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1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.
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We investigate how randomly oriented cell traction forces lead to fluidisation in a vertex model
of epithelial tissues. We find that the fluidisation occurs at a critical value of the traction force
magnitude Fc. We show that this transition exhibits critical behaviour, similar to the yielding
transition of sheared amorphous solids. However, we find that it belongs to a different universality
class, even though it satisfies the same scaling relations between critical exponents established in
the yielding transition of sheared amorphous solids. Our work provides a fluidisation mechanism
through active force generation that could be relevant in biological tissues.

During tissue development, many cells collectively self-
organize in dynamic patterns and morphologies. There-
fore, a central problem in biophysics of development is
understanding the interplay of tissue mechanics and ac-
tive force generation [1–6]. Cells in a tissue can gener-
ate traction forces through mechanical linkages with a
substrate [7–10] and impairment of this coupling can in-
terrupt the movement of cells as observed, for example,
in cancerous spheroid assays of carcinoma and human
breast organoids [11, 12]. The response of biological tis-
sues to mechanical forces is often described as that of
viscoelastic active fluids [13–16]. However, recent exper-
imental and theoretical studies have revealed complex
mechanical phenomena, including jamming, glass transi-
tions [17–22], and yield stress rheology [23, 24]. These ob-
servations suggest that developing biological tissues can
behave as active amorphous solids.

Recently there has been an increasing interest in the
rheology of active amorphous solids [25, 26]. In par-
ticular, comparing uniform shear to random forcing of
particles revealed a very similar non-linear response [27].
A hallmark of sheared amorphous solids is a transition
from a solid to a plastically flowing state at the yield
stress Σc. The plastic strain rate γ̇ at stress Σ above the
yielding transition typically follows the Herschel-Bulkley
law γ̇ ∼ (Σ − Σc)

β , where β ≥ 1 is the flow exponent.
Yielding has recently been reported under random forc-
ing in systems of jammed self-propelled particles [28].
This raises the question of what is the nature of the yield-
ing transition under random forces and how it is related
to the yielding transition under uniform shear. Such ran-
dom yielding is relevant in the context of biological tis-
sues, allowing them to fluidise through generation of cell
traction forces.

Here, we investigate the critical properties of the yield-
ing under random traction forces using a vertex model of
epithelial tissues [24, 29]. Motivated by recent experi-
ments on mouse pancreas spheres which suggest a pres-

ence of tissue fluidisation by cell traction forces [30], we
consider a vertex model with spherical geometry. This
geometry is ubiquitous in multicellular systems such as
the early developmental stages of many tissues, includ-
ing early vertebrate embryos [31, 32], and early stages of
organoids [30, 33, 34]. We find that randomly oriented
traction forces fluidise the cellular network beyond a crit-
ical magnitude Fc. We call this transition the random
yielding transition (RYT). We quantify the critical ex-
ponents characterizing overall cell flow, patterns of cell
rearrangements, and even the geometry of the cellular
network. We compare our results to the properties of
the uniform shear yielding transition (YT). Interestingly,
some critical exponents differ between the RYT and YT,
implying that the transitions belong to different univer-
sality classes. Furthermore, we find that RYT critical ex-
ponents satisfy the scaling relations between exponents
established for the YT [35]. These relations imply that
the statistical properties of tissue dynamics and cellular
geometry are not independent.

