ω is a vector consisting of the points of Zα,nδ,out and s

is the vector of power sums up to order rα − 1 of the points of Zα,nδ,in. We show, in (57), that
for every A ∈ B(Σm,s) the ratio of

∫

A

ρnδ
ω , s

(
ζ
)
dLΣm,s(ζ) and

∫

A

|△
(
ζ′
)
|2 dLm,s(ζ ′)

∫
|△
(
ζ ′
)
|2 dLm,s(ζ′)

is bounded by positive functions of M and θ, uniformly in nδ and A.

Step 2.7: In Theorem 7.8 we establish that (13) is satisfied.
The relation between the events can be summarized as follows:

Ω1:1
nδ

[
δ ; θ ;M

]
Ω2:1
nδ

[
δ ; θ ;M

]
Ω2:2
nδ

[
δ ; θ ;M

]
Ω2:3
nδ

[
δ ; θ ;M

]
Ω2:4
nδ

[
δ ; θ ;M

]
.

E2:1
δ E2:2

δ

⊃
E2:3
δ

⊃
E2:4
δ

⊃

7.1.3 Outline of Step 3

In this step our objective is to show that P
(
Ωm∞ \ Ω(j)

)
→ 0.

Step 3.1: In Definition 7.6 we define the event Ω3:1
nδ

[
δ ; θ ;M

]
.

Step 3.2: In Proposition 7.9 we show that there is a δ3-negligible event E3:1
δ such that

Ω3:1
nδ

[
δ ; θ ;M

]
\ E3:1

δ ⊂ Ω1:1
∞
[
δ ; θ ;M

]
. Thus Ω3:1

nδ

[
δ ; θ ;M

]
Ω1:1

∞
[
δ ; θ ;M

]
.

E3:1
δ

Step 3.3: In Definition 7.7 we define the event Ω3:1
∞
[
δ ; θ ;M

]
.

Step 3.4: In Proposition 7.10 we show that there is a δ3-negligible event E3:2
δ such that

Ω3:1
∞
[
δ ; θ ;M

]
\ E3:2

δ ⊂ Ω3:1
nδ

[
δ ; θ ;M

]
. Thus Ω3:1

∞
[
δ ; θ ;M

]
Ω3:1
nδ

[
δ ; θ ;M

]
.

E3:2
δ

Step 3.5: In Definition 7.8 we define the event Ω3:2
∞
[
• ; θ ;M

]
.

Step 3.6: In Proposition 7.11 we show that there is a δ3-negligible event E3:3
δ such that

Ω3:2
∞
[
• ; θ ;M

]
\ E3:3

δ ⊂ Ω3:1
∞
[
δ ; θ ;M

]
. Thus Ω3:2

∞
[
• ; θ ;M

]
Ω3:1

∞
[
δ ; θ ;M

]
.

E3:3
δ

Step 3.7: In Theorem 7.12 we show that P
(
Ωm∞ \ Ω(j)

)
→ 0.

The relationship between the events in this step is

Ω3:2
∞
[
• ; θ ;M

]
Ω3:1

∞
[
δ ; θ ;M

]
Ω3:1
nδ

[
δ ; θ ;M

]
Ω1:1

∞
[
δ ; θ ;M

]
.

E3:2
δ E3:1

δ E3:4
δ

The relationship between the events defined in all the steps is:

Ω3:2
∞
[
• ; θ ;M

]
Ω3:1

∞
[
δ ; θ ;M

]
Ω3:1
nδ

[
δ ; θ ;M

]
Ω1:1

∞
[
δ ; θ ;M

]

Ω2:4
nδ

[
δ ; θ ;M

]
Ω2:3
nδ

[
δ ; θ ;M

]
Ω2:2
nδ

[
δ ; θ ;M

]
Ω2:1
nδ

[
δ ; θ ;M

]
Ω1:1
nδ

[
δ ; θ ;M

]
.

E3:3
δ E3:2

δ E3:1
δ

E1:1
δ

E2:4
δ

⊂
E2:3
δ

⊂
E2:2
δ

⊂
E2:1
δ

7.2 The parameters

7.2.1 The function h

Let h : N → N be a function such that

lim
L→∞

L+h(L)∑

l=L

1

lα/8
= 0 .

For the sake of definiteness, we take
h(L) := ⌊Lα/16⌋ .
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7.2.2 The constant C0

Let C0 be a positive real constant such that for l ≥ 1

∞∑

r=1

1

lrα/8 (r!)α/4
≤ C0

lα/8
. (49)

7.2.3 The function L(δ)

Let L(δ) be an integer satisfying the following conditions:
(i)

L(δ)+h(L(δ))∑

l=L(δ)

1

lα/8
<
δ3

C0
;

(ii)

P


 1

2
<

1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

|ξl|2 <
3

2


 > 1− δ3 .

Clearly, L(δ) → ∞ as δ → 0.

7.2.4 The function C(δ)

Let C(δ) be a positive integer such that the following conditions hold:
(i) C(δ) > L(δ) + h(L(δ)).

(ii) For all 0 ≤ i ≤ m, rα ≤ j ≤ m, 0 ≤ r1 ≤ m, 0 ≤ r2 ≤ m:

∞∑

l=C(δ)+1

1
(
πα[l ; i+ r1] · πα[l ; j + r2]

)2 ≤ δ5 ,

∞∑

l=C(δ)+1

1

lrαα/2 · πα[l ; i] · πα[l ; j + r2]
≤ δ4 ,

∞∑

l=C(δ)+1

1

lrαα/2 · πα[l ; j] · πα[l ; i+ r1]
≤ δ4 ,

∞∑

l=C(δ)+1

1

lrαα · πα[l ; i] · πα[l ; j]
≤ δ4 .

Clearly, C(δ) → ∞ as δ → 0.

7.2.5 The function g(δ)

Let g(δ) be such that the following conditions hold:
(i) for 1 ≤ l ≤ C(δ) and for F either Fα,n for some n ∈ N or Fα,∞

P




∞∑

j=0

∣∣∣∣I
[
F ; l ;

(
j, j + 1

)]∣∣∣∣ > g(δ)− 1


 <

δ3

C(δ)
,

(ii) for F either Fα,n for some n ∈ N or Fα,∞

P

(
I|·|
[
F ; sα ;

(
0,∞

)]
> g(δ)− 1

)
< δ3 .

The uniform L1 bounds obtained in Propositions 6.3 and 6.4 implies the existence of g(δ) satisfying
these conditions.
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7.2.6 The functions Qδi,j and Qδ,avgtail

For 0 ≤ i ≤ m and rα ≤ j ≤ m define the function Qδi,j : C
C(δ) → R such that

Qδi,j

(
x1, . . . , xC(δ)

)
:=

∣∣∣∣∣∣

C(δ)∑

l=m−(i∧j)
xl+i−m · xl+j−m · (l!)α

∣∣∣∣∣∣
. (50)

Also define Qδ,avgtail : CC(δ) → R such that

Qδ,avgtail

(
x1, · · · , xC(δ)

)
:=

1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

|xl−m|2 · (l!)α . (51)

7.2.7 The function ǫ(δ)

Notation 7.1.
(i) Let Pk be the k-th Newton polynomial expressing the elementary symmetric function of order

k in terms of power-sums of order 1, 2, · · · , k. That is, for complex numbers x1, · · · , xn, let
sk :=

∑n
j=1 x

k
j and ek :=

∑
i1<···<ik xi1xi2 · · ·xik for 1 ≤ k ≤ n. Then ek = Pk(s1, · · · , sk) for

1 ≤ k ≤ n. As a polynomial of k variables, Pk does not depend on n.

(ii) For a vector w = (w1, . . . ,wN ) ∈ C
N and for 1 ≤ k ≤ N , let w〈k〉 denote the vector (w1, . . . , wk).

(iii) Let |·|∞ denote the L∞ norm.

For δ ∈ (0, 1) let ǫ(δ) ∈ (0, 1) be such that the following conditions hold:
(i) for all w1,w2 ∈ C

C(δ) satisfying |w1 − w2|∞ < ǫ(δ) and |w1|∞ ∨ |w2|∞ < g(δ) we have:

max
0≤i≤m

max
rα≤j≤m

∣∣∣∣Q
δ
i,j

((
Pk

(
w

〈k〉
1

))C(δ)

k=1

)
−Qδi,j

((
Pk

(
w

〈k〉
2

))C(δ)

k=1

)∣∣∣∣ < δ ;

(ii) for all w1,w2 ∈ CC(δ) satisfying |w1 − w2|∞ < ǫ(δ) and |w1|∞ ∨ |w2|∞ < g(δ) we have:
∣∣∣∣Q

δ,avg
tail

((
Pk

(
w

〈k〉
1

))C(δ)

k=1

)
−Qδ,avgtail

((
Pk

(
w

〈k〉
2

))C(δ)

k=1

)∣∣∣∣ < δ .

7.2.8 The functions R(δ) and k(δ)

Let k(δ) a positive integer such that:
(i)

∑

l≥1

exp

(
−k(δ) l

2

)
≤ δ3 ;

(ii)

max
1≤l≤C(δ)

(
C3 ∨ C4

)
· l2 · 1

rl0
· exp

(
−k(δ) l

2

)
≤ δ ∧ ǫ(δ) ,

where C3 is the constant introduced in Proposition 6.3, and C4 is the constant introduced in
Proposition 6.4.

Let R(δ) := r0 exp(k(δ)), where recall that r0 is the radius of D.

7.2.9 The function nδ

Notation 7.2. Let Π
[
Fα,∞ ; in

]
and Π

[
Fα,nδ

; in
]

be the product of the roots inside D of Fα,∞ and
Fα,nδ

respectively.

Let nδ be such that the following hold:

(i) In the complement of a δ3-negligible event we have

max
l≤C(δ)

max
0≤k≤k(δ)

∣∣∣∣∣I
[
Fα,∞ ; l ;

(
k, k + 1

)]
− I

[
Fα,nδ

; l ;
(
k, k + 1

)]
∣∣∣∣∣ <

δ ∧ ǫ(δ)
k(δ) + 1

;

max
0≤k≤k(δ)

∣∣∣∣∣I|·|
[
Fα,∞ ; sα ;

(
k, k + 1

)]
− I|·|

[
Fα,nδ

; sα ;
(
k, k + 1

)]
∣∣∣∣∣ <

δ ∧ ǫ(δ)
k(δ) + 1

.
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(ii) In the complement of a δ3-negligible event we have

1

2
≤ 1

nδ

nδ∑

l=1

|ξl|2 <
3

2
.

(iii) In the complement of a δ3-negligible event we have

1

|ξ0|2
∣∣∣
∣∣Π
[
Fα,nδ

; in
]∣∣2 −

∣∣Π
[
Fα,∞ ; in

]∣∣2
∣∣∣ < δ .

(iv)

P

(
Θm∞[θ]△Θmnδ

[θ]
)
< δ3 .

7.2.10 The vectors Z[δ], Z′[δ], Z′′[δ]

For 1 ≤ l ≤ C(δ) define

Zl[δ] := Pl

(
I
[
Fα,∞ ; 1 ;

(
0, k(δ)

)]
, . . . ,I

[
Fα,∞ ; l ;

(
0, k(δ)

)])
,

Z′
l[δ] := Pl

(
I
[
Fα,nδ

; 1 ;
(
0, k(δ)

)]
, . . . ,I

[
Fα,nδ

; l ;
(
0, k(δ)

)])
,

Z′′
l [δ] := Pl

(
I
[
Fα,nδ

; 1 ;
(
0,∞

)]
, . . . ,I

[
Fα,nδ

; l ;
(
0,∞

)])
.

Let

Z[δ] :=
(
Zl[δ]

)C(δ)

l=1
, Z′[δ] :=

(
Z′
l[δ]
)C(δ)

l=1
, Z′′[δ] :=

(
Z′′
l [δ]
)C(δ)

l=1
.

Remark 7.1. Suppose m is the number of roots of Fα,nδ
inside D and ω is a vector of roots of Fα,nδ

outside D. Then for m ≤ l ≤ C(δ) we have

Z′′
l−m[δ] =

σnδ−l
(
ω
)

σnδ−m
(
ω
) .

Therefore

Qδ,avgtail

(
Z′′[δ]

)
=

1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ω
)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
l!
)α
. (52)

Here we use condition (i) defining C(δ). Similarly, for 0 ≤ i ≤ m and rα ≤ j ≤ m we have

Qδi,j

(
Z′′[δ]

)
=

∣∣∣∣∣∣

nδ∑

k=nδ−C(δ)

σk−i
(
ω
)

σnδ−m
(
ω
)
σk−j

(
ω
)

σnδ−m
(
ω
)((nδ − k)!

)α
∣∣∣∣∣∣
. (53)

7.3 The details of the three step procedure

7.3.1 Step 1

First, we define the event Ω1:1
∞
[
δ ; θ ;M

]
.

Definition 7.3 (The event Ω1:1
∞
[
δ ; θ ;M

]
). For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), let Ω1:1

∞
[
δ ; θ ;M

]
be

the event in which all of the following conditions are satisfied:
(i) Θm∞[θ] occurs ;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0, k(δ)

)]∣∣∣∣ ≤M ;

(iii) I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
≤M ;

(iv) max0≤i≤m maxrα≤j≤m Qδi,j

(
Z[δ]

)
≤M ;

(v) M−1 ≤ Qδ,avgtail

(
Z[δ]

)
≤M .
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Next, we define the event Ω1:1
nδ

[
δ ; θ ;M

]
.

Definition 7.4 (The event Ω1:1
nδ

[
δ ; θ ;M

]
). For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), let Ω1:1

nδ

[
δ ; θ ;M

]
be

the event in which all of the following conditions are satisfied:
(i) Θmnδ

[θ] occurs ;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0, k(δ)

)]∣∣∣∣ ≤M + 1 ;

(iii) I|·|
[
Fα,nδ

; sα ;
(
0, k(δ)

)]
≤M + 1 ;

(iv) max0≤i≤m maxrα≤j≤m Qδi,j

(
Z′[δ]

)
≤M + 1 ;

(v) (M + 1)−1 ≤ Qδ,avgtail

(
Z′[δ]

)
≤M + 1 .

Next, we show that the event Ω1:1
∞
[
δ ; θ ;M

]
is δ3-included in the event Ω1:1

nδ

[
δ ; θ ;M

]
.

Proposition 7.1. For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1) sufficiently small depending on M , there exists
an event E1:1

δ such that P(E1:1
δ ) ≤ C1:1δ

3 for some constant C1:1 > 0 and

Ω1:1
∞
[
δ ; θ ;M

]
\ E1:1

δ ⊂ Ω1:1
nδ

[
δ ; θ ;M

]
, i.e., Ω1:1

∞
[
δ ; θ ;M

]
Ω1:1
nδ

[
δ ; θ ;M

]
.

E1:1
δ

We prove Proposition 7.1 in Section 9.2. Next, we show that Ω(j) ⊂ lim infk→∞ Ωnk
(j), which is the

end goal of Step 1.

Theorem 7.2. For each j ≥ 1, Ω(j) ⊂ lim infk→∞ Ωnk
(j) a.s.

We prove Theorem 7.2 in Section 9.3. This concludes Step 1.

7.3.2 Step 2

First, we define the event Ω2:1
nδ

[
δ ; θ ;M

]
.

Definition 7.5 (The event Ω2:1
nδ

[
δ ; θ ;M

]
). For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), let Ω2:1

nδ

[
δ ; θ ;M

]
be

the event in which all of the following conditions are satisfied:
(i) Θmnδ

[θ] occurs ;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0,∞

)]∣∣∣∣ ≤M + 2 ;

(iii) I|·|
[
Fα,nδ

; sα ;
(
0,∞

)]
≤M + 2 ;

(iv) max0≤i≤m maxrα≤j≤m Qδi,j

(
Z′′[δ]

)
≤M + 2 ;

(v) (M + 2)−1 ≤ Qδ,avgtail

(
Z′′[δ]

)
≤M + 2 .

Next, we show that the event Ω1:1
nδ

[
δ ; θ ;M

]
is δ3-included in Ω2:1

nδ

[
δ ; θ ;M

]
.

Proposition 7.3. For all M > 3, θ ∈ (0, 1), and δ > 0 sufficiently small depending on M , there exists
an event E2:1

δ such that P(E2:1
δ ) < C2:1δ

3 for some constant C2:1 > 0 and

Ω1:1
nδ

[
δ ; θ ;M

]
\ E2:1

δ ⊂ Ω2:1
nδ

[
δ ; θ ;M

]
, i.e., Ω1:1

nδ

[
δ ; θ ;M

]
Ω2:1
nδ

[
δ ; θ ;M

]
.

E2:1
δ

We prove this Section 10.2. Next, we define the event Ω2:2
nδ

[
δ ; θ ;M

]
by subtracting a δ3-negligible

event from Ω2:1
nδ

[
δ ; θ ;M

]
. Thus, Ω2:1

nδ

[
δ ; θ ;M

]
is δ3-included in Ω2:2

nδ

[
δ ; θ ;M

]
by construction.

33



Proposition 7.4. For all M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), there exists an event E2:2
δ such that

P(E2:2
δ ) < C2:2δ

3 for some constant C2:2 > 0 and on Ωmnδ
\ E2:2

δ we have the following: Let ζ be a vector
consisting of roots of Fα,nδ

inside D. Let ω be a vector consisting of roots of Fα,nδ
outside D. Then

1

2

∣∣σk
(
ζ , ω

)∣∣ ≤
∣∣σk
(
ω
)∣∣ ≤ 3

2

∣∣σk
(
ζ , ω

)∣∣

for all nδ − L(δ)− h(L(δ)) ≤ k ≤ nδ − L(δ). Let

Ω2:2
nδ

[
δ ; θ ;M

]
:= Ω2:1

nδ

[
δ ; θ ;M

]
\ E2:2

δ , i.e., Ω2:1
nδ

[
δ ; θ ;M

]
Ω2:2
nδ

[
δ ; θ ;M

]
.

E2:2
δ

⊃

We prove this in Section 10.3. Next, we define Ω2:3
nδ

[
δ ; θ ;M

]
by subtracting a δ3-negligible event from

Ω2:2
nδ

[
δ ; θ ;M

]
. Thus Ω2:2

nδ

[
δ ; θ ;M

]
is δ3-included in Ω2:3

nδ

[
δ ; θ ;M

]
by construction.

Proposition 7.5. For all M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), there exists an event E2:3
δ such that

P(E2:3
δ ) < C2:3δ

3 for some constant C2:3 > 0 and on Ωmnδ
\ E2:3

δ we have

8

27
·Qδ,avgtail

(
Z′′[δ]

)
≤
∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
≤ 8 ·Qδ,avgtail

(
Z′′[δ]

)
. (54)

Moreover, on the event Ω2:2
nδ

[
δ ; θ ;M

]
\ E2:3

δ we have

1

nδ

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α ≥ 4

27
· 1

M + 2
, (55)

where ζ is a vector consisting of the roots of Fα,nδ
inside D, and ω is a vector consisting of the roots of

Fα,nδ
outside D. Let

Ω2:3
nδ

[
δ ; θ ;M

]
:= Ω2:2

nδ

[
δ ; θ ;M

]
\ E2:3

δ , i.e., Ω2:2
nδ

[
δ ; θ ;M

]
Ω2:3
nδ

[
δ ; θ ;M

]
.

E2:3
δ

⊃

We prove this in Section 10.4. Before presenting the next result let us introduce a notation.

Notation 7.3. For v = (v0, . . . , vN ) ∈ CN+1 and S ⊂ N ∪ {0} we denote by v ⊙ 1S the vector
w = (w0, . . . ,wN ) ∈ C

N+1 such that wi = 0 if i 6∈ S, wi = vi if i ∈ S. For k ∈ N let [0 : k) denote the
set {0, 1, . . . , k − 1}. For k, n ∈ N ∪ {0} with n ≥ k let [k : n] denote the set {k, k + 1, . . . , n}.

Therefore, if ω is a vector consisting of the roots of Fα,nδ
outside D, and if the event Ωmnδ

occurs, then
for all 0 ≤ i ≤ m and rα ≤ j ≤ m we have

nδ−C(δ)−1∑

k=0

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2 =

〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉
;

nδ∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2 =

〈
S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ ]

〉
.

Now we define the event Ω2:4
nδ

[
δ ; θ ;M

]
by subtracting a δ3-negligible event from Ω2:3

nδ

[
δ ; θ ;M

]
. Thus,

by construction Ω2:3
nδ

[
δ ; θ ;M

]
is δ3-included in Ω2:4

nδ

[
δ ; θ ;M

]
.

Proposition 7.6. For all M > 3, θ ∈ (0, 1), and sufficiently small δ ∈ (0, 1), there exists an event E2:4
δ

such that: P(E2:4
δ ) < C2:4δ

3 for some constant C2:4 > 0, and on the event Ωmnδ
\ E2:4

δ we have

max
0≤i≤m

max
rα≤j≤m

∣∣〈S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

≤ 2δ

nδ
,

where ζ is a vector consisting of the roots of Fα,nδ
inside D, and ω is a vector consisting of the roots of

Fα,nδ
outside D. Let

Ω2:4
nδ

[
δ ; θ ;M

]
:= Ω2:3

nδ

[
δ ; θ ;M

]
\ E2:4

δ , i.e., Ω2:3
nδ

[
δ ; θ ;M

]
Ω2:4
nδ

[
δ ; θ ;M

]
.

E2:4
δ

⊃
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We present the proof of Proposition 7.6 in Section 10.5. Before proceeding to the next result let us
introduce a notation.

Notation 7.4. For a vector of points ζ = (ζ1, . . . , ζm) ∈ Dm let Cα,in(ζ) be the vector s = (s1, . . . , srα−1) ∈
Crα−1 such that

∑m
i=1 ζ

j
i = sj for all 1 ≤ j ≤ rα − 1. For a configuration of points Υ ∈ P(D) with

|Υ| = m, let C∗
α,in(Υ) be Cα,in(ζ) where π(ζ) = Υ.

Now we show that on the event Ω2:4
nδ

[
δ ; θ ;M

]
the conditional density of the roots of Fα,nδ

inside D
given the roots of Fα,nδ

outside D is well-behaved.

Proposition 7.7 (Uniform bound on the ratio of the conditional densities on Ω2:4
nδ

[
δ ; θ ;M

]
). Suppose

Ω2:4
nδ

[
δ ; θ ;M

]
occurs for some M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). Let ζ ∈ Dm be a vector consisting of the

roots of Fα,nδ
inside D. Let ω be a vector consisting of the roots of Fα,nδ

outside D. Let s := Cα,in(ζ).

Then for a.e. ζ ′ with respect to the Lebesgue measure Lm,s on Σm,s we have

exp
(
−f(M, θ)

)∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

≤
ρnδ
ω , s

(
ζ′
)

ρ
nδ
ω , s

(
ζ
) ≤ exp

(
f(M, θ)

)∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

, (56)

where f(M, θ) = K5(D,m)
(
M2 +Mθ−1

)
for some constant K5(D,m) > 0. Equivalently,

exp
(
−f(M, θ)

) ∫

A

ρnδ
ω

(
ζ′
)
dLm,s(ζ ′) ≤

∫

A

|△
(
ζ′
)
|2 dLm,s(ζ ′)

∫

Σm,s

|△
(
ζ′
)
|2 dLm,s(ζ ′)

≤ exp
(
f(M, θ)

) ∫

A

ρnδ
ω

(
ζ ′
)
dLm,s(ζ′)

(57)
for all A ⊂ B(Σm,s).

This is proved in Section 10.6. Now we show that (10) in condition (b)-(5) is satisfied with respect
to the probability kernel νφ,Ψ,D and some (ϑ(j, k))k≥1,j≥1 which satisfies condition (b)-(1). This is the
end goal of Step 2.

Theorem 7.8. There exists (ϑ(j, k))k≥1,j≥1 such that for A ∈ Âmin, B ∈ B̂out, j ≥ 1, k ≥ 1, we have:

P

( (
Xnk,in ∈ A

)
∩
(
Xnk,out ∈ B

)
∩ Ωnk

(j)
)

j≍ (∫

X
−1
nk,out(B) ∩ Ωnk

(j)

νΦ,Ψ,D(A ;X∞,out ) dP
)
+ ϑ(j, k) ,

and for each j ≥ 1, limk→∞ ϑ(j, k) = 0.

This is proved in Section 10.7. This concludes Step 2.

7.3.3 Step 3

First, we define the event Ω3:1
nδ

[
δ ; θ ;M

]
.

Definition 7.6 (The event Ω3:1
nδ

[
δ ; θ ;M

]
). For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1), let Ω3:1

nδ

[
δ ; θ ;M

]
be

the event in which all of the following conditions are satisfied:
(i) Θmnδ

[θ] occurs ;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0, k(δ)

)]∣∣∣∣ ≤M − 1 ;

(iii) I|·|
[
Fα,nδ

; sα ;
(
0, k(δ)

)]
≤M − 1 ;

(iv) max0≤i≤m maxrα≤j≤mQδi,j

(
Z′[δ]

)
≤M − 1 ;

(v) (M − 1)−1 ≤ Qδ,avgtail

(
Z′[δ]

)
≤M − 1 .

Now we show Ω3:1
nδ

[
δ ; θ ;M

]
is δ3-included in Ω1:1

∞
[
δ ; θ ;M

]
.
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Proposition 7.9. For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1) sufficiently small depending on M , there exists
an event E3:1

δ such that P(E3:1
δ ) < C3:1δ

3 for some constant C3:1 > 0 and

Ω3:1
nδ

[
δ ; θ ;M

]
\ E3:1

δ ⊂ Ω1:1
∞
[
δ ; θ ;M

]
, i.e., Ω3:1

nδ

[
δ ; θ ;M

]
Ω1:1

∞
[
δ ; θ ;M

]
.

E3:1
δ

We prove Proposition 7.9 in Section 11.1. Now we define the event Ω3:1
∞
[
δ ; θ ;M

]
.

Definition 7.7 (The event Ω3:1
∞
[
δ ; θ ;M

]
). For M > 3, θ ∈ (0, 1), δ ∈ (0, 1) let Ω3:1

∞
[
δ ; θ ;M

]
be the

event in which all of the following conditions are satisfied:
(i) Θm∞[θ] occurs;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0, k(δ)

)]∣∣∣∣ ≤M − 5
2 ;

(iii) I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
≤M − 5

2 ;

(iv)

8

M − 2
+ δ ≤

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
≤
(
M − 2

)1/2 − δ ,

(v) For all 0 ≤ i ≤ m, rα ≤ j ≤ m, 0 ≤ r1 ≤ rα, 0 ≤ r2 ≤ rα:

∣∣∣∣∣∣

C(δ)∑

l=m−(i∧j)

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]

∣∣∣∣∣∣
≤

(
M − 2

)1/2

4r2α
(
K2(D,m)

)2rα ,

∣∣∣∣∣∣

C(δ)∑

l=m−(i∧j)

η
[nδ ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]

∣∣∣∣∣∣
≤ (M − 2)1/4

4rα
(
K2(D,m)

)rα ,

∣∣∣∣∣∣

C(δ)∑

l=m−(i∧j)

ξl+i+r1 · η
[nδ ]
l+j

πα[l ; j] · πα[l ; i+ r1]

∣∣∣∣∣∣
≤

(
M − 2

)1/4

4rα
(
K2(D,m)

)rα ,

∣∣∣∣∣∣

C(δ)∑

l=m−(i∧j)

η
[nδ ]
l+i · η[nδ]

l+j

πα[l ; i] · πα[l ; j]

∣∣∣∣∣∣
≤
(
M − 2

)1/4

4
.

The constant K2(D,m) is defined in Proposition 6.7.

Now we show Ω3:1
∞
[
δ ; θ ;M

]
is δ3-included in Ω3:1

nδ

[
δ ; θ ;M

]
.

Proposition 7.10. For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1) sufficiently small depending on M , there
exists an event E3:2

δ such that P(E3:2
δ ) < C3:2δ

3 for some constant C3:2 > 0 and

Ω3:1
∞
[
δ ; θ ;M

]
\ E3:2

δ ⊂ Ω3:1
nδ

[
δ ; θ ;M

]
, i.e., Ω3:1

∞
[
δ ; θ ;M

]
Ω3:1
nδ

[
δ ; θ ;M

]
.

E3:2
δ

We prove Proposition 7.10 in Section 11.2. Next, we define the event Ω3:2
∞
[
• ; θ ;M

]
. The • symbol

indicates that this event does not involve the parameter δ.

Definition 7.8 (The event Ω3:2
∞
[
• ; θ ;M

]
). For M > 3, θ ∈ (0, 1), let Ω3:2

∞
[
• ; θ ;M

]
be the event in

which all of the following conditions are satisfied:
(i) Θm∞[θ] occurs ;

(ii) max1≤s<sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0,∞

)]∣∣∣∣ ≤M − 3 ;

(iii) I|·|
[
Fα,∞ ; sα ;

(
0,∞

)]
≤M − 3 ;
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(iv)

8

M − 3
≤
∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
≤
(
M − 2

)1/2 − 1 ;

(v) For 0 ≤ i ≤ m, rα ≤ j ≤ m, 0 ≤ r1 ≤ rα, 0 ≤ r2 ≤ rα:
∣∣∣∣∣∣

∞∑

l=m−(i∧j)

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]

∣∣∣∣∣∣
≤

(
M − 2

)1/2

4r2α
(
K2(D,m)

)2rα − 1 ,

∣∣∣∣∣∣

∞∑

l=m−(i∧j)

η
[nδ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]

∣∣∣∣∣∣
≤

(
M − 2

)1/4

4rα
(
K2(D,m)

)rα − 1 ,

∣∣∣∣∣∣

∞∑

l=m−(i∧j)

ξl+i+r1 · η
[nδ]
l+j

πα[l ; j] · πα[l ; i+ r1]

∣∣∣∣∣∣
≤

(
M − 2

)1/4

4rα
(
K2(D,m)

)rα − 1 ,

∣∣∣∣∣∣

∞∑

l=m−(i∧j)

η
[nδ]
l+i · η[nδ ]

l+j

πα[l ; i] · πα[l ; j]

∣∣∣∣∣∣
≤
(
M − 2

)1/4

4
− 1 .

The constant K2(D,m) is defined in Proposition 6.7.

Now we show Ω3:2
∞
[
• ; θ ;M

]
is δ3-included in Ω3:1

∞
[
δ ; θ ;M

]
.

Proposition 7.11. For M > 3, θ ∈ (0, 1), and δ ∈ (0, 1) sufficiently small depending on M , there
exists an event E3:3

δ such that P(E3:3
δ ) ≤ C3:3δ

3 for some constant C3:3 > 0 and

Ω3:2
∞
[
• ; θ ;M

]
\ E3:3

δ ⊂ Ω3:1
∞
[
δ ; θ ;M

]
, i.e., Ω3:2

∞
[
• ; θ ;M

]
Ω3:1

∞
[
δ ; θ ;M

]
.

E3:3
δ

We prove Proposition 7.11 in Section 11.3. Now, we show that P
(
Ωm∞ \ Ω(j)

)
→ 0 which is the end

goal of Step 3.

Theorem 7.12. limj→∞ P
(
Ωm∞ \ Ω(j)

)
→ 0 .

We prove Theorem 7.12 in Section 11.4. This concludes Step 3. This also concludes the description of
the three step procedure of verifying the conditions of Theorem 2.1 in the context of the Zα,∞ ensemble.
The rest of the article is devoted to proving the results we have stated thus far.

8 Proofs of the results in Section 6

8.1 Proof of Proposition 6.1

Proof of (40): We start with the identity (c.f. Section 2.4.1 in [34])
∫

1

zl
Φ
( z
R

)
d[Zα,n](z) =

∫
1

zl
Φ
( z
R

)
∆ log |Fα,n(z)| dL(z) ,

where ∆ is the operator

∆ =
1

2π

(
∂2

∂x2
+

∂2

∂y2

)
.

Since log
(
E|Fα,n(z)|2

)1/2
is a radial function and Laplacian of a radial function is also radial, we have

∫
1

zl
Φ
( z
R

)
∆ log

(
E|Fα,n(z)|2

)1/2
dL(z) = 0 .

Let

F̂α,n(z) :=
Fα,n(z)(

E|Fα,n(z)|2
)1/2 .
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Then the above argument implies
∫

1

zl
Φ
( z
R

)
d[Zα,n](z) =

∫
1

zl
Φ
( z
R

)
∆ log

∣∣∣F̂α,n(z)
∣∣∣ dL(z) .