Random traction vertex model. We extend the
standard vertex model of epithelial tissues [29] to a spher-
ical geometry (Fig. 1a). We represent cells as polygons
outlined by straight bonds, and constrain the polygon
vertices to move on a sphere of radius R. Geometry
of the cellular network evolves following the dynamical
equation:

ζum = fam −
∂W

∂Xm
+ fn

m , (1)

where um is the velocity of vertex m, ζ is the friction co-
efficient, fam is the traction force, W is the vertex model
energy function, and fn

m is the normal force constraining
the motion of vertices on the sphere surface (see Sup-
plemental Material (SM) for details). The vertex model
energy function that accounts for cell area elasticity and
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cell bond tension reads:

W =
∑

α∈cells

1

2
K (Aα −A0)

2
+

∑

α∈cells

1

2
ΛLα . (2)

Here, Aα is the cell area, Lα is the cell perimeter, A0

is the preferred cell area, K is the area stiffness, and Λ
is the perimeter tension magnitude [29, 36]. We choose

units of length, force and velocity to be A
1/2
0 , KA

3/2
0 and

KA
3/2
0 /ζ, respectively. The dimensionless bond tension

Λ ≡ Λ/(KA
3/2
0 ) is set to Λ = 0.1. Implementation details

are given in the SM.
We consider a planar cell polarity pα that directs the

traction force exerted by cell α on the surrounding matrix
(Fig. 1b). We initialize the direction of the cell polarity
vectors pα from a uniform distribution, and evolve it fol-
lowing the dynamical equation:

Dpα
Dt

= 0 , (3)

where D/Dt denotes a co-rotational time derivative (see
SM), and we impose |pα| = 1 at each time. We define
the active traction force fam on a vertex m by uniformly
redistributing the cell traction force fαpα of each of the
abutting cells with Mα number of vertices:

fam =
∑

α

fαpα
Mα

. (4)

(a) (b)

(c) (d)

FIG. 1. (a) Spherical vertex model tissue with N = 200
cells with randomly oriented traction forces (red arrows).
(b) Traction force is generated by extending a spring of stiff-
ness κ, at speed v in direction of the polarity pα. (c) Example
of the tissue traction force magnitude dynamics F as a func-
tion of spring displacement vt. (d) Dynamics of ensemble-
averaged tissue traction force magnitude. As the spring exten-
sion speed v approaches the quasi-static driving limit v → 0,
the traction force magnitude averaged over ensemble reali-
sations 〈F 〉 converges to its critical value Fc marked by the
dashed line (see SM).

Random yielding transition. Random traction
forces induce stresses in the vertex model network. The
stress magnitude is controlled by the magnitudes of cell
traction forces fα. For small magnitudes of traction
forces, we find that the elastic forces generated by the ver-
tex model network balance the traction-induced forces,
and the network remains solid. However, upon further
increasing fα, the network begins to flow through cell
rearrangements. To quantitatively explore this transi-
tion, we introduce the tissue traction force magnitude
F ≡ ∑

α fα/N , which in RYT plays the role analogous
to the shear stress in the YT.

Application of uniform fα is susceptible to finite-
size effects that prevent us from probing the transition.
Namely, a finite-size system can by chance reach an un-
usually stable configuration so that the system does not
flow even at high F values. To avoid this issue, we imple-
ment a model of traction forces where the attachment of
a cell to the substrate moves with speed v along the vec-
tor pα and the traction force is transmitted to a spring
of stiffness κ that connects the attachment and the cell
(Fig. 1b). Therefore, the dynamics of the traction force
magnitude for a cell α follows:

dfα(t)

dt
= −κ(pα · uα − v) . (5)

Here, the term −κpα · uα represents the relaxation of
the force in the spring due to motion of the cell with
velocity uα. Limits of infinitely soft κ→ 0 and infinitely
stiff κ→∞ springs correspond to imposed traction forces
and imposed cell center velocities, respectively. In the
following, we use κ = 0.01 and vary the imposed spring
extension velocity v.

An example of F (t) dynamics as a function of spring
displacement vt is shown in Fig. 1c (see also Movie 1).
Initially, the cellular network responds elastically, and
the traction forces grow linearly with spring displacement
vt. As F increases further, the cellular network begins to
yield through cell rearrangements, visible as sharp drops
of F in Fig. 1c. Finally, in the steady state, the system
dynamics consist of periods of elastic loading punctuated
by avalanches of cell rearrangements that are visible as
sudden drops of F . Ensemble-averaged F (t) for different
values of v is shown in Fig. 1d.