Integrating by parts the right hand side we have
∣∣∣∣
∫

1

zl
Φ
( z
R

)
d[Zα,n](z)

∣∣∣∣ ≤
∫ ∣∣∣∣∆

(
1

zl
Φ
( z
R

))∣∣∣∣
∣∣∣log |F̂α,n(z)|

∣∣∣ dL(z) .

Therefore

E

[∣∣∣∣
∫

1

zl
Φ
( z
R

)
d[Zα,n](z)

∣∣∣∣
]
≤
∫ ∣∣∣∣∆

(
1

zl
Φ
( z
R

))∣∣∣∣
(
E

[∣∣∣log |F̂α,n(z)|
∣∣∣
])

dL(z) .

Since Φ is supported in the annulus {z ∈ C | r0 ≤ |z| ≤ x3r0}, we have
∣∣∣∣∆
(

1

zl
Φ
( z
R

))∣∣∣∣ ≤ C5(Φ) · l2 ·
1

rl+2
0

· 1

Rl+2

for some constant C5(Φ) > 0. Further, E
∣∣∣log |F̂α,n(z)|

∣∣∣ is a constant because F̂α,n is NC(0, 1). Therefore

∫ ∣∣∣∣∆
(

1

zl
Φ
( z
R

))∣∣∣∣
(
E

[∣∣∣log |F̂α,n(z)|
∣∣∣
])

dL(z) ≤ C6(Φ) · l2 ·
1

rl0
· 1

Rl
,

for some constant C5(Φ) > 0. This proves (40).

Proof of (41): Let Kn be the covariance kernel of Fα,n, that is Kn(z, w) =
∑n

k=0
(zw)k

(k!)α . Since Φ is a

radial function on C, there exists a function Φ̃ on R≥0 such that Φ(z) = Φ̃(|z|). Therefore

E

[∫
1

|z|lΦ
( z
R

)
d[Zα,n](z)

]
= C7

∫
1

rl
Φ̃
( r
R

)
∆ log(Kn(r, r))

1/2
r dr ,

for some constant C7 > 0. Integrating by parts we get
∣∣∣∣
∫

1

rl
Φ̃
( z
R

)
∆ log(Kn(r, r))

1/2
r dr

∣∣∣∣ ≤
∫ ∣∣∣∣∆

(
1

rl
Φ̃
( z
R

))∣∣∣∣ log(Kn(r, r))
1/2
r dr .

For r/R in the support of φ̃ we have

log(Kn(r, r))
1/2 ≤ log(K(r, r))

1/2

≤ C8(α)
(
r2/α + |log r|

)
≤ C9(α)

(
r
2/α
0 + |log r0|+ C10

)
R2/α

and ∣∣∣∣∆
(
1

rl
Φ
( r
R

))∣∣∣∣ ≤ C11(Φ) · l2 ·
1

Rl+2
· 1

rl+2
0

.

Therefore ∫ ∣∣∣∣∆
(
1

rl
Φ̃
( r
R

))∣∣∣∣ log(Kn(z, z))r dr ≤ C12(Φ) · l2 ·
1

Rl−
2
α

· 1

r
l− 2

α
0

.

This proves (41) and concludes the proof of Proposition 6.1.

8.2 Proof of Proposition 6.2

We have

E

[∣∣∣∣
∫
ϕ̃(z)

zl
d[Zα,n](z)

∣∣∣∣
]
≤ E

[ ∫
ϕ̃(z)

|z|l d[Zα,n](z)
]
= C13

∫
ϕ̃(z)

|z|l ∆ logKn(z, z) dL(z)

for some constant C13 > 0. Recall 0 ≤ ϕ̃ ≤ 1. Using the uniform convergence of the continuous functions
∆ logKn(z, z) → ∆ logK(z, z) <∞ on the (compact) support of ϕ̃, we deduce that

∫
ϕ̃(z)

|z|l ∆ logKn(z, z) dL(z) ≤ C14 · l2 ·
1

rl0

for some constant C14 > 0. Letting n→ ∞ we obtain the same bound for Zα,∞.
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8.3 Proof of Proposition 6.3

Consider n ∈ N and l ≥ 1. Using Propositions 6.1 and 6.2 we get:

E

[∣∣∣∣I
[
Fα,n ; l ;

(
j, j + 1

)]∣∣∣∣
]
= E

[∣∣∣∣
∫
φj(z)

zl
d[Zα,n]

∣∣∣∣
]
< C15 · l2 ·

1

rl0
· exp(−jl)

for all j ≥ 0. For j = 0, the upper bound is given by Proposition 6.2. For j > 0, the upper bound is
given by (41) with R = ej and Φ = φj . Hence for all j ≥ 0 we have

∞∑

j′=j

E

[∣∣∣∣I
[
Fα,n ; l ;

(
j′, j′ + 1

)]∣∣∣∣
]
< C16 · l2 ·

1

rl0
· exp(−jl) .

Hence we get that the infinite sum in the statement is well-defined and the bound on the expectation
also follows. The bound on the probability follows simply from Markov’s Inequality.

8.4 Proof of Proposition 6.5

Suppose the event Θmn [θ] occurs. Let ω be a vector consisting of points of Zα,n,out. For ζ, ζ′ ∈ Dm we
have

△
(
ζ ′ , ω

)

△
(
ζ , ω

) =
△
(
ζ′
)

△
(
ζ
) ·

Γ
(
ζ′ ;ω

)

Γ
(
ζ ;ω

) .

To bound
∣∣Γ
(
ζ′ ;ω

)
/Γ
(
ζ ;ω

)∣∣ from above and below uniformly in ζ, ζ ′ ∈ Dm, it is sufficient to bound∣∣Γ
(
ζ ′ ;ω

)
/Γ
(
0 ;ω

)∣∣ from above and below uniformly in ζ ∈ Dm. Here 0 ∈ Dm is the vector of all zeros.
Observe that ∣∣∣∣∣

Γ
(
ζ′ ;ω

)

Γ
(
0 ;ω

)
∣∣∣∣∣ =

m∏

i=1

n−m∏

j=1

∣∣∣∣
ζi − ωj
ωj

∣∣∣∣ .

Therefore, to bound
∣∣Γ
(
ζ′ ;ω

)
/Γ
(
0 ;ω

)∣∣ it suffices to bound
∏n−m
j=1

∣∣∣ ζ0−ωj

ωj

∣∣∣ uniformly for ζ0 ∈ D.

Therefore, let us fix a ζ0 ∈ D. Due to the θ-separation between ∂D and ω, the ratio θj :=
ζ0
ωj

satisfies

|θj | ≤
r0

r0 + θ
< 1 .

Thus

0 <
θ

r0 + θ
≤ 1− |θj |.

Let log be the branch of complex logarithm given by the power series

log(1− z) = −
∞∑

k=1

zk

k

for |z| < 1. Then we have

log |1− θj | = R log(1− θj) = −R

(
sα−1∑

k=1

θkj
k

)
+ f(θj) ,

where

f(θj) = −R

( ∞∑

k=sα

θkj
k

)
.

Then

|f(θj)| ≤
|θj |sα
1− |θj |

≤ r0 + θ

θ
|θj |sα .

Hence for some constant K4(D) > 0 we have:

∣∣∣∣∣∣
log



n−m∏

j=1

∣∣∣∣
ζ0 − ωj
ωj

∣∣∣∣



∣∣∣∣∣∣
=

∣∣∣∣∣∣

n−m∑

j=1

log

∣∣∣∣
ζ0 − ωj
ωj

∣∣∣∣

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
R




sα−1∑

k=1

1

k

n−m∑

j=1

θkj


+



n−m∑

j=1

f(θj)



∣∣∣∣∣∣

≤
sα−1∑

k=1

1

k

∣∣∣∣∣∣

n−m∑

j=1

θkj

∣∣∣∣∣∣
+
r0 + θ

θ

n−m∑

j=1

|θj |sα

<

sα−1∑

k=1

rk0
k

∣∣∣∣∣∣

n−m∑

j=1

1

ωkj

∣∣∣∣∣∣
+

(r0 + 1)rsα0
θ

n−m∑

j=1

1

|ωj |sα

≤ K4(D)θ−1
Xn .

Here we have used the fact θ < 1 and the definition (c.f. Notation 6.3 for GAF-s)

Xn :=

sα−1∑

k=1

∣∣∣∣∣∣

∑

ωj∈Zα,n,out

1

ωkj

∣∣∣∣∣∣
+

∑

ωj∈Zα,n,out

1

|ωj|sα
.

Thus, we get a bound not involving ζ0. This completes the proof of Proposition 6.5.

8.5 Proof of Proposition 6.6

Consider n, m, s, ω, ζ, ζ′ as in the statement of this proposition. We start with some simple observations:

for all 0 ≤ k ≤ n , σk
(
ζ , ω

)
=

m∑

i=0

σi
(
ζ
)
σk−i

(
ω
)
, and σk

(
ζ ′ , ω

)
=

m∑

i=0

σi
(
ζ′
)
σk−i

(
ω
)
; (58)

for all 1 ≤ k ≤ rα − 1 , σk
(
ζ
)
= σk

(
ζ ′
)
= sk ; σ0

(
ζ
)
= σ0

(
ζ ′
)
= 1 ; (59)

for all 1 ≤ i ≤ m,
∣∣σi
(
ζ
)∣∣ <

(
m

i

)
ri0 , and

∣∣σi
(
ζ′
)∣∣ <

(
m

i

)
ri0 . (60)

Using (58) and (59) we get for all 0 ≤ k ≤ n

σk
(
ζ ′ , ω

)
= σk

(
ζ , ω

)
+

m∑

j=rα

(
σj
(
ζ′
)
− σj

(
ζ
))

· σk−j
(
ω
)
.

Using the identity ∣∣∣∣∣
∑

p

ap

∣∣∣∣∣

2

=
∑

p

|ap|2 + 2
∑

p<q

ℜ(apaq) ,

we get

∣∣σk
(
ζ′ , ω

)∣∣2 =
∣∣σk
(
ζ , ω

)∣∣2

+

m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣2 ·

∣∣σk−j
(
ω
)∣∣2

+

m∑

j=rα

2ℜ
((
σj
(
ζ ′
)
− σj

(
ζ
))

· σk
(
ζ , ω

)
· σk−j

(
ω
))

+
∑

rα≤i<j≤m
2ℜ
((
σi
(
ζ ′
)
− σi

(
ζ
))

·
(
σj
(
ζ′
)
− σj

(
ζ
))

· σk−i
(
ω
)
· σk−j

(
ω
))

.

Dividing throughout by
((
n
k

)
k!
)α

and then summing the above over 0 ≤ k ≤ n we get

∥∥∥S
[
n ; 0 ; (ζ ′ , ω)

]∥∥∥
2

2
=
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

+
m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣2 ·

〈
S
[
n ; j ;ω

]
,S
[
n ; j ;ω

]〉
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+

m∑

j=rα

2ℜ
(
σj
(
ζ′
)
− σj

(
ζ
))

·
〈
S
[
n ; 0 ; (ζ , ω)

]
,S
[
n ; j ;ω

]〉

+
∑

rα≤i<j≤m
2ℜ
((
σi
(
ζ′
)
− σi

(
ζ
))

·
(
σj
(
ζ′
)
− σj

(
ζ
))

·
〈
S
[
n ; i ;ω

]
·S
[
n ; j ;ω

]〉)
.

Using triangle inequality we get

D
(
ζ , ω

)
−A

(
ζ , ζ′ , ω

)
≤ D

(
ζ ′ , ω

)
≤ D

(
ζ , ω

)
+A

(
ζ , ζ′ , ω

)
, (61)

where

A
(
ζ , ζ′ , ω

)
:=

m∑

j=rα

∣∣σj
(
ζ ′
)
− σj

(
ζ
)∣∣2 ·

∣∣∣
〈
S
[
n ; j ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣

+ 2

m∑

j=rα

∣∣σj
(
ζ ′
)
− σj

(
ζ
)∣∣ ·
∣∣∣
〈
S
[
n ; 0 ; (ζ , ω)

]
,S
[
n ; j ;ω

]〉∣∣∣

+ 2
∑

rα≤i<j≤m

∣∣σi
(
ζ ′
)
− σi

(
ζ
)∣∣ ·
∣∣σj
(
ζ ′
)
− σj

(
ζ
)∣∣ ·
∣∣∣
〈
S
[
n ; i ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣ .

Dividing throughout by D
(
ζ , ω

)
in (61) we get

1− B
(
ζ , ζ′ , ω

)
≤

D
(
ζ ′ , ω

)

D
(
ζ , ω

) ≤ 1 + B
(
ζ , ζ′ , ω

)
, (62)

where

B
(
ζ , ζ ′ , ω

)
:=

m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣2 ·

∣∣∣
〈
S
[
n ; 0 ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

+ 2
m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣ ·

∣∣∣
〈
S
[
n ; 0 ; (ζ , ω)

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

+ 2
∑

rα≤i<j≤m

∣∣σi
(
ζ ′
)
− σi

(
ζ
)∣∣ ·
∣∣σj
(
ζ ′
)
− σj

(
ζ
)∣∣ ·

∣∣∣
〈
S
[
n ; i ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

.

(63)

Using (58) we get

∣∣∣
〈
S
[
n ; 0 ; (ζ , ω)

]
,S
[
n ; j ;ω

]〉∣∣∣ =
∣∣∣∣∣

n∑

k=0

σk(ζ , ω)σk−j(ω)((
n
k

)
k!
)α

∣∣∣∣∣

=

∣∣∣∣∣

n∑

k=0

m∑

i=0

σi(ζ)σk−i(ω)σk−j(ω)((
n
k

)
k!
)α

∣∣∣∣∣

=

∣∣∣∣∣

m∑

i=0

σi(ζ)

n∑

k=0

σk−i(ω)σk−j(ω)((
n
k

)
k!
)α

∣∣∣∣∣

≤
m∑

i=0

∣∣σi(ζ)
∣∣ ·
∣∣∣
〈
S
[
n ; i ; (ω)

]
,S
[
n ; j ;ω

]〉∣∣∣,

and thus

m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣ ·

∣∣∣
〈
S
[
n ; 0 ; (ζ , ω)

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2
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≤
m∑

i=0

m∑

j=rα

∣∣σj
(
ζ′
)
− σj

(
ζ
)∣∣ ·
∣∣σi
(
ζ
)∣∣ ·

∣∣∣
〈
S
[
n ; i ;ω

]
,S
[
n ; j ;ω

]〉∣∣∣
∥∥∥S
[
n ; 0 ; (ζ , ω)

]∥∥∥
2

2

. (64)

Combining (63), (64) and using (43) and (60) we get

B
(
ζ , ζ ′ , ω

)
≤ K6(D,m) · D̂

(
ζ , ω

)

for some K6(D,m). Therefore, from (62) we get

1−K6(D,m) · D̂
(
ζ , ω

)
≤

D
(
ζ ′ , ω

)

D
(
ζ , ω

) ≤ 1 +K6(D,m) · D̂
(
ζ , ω

)
.

This concludes the proof of Proposition 6.6.

8.6 Proof of Proposition 6.7

Suppose the event Ωmn happens. Let ζ be a vector consisting of the roots of Fα,n inside D. Fix
1 ≤ k ≤ n−m. Then we have

σk
(
ζ , ω

)
=

min{k,m}∑

r=0

σr
(
ζ
)
σk−r

(
ω
)
.

It follows that

σk
(
ω
)
= σk

(
ζ , ω

)
−

min{k,m}∑

r=1

σr
(
ζ
)
σk−r

(
ω
)
.

We can similarly expand each of the lower order term σk−r
(
ω
)

in terms of σj
(
ζ , ω

)
and obtain an

expansion of σk
(
ω
)

in terms of σj
(
ζ , ω

)
, j = 1, . . . , k. In this way we get

σk
(
ω
)
= σk

(
ζ , ω

)
+

k∑

r=1

wr σk−r
(
ζ , ω

)
. (65)

The coefficient of σk
(
ζ , ω

)
is 1. The rest of the coefficients are polynomials in σj

(
ζ
)
, j = 1, . . . ,m.