The observed behaviour of F is reminiscent of the
stress vs strain curve in sheared amorphous solids, such
as metallic glasses [37], where sudden drops of stress cor-
respond to avalanches of particle rearrangements [38].
In amorphous solids near the YT, the avalanche size,
defined as the number of particle rearrangements S in
an avalanche, is distributed according to a scaling law
P (S) = S−τf(S/Sc), where Sc is the cutoff beyond which
P (S) rapidly vanishes. The cutoff is set by the corre-
lation length ξ: Sc ∼ ξdf , where df is the avalanche
fractal dimension [39]. However, approaching the YT, ξ
diverges and becomes larger than the system size. There-
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(a) (b)

FIG. 2. Avalanche statistics. (a) Avalanche size has a power-
law distribution P (S) ∼ S−τ , with exponent τ = 1.35± 0.11.
(b) Avalanche duration T scales with avalanche size S with
exponent z/df = 0.68± 0.04.

fore, in a finite system of N cells, the cutoff Sc is set by
the system size Sc ∼ Ndf/d. Furthermore, the duration
of an avalanche T is expected to scale with the size as
T ∼ Sz/df , where z is the dynamical exponent [39].

To measure the avalanche size distribution, we mea-
sure drops in F in the steady state at the lowest value
v = 2 · 10−4 we used. Then, we estimate the avalanche
size corresponding to a force drop ∆F as S ' N∆F/κ.
We find that the avalanche sizes are indeed power-law
distributed, as shown in Fig. 2a, with a system-size de-
pendent cutoff. Moreover, we find τ = 1.35 ± 0.11 [40],
which is consistent with the values measured in the YT
of 2d elastoplastic models (τ = 1.25 ± 0.05 in Ref. [41]
and τ = 1.36 ± 0.03 in Ref. [39]), of a lattice model
(τ = 1.342 ± 0.004 [42]) and of a finite element model
(τ = 1.25± 0.05 [43]). We next estimated the avalanche
fractal dimension df = 0.75 ± 0.15 by finite-size scal-
ing analysis of the avalanche distribution cutoff using
Sc ∼ 〈S3〉/〈S2〉, see SM. Finally, we find that the
avalanche duration follows a power-law relationship with
the avalanche size, see Fig. 2, from which we estimate
z/df = 0.68± 0.04.

To test whether the spherical geometry influences the
exponent values, we also measured τ , df and z/df in a
bi-periodic 2d vertex model with identical random trac-
tion forces, and we found values of the exponents are
consistent with the ones of the spherical model, see SM.

Scaling relations connect cellular dynamics and
geometry. Exponents of YT are related through several
scaling relations [39]. Here we examine two of these re-
lations in the context of the RYT and show that in the
vertex model with random traction forces they also pro-
vide a relationship between statistics of avalanches of cell
rearrangements and cell bond length distribution.

The first scaling relation follows from the fact that in
the steady state 〈∆F 〉 = 0 [39], which we now briefly re-
produce. Increases of F between avalanches are balanced
by decreases during avalanches: 〈|∆F |〉+ = 〈|∆F |〉−.
The scaling of the average decrease of F with system size
can be estimated from the avalanche size distribution as
〈|∆F |〉− ∼ 〈S〉/N ∼ N (2−τ)df/d−1. After an avalanche,
F will increase until the next T1 transition. Therefore,

(a) (b)

FIG. 3. Density of plastic excitations in the tissue. (a) Addi-
tional tension ∆f required to collapse the bond as a function
of bond length `. A linear scaling is observed (solid line).
(b) Cumulative bond length distribution C(`) in the steady
state for v = 2 · 10−4. The predicted value of the exponent
θ ≈ 0.32 is indicated by the solid line. At low ` we observe a
linear scaling of C(`) (dashed line), corresponding to a con-
stant bond length distribution, as expected at finite v and for
finite system sizes.