They satisfy the recurrence relation



wi
wi−1

...
wi−m+1


 = A




wi−1

wi−2

...
wi−m


 (66)

where

A :=




−σ1
(
ζ
)

−σ2
(
ζ
)

· · · −σm
(
ζ
)

1 0 · · · 0
...

...
. . .

...
0 0 1 0




with the boundary conditions wi = −σi
(
ζ
)

for i = 0, . . . ,m− 1 and wi = 0 for i < 0. The eigenvalues
of A are precisely the negatives of the inside zeros ζ1, . . . , ζm. Due to the recursive structure in (66),
wk is an element of Ak applied to the vector

(
−σm−1

(
ζ
)
, . . . ,−σ0

(
ζ
))

. This implies wk is a linear

combination of the entries of Ak (with the coefficients in the linear combination being independent of
k, but depending on D and m). If the eigenvalues of a matrix A have modulus < ρ′, then the entries of
the matrix Ak are o(ρ′k). Now the eigenvalues of A are ζi’s and for each i we have |ζi| ≤ r0. Therefore,
for 1 ≤ r ≤ n we have |wr| ≤ (K7(D,m))

r
for some constant K7(D,m) > 0.

Switching variable to l = n− k in (65) we get

σn−l
(
ω
)

((
n
n−l
)
(n− l)!

)α/2 =

n−l∑

r=0

(−1)n−l−r · wr ·
ξl+r
ξn

· 1

πα[l ; r]
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with w0 := 1.
Using πα[l ; r] ≥ lrα/2 and the fact that E|ξ|2 = 1 if ξ is a complex Gaussian random variable, we get

(
E

(∣∣∣η[n]l

∣∣∣
2

1

[
Ωmn

]))1/2

≤
n−l∑

r=rα

(K7(D,m))
r

lrα/2
≤
(
K8(D,m)

)rα

lrαα/2

for l ≥ K9(D,m). This concludes the proof of Proposition 6.7.

9 Proofs of the results in Step 1 of Section 7

9.1 Some auxiliary lemmas

Lemma 9.1. Let F be either Fα,∞ or Fα,n for some n ∈ N. Then, except on a δ3-negligible event, we
have:

max
1≤l≤C(δ)

∣∣∣I
[
F ; l ;

(
0,∞

)]
− I

[
F ; l ;

(
0, k(δ)

)]∣∣∣ ≤ δ ∧ ǫ(δ) ;

∣∣∣I|·|
[
F ; sα ;

(
0,∞

)]
− I|·|

[
F ; sα ;

(
0, k(δ)

)]∣∣∣ ≤ δ ∧ ǫ(δ) .

Proof. From Propositions 6.3 and condition (i) defining k(δ) we have

∑

1≤l≤C(δ)

P

(∣∣∣∣I
[
F ; l ;

(
k(δ),∞

)]∣∣∣∣ > C3 · l2 ·
1

rl0
· exp

(
−k(δ) l

2

))

≤
∑

1≤l≤C(δ)

exp

(
−k(δ) l

2

)
≤ δ3 .

Therefore, using condition (ii) defining k(δ), we get that except on a δ3-negligible event

max
1≤l≤C(δ)

∣∣∣I
[
F ; l ;

(
0,∞

)]
− I

[
F ; l ;

(
0, k(δ)

)]∣∣∣

≤ max
1≤l≤C(δ)

C3 · l2 ·
1

rl0
· exp

(
−k(δ) l

2

)
≤ δ ∧ ǫ(δ) .

Using Propositions 6.4 and condition (i) defining k(δ), we have

P

(
I|·|
[
F ; sα ;

(
k(δ),∞

)]
> C4 · s2α · 1

rsα0
· exp

(
−k(δ)sα

2

))

≤ exp
(
−k(δ)sα

2

)
≤ δ3 .

Therefore, using condition (ii) defining k(δ), we get that except on a δ3-negligible event

∣∣∣I|·|
[
F ; sα ;

(
0,∞

)]
− I|·|

[
F ; sα ;

(
0, k(δ)

)]∣∣∣

≤ C4 · s2α · 1

rsα0
· exp

(
−k(δ)sα

2

)
≤ δ ∧ ǫ(δ) .

This concludes the proof of Lemma 9.1. �

Lemma 9.2. Consider θ ∈ (0, 1) and δ ∈ (0, 1). Except on a δ3-negligible event we have:

max
0≤i≤m

max
rα≤j≤m

∣∣∣Qδi,j
(
Z′[δ]

)
−Qδi,j

(
Z′′[δ]

)∣∣∣ < δ ;

∣∣∣Qδ,avgtail

(
Z′[δ]

)
−Qδ,avgtail

(
Z′′[δ]

)∣∣∣ < δ .
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Proof. Condition (i) defining g(δ) implies that except on a δ3-negligible event we have

max
1≤l≤C(δ)

∣∣∣∣I
[
Fα,nδ

; l ;
(
0, k(δ)

)]∣∣∣∣ ≤ g(δ)− 1 .

By Lemma 9.1 we have that except on a δ3-negligible event

max
1≤l≤C(δ)

∣∣∣∣I
[
Fα,nδ

; l ;
(
0,∞

)]
− I

[
Fα,nδ

; l ;
(
0, k(δ)

)]∣∣∣∣ < ǫ(δ) .

Therefore, using condition (i) defining ǫ(δ) we get that except on a δ3-negligible event

max
0≤i≤m

max
rα≤j≤m

∣∣∣Qδi,j
(
Z′[δ]

)
−Qδi,j

(
Z′′[δ]

)∣∣∣ < δ .

Similarly, from condition (ii) defining ǫ(δ) we get that except on a δ3-negligible event
∣∣∣Qδ,avgtail

(
Z′[δ]

)
−Qδ,avgtail

(
Z′′[δ]

)∣∣∣ < δ .

This concludes the proof of Lemma 9.2. �

Lemma 9.3. Consider θ ∈ (0, 1) and δ ∈ (0, 1). Except on a δ3-negligible we have:

max
1≤l≤C(δ)

∣∣∣∣I
[
Fα,∞ ; l ;

(
0, k(δ)

)]
− I

[
Fα,nδ

; l ;
(
0, k(δ)

)]∣∣∣∣ ≤ δ ∧ ǫ(δ) ; (67)

∣∣∣∣I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
− I|·|

[
Fα,nδ

; sα ;
(
0, k(δ)

)]∣∣∣∣ ≤ δ ∧ ǫ(δ) . (68)

Proof. From condition (i) defining nδ we have except on a δ3-negligible event

max
1≤l≤C(δ)

max
0≤k≤k(δ)

∣∣∣∣I
[
Fα,∞ ; l ;

(
k, k + 1

)]
− I

[
Fα,nδ

; l ;
(
k, k + 1

)]∣∣∣∣ ≤
δ ∧ ǫ(δ)
k(δ) + 1

.

Using triangle inequality we get (67). From condition (i) defining nδ we have except on a δ3-negligible
event

max
0≤k≤k(δ)

∣∣∣∣I|·|
[
Fα,∞ ; sα ;

(
k, k + 1

)]
− I|·|

[
Fα,nδ

; sα ;
(
k, k + 1

)]∣∣∣∣ ≤
δ ∧ ǫ(δ)
k(δ) + 1

.

Using triangle inequality we get (68). �

Lemma 9.4. Consider θ ∈ (0, 1) and δ ∈ (0, 1). Except on a δ3-negligible event we have:

max
0≤i≤m

max
rα≤j≤m

∣∣∣Qδi,j
(
Z[δ]

)
−Qδi,j

(
Z′[δ]

)∣∣∣ < δ ;

∣∣∣Qδ,avgtail

(
Z[δ]

)
− Qδ,avgtail

(
Z′[δ]

)∣∣∣ < δ .

Proof. Condition (i) defining g(δ) implies that except on a δ3-negligible event we have

max
1≤l≤C(δ)

∣∣∣∣I
[
Fα,nδ

; l ;
(
0, k(δ)

)]∣∣∣∣ ≤ g(δ)− 1 ,

max
1≤l≤C(δ)

∣∣∣∣I
[
Fα,∞ ; l ;

(
0, k(δ)

)]∣∣∣∣ ≤ g(δ)− 1 .

From Lemma 9.3 we have that except on a δ3-negligible event

max
1≤l≤C(δ)

∣∣∣I
[
Fα,∞ ; l ;

(
0, k(δ)

)]
− I

[
Fα,nδ

; l ;
(
0, k(δ)

)]∣∣∣ < ǫ(δ) .

Therefore, from condition (i) defining ǫ(δ) we get that except on a δ3-negligible event

max
0≤i≤m

max
rα≤j≤m

∣∣∣Qδi,j
(
Z[δ]

)
−Qδi,j

(
Z′[δ]

)∣∣∣ < δ .

Similarly, from condition (ii) defining ǫ(δ) we get that except on a δ3-negligible event
∣∣∣Qδ,avgtail

(
Z[δ]

)
−Qδ,avgtail

(
Z′[δ]

)∣∣∣ < δ .

This concludes the proof of Lemma 9.4. �
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9.2 Proof of Proposition 7.1

Consider M > 3, θ ∈ (0, 1). Our objective is to verify that for δ ∈ (0, 1) sufficiently small depending
on M , the conditions defining Ω1:1

nδ

[
δ ; θ ;M

]
hold on the event Ω1:1

∞
[
δ ; θ ;M

]
except on a δ3-negligible

event.
(i) From condition (i) in the definition of the event Ω1:1

∞
[
δ ; θ ;M

]
we have that the event Θm∞[θ] occurs.

From condition (iv) in the definition of nδ we have

P

(
Θm∞[θ]△Θmnδ

[θ]
)
< δ3 .

Therefore, the event Θmnδ
[θ] occurs on the event Ω1:1

∞
[
δ ; θ ;M

]
except on a δ3-negligible event.

Therefore, condition (i) in the definition of the eventΩ1:1
nδ

[
δ ; θ ;M

]
holds on the event Ω1:1

∞
[
δ ; θ ;M

]

except on a δ3-negligible event.

(ii) From condition (ii) defining Ω1:1
∞
[
δ ; θ ;M

]
we have

max
1≤s<sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0, k(δ)

)]∣∣∣∣ ≤M .

Using Lemma 9.3, sacrificing a δ3-negligible event, we get

max
1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0, k(δ)

)]∣∣∣∣ ≤M + δ ≤M + 1 ,

which is condition (ii) defining Ω1:1
nδ

[
δ ; θ ;M

]
.

(iii) From condition (iii) defining Ω1:1
∞
[
δ ; θ ;M

]
we have

I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
≤M .

Using Lemma 9.3, sacrificing a δ3-negligible event, we get

I|·|
[
Fα,nδ

; sα ;
(
0, k(δ)

)]
≤M + δ ≤M + 1 ,

which is condition (iii) defining Ω1:1
nδ

[
δ ; θ ;M

]
.

(iv) From condition (iv) defining Ω1:1
∞
[
δ ; θ ;M

]
we have

max
0≤i≤m

max
rα≤j≤m

Qδi,j

(
Z[δ]

)
≤M .

By Lemma 9.4, assuming δ is small enough and sacrificing a δ3-negligible event, we get

max
0≤i≤m

max
rα≤j≤m

Qδi,j

(
Z′[δ]

)
≤M + δ ≤M + 1 ,

which is condition (iv) defining Ω1:1
nδ

[
δ ; θ ;M

]
.

(v) From condition (v) defining Ω1:1
∞
[
δ ; θ ;M

]
we have

M−1 < Qδ,avgtail

(
Z[δ]

)
< M .

By Lemma 9.4, assuming δ < M−1 − (M + 1)−1 and sacrificing a δ3-negligible event, we get

(M + 1)−1 < Qδ,avgtail

(
Z′[δ]

)
< M + 1 ,

which is condition (v) defining Ω1:1
nδ

[
δ ; θ ;M

]
.

This concludes the proof of Proposition 7.1.
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9.3 Proof of Theorem 7.2

Recall from (47) and (48) that

Ω(j) = lim inf
k→∞

Ω1:1
∞
[
δk ; θj ;Mj

]
and Ωnk

(j) = Ω1:1
nδk

[
δk ; θj ;Mj

]
.

From Proposition 7.1 we get

Ω1:1
∞
[
δk ; θ ;Mj

]
\ E1:1

δk
⊂ Ω1:1

nδk

[
δk ; θ ;Mj

]
,

and
P
(
E1:1
δk

)
< C1:1δ

3
k .

Using (46) we get ∑

k

P
(
E1:1
δk

)
<∞ .

Therefore, using the first Borel-Cantelli lemma we get

Ω(j) ⊂ lim inf
k→∞

Ωnk
(j) a.s.

This concludes the proof of Theorem 7.2.

10 Proofs of the results in Step 2 of Section 7

10.1 Some auxiliary lemmas

Lemma 10.1. Suppose the event Ωmnδ
occurs. Let ζ be a vector consisting of the roots of Fα,nδ

inside
D. Let ω be a vector consisting of the roots of Fα,nδ

outside D. Then we have:

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α
= |ξnδ−k|2

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
for 0 ≤ k ≤ nδ ; (69)

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
=

∣∣σnδ−m
(
ω
)∣∣2

(nδ!)α

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α
; (70)

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
=

1

|ξnδ
|2

nδ∑

l=0

|ξl|2 ; (71)

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α
=

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
nδ∑

k=0

|ξk|2 . (72)

Proof. From the relation between the roots and the coefficients of the polynomial Fα,nδ
we have

σk
(
ζ , ω

)
((
nδ

k

)
k!
)α/2 = (−1)k

ξnδ−k
ξnδ

(73)

for all 0 ≤ k ≤ nδ. Therefore for all 0 ≤ k ≤ nδ

1((
nδ

k

)
k!
)α

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ

(
ζ , ω

)
∣∣∣∣∣

2

=
1

(nδ!)α
|ξnδ−k|

2

|ξ0|2
.

Multiplying both sides by
∣∣Π
[
Fα,nδ

; in
]∣∣2 and using

Π
[
Fα,nδ

; in
]

σnδ

(
ζ , ω

) =
1

σnδ−m
(
ω
)
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we get (69). The equality in (70) follows simply by expanding the norm:

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
=

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)
((
nδ

k

)
k!
)α/2

∣∣∣∣∣

2

=

∣∣σnδ−m
(
ω
)∣∣2

(nδ!)α

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α
.

Similarly, expanding the norm and and using (73) we get

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
=

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)
((
nδ

k

)
k!
)α/2

∣∣∣∣∣

2

=
1

|ξnδ
|2

nδ∑

l=0

|ξl|2 .

Equation (72) follows by taking sum over k in (69):

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2

((nδ − k)!)
α
=

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
nδ∑

k=0

|ξk|2 .

This concludes the proof of Lemma 10.1. �

Lemma 10.2. On the event Ωmnδ
we have

∣∣〈S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ ]

〉∣∣ =
∣∣σnδ−m

(
ω
)∣∣2

(nδ!)α
Qδi,j

(
Z′′[δ]

)

for all 0 ≤ i ≤ m and rα ≤ j ≤ m, where ω is a vector consisting of the roots of Fα,nδ
outside D. (See

Notation 7.3 for explanation of the term in the l.h.s. of the above equation.)

Proof. Observe that for 0 ≤ i ≤ m and i ≤ k ≤ nδ −m

σk−i
(
ω
)

σnδ−m
(
ω
) = Pq

(
I
[
Fα,nδ

; 1 ;
(
0,∞

)]
, · · · ,I

[
Fα,nδ

; q ;
(
0,∞

)])
= Z′′

q [δ] ,

with q = (nδ −m)− (k − i). Therefore, for 0 ≤ i ≤ m and rα ≤ j ≤ m we have
∣∣〈S

[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ]

〉∣∣

=

∣∣∣∣∣∣

nδ∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2

∣∣∣∣∣∣

=

∣∣σnδ−m
(
ω
)∣∣2

(nδ!)α

∣∣∣∣∣∣

nδ∑

k=nδ−C(δ)

σk−i
(
ω
)

σnδ−m
(
ω
)
σk−j

(
ω
)

σnδ−m
(
ω
)
(
(nδ − k)!

)α
∣∣∣∣∣∣

=

∣∣σnδ−m
(
ω
)∣∣2

(nδ!)α
Qδi,j

(
Z′′[δ]

)
, (using (53)) .