the increases in F are determined by the network re-
gions closest to a T1 transition. In amorphous solids the
density of plastic excitations, defined as local increase in
shear stress ∆σ required to trigger a plastic event, ex-
hibits a pseudo-gap P (∆σ) ∼ ∆σθ, with θ > 0 [35, 38].
Thus, the average smallest ∆σ in a system of size N
scales as 〈∆σmin〉 ∼ N−1/(1+θ) (see Ref. [39]). Since
〈|∆F |〉+ ∼ 〈∆σmin〉 it follows that:

τ = 2− θ

1 + θ

d

df
. (6)

Using the measured values of τ and df , this scaling rela-
tion predicts θ = 0.32± 0.11.

This prediction can be tested independently by con-
sidering the statistics of the bond length distribution as
follows. In a vertex model network, each T1 transition
corresponds to a vanishing bond; hence, short bonds an-
ticipate the upcoming T1 transitions. Due to cusps in
the vertex model energy landscape at the onset of a T1,
it was shown for the planar vertex model [24] that the
corresponding ∆σ is proportional to the bond length `
of disappearing bonds. We show that this relation also
holds in the spherical vertex model tissue, by measuring
the additional tension ∆f required to shrink a bond of
length ` to 0, see Fig. 3a. In general, local change in
shear stress ∆σ will generate a proportional change in
the bond tension ∆f . Therefore, observed scaling of im-
posed ∆f with bond length ` characterises the scaling
of ∆σ. As a consequence, short bonds in the network
for F ≤ Fc are distributed according to P (`) ∼ `θ. Fig-
ure 3b shows the cumulative bond length distribution

C(`) =
∫ `
0
P (`′)d`′ obtained in the steady-state simula-

tion at v = 2 · 10−4, where we measure bond lengths of
networks at time points just after an avalanche. We find
that the predicted value of the exponent θ is consistent
with the bond length distribution (see also SM).

The second scaling relation reflects that the flow in the
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Exponent Expression RYT on a sphere YT in 2d elastoplastic model

β v ∼ (〈F 〉 − Fc)β 1.41± 0.098 1.52± 0.05
τ P (S) ∼ S−τ 1.35± 0.11 1.36± 0.03

z T ∼ Sz/df 0.51± 0.11 0.57± 0.03

df Sc ∼ Ndf/d 0.75± 0.15 1.1± 0.04
θ P (∆σ) ∼ ∆σθ 0.32± 0.11 0.57± 0.01

TABLE I. The critical exponents of RYT on a sphere in comparison with reported values for YT in a 2d elastoplastic model [39].

0.12 0.13 0.14 0.15 0.16
〈F 〉

10−4

10−3

v

N = 100
N = 200

FIG. 4. Steady-state flow curve measured in spherical vertex
model networks with N = 100 (blue squares) and N = 200
(orange circles). Curves show best fit to v ∼ (〈F 〉 − Fc)1.41
for N = 100 (dashed line) and N = 200 (solid line), see SM
for discussion of Fc finite size scaling.

vicinity of the critical point Fc is composed of avalanches
of spatial extension corresponding to the correlation
length ξ ∼ (F − Fc)−ν . Since the average avalanche size
scales with S ∼ Sc ∼ ξdf and its duration scales as T ∼
ξz the contribution of the average avalanche to the overall
flow v will scale as v ∼ S/(Tξd) ∼ (F−Fc)ν(d−df+z) [39].
This determines the exponent β = ν(z+d−df ) defined by
v ∼ (F−Fc)β . Here we do not directly measure ν and in-
stead we use an additional scaling relation ν = 1/(d−df )
[39]. Therefore, we arrive at the relation:

β = 1 +
z

d− df
, (7)

which allows us to estimate β = 1.41±0.098. To test this
prediction, we analyze the steady-state flow properties
for various magnitudes of loading rate v as shown in Fig. 4
for two sizes N = 100, 200. We find a good agreement
between numerical results and the value of β predicted
by the scaling relation (7).