This concludes the proof of Lemma 10.2. �

10.2 Proof of Proposition 7.3

Consider M > 3 and θ ∈ (0, 1). Our objective is to verify that for δ ∈ (0, 1) sufficiently small depending
on M , the conditions defining Ω2:1

nδ

[
δ ; θ ;M

]
hold on the event Ω1:1

nδ

[
δ ; θ ;M

]
except on a δ3-negligible

event.
(i) Condition (i) defining Ω1:1

nδ

[
δ ; θ ;M

]
is same as condition (i) defining Ω2:1

nδ

[
δ ; θ ;M

]
.

(ii) From condition (ii) defining Ω1:1
nδ

[
δ ; θ ;M

]
we have

max
1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0, k(δ)

)]∣∣∣∣ ≤M + 1 .

Using Lemma 9.1, sacrificing a δ3-negligible event, we get

max
1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0,∞

)]∣∣∣∣ ≤M + 1 + δ ≤M + 2 ,

which is condition (ii) defining Ω2:1
nδ

[
δ ; θ ;M

]
.
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(iii) By condition (iii) defining Ω1:1
nδ

[
δ ; θ ;M + 1

]
we have

I|·|
[
Fα,nδ

; sα ;
(
0, k(δ)

)]
≤M + 1 .

Using Lemma 9.1, sacrificing a δ3-negligible event, we get

I|·|
[
Fα,nδ

; sα ;
(
0,∞

)]
≤M + 1 + δ ≤M + 2 ,

which is condition (iii) defining Ω2:1
nδ

[
δ ; θ ;M

]
.

(iv) By condition (iv) defining Ω1:1
nδ

[
δ ; θ ;M + 1

]
we have

max
0≤i≤m

max
rα≤j≤m

Qδi,j

(
Z′[δ]

)
≤M + 1 .

Using Lemma 9.2, sacrificing a δ3-negligible event, we get

max
0≤i≤m

max
rα≤j≤m

Qδi,j

(
Z′′[δ]

)
≤M + 1 + δ ≤M + 2 ,

which is condition (iv) defining Ω2:1
nδ

[
δ ; θ ;M

]
.

(v) By condition (v) defining Ω1:1
nδ

[
δ ; θ ;M + 1

]
we have

(M + 1)−1 ≤ Qδ,avgtail

(
Z′[δ]

)
≤M + 1 .

Using Lemma 9.2, taking δ < (M +1)−1 − (M +2)−1 and sacrificing a δ3-negligible event, we get

(M + 2)−1 ≤ Qδ,avgtail

(
Z′′[δ]

)
≤M + 2 ,

which is condition (v) defining Ω2:1
nδ

[
δ ; θ ;M

]
.

This concludes the proof of Proposition 7.3.

10.3 Proof of Proposition 7.4

Consider M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). Suppose the event Ωmnδ
occurs. Let ζ be a vector consisting

of the roots of Fα,nδ
inside D. Let ω be a vector consisting of the roots of Fα,nδ

outside D. From the
relationship between the roots and the coefficients of the polynomial Fα,nδ

we get

σk
(
ζ , ω

)
((
nδ

k

)
k!
)α/2 = (−1)k

ξnδ−k
ξnδ

for all 0 ≤ k ≤ nδ. By Proposition 6.7 we have for 0 ≤ k ≤ nδ −m

σk
(
ω
)

((
nδ

k

)
k!
)α/2 =

k∑

r=0

(−1)k−r · wr ·
ξl+r

πα[l ; r]
.

Therefore, for 0 ≤ k ≤ nδ −m we have

σk
(
ω
)

σk
(
ζ , ω

) = 1 +
k∑

r=1

(−1)k−r · wr ·
ξnδ−k+r
ξnδ−k

· 1

πα[nδ − k ; r]
.

Thus, our objective is to show that except on a δ3-negligible event we have

∣∣∣∣∣

nδ−l∑

r=1

(−1)nδ−l−r · wr ·
ξl+r
ξl

· 1

πα[l ; r]

∣∣∣∣∣ ≤
1

2

for all l in the range L(δ) ≤ l ≤ L(δ) + h(L(δ)). By the inequality 1 + x ≥ √
x we have

1

πα[l ; r]
≤ 1

lrα/4(r!)α/4
.
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By Proposition 6.7 we have |wr | ≤ (K2(D,m))
r
. Therefore, for L(δ) ≤ l ≤ L(δ) + h(L(δ))

∣∣∣∣∣

nδ−l∑

r=1

(−1)nδ−l−r · wr ·
ξl+r
ξl

· 1

πα[l ; r]

∣∣∣∣∣ ≤
nδ−l∑

r=1

(K2(D,m))
r

lrα/4(r!)α/4

∣∣∣∣
ξl+r
ξl

∣∣∣∣ .

Therefore, assuming δ is small enough so that L(δ)
α/8

> K2(D,m), it is enough to show that

P

(
nδ−l∑

r=1

1

lrα/8(r!)α/4

∣∣∣∣
ξl+r
ξl

∣∣∣∣ ≤
1

2
for all L(δ) ≤ l ≤ L(δ) + h(L(δ))

)
≤ δ3 . (74)

Using the fact that if ξ is complex Gaussian then |ξ|2 is an exponential random variable with mean 1,
we can deduce that

P

(∣∣∣∣
ξl+r
ξl

∣∣∣∣ > x

)
≤ 1

x2
,

for 1 ≤ r ≤ nδ − l and L(δ) ≤ l ≤ L(δ) + h(L(δ)). Therefore

P

(∣∣∣∣
ξl+r
ξl

∣∣∣∣ > lrα/16(r!)α/8
)

≤ 1

lrα/8(r!)α/4
. (75)

For L(δ) ≤ l ≤ L(δ) + h(L(δ)) let E(l) be the event that for all r ≥ 1

∣∣∣∣
ξl+r
ξl

∣∣∣∣ ≤ lrα/16(r!)α/8 .

On this event, assuming δ-is small enough so that L(δ)
−α/16

< 1/3, we have

nδ−l∑

r=1

1

lrα/8(r!)α/4

∣∣∣∣
ξl+r
ξl

∣∣∣∣ ≤
∞∑

r=1

1

lrα/16(r!)α/8
≤

∞∑

r=1

1

lrα/16
≤ 1

2
.

For each l in the range L(δ) ≤ l ≤ L(δ) + h(L(δ)) using (75) we get

P(E(l)c) = P

(∣∣∣∣
ξl+r
ξl

∣∣∣∣ > lrα/16(r!)α/8 for some r

)
≤

∞∑

r=1

1

lrα/8(r!)α/4
≤ C0

lα/8
,

where C0 is defined in (49). By a union over l and using condition (i) defining L(δ) we get

P

(
nδ−l∑

r=1

1

lrα/8(r!)α/4

∣∣∣∣
ξl+r
ξl

∣∣∣∣ >
1

2
for some L(δ) ≤ l ≤ L(δ) + h(L(δ))

)

≤
L(δ)+h(L(δ))∑

l=L(δ)

P(E(l)c) ≤
L(δ)+h(L(δ))∑

l=L(δ)

C0

lα/8
≤ δ3 .

Thus we get (74). This concludes the proof of Proposition 7.4.

10.4 Proof of Proposition 7.5

Consider M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). Suppose the event Ωmnδ
occurs. Let ζ be a vector consisting

of the roots of Fα,nδ
inside D. Let ω be a vector consisting of the roots of Fα,nδ

outside D. By
Proposition 7.4, we have, except on a δ3 negligible event,

2

3

∣∣σk
(
ω
)∣∣ ≤

∣∣σk
(
ζ , ω

)∣∣ ≤ 2
∣∣σk
(
ω
)∣∣ ,

for nδ − L(δ)− h(L(δ)) ≤ k ≤ nδ − L(δ). Changing the variable from k to l = nδ − k we get

4

9
· 1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ω
)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)
α ≤ 1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)
α
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≤ 4 · 1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ω
)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)
α
.

We can rewrite the term in the middle of the inequality above, using (69) from Lemma 10.1, as

1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)
α
=

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

|ξl|2 .

By condition (ii) defining L(δ), we have, except on a δ3-negligible event,

1

2
<

1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

|ξl|2 <
3

2
.

Hence

8

27
· 1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ω
)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)
α ≤

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2

≤ 8 · 1

h(L(δ))

L(δ)+h(L(δ))∑

l=L(δ)

∣∣∣∣∣
σnδ−l

(
ω
)

σnδ−m
(
ω
)
∣∣∣∣∣

2

(l!)α .

From here, using (52) we get (54).
Now suppose the event Ω2:2

nδ

[
δ ; θ ;M

]
occurs. We want to establish (55). From Proposition 7.4 we

have Ω2:2
nδ

[
δ ; θ ;M

]
is a subset of Ω2:1

nδ

[
δ ; θ ;M

]
, and from condition (v) defining Ω2:1

nδ

[
δ ; θ ;M

]
we have

(M + 2)−1 ≤ Qδ,avgtail

(
Z′′[δ]

)
≤M + 2 .

So, (54) implies ∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
≥ 8

27
· 1

M + 2
.

By condition (ii) defining nδ we have
nδ∑

k=0

|ξk|2 >
1

2
nδ

except on a δ3-negligible event. Therefore, using (72) from Lemma 10.1, we get

1

nδ

nδ∑

k=0

∣∣∣∣∣
σk
(
ζ , ω

)

σnδ−m
(
ω
)
∣∣∣∣∣

2(
(nδ − k)!

)α ≥ 4

27
· 1

M + 2
.

Hence we get (55). This concludes the proof of Proposition 7.5.

10.5 Proof of Proposition 7.6

Consider M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). Suppose that the event Ωmnδ
occurs. Let ζ be a vector

consisting of the roots Fα,nδ
inside D. Let ω be a vector consisting of the roots Fα,nδ

outside D.
Consider i and j satisfying 0 ≤ i ≤ m and rα ≤ j ≤ m. From Proposition 6.7 it follows that for all
0 ≤ l ≤ nδ −m

σnδ−l
(
ω
)

((
nδ

nδ−l
)
(nδ − l)!

)α/2 =
(−1)nδ−l

ξnδ



(nδ−l)∧(rα−1)∑

r=0

(−1)r
wr · ξl+r
πα[l ; r]

+ η
[nδ ]
l


 .

Therefore, for j ≤ k ≤ nδ −m+ j and l = nδ − k (so that k − j = nδ − (l + j)) we have

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2 =

1

πα[nδ − k ; j]

σk−j
(
ω
)

((
nδ

k−j
)
(k − j)!

)α/2
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=
1

πα[l ; j]

(−1)k−j

ξnδ



(nδ−l−j)∧(rα−1)∑

r=0

(−1)r
wr · ξl+j+r
πα[l + j ; r]

+ η
[nδ]
l+j




=
(−1)k−j

ξnδ



(nδ−l−j)∧(rα−1)∑

r=0

(−1)r
wr · ξl+j+r
πα[l ; j + r]

+
η
[nδ]
l+j

πα[l ; j]


 .

Using this and a similar expansion for σk−i
(
ω
)

we get

〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉

=

nδ−C(δ)−1∑

k=0

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2

=

nδ−C(δ)−1∑

k=i∨j

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2

=
(−1)i+j

|ξnδ
|2

nδ−(i∨j)∑

l=C(δ)+1



(nδ−l−i)∧(rα−1)∑

r1=0

(−1)r1
wr1 · ξl+i+r1
πα[l ; i+ r1]

+
η
[nδ ]
l+i

πα[l ; i]




·



(nδ−l−j)∧(rα−1)∑

r2=0

(−1)r2
wr2 · ξl+j+r2
πα[l ; j + r2]

+
η
[nδ]
l+j

πα[l ; j]




=
(−1)i+j

|ξnδ
|2
(
T 1 + T 2 + T 3 + T 4

)
, (76)

where

T 1 :=

rα−1∑

r1=0

rα−1∑

r2=0

(−1)r1+r2 · wr1 · wr2 ·



nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]


 ,

T 2 :=

rα−1∑

r1=0

(−1)r1 · wr1 ·



nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

ξl+i+r1 · η
[nδ ]
l+j

πα[l ; i+ r1] · πα[l ; j]


 ,

T 3 :=

rα−1∑

r2=0

(−1)r2 · wr2 ·



nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

η
[nδ ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]


 ,

T 4 :=

nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

η
[nδ]
l+i · η[nδ ]

l+j

πα[l ; i] · πα[l ; j]
.

Also from Proposition 6.7 we have
|wr| ≤

(
K2(D,m)

)r
(77)

for 0 ≤ r ≤ nδ, and for l ≥ K3(D,m)

(
E

(∣∣∣η[nδ]
l

∣∣∣
2

1

[
Ωmnδ

]))1/2

≤
(
K4(D,m)

)rα

lrαα/2
. (78)

Fix 0 ≤ r1 ≤ rα and 0 ≤ r2 ≤ rα. Assume δ is small enough so that C(δ) ≥ K3(D,m). By condition (ii)
defining C(δ), and the Chebyshev inequality, we get

∣∣∣∣∣∣

nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]

∣∣∣∣∣∣
<

δ

4
(
K2(D,m)

)2rα
r2α

(79)
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in the complement of a δ3-negligible event. By condition (ii) defining C(δ), equation (78), and using a
Markov bound, we get

∣∣∣∣∣∣

nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

ξl+i+r1 · η
[nδ ]
l+j

πα[l ; i+ r1] · πα[l ; j]

∣∣∣∣∣∣
<

δ

4
(
K2(D,m)

)rα
rα

, (80)

∣∣∣∣∣∣

nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

η
[nδ ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]

∣∣∣∣∣∣
<

δ

4
(
K2(D,m)

)rα
rα

, (81)

∣∣∣∣∣∣

nδ−(i+r1)∨(j+r2)∑

l=C(δ)+1

η
[nδ ]
l+i · η[nδ ]

l+j

πα[l ; i] · πα[l ; j]

∣∣∣∣∣∣
<
δ

4
, (82)

in the complement of a δ3-negligible event. Using (77), (79)-(82), and a union bound over choices of r1
and r2, we get ∣∣T 1 + T 2 + T 3 + T 4

∣∣ < δ

in the complement of a δ3-negligible event. Therefore, from (76) we get

∣∣∣
〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉∣∣∣ ≤ δ

|ξnδ
|2
. (83)

Using condition (ii) in the definition of nδ and (71) we get

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
>
nδ
2

· 1

|ξnδ
|2

(84)

except on a δ3-negligible event. Combining (83) and (84) we get
∣∣∣
〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉∣∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

≤ 2δ

nδ
.

This concludes the proof of Proposition 7.6.

10.6 Proof of Proposition 7.7

Consider M > 3, θ ∈ (0, 1), and δ ∈ (0, 1). Suppose that the event Ω2:4
nδ

[
δ ; θ ;M

]
occurs. Let ζ be a

vector consisting of the roots of Fα,nδ
inside D. Let ω be a vector consisting of the roots of Fα,nδ

outside
D. Let s = Cα,in(ζ). Let ζ′ ∈ Σm,s. Recall from (39)

ρnδ
ω , s

(
ζ′
)

ρ
nδ
ω , s

(
ζ
) =

∣∣∣∣∣
△
(
ζ ′ , ω

)

△
(
ζ , ω

)
∣∣∣∣∣

2(
D
(
ζ ′ , ω

)

D
(
ζ , ω

)
)−(nδ+1)

. (85)

Therefore, to bound the ratio of conditional densities, it is sufficient to bound the ratio of the Vander-
monde terms and the ratio of the symmetric functions. To bound the ratio of the Vandermonde terms
we use Proposition 6.5. To bound the ratio of the symmetric functions we use Proposition 6.6. First we
proceed to bound the ratio of the Vandermonde terms.

Since the event Ω2:4
nδ

[
δ ; θ ;M

]
is a subset of the event Ω2:1

nδ

[
δ ; θ ;M

]
, from condition (i) defining

Ω2:1
nδ

[
δ ; θ ;M

]
we have that the event Θmnδ

[θ] occurs. And, from conditions (ii) and (iii) defining

Ω2:1
nδ

[
δ ; θ ;M

]
we have

max
1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0,∞

)]∣∣∣∣ ≤M, and I|·|
[
Fα,nδ

; sα ;
(
0,∞

)]
≤M .

Therefore, by Proposition 6.5 we get:

exp
(
−6mK3(D)sαθ

−1M
)∣∣∣∣∣

△
(
ζ ′
)

△
(
ζ
)
∣∣∣∣∣

2

≤
∣∣∣∣∣
△
(
ζ′ , ω

)

△
(
ζ , ω

)
∣∣∣∣∣

2

≤
∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

exp
(
6mK3(D)θ−1sαM

)
. (86)
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Now we proceed to bound the ratio D
(
ζ ′ , ω

)
/D
(
ζ , ω

)
. We will use Proposition 6.6. We need to

bound Di,j
(
ζ , ω

)
for 0 ≤ i ≤ m and rα ≤ j ≤ m. To bound Di,j

(
ζ , ω

)
we divide it as

Di,j
(
ζ , ω

)
=

∣∣〈S
[
nδ ; i ; (ζ, ω)

]
,S
[
nδ ; j ; (ζ, ω)

]〉∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

≤

∣∣∣
〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉∣∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

+

∣∣〈S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ]

〉∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

. (87)

By Proposition 7.6 we have
∣∣∣
〈
S
[
nδ ; i ;ω

]
⊙ 1[0:nδ−C(δ)),S

[
nδ ; j ;ω

]
⊙ 1[0:nδ−C(δ))

〉∣∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

≤ 2δ

nδ
. (88)

Using Lemma 10.2 and condition (iv) defining Ω2:1
nδ

[
δ ; θ ;M

]
, which holds since Ω2:4

nδ

[
δ ; θ ;M

]
is a subset

of Ω2:1
nδ

[
δ ; θ ;M

]
, we get

∣∣〈S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ]

〉∣∣ ≤
∣∣σnδ−m

(
ω
)∣∣2

(nδ!)
α (M + 2) . (89)

Using (70) from Lemma 10.1 and (55) from Proposition 7.5 we get

∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2
≥
∣∣σnδ−m

(
ω
)∣∣2

(nδ!)α
4

27

nδ
M + 2

. (90)

Combining (89) and (90) we get

∣∣〈S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ]

〉∣∣
∥∥∥S
[
nδ ; 0 ; (ζ, ω)

]∥∥∥
2

2

≤ 1

nδ

27

4
(M + 2)2 . (91)

Combining (87), (88), (91) we get

Di,j
(
ζ , ω

)
≤ K1(D)

M2

nδ
,

for some constant K1(D) > 0 Therefore, using Proposition 6.6 we get

1−K10(D,m)
M2

nδ
≤

D
(
ζ ′ , ω

)

D
(
ζ , ω

) ≤ 1 +K10(D,m)
M2

nδ
,

for some constant K10(D,m) > 0. Therefore

exp
(
−K11(D,m)M2

)
≤
(
D
(
ζ ′ , ω

)

D
(
ζ , ω

)
)nδ+1

≤ exp
(
K11(D,m)M2

)
, (92)

for some constant K11(D,m) > 0. Combining (85), (86) and (92) we get

exp
(
−f(M, θ)

)∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

≤
ρnδ
ω

(
ζ′
)

ρ
nδ
ω

(
ζ
) ≤ exp

(
f(M, θ)

)∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

. (93)

where f(M, θ) = K12(D,m)
(
M2 +Mθ−1

)
, for some constant K12(D,m) > 0. Thus we get (56). This

concludes the proof of Proposition 7.7.
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Remark 10.1. In the definition of the event Ω1:1
∞
[
δ ; θ ;M

]
(Definition 7.3) we have used the same bound

M in all the compactness conditions. Suppose we use: aM in conditions (ii) and (iii) in place of M ; bM
in condition (iv) in place of M ; cM in condition (v) in place of M ; where aM , bM , and cM are some
functions of M diverging to ∞ as M → ∞. Suppose we also modify the definitions of all the other
events in Step 2 accordingly. Then we will get (93) with f(M, θ) = K13(D,m)

(
bMCM + amθ

−1
)
, for

some constant K13(D,m) > 0.

10.7 Proof of Theorem 7.8

Our objective is to show that there exists (ϑ(j, k))j≥1,k≥1 such that for A ∈ Âmin , B ∈ B̂out, j ≥ 1, k ≥ 1

P

( (
Zα,nk,in ∈ A

)
∩
(
Zα,nk,out ∈ B

)
∩ Ωnk

(j)
)

j≍
∫

Z−1
α,nk,out(B) ∩ Ωnk

(j)

νΦ,Ψ,D(A ;Zα,∞,out ) dP+ ϑ(j, k) , (94)

and limk→∞ ϑ(j, k) = 0 for each j ≥ 1.

Notation 10.1.
(i) Let S be the range of the function Cα,in : Dm → Crα−1 (defined in Notation 7.4). Thus, S is a

bounded open set.

(ii) For s ∈ S and A ∈ A
m

in let

R
(
A ; s

)
:=

∫

π
−1(A)

∣∣△
(
ζ
)∣∣2 dLΣm,s(ζ)

∫

Σm,s

∣∣△
(
ζ
)∣∣2 dLΣm,s(ζ)

.

(iii) Let
s[nδ ] := C∗

α,in(Zα,nδ,in) ,

i.e., for 1 ≤ k ≤ rα − 1, the k-th coordinate of s[nδ] is the k-th power sum of the roots of Fα,nδ

inside D.

Recall from (44)
νΦ,Ψ,D(A ;Zα,∞,out ) = R

(
A ;Cα,out(Zα,∞,out)

)
.

Since A ∈ Âmin , we get that R
(
A ; s

)
is continuous in s. Observe that

lim
k→∞

s[nk] = C∗
α,in(Zα,∞,in) = Cα,out(Zα,∞,out) a.s.

Therefore
lim
k→∞

R
(
A ; s[nk]

)
= R

(
A ;Cα,out(Zα,∞,out)

)
= νΦ,Ψ,D(A ;Zα,∞,out ) a.s. (95)

Let us now record an observation as a proposition and finish the proof of Theorem 7.8 using this
proposition. After that we prove this proposition.

Proposition 10.1. For A ∈ Âmin, B ∈ B̂out, M > 3, θ ∈ (0, 1), δ ∈ (0, 1)

P

( (
Zα,nδ,in ∈ A

)
∩
(
Zα,nδ,out ∈ B

)
∩ Ω1:1

nδ

[
δ ; θ ;M

] )

M,θ≍
∫

(Zα,nδ,out)−1(B) ∩ Ω1:1
nδ

[
δ ; θ ;M

]R
(
A ; s[nδ]

)
dP+ O(δ) . (96)

We set M =Mj, θ = θj , and δ = δk in (96) and get

P

( (
Zα,nk,in ∈ A

)
∩
(
Zα,nk,in ∈ B

)
∩ Ωnk

(j)
)
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j≍
∫

(Zα,nk,out)−1(B) ∩ Ωnk
(j)

R
(
A ; s[nk]

)
dP+ ok(1) , (97)

where ok(1) is a quantity which goes to 0 as k → ∞. Using (95) we get

∫

(Zα,nk,out)−1(B) ∩ Ωnk
(j)

R
(
A ; s[nk]

)
dP

=

∫

(Zα,nk,out)−1(B) ∩ Ωnk
(j)

R
(
A ;Cα,out(Zα,∞,out)

)
dP+ ok(1)

=

∫

(Zα,nk,out)−1(B) ∩ Ωnk
(j)

νΦ,Ψ,D(A ;Zα,∞,out ) dP+ ok(1) , (98)

Combining (97) and (98) we get

P

( (
Zα,nk,in ∈ A

)
∩
(
Zα,nk,out ∈ B

)
∩ Ωnk

(j)
)

j≍
∫

(Zα,nk,out)−1(B) ∩ Ωnk
(j)

νΦ,Ψ,D(A ;Zα,∞,out ) dP+ ok(1) . (99)

Recall from (48)
Ωnk

(j) = Ω1:1
nδk

[
δk ; θj ;Mj

]
.

Therefore we get (94). Now we focus on proving the Proposition 10.1.

Notation 10.2.
(i) For ω[nδ] ∈ (D∁)nδ−m let γnδ

(
· ;ω[nδ ]

)
denote the conditional measure of the first rα−1 power sums

of the zeros of Fα,nδ
inside D given that the zeros of Fα,nδ

outside D are the coordinates of ω[nδ]. In
other words, γnδ

(
· ;ω[nδ ]

)
is the conditional density of C∗

α,in(Zα,nδ,in) given π(ω[nδ]) = Zα,nδ,out.

(ii) Let µnδ

(
· ; s ;ω[nδ]

)
be the conditional measure of the points of Zα,nδ,in taken in uniform random

order and considered as a vector, given that the points of Zα,nδ,out are the coordinates of ω[nδ]

(i.e., π(ω[nδ ]) = Zα,nδ,out) and the power sum vector C∗
α,in(Zα,nδ,in) = s.

Proof of Proposition 10.1. From Propositions 7.3-7.6 we have that Ω1:1
nδ

[
δ ; θ ;M

]
is δ3-included in

Ω2:4
nδ

[
δ ; θ ;M

]
. Conditioning successively on Zα,nδ,out and then on C∗

α,in(Zα,nδ,in) yields the following:

There exists an event Ωgood
nδ

such that:

(1) Ωgood
nδ

is measurable with respect to Zα,nδ,out;

(2) Ωgood
nδ

⊂ Ω1:1
nδ

[
δ ; θ ;M

]
;

(3) P(Ω1:1
nδ

[
δ ; θ ;M

]
\ Ωgood

nδ
) ≤ δ;

(4) for each ω[nδ ] for which Ωgood
nδ

holds (i.e., π(ω[nδ]) ∈ Zα,nδ,out(Ω
good
nδ

)) there exists a Borel mea-

surable set Sgood
(
ω[nδ ]

)
⊂ S such that

(i) γnδ

(
S \ Sgood

(
ω[nδ ]

)
;ω[nδ ]

)
≤ δ;

(ii) for each s ∈ Sgood
(
ω[nδ]

)
we have

µnδ

(
Σm,s \H

(
s ;ω[nδ ]

)
; s ;ω[nδ]

)
≤ δ , (100)

where
H
(
s ;ω[nδ]

)
:=
{
ζ ∈ Σm,s

∣∣∣ π(ζ , ω[nδ]) ∈ Zα,nδ

(
Ω2:4
nδ

[
δ ; θ ;M

])}
.

For A ∈ Âmin, B ∈ B̂out let

I[1]nδ

(
A ;B

)
:=

∫

(Zα,nδ,out)−1(B) ∩ Ωgood
nδ

∫

Sgood

(
ω[nδ]

)
∫

π
−1(A)

dµnδ

(
ζ ; s ;ω[nδ ]

)
dγnδ

(
s ;ω[nδ]

)
dP , (101)
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I[2]nδ

(
A ;B

)
:=

∫

(Zα,nδ,out)−1(B) ∩ Ωgood
nδ

∫

Sgood

(
ω[nδ]

)
∫

π
−1(A) ∩ H(s ;ω[nδ])

dµnδ

(
ζ ; s ;ω[nδ ]

)
dγnδ

(
s ;ω[nδ]

)
dP .

(102)

Using (100) we get
I[1]nδ

(
A ;B

)
= I[2]nδ

(
A ;B

)
+O(δ) . (103)

Let

I[3]nδ

(
A ;B

)

:=

∫

(Zα,nδ,out)−1(B) ∩ Ωgood
nδ

∫

Sgood

(
ω[nδ]

)

∫

π
−1(A) ∩ H(s ;ω[nδ])

|△
(
ζ
)
|2 dLΣm,s(ζ)

∫

Σm,s

|△
(
ζ′
)
|2 dLΣm,s(ζ

′)
dγnδ

(
s ;ω[nδ]

)
dP .

(104)

By Proposition 7.7 we have

I[2]nδ

(
A ;B

) M,θ≍ I[3]nδ

(
A ;B

)
. (105)

Let

I[4]nδ

(
A ;B

)
:=

∫

(Zα,nδ,out)−1(B)∩Ωgood
nδ

∫

Sgood

(
ω[nδ]

)

∫

π
−1(A)∩Σm,s

|△
(
ζ
)
|2 dLΣm,s(ζ)

∫

Σm,s

|△
(
ζ ′
)
|2 dLΣm,s(ζ

′)
dγnδ

(
s ;ω[nδ]

)
dP .

(106)
Using (100) we get

I[3]nδ

(
A ;B

)
= I[4]nδ

(
A ;B

)
+O(δ) . (107)

Therefore

I[1]nδ

(
A ;B

) M,θ≍
∫

(Zα,nδ,out)−1(B)∩Ωgood
nδ

∫

Sgood

(
ω[nδ]

)R
(
A ; s

)
dγnδ

(
s ;ω[nδ ]

)
dP[ω[nδ ]] +O(δ) .

Using 0 ≤ R
(
A ; s

)
≤ 1 and γnδ

(
S \ Sgood

(
ω[nδ]

)
;ω[nδ]

)
< δ for ω[nδ ] ∈ Ωgood

nδ
, we have

I[1]nδ

(
A ;B

) M,θ≍
∫

(Zα,nδ,out)−1(B)∩Ωgood
nδ

∫

S

R
(
A ; s

)
dγnδ

(
s ;ω[nδ ]

)
dP[ω[nδ ]] +O(δ) . (108)

Then the integral in the right hand side of (108) can be written as

∫

(Zα,nδ,out)−1(B)∩Ωgood
nδ

R
(
A ; s[nδ]

)
dP .

Using P
(
Ω1:1
nδ

[
δ ; θ ;M

]
\ Ωgood

nδ

)
< δ we have

I[1]nδ

(
A ;B

) j≍
∫

(Zα,nδ,out)−1(B)∩Ω1:1
nδ

[
δ ; θ ;M

]R
(
A ; s[nδ ]

)
dP+O(δ) .

Using P
(
Ω1:1
nδ

[
δ ; θ ;M

]
\ Ωgood

nδ

)
< δ and (101) we also get

I[1]nδ

(
A ;B

)

=

∫

(Zα,nδ,out)−1(B)∩Ω1:1
nδ

[
δ ; θ ;M

]
∫

S

∫

A∩Σm,s

dµnδ

(
ζ ; s ;ω[nδ]

)
dγnδ

(
s ;ω[nδ ]

)
dP+O(δ)

= P

( (
Zα,nδ,in ∈ A

)
∩
(
Zα,nδ,out ∈ B

)
∩ Ω1:1

nδ

[
δ ; θ ;M

] )
+O(δ) .
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Therefore

P

( (
Zα,nδ,in ∈ A

)
∩
(
Zα,nδ,out ∈ B

)
∩ Ω1:1

nδ

[
δ ; θ ;M

])

M,θ≍
∫

R
(
A ; s[nδ]

)
1

[
Zα,nδ,out ∈ B

]
1

[
Ω1:1
nδ

[
δ ; θ ;M

] ]
dP+O(δ) .

This concludes the proof of Proposition 10.1. �

Remark 10.2. From the proof of Proposition 10.1, it follows that there exists (ϑ(j, k))j≥1,k≥1 such that

limk→∞ ϑ(j, k) = 0 for each j ≥ 1, and for A ∈ Âmin, B ∈ B̂out, j ≥ 1, k ≥ 1

exp
(
−f(Mj, θj)

)
≤

P

( (
Zα,nk,in ∈ A

)
∩
(
Zα,nk,out ∈ B

)
∩ Ωnk

(j)
)

(∫

Z−1
α,nk,out(B) ∩ Ωnk

(j)

νΦ,Ψ,D(A ;Zα,∞,out ) dP
)
+ ϑ(j, k)

≤ exp
(
f(Mj, θj)

)
,

where the function f is the function defined in Proposition 7.7.

11 Proofs of the results in Step 3 of Section 7

11.1 Proof of Proposition 7.9

Observe that, the event Ω3:1
nδ

[
δ ; θ ;M

]
is same as the event Ω1:1

nδ

[
δ ; θ ;M

]
with M replaced by M − 1.

So Proposition 7.9 can be proved simply by reversing the arguments of Proposition 7.1. Therefore, we
skip the details.

11.2 Proof of Proposition 7.10

Consider M > 3, θ ∈ (0, 1). Our objective is to verify that for δ ∈ (0, 1) sufficiently small depending
on M , the conditions defining the event Ω3:1

nδ

[
δ ; θ ;M

]
also hold on the event Ω3:1

∞
[
δ ; θ ;M

]
except on a

δ3-negligible event.
(i) Condition (i) defining Ω3:1

∞
[
δ ; θ ;M

]
is that the event Θm∞[θ] occurs. Condition (iv) defining nδ is

P

(
Θm∞[θ]△Θmnδ

[θ]
)
< δ3 .