Discussion. We have described the critical properties
of the RYT due to randomly oriented traction forces act-
ing on a spherical epithelium. Our results show that this
transition is closely related to the YT of sheared amor-
phous solids. Furthermore, we find that scaling relations
constraining critical exponents of the YT also hold in the
RYT, differing from the recent suggestion that one of the
relations is violated [28]. Furthermore, we independently
measure the pseudo-gap exponent θ describing the den-
sity of plastic excitations. In our model, this exponent

follows directly from the scaling of the distribution of cell
bond lengths [24] while it is typically difficult to access
in particle models.

We find that the value of fractal dimension df and
pseudo-gap exponent θ are clearly different from the YT
values; see Table I. In particular, df ≈ 1.1 in 2d YT is
associated with the one-dimensional shape of avalanches
of plastic events, arising from the anisotropy of the Es-
helby stress propagator of individual plastic events. In
the RYT, the orientation of plastic events is not aligned,
which breaks the preference of avalanches to occur along
lines, and the value of df = 0.75 ± 0.15 smaller than 1
shows that the spatial structure of avalanches is sparse. It
is interesting to compare RYT to the yielding transition
in a mean-field elastoplastic model where the Eshelby
stress propagator is randomly redistributed in space,
thereby removing all spatial correlations [44], where the
pseudo-gap exponent θ = 0.39 ± 0.02 has been reported
numerically and supported by analytical calculations.
This value is significantly lower than the 2d YT value
θ ≈ 0.57 [39]. However, since this is consistent with the
value θ = 0.32 ± 0.11 that we find in RYT, it would
be interesting to test whether RYT is in the mean-field
yielding transition universality class by carefully measur-
ing the relevant critical exponents.

To test the influence of spherical geometry on the RYT
we have measured the critical exponents τ , z, and df in
flat 2d bi-periodic vertex model simulations (see SM). We
found no significant difference in their values, which sug-
gests that spherical geometry does not alter the critical
behaviour of the vertex model near the RYT.

The dynamical exponent z describes the dynamics of
avalanche propagation T ∼ lz, where l is the linear exten-
sion of the avalanche. The value z = 0.51±0.11 we find is
consistent with reported values in YT in 2d elastoplastic
model z = 0.57± 0.03 [39] and z ' 0.5 [45]. However, in
the thermodynamic limit z < 1 cannot hold due to the
finite propagation speed of elastic interactions, which re-
quires z ≥ 2 in overdamped systems. Indeed z ≥ 2 was
reported in a large system of disks with overdamped dy-
namics [28]. In finite systems z can be smaller if the
elastic interactions propagate through the system faster
than the avalanches of cell rearrangements. Note that
in elastoplastic models elastic interactions propagate in-
stantaneously. The value of z that we find suggests that,
for the biologically relevant system sizes we consider, the
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elastic interactions in our model propagate much faster
than avalanches, effectively behaving as instantaneous.

The fluidisation through the generation of traction
forces could allow the biological tissues to transition be-
tween a stable solid phase and a malleable fluid phase
without the need to alter tissue density [23] or cell me-
chanical properties [46]. We speculate a similar transi-
tion could occur in tissues where cells generate randomly
oriented active stresses instead of traction forces.

We thank Matthieu Wyart for useful discussions. This
work was supported by the Federal Ministry of Educa-
tion and Research (Bundesministerium für Bildung und
Forschung, BMBF) under project 031L0160. CD ac-
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Université Paris Cité IdEx (ANR-18-IDEX-0001) funded
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Jülicher, and Matthieu Wyart, “Inferring the flow prop-
erties of epithelial tissues from their geometry,” New
Journal of Physics 23, 033004 (2021).