Therefore, the event Θmnδ
[θ] occurs on Ω3:1

∞
[
δ ; θ ;M

]
except on a δ3-negligible event. Thus condi-

tion (i) defining Ω3:1
nδ

[
δ ; θ ;M

]
is satisfied on Ω3:1

∞
[
δ ; θ ;M

]
except on a δ3-negligible event.

(ii) From condition (ii) defining Ω3:1
∞
[
δ ; θ ;M

]
we have

max
1≤s<sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0, k(δ)

)]∣∣∣∣ ≤M − 5

2
.

Using Lemma 9.3 we get, sacrificing a δ3-negligible event,

max
1≤s<sα

∣∣∣∣I
[
Fα,nδ

; s ;
(
0, k(δ)

)]∣∣∣∣ ≤M − 5

2
+ δ ≤M − 1 ,

which is condition (ii) defining Ω3:1
nδ

[
δ ; θ ;M

]
.

(iii) From condition (iii) defining Ω3:1
∞
[
δ ; θ ;M

]
we have

I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
< M − 5

2
.

Using Lemma 9.3 we get, sacrificing a δ3-negligible event,

I|·|
[
Fα,nδ

; sα ;
(
0, k(δ)

)]
< M − 1 ,

which is condition (iii) defining Ω3:1
nδ

[
δ ; θ ;M

]
.
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(iv) Using Lemma 10.2 we have

Qδi,j

(
Z′′[δ]

)
=
∣∣〈S

[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ]

〉∣∣ (nδ!)
α

∣∣σnδ−m
(
ω
)∣∣2 .

From (69) in Lemma 10.1 we get

(nδ!)
α

∣∣σnδ−m
(
ω
)∣∣2 =

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
|ξnδ

|2 .

Also recall the Notation 7.3, since ω ∈
(
D∁
)nδ−m, we get

〈
S
[
nδ ; i ;ω

]
⊙ 1[nδ−C(δ),nδ ],S

[
nδ ; j ;ω

]
⊙ 1[nδ−C(δ),nδ ]

〉
=

nδ−m+(i∧j)∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2 .

Here we use the fact that σk−i(ω)σk−j(ω) = 0 when k > nδ −m+ (i ∧ j). Thus

Qδi,j

(
Z′′[δ]

)
=

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2

∣∣∣∣∣∣

nδ−m+(i∧j)∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2

∣∣∣∣∣∣
|ξnδ

|2 . (109)

From condition (iv) defining Ω3:1
∞
[
δ ; θ ;M

]
we have

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
≤
(
M − 2

)1/2 − δ .

From condition (iii) defining nδ we have

∣∣∣∣∣

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
−
∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2

∣∣∣∣∣ < δ

except on a δ3-negligible event. Thus we get

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
≤
(
M − 2

)1/2
. (110)

Using Propositions 6.7 we get

nδ−m+(i∧j)∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2 =

(−1)i+j

|ξnδ
|2
(
T

′
1 + T

′
2 + T

′
3 + T

′
4

)
,

where

T
′
1 :=

rα−1∑

r1=0

rα−1∑

r2=0

(−1)r1+r2 · wr1 · wr2 ·




C(δ)∑

l=m−(i∧j)

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]


 ,

T
′
2 :=

rα−1∑

r2=0

(−1)r2 · wr2 ·




C(δ)∑

l=m−(i∧j)

η
[nδ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]


 ,

T
′
3 :=

rα−1∑

r1=0

(−1)r1 · wr1 ·




C(δ)∑

l=m−(i∧j)

ξl+i+r1 · η
[nδ]
l+j

πα[l ; j] · πα[l ; i+ r1]


 ,

T
′
4 :=

C(δ)∑

l=m−(i∧j)

η
[nδ ]
l+i · η[nδ]

l+j

πα[l ; i] · πα[l ; j]
.
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By condition (v) defining Ω3:1
∞
[
δ ; θ ;M

]
we have

∣∣T ′
p

∣∣ ≤
(
M − 2

)1/2
/4 for each 1 ≤ p ≤ 4.

Therefore ∣∣∣∣∣∣

nδ−m+(i∧j)∑

k=nδ−C(δ)

σk−i
(
ω
)

((
nδ

k

)
k!
)α/2

σk−j
(
ω
)

((
nδ

k

)
k!
)α/2

∣∣∣∣∣∣
≤ 1

|ξnδ
|2
(
M − 2

)1/2
. (111)

Combining (109) - (111) we get

Qδi,j

(
Z′′[δ]

)
≤M − 2 .

Using Lemma 9.2, sacrificing a δ3-negligible event, we get

Qδi,j

(
Z′[δ]

)
≤M − 2 + δ ≤M − 1 ,

which is condition (iv) defining Ω3:1
nδ

[
δ ; θ ;M

]
.

(v) By condition (iii) defining nδ we have
∣∣∣∣∣

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
−
∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2

∣∣∣∣∣ < δ

except on a δ3-negligible event. Therefore, using (54) and Lemma 9.2 we get that the following is
true except on a δ3-negligible event:

Qδ,avgtail

(
Z′[δ]

)
≥ Qδ,avgtail

(
Z′′[δ]

)
−
∣∣∣Qδ,avgtail

(
Z′[δ]

)
−Qδ,avgtail

(
Z′′[δ]

)∣∣∣

≥ 1

8

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
− δ

≥ 1

8

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
− 1

8

∣∣∣∣∣

∣∣Π
[
Fα,nδ

; in
]∣∣2

|ξ0|2
−
∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2

∣∣∣∣∣− δ

≥ 1

8

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
− 9

8
δ . (112)

We can apply (54) here since we have shown that Θmnδ
[θ] ⊂ Ωmnδ

occurs except on a δ3-negligible
event. Similarly, except on a δ3-negligible event, we have:

Qδ,avgtail

(
Z′[δ]

)
≤ 27

8

∣∣Π
[
Fα,∞ ; in

]∣∣2

|ξ0|2
+

35

8
δ . (113)

Equations (112) and (113), along with condition (iv) defining Ω3:1
∞
[
δ ; θ ;M

]
gives us condition (v)

defining Ω3:1
nδ

[
δ ; θ ;M

]
. This concludes the proof of Proposition 7.10.

11.3 Proof of Proposition 7.11

We verify that the conditions defining the eventΩ3:2
∞
[
• ; θ ;M

]
are also satisfied on the event Ω3:1

∞
[
δ ; θ ;M

]

except on a δ3-negligible event.
(i) Condition (i) defining Ω3:1

∞
[
δ ; θ ;M

]
is same as condition (i) defining Ω3:2

∞
[
• ; θ ;M

]
.

(ii) From condition (ii) defining Ω3:2
∞
[
• ; θ ;M

]
we have

max
1≤s≤sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0,∞

)]∣∣∣∣ ≤M − 3 .

Using Lemma 9.1 and assuming δ is small enough we get that except on a δ3-negligible event

max
1≤s≤sα

∣∣∣∣I
[
Fα,∞ ; s ;

(
0, k(δ)

)]∣∣∣∣ ≤M − 3 + δ ≤M − 5

2
,

which is condition (ii) defining Ω3:1
∞
[
δ ; θ ;M

]
.
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(iii) From condition (iii) defining Ω3:2
∞
[
• ; θ ;M

]
we have

I|·|
[
Fα,∞ ; sα ;

(
0,∞

)]
≤M − 3 .

Using Lemma 9.1 and assuming δ is small enough we get that except on a δ3-negligible event

I|·|
[
Fα,∞ ; sα ;

(
0, k(δ)

)]
≤M − 3 + δ ≤M − 5

2
,

which is condition (iii) defining Ω3:1
∞
[
δ ; θ ;M

]
.

(iv) Condition (iv) defining Ω3:2
∞
[
• ; θ ;M

]
implies condition (iv) defining Ω3:1

∞
[
δ ; θ ;M

]
when δ is small

enough depending on M .

(v) For 0 ≤ i ≤ m, rα ≤ j ≤ m, 0 ≤ r1 ≤ rα, 0 ≤ r2 ≤ rα, using condition (ii) defining C(δ) and the
Chebyshev inequality we get

∣∣∣∣∣∣

∞∑

l=C(δ)+1

ξl+i+r1 · ξl+j+r2
πα[l ; i+ r1] · πα[l ; j + r2]

∣∣∣∣∣∣
≤ δ

except on a δ3-negligible event. Similarly using Proposition 6.7 and a Markov bound we get
∣∣∣∣∣∣

∞∑

l=C(δ)+1

η
[nδ]
l+i · ξl+j+r2

πα[l ; i] · πα[l ; j + r2]

∣∣∣∣∣∣
≤ δ ,

∣∣∣∣∣∣

∞∑

l=C(δ)+1

ξl+i+r1 · η
[nδ]
l+j

πα[l ; j] · πα[l ; i+ r1]

∣∣∣∣∣∣
≤ δ ,

∣∣∣∣∣∣

∞∑

l=C(δ)+1

η
[nδ ]
l+i · η[nδ ]

l+j

πα[l ; i] · πα[l ; j]

∣∣∣∣∣∣
≤ δ ,

except on a δ3-negligible event. Therefore condition (v) defining Ω3:1
∞
[
δ ; θ ;M

]
is implied by

condition (v) defining Ω3:2
∞
[
• ; θ ;M

]
.

This concludes the proof of Proposition 7.11.

11.4 Proof of Theorem 7.12

Recall from (47) that Ω(j) = lim infk→∞ Ω1:1
∞
[
δk ; θj ;Mj

]
. From Propositions 7.9-7.11 we get the

following. For each j ≥ 1, and large enough k (so that δk is small enough) Ω3:2
∞
[
• ; θj ;Mj

]
is δ3k-

included in Ω1:1
∞
[
δk ; θj ;Mj

]
i.e., there exists an event Eδk such that

Ω3:2
∞
[
• ; θj ;Mj

]
\ Eδk ⊂ Ω1:1

∞
[
δk ; θj ;Mj

]

and P(Eδk) ≤ Cδ3k for some constant C > 0. From Definition 7.3 we get

Ω1:1
∞
[
δk ; θj ;Mj

]
⊂ Θm∞[θj ] ⊂ Ωm∞ .

Therefore, using the Borel-Cantelli Lemma and (46) we get

Ω3:2
∞
[
• ; θj ;Mj

]
⊂ Ω(j) ⊂ Θm∞[θj ] ⊂ Ωm∞ .

Thus, it is enough to show that
(
Ω3:2

∞
[
• ; θ ;Mj

])∞
j=1

exhausts Ωm∞. To this end, we observe that the

random variables appearing in the definition of Ω3:2
∞
[
• ; θ ;M

]
(Definition 7.8) have no mass at ∞.

Also the random variable
∣∣Π
[
Fα,∞ ; in

]∣∣2/|ξ0|2, appearing in condition (ii), has no atom at 0. From
the definition of the event Θm∞[θ] (Definition 6.1) it is clear that (Θm∞[θj ])

∞
j=1 exhausts Ωm∞. Therefore,(

Ω3:2
∞
[
• ; θ ;Mj

])∞
j=1

exhausts Ωm∞. Therefore, (Ω(j))
∞
j=1 exhausts Ωm∞. This concludes the proof of

Theorem 7.12.
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Appendix A: Reduction of D from a general domain to a disk

Here we show that in order to prove Theorems 3.1 and 3.2, it is enough to prove them when the domain D
is a disk. First we will show this in the context of Theorem 3.1. The proof in the context of Theorem 3.2
is essentially the same. So we will only present a rough sketch and point out the main differences.

Let us suppose that Theorem 3.1 holds in the case D is a disk. Consider D to be a bounded open set
in C whose boundary has zero Lebesgue measure. By the translation invariance of G∞, we assume that
the origin is in the interior of D. Let D0 be a disk centered at the origin containing the closure of D in
its interior.
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0D D0 \ DDc
0

Figure 1: The domain D is contained inside the disk D0. The point configuration Υ is a configuration
outside D, i.e., it is supported on D∁ = (D0 \ D) ⊔ D∁

0 . The point configuration Υ0 is restriction of Υ
on D∁

0 .

Consider a point configuration Υ ∈ P(D∁). Let Υ0 := Υ ∩ D∁
0 ∈ P(D∁

0) be the restriction of Υ on
D∁

0 . Consider the event G∞,out = Υ. Since the Ginibre ensemble is number-rigid (see Theorem B.1 for
reference), the point configuration Υ0 determines the number N0 of points of G∞ inside D0. From Υ
the number of points in D0 \ D is also determined. Thus we can determine the number N of points
inside D from Υ.

By our assumption, Theorem 3.1 holds for D0. Thus, the conditional distribution of the vector
consisting of points of G∞ inside D0 taken in uniform random order, given G∞ ∩D∁

0 = Υ0, is supported
on DN0

0 . Moreover, this distribution has a density, say f0, with respect to the Lebesgue measure. This
density satisfies

m0(Υ0)
∣∣△
(
ζ
)∣∣2 ≤ f0

(
ζ
)
≤ M0(Υ0)

∣∣△
(
ζ
)∣∣2 (114)

for some measurable functions m0,M0 : P(D∁
0) → (0,∞). Let ρ( · ;Υout ) be the conditional distribution

of the vector consisting of the points of G∞ inside D taken in uniform random order, given G∞,out = Υ.
Then for all Borel subset A ⊂ DN we have

ρ(A ;Υ) =

∫

A

f0

(
ζ [1], ζ [2]

)
dL
(
ζ [1]
)

∫

DN

f0

(
ζ [1], ζ [2]

)
dL
(
ζ [1]
) ,

where ζ [2] is a vector consisting of the points of Υ in D0 \ D, ζ [1], ζ [2] denotes the concatenated vector,

and the integrals are taken with respect to ζ [1] ∈ DN . The denominator is a measurable function of Υ.
To get an upper bound of ρ(A ;Υ), we use the upper bound of f0 from (114). The quantity M0(Υ0) is
measurable with respect to Υ because Υ0 is the restriction of Υ on D∁

0 . We can split the Vandermonde
term as

△
(
ζ
)
= △

(
ζ [1]
)
· △
(
ζ [2]
)
· Γ
(
ζ [1] ; ζ [2]

)
.

The term △
(
ζ [2]
)

is measurable with respect to Υ. The term Γ
(
ζ [1] ; ζ [2]

)
is bounded above by (2r0)

NN0

where r0 is the radius D0, and it is bounded below by θNN0 where θ is the gap between points in Υ and
the boundary of D. This gap is almost surely positive and measurable with respect to Υ. Hence we get
that the ratio ρ(A ;Υ)/

∫
A|△

(
ζ [1]
)
|2 dL(ζ [1]) is bounded above and below by quantities measurable

with respect to Υ. Then we get (11) by the Radon-Nikodym Theorem.
Now let us show that in the context of Theorem 3.2 it is enough to assume that D is a disk. As

mentioned before, we only point out the key differences. Suppose Theorem 3.2 is true when D is a disk.
Now consider D to be a bounded open set in C whose boundary has zero Lebesgue measure. By the
translation invariance of Zα,∞, we take the origin to be in the interior of D. Let D0 be a disk centered

at origin containing D in its interior. Consider the event Zα,∞,out = Υ. Let Υ0 := Υ ∩D∁
0 ∈ P(D∁

0) be

the restriction of Υ0 on D∁
0 . By Theorem D.1, the point configuration Υ0 determines the number N0,

and the power sums up to order rα − 1 s(0) = (s
(0)
1 , . . . , s

(0)
rα−1) of points inside D0. Similarly, the point

configuration Υ determines the number N , and the power sums up to order rα−1, say s = (s1, . . . , srα−1)
of the points inside D. Define

Σ :=

{
(ζ1, . . . , ζN ) ∈ DN

∣∣∣∣∣

N∑

i=1

ζji = sj for all 1 ≤ j ≤ rα − 1

}
,
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and

Σ(0) :=

{
(ζ1, . . . , ζN0) ∈ DN0

0

∣∣∣∣∣

N∑

i=1

ζji = s
(0)
j for all 1 ≤ j ≤ rα − 1

}
.