[25] Qinyi Liao and Ning Xu, “Criticality of the zero-
temperature jamming transition probed by self-propelled



6

particles,” Soft Matter 14, 853–860 (2018).
[26] Rituparno Mandal, Pranab Jyoti Bhuyan, Pinaki Chaud-

huri, Chandan Dasgupta, and Madan Rao, “Extreme
active matter at high densities,” Nature communications
11, 1–8 (2020).

[27] Peter K Morse, Sudeshna Roy, Elisabeth Agoritsas,
Ethan Stanifer, Eric I Corwin, and M Lisa Manning,
“A direct link between active matter and sheared gran-
ular systems,” Proceedings of the National Academy of
Sciences 118 (2021).

[28] Carlos Villarroel and Gustavo Düring, “Critical yielding
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Alexandre Bruneau, Nina Maenhoudt, et al., “Human
blastoids model blastocyst development and implanta-
tion,” Nature 601, 600–605 (2022).

[32] Manon Valet, Eric D Siggia, and Ali H Brivanlou,
“Mechanical regulation of early vertebrate embryogene-
sis,” Nature Reviews Molecular Cell Biology 23, 169–184
(2022).

[33] Jihoon Kim, Bon-Kyoung Koo, and Juergen A Knoblich,
“Human organoids: model systems for human biology
and medicine,” Nature Reviews Molecular Cell Biology
21, 571–584 (2020).

[34] Chiao-Peng Hsu, Alfredo Sciortino, Yu Alice de la Trobe,
and Andreas R Bausch, “Activity-induced polar patterns
of filaments gliding on a sphere,” Nature communications
13, 1–8 (2022).

[35] Jie Lin, Alaa Saade, Edan Lerner, Alberto Rosso, and

Matthieu Wyart, “On the density of shear transforma-
tions in amorphous solids,” EPL (Europhysics Letters)
105, 26003 (2014).

[36] H Honda, H Yamanaka, and M Dan-Sohkawa, “A com-
puter simulation of geometrical configurations during cell
division,” Journal of theoretical biology 106, 423–435
(1984).

[37] B A Sun, H B Yu, W Jiao, H Y Bai, D Q Zhao, and
W H Wang, “Plasticity of ductile metallic glasses: A
self-organized critical state,” Physical Review Letters ,
4 (2010).

[38] Smarajit Karmakar, Edan Lerner, and Itamar Procac-
cia, “Statistical physics of the yielding transition in amor-
phous solids,” Physical Review E 82, 055103 (2010).

[39] Jie Lin, Edan Lerner, Alberto Rosso, and Matthieu
Wyart, “Scaling description of the yielding transition in
soft amorphous solids at zero temperature,” Proceedings
of the National Academy of Sciences 111, 14382–14387
(2014).

[40] The uncertainty in our measurement of τ is mainly due
to uncertainties in identification of avalanches at finite v,

see SM.
[41] Mehdi Talamali, Viljo Petäjä, Damien Vandembroucq,
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I. CONFINEMENT OF VERTEX MODEL ON SPHERICAL GEOMETRY

We consider a non-deforming spherical geometry by setting um · n̂m = 0 in the force balance Eq. (1) in the main
text, where n̂m is the normal vector to sphere at vertex m. This leads to the definition of the normal force fnm = fnmn̂m
at vertex m with the magnitude:

fnm =

[
∂W

∂Xm
− fam

]
· n̂m . (S.1)

II. INITIAL CONDITIONS

We initialize the tissue configuration by Voronoi diagram construction of N randomly distributed cell centers on a
sphere of radius R = (NA0/4π)1/2, where A0 is the cell preferred area. We initialize the cell polarity vectors pα in
tangential plane of the spherical tissue, and with the random direction angle from a uniform distribution (see Fig. 1a
in the main text).