By the assumption that Theorem 3.2 is valid for D0 we get that the conditional distribution of the
vector of points inside D0, given Zα,∞ ∩ D∁

0 = Υ0, lives on Σ(0), and has a density with respect to the
Lebesgue measure on Σ(0), say f0, which satisfies

m0(Υ0)
∣∣△
(
ζ
)∣∣2 ≤ f0(ζ) ≤ M0(Υ0)

∣∣△
(
ζ
)∣∣2

for some measurable functions m0,M0 : P(D∁
0) → (0,∞). The rest of the proof is same as in the context

of Theorem 3.1. The only difference is, instead DN we now have Σ, and instead of DN0
0 we have Σ(0).

Appendix B: Ginibre Ensemble: Definition, Rigidity, Tolerance

Consider a n×n matrix Mn whose entries are i.i.d. standard complex Gaussian random variables. The
vector of its eigenvalues, in uniform random order, has a joint density with respect to the Lebesgue
measure on Cn given by

p(z1, . . . , zn) =

(
πn

n∏

k=1

k!

)−1

· exp
(
−

n∑

k=1

|zk|2
)

·
∣∣△
(
z1, . . . , zn

)∣∣2 .

The set of eigenvalues of Mn, considered as a random point configuration, is called the n-dimensional
Ginibre ensemble. We denote it by Gn. As n→ ∞, Gn converges in distribution to a point process called
the (infinite) Ginibre ensemble, denoted by G∞. Both Gn and G∞ are determinantal point processes.
Recall that a determinantal point process on the Euclidean space Rd with kernel K and background
measure µ is a point process on Rd whose k-point intensity functions with respect to the measure µ(k)

are given by

pk(x1, . . . , xk) := det
[(
K(xi, xj)

)
1≤i,j≤k

]
.

The finite Ginibre ensemble Gn is a determinantal point process with kernel Kn(z, w) :=
∑n−1
k=0

(zw̄)k

k!

with respect to the background measure dγ(z) = 1
π e

−|z|2 dL, where L denotes the Lebesgue measure

on C. The Ginibre ensemble G∞ is a determinantal point process with kernel K∞(z, w) :=
∑∞
k=0

(zw̄)k

k!
with respect to the measure γ. We can define (Gn) and G∞ on the same probability space such that
Gn → G∞ a.s. We refer to [30] for a brief explanation. The following rigidity and tolerance properties
were established in [30].

Theorem B.1 (Rigidity of the Ginibre ensemble: Theorem 1.1 in [30]). Let D ⊂ C be a bounded open
set whose boundary has zero Lebesgue measure. For the Ginibre ensemble G∞, there is a measurable
function N : P(D∁) → N ∪ {0} such that the number of points in G∞ ∩ D is N

(
G∞ ∩ D∁

)
a.s.

Theorem B.2 (Tolerance of the Ginibre ensemble: Theorem 1.2 in [30]). Let D ⊂ C be a bounded
open set whose boundary has zero Lebesgue measure. Let ρ

(
· ;G∞ ∩ D∁

)
be the conditional measure

of G∞ ∩ D given G∞ ∩ D∁ where we identify G∞ ∩ D with a vector in DN(G∞∩D∁) by taking the points
of G∞ ∩D in uniform random order. Then the measure ρ

(
· ;G∞ ∩D∁

)
and the Lebesgue measure on

DN(G∞∩D∁) are mutually absolutely continuous a.s.

Appendix C: Gaussian Analytic Function: Definition, Rigidity,

Tolerance

Let (ξk)
∞
k=0 be i.i.d. standard complex Gaussian random variables. The n-dimensional standard Gaussian

analytic function and the (infinite dimensional) standard Gaussian analytic function are

Fn(z) :=

n∑

k=0

ξk
(k!)1/2

zk and F∞(z) :=

∞∑

k=0

ξk
(k!)1/2

zk ,
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respectively. Both Fn and F∞ are Gaussian processes on C with covariance kernels given by

Kn(z, w) :=
n∑

k=0

(zw)k

k!
and K(z, w) :=

∞∑

k=0

(zw)k

k!
= ezw

respectively. We denote the ensemble of roots of F∞ by Z∞ and the ensemble of roots of Fn by Zn.
As n → ∞, Zn converges to Z∞ a.s. The ensemble Z∞ satisfies the following rigidity and tolerance
properties.

Theorem C.1 (Rigidity of the GAF-zero ensemble: Theorem 1.3 in [30]). For the GAF-zero ensemble
Z∞ we have:
(a) there is a measurable function N : P(D∁) → N∪ {0} such that the number of points in Z∞ ∩D is

N
(
Z∞ ∩D∁

)
a.s.

(b) there is a measurable function Cout : P(D∁) → C such that the sum of the points in Z∞ ∩ D is
Cout

(
Z∞ ∩ D∁

)
a.s.

Theorem C.2 (Tolerance of the GAF-zero ensemble: Theorem 1.4 in [30]). Consider the submanifold

Σm,s := {(ζ1, . . . , ζm) ∈ Dm | ζ1 + · · ·+ ζm = s}

where m = N
(
Z∞ ∩ D∁

)
, and s = Cout

(
Z∞ ∩ D∁

)
. Let ρ

(
· ;Z∞ ∩ D∁

)
be the measure on Σm,s which

is the conditional distribution of Z∞ ∩D given Z∞ ∩D∁ where we identify Z∞ ∩D with a vector in Dm

by taking the points in uniform random order. Then, the measure ρ
(
· ;Z∞ ∩ D∁

)
and the Lebesgue

measure on Σm,s are mutually absolutely continuous a.s.

Appendix D: α-Gaussian Analytic Function: Definition, Rigidity

Let (ξk)
∞
k=0 be i.i.d. standard complex Gaussian random variables. For α > 0, the n-dimensional α-

Gaussian analytic function and the (infinite dimensional) α-Gaussian analytic function are respectively

Fα,n(z) :=
n∑

k=0

ξk
(k!)α/2

zk and Fα,∞(z) :=
∞∑

k=0

ξk
(k!)α/2

zk .

These are Gaussian processes on C with covariance kernels given by

Kn(z, w) =

n∑

k=0

(zw)k

(k!)α
and K(z, w) =

∞∑

k=0

(zw)k

(k!)α

respectively. The ensemble of roots of Fα,n and Fα,∞ are denoted by Zα,n and Zα,∞ respectively. As
n → ∞, Zα,n converges to Zα,∞ almost surely. The ensemble Zα,∞ satisfies the following rigidity
property.

Theorem D.1 (Rigidity of the ensemble of roots of α-GAF: Theorem 2.1 in [24]). Let D ⊂ C be a
bounded open set whose boundary has zero Lebesgue measure.
(a) There exists a measurable function N : P(D∁) → N ∪ {0} such that the number of points of

Zα,∞ ∩ D is N
(
Zα,∞ ∩ D∁

)
a.s.

(b) Let rα := 1 +
⌊
1
α

⌋
. There is a measurable function Cα,out : P(D∁) → C

rα−1 such that, if

m := N
(
Zα,∞ ∩ D∁

)
and (ζ1, . . . , ζm) are the points of Zα,∞ ∩ D, then Cα,out

(
Zα,∞ ∩ D∁

)
:=

(s1, . . . , srα−1), where sj :=
∑m
i=1 ζ

j
i for all 1 ≤ j ≤ rα − 1.

Appendix E: Estimates for the finite Ginibre ensemble

Consider the finite Ginibre ensemble Gn. Let D ⊂ C be a bounded open set whose boundary has zero
Lebesgue measure. Consider 1 ≤ m ≤ n and ω ∈ (D∁)n−m. The density with respect to the Lebesgue
measure on Dm of the conditional distribution of a vector consisting of the points of Gn ∩ D taken in
uniform random order given that the points of Gn ∩ D∁ are the coordinates of ω is given by

ρnω
(
ζ
)
:= C(ω) ·

∣∣△
(
ζ , ω

)∣∣2 · exp
(
−

m∑

k=1

|ζk|2
)
,
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where C(ω) is the appropriate normalizing constant. Recall the definition of S1(n), S2(n), S̃3(n), and
Xn as defined in Notation 5.2. We have the following results from [30].

Proposition E.1 (Bounding the fluctuation of conditional densities: Proposition 8.2 in [30]). Consider
positive integers n, m with n ≥ m. Consider ω ∈ (D∁)n−m such that the points given by the coordinates
of ω are at least at a distance θ > 0 from the boundary of D. Then for all ζ, ζ′ ∈ Dm we have

exp
(
−mK5(D)θ−1

Xn

)
∣∣∣∣∣
△
(
ζ ′
)

△
(
ζ
)
∣∣∣∣∣

2

≤
ρnω
(
ζ ′
)

ρnω
(
ζ
) ≤

∣∣∣∣∣
△
(
ζ′
)

△
(
ζ
)
∣∣∣∣∣

2

exp
(
mK5(D)θ−1

Xn

)
,

where K5(D) > 0 is a constant.

Proposition E.2 (Uniform L1 bound of inverse power sums: Proposition 8.6 in [30]). There exist

constant K6(D) > 0 such that for all n ∈ N we have E[|S1(n)|] < K6(D), E[|S2(n)|] < K6(D), E[S̃3(n)] <
K6(D).

Proposition E.3 (Convergence of the inverse power sums: Proposition 8.8 in [30]). There exists random

variables S1, S2, S̃3, measurable with respect to G∞,out, such that we have the following convergences in

probability S1(n) → S1, S2(n) → S2, S̃3(n) → S̃3.

Appendix F: The Quasi-Gibbs property: Definition

Here we briefly recall the definition of Quasi-Gibbs property. For more details we refer to [47]. Let C

be a closed subset of Rd such that the origin 0 is contained in C and C◦ = C. Denote by M the set of
all discrete measures on C with measure of every compact set finite. Consider the vague topology on M
making it a Polish space. For b > 0 let B(b) be the open ball in C of radius b around 0 i.e.,

B(b) := {x ∈ C | ‖x‖ < b} .
Let Mm

b be the set of measures in M which has m points in B(b) i.e.,

Mm
b := {ν ∈ M | ν(B(b)) = m} .

For a subset A ⊂ C, let πA : M → M be the map given by

πA(ν) = ν(A ∩ ·) .
So this maps a measure in M to its restriction in A. For a bounded subset A ⊂ C and Borel measurable
functions Φ : C → R ∪ {∞} and Ψ : C × C → R ∪ {∞} with Ψ(x, y) = Ψ(y, x), let HΦ,Ψ

A
: M → M be

the map given by

HΦ,Ψ
A

(x) :=
∑

xi∈A
Φ(xi) +

∑

xi,xj∈A
i<j

Ψ(xi, xj)

where x =
∑

i δxi ∈ M.
A probability measure µ on M is called a (Φ,Ψ)-quasi Gibbs measure if there exists an increasing

sequence (br)
∞
r=1 of natural numbers and a set of measures {µmr,k : r ≥ 1, k ≥ 1} on M such that the

following hold:

(i) For each r,m ∈ N,
(
µmr,k

)∞
k=1

and µmr := µ(·∩Mm
br
) satisfy µmr,k ≤ µmr,k+1 for all k and limk→∞ µmr,k =

µmr weakly.

(ii) For all r,m, k ∈ N and for µmr,k-a.e. ν ∈ M,

C−1 exp
(
−HΦ,Ψ

B(br)
(x)
)
1

[
x ∈ Mm

br

]
PC( dx )

≤ µmr,k,ν( dx )

≤ C exp
(
−HΦ,Ψ

B(br)
(x)
)
1

[
x ∈ Mm

br

]
PC( dx ) .

Here PC is the Poisson point process whose intensity measure is the Lebesgue measure on C, µmr,k,ν
is the conditional distribution of πB(br)(ν) given π

B(br)∁
(ν) i.e.,

µmr,k,ν( dx ) := µmr,k
(
πB(br)(ν) ∈ dx |πB(br)c(ν)

)
,

and C is a constant depending on r, m, k, and πB(br)c(ν).
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Appendix G: Glossary of Notations

Here we list some commonly used symbols with hyperlinks to their definitions.

Ж Section 2 on page 9.

P(·) Section 2 on page 9.

B(·) Section 2 on page 9.

D Section 2 on page 9.

X Definition 2.2 on page 10.

Xin Definition 2.2 on page 10.

Xout Definition 2.2 on page 10.

Amin Notation 2.1 on page 10.

Âmin Notation 2.1 on page 10.

A
m

in Notation 2.1 on page 10

Bout Notation 2.2 on page 11.

B̂out Notation 2.2 on page 11.

Bout Notation 2.2 on page 11.

≍ Notation 2.3 on page 11.

X∞ Notation 2.4 on page 11.

X∞,in Notation 2.4 on page 11.

X∞,out Notation 2.4 on page 11.

Xn Notation 2.4 on page 11.

Xn,in Notation 2.4 on page 11.

Xn,out Notation 2.4 on page 11.

Ωm∞ Definition 2.5 on page 11.

Ωmn Definition 2.5 on page 11.

G∞ Section 3.1 on page 13.

G∞,in Section 3.1 on page 13.

G∞,out Section 3.1 on page 13.

△
(
·
)

Notation 3.1 on page 13.

Γ
(
· ; ·

)
Notation 3.1 on page 13.

N Section 3.1 on page 13 in the context of Ginibre ensemble;

Section 3.2 on page 13 in the context of α-GAF.

ρ
(
· ; ·

)
Section 3.1 on page 13 in the context of Ginibre ensemble;

Section 3.2 on page 13 in the context of α-GAF.

Σm,s Notation 3.2 on page 14.

Fα,∞ Section 3.2 on page 13.

Zα,∞ Section 3.2 on page 13.

Zα,∞,in Section 3.2 on page 13.

Zα,∞,out Section 3.2 on page 13.

rα Section 3.2 on page 13.

Cα,out Section 3.2 on page 13.

Gn Section 5 on page 18.

Gn,in Section 5.1 on page 19.

Gn,out Section 5.1 on page 19.

π(·) Defined in Notation 5.1 on page 18.

Θmn [θ] Definition 5.1 on page 19 in the context of Ginibre ensemble;

Definition 6.1 on page 24 in the context of the α-GAF.

Xn Notation 5.2 on page 19 in the context of the Ginibre ensemble;

Notation 6.3 on page 24 in the context of α-GAF.

ρ··
(
·
)

Section 5.1.2 on page 21 in the context of the Ginibre ensemble;

Section 6.1 on page 22 in the context of the α-GAF.

Fα,n Section 6.1 on page 22.
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Zα,n Section 6.1 on page 22.

S
[
· ; · ; ·

]
Defined in Notation 6.1 on page 22.

S
[
· ; · ; ·

]
Defined in Notation 6.1 on page 22.

D
(
· , ·
)

Defined in equation 38 on page 22.

I
[
· ; · ;

(
·, ·
)]

Section 6.2 on page 23.

I|·|
[
· ; · ;

(
·, ·
)]

Section 6.2 on page 23.

sα Defined in Proposition 6.4 on page 24.

Di,j
(
· , ·
)

Defined in equation 42 on page 25.

D̂
(
· , ·
)

Defined in equation 43 on page 25.

πα[· ; ·] Defined in Notation 6.4 on page 25.

Qδi,j Equation 50 on page 31.

Qδ,avgtail Equation 51 on page 31.

Π
[
Fα,∞ ; in

]
Notation 7.2 on page 31.

Π
[
Fα,nδ

; in
]

Notation 7.2 on page 31.

Ω1:1
∞
[
δ ; θ ;M

]
Definition 7.3 on page 33.

Ω1:1
nδ

[
δ ; θ ;M

]
Definition 7.4 on page 33.

Ω2:1
nδ

[
δ ; θ ;M

]
Definition 7.5 on page 33.

Ω2:2
nδ

[
δ ; θ ;M

]
Proposition 7.4 on page 34.

Ω2:3
nδ

[
δ ; θ ;M

]
Proposition 7.5 on page 34.

Ω2:4
nδ

[
δ ; θ ;M

]
Proposition 7.6 on page 34.

Cα,in Notation 7.4 on page 35.

C∗
α,in Notation 7.4 on page 35.

Ω3:1
nδ

[
δ ; θ ;M

]
Definition 7.6 on page 35.

Ω3:1
∞
[
δ ; θ ;M

]
Definition 7.7 on page 36.

Ω3:2
∞
[
δ ; θ ;M

]
Definition 7.8 on page 37.
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