III. TRIANGULATION OF VERTEX MODEL TISSUE

In our vertex model on 2D sphere, cell vertices in general are not co-planar. Therefore, a unique definition of cell
geometric quantities such as cell area requires a triangulation definition. Here, we construct the triangulation, as
depicted in Fig. S.1, by connecting consecutive cell vertices Xi and Xi+1, and the cell centroid given by

Xc =
1

M

M∑

i=1

Xi, (S.2)

where M denotes number of cell vertices. Consequently, the cell area reads

A =
1

2

M∑

i=1

|(Xi −Xc)× (Xi+1 −Xc)|, (S.3)

with the consideration XM+1 ≡X1.
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IV. IMPLEMENTATION OF CONVECTIVE CO-ROTATIONAL TIME DERIVATIVE

We initialize the cell polarities in tangential plane of the spherical tissue and in random directions from a uniform
distribution. They are transported by cells carrying them through the convective co-rotational time derivativeDpα/Dt
in Eq. (3) in the main text, that can be written in a discrete form

pα(t+ ∆t) = R(Ωα∆t)pα(t), (S.4)

|pα(t+ ∆t)| = 1, (S.5)

where the three dimensional rotation matrix R(Ωα∆t) is constructed by extracting the solid body angular velocity of
each cell Ωα based on the velocity of its vertices

um,α(t) =
Xm,α(t+ ∆t)−Xm,α(t)

∆t
, (S.6)

um,α(t) =Ωα(t)× rm,α(t) + uα(t) + δum,α(t), (S.7)

where Xm,α(t) is the position of each vertex m that belongs to cell α, and rm,α(t) = Xm,α(t)−Xα,c. Cell centroid
and its translational velocity are defined by

Xα,c(t) =
1

Mα

∑

m∈α
Xm,α(t),

uα(t) =
1

Mα

∑

m∈α
um,α(t),

and Mα is the number of vertices of cell α. The last term on the right-hand side of Eq. (S.7), δum,α(t), is the residual
velocity of each cell vertex after subtraction of the cell solid body rotation.

In order to compute Ωα(t), we define the angular momentum Γm,α(t) of vertex m as:

Γm,α(t) = rm,α(t)× um,α(t)− rm,α(t)× uα(t) . (S.8)

Inserting this definition into Eq. (S.7) yields:

Γm,α = Ωαr
2
m,α − rm,α [Ωα · rm,α] + rm,α × δum,α , (S.9)

where the time dependence has been omitted for simplicity. Equation (S.9) can then be rewritten in matrix form as:

Γm,α = Mm,α ·Ωα + rm,α × δum,α , (S.10)

where we have introduced the moment of inertia tensor Mm,α of vertex m:

Mm,α = r2m,α1− rTm,αrm,α . (S.11)

The average angular momentum of cell α is obtained as:

Γα =
1

N

∑

m∈α
Γm,α = Mα ·Ωα +

1

Mα

∑

m∈α
rm,α × δum,α , (S.12)

FIG. S.1. Vertex model triangulation by connecting consecutive cell vertices to its center.
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where Mα =
∑
m∈αMm,α/Mα is the average moment of inertia tensor. In the case of a solid-body rotation,

δum,α(t) = 0, such that the angular velocity is simply obtained from Eq. (S.12) as:

Ωα = M−1
α · Γα0 , (S.13)

with Γα0 =
∑
m∈α(Xm,α −Xα,c)× (um,α − uα)/Mα.

V. UNCERTAINTIES IN DETECTING AVALANCHES

Duration of an avalanche can be uniquely defined in the quasistatic limit v → 0 as the time period during which F
is decreasing due to successive cell rearrangements. After the avalanche no cell rearrangements occur until F in the
system increases sufficiently by spring displacement to trigger the next cell rearrangements. Duration of this loading
period diverges in the limit v → 0 and avalanches can be precisely identified.

At a finite v, the observed time intervals during which F is decreasing depend on the time resolution δt at which
the data is recorded. Each spring moves a distance δs = vδt in a time interval δt (see Eq. 5 in the main text) during
which F increases by kδs due to spring movement. Occasionally during an avalanche the F decrease rate can fall
below kv and the F slightly increases although the avalanche is still ongoing. If the time resolution δt is very small
these slight increases will often be recorded effectively splitting original avalanches into smaller ones. On the other
hand choosing too large δt leads to merging of F decrease intervals belonging to different avalanches.

We first determine the extreme limits of low and high δt for which described artifacts leading to splitting and merging
of F decrease intervals are clearly visible (see Fig. S.2a). We then estimate the uncertainty in our measurements of
avalanche size distribution by varying the time resolution δt between these extreme limits and identify the intermediate
value of δt for which we test the robustness of the results upon further decreasing v (see Fig. S.2b).

Note that varying the time resolution δt does not change avalanche duration scaling with its size (see Fig. S.2c).

VI. FRACTAL DIMENSION OF AVALANCHES

The m-th moment of avalanche size distribution P (S) reads

〈Sm〉 =

∫ Sc

1

SmP (S)dS, (S.14)

where Sc is the cut-off size of the avalanches. Considering a power-law normalized avalanche size distribution P (S) ∼
S−τ (Fig. 2a in the main text), it follows

〈Sm+1〉
〈Sm〉 ∼ Sc. (S.15)

The system size dependent cut-off value in the normalized avalanche size distribution (Fig. 2a in the main text) scales
with linear system size as Sc ∼ Ndf/d, where df is the fractal dimension of avalanches, and d = 2 is the system
dimension. The fit (shown by black lines in Fig. S.3a) yields df = 0.75± 0.15.

Taking the estimation of df ≈ 0.75 and τ ≈ 1.35 (see main text) leads to a collapse of the tail in the avalanche size
distribution for various system sizes as is shown in Fig. S.3b.

VII. DENSITY OF PLASTIC EXCITATIONS

In our vertex model, we determine the exponent θ by fitting cumulative bond length distribution (see Fig. 3b in
the main text) for a wide range, and compare the measured values with the range predicted by the scaling relation
(main text Eq. 6). Further analysis (Fig. S.4) shows that varying lower and upper limits of the fitting range leads
to measurements of θ that vary in a range [0.21, 0.52]. We find that both increasing the upper limits while fixing
the lower limit (Fig. S.4a) and shifting up the one decade-long fitting interval (Fig. S.4b) lead to an increase in our
measurement of θ. To test the quality of each measurement, we quantify the average of squared residuals of the

fit r = (1/K)
∑K
j=0(P (`j) − `θj )2, where sum is over K bonds with lengths in the fitting interval. We find that the

confidence of the fit reduces as the measured values goes above the predicted range, marked by dashed lines in Fig. S.4.
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(a)

(b) (c)

FIG. S.2. Avalanche statistics. (a) Uncertainty in detecting drops in the average traction force magnitude due to the finite time
resolution. (b) Measured avalanche size distribution as a function of time resolution δt allows us to estimate the uncertainty
of the avalanche distribution exponent τ = 1.35 ± 0.11. (c) Varying the time resolution does not change avalanche duration
scaling with its size. Blacl lines indicate T ∼ S0.68.

VIII. CRITICAL TRACTION FORCE MAGNITUDE

Figure 4 in the main text suggests that the magnitude of critical traction force Fc(N) is system-size dependent and
is expected to be of the form Fc(N)−Fc ∼ N−1/(dν), since a system smaller than a correlation length ξ ∼ (F −Fc)−ν
cannot be distinguished from the system at Fc. Fitting the Herschel-Bulkley law to numerical simulation data (Fig. 4
in the main text) reveals Fc(100) ≈ 0.128 and Fc(200) ≈ 0.119. The decrease of Fc(N) is qualitatively consistent
with our expectation, however, an investigation of Fc in a broader range of system sizes would be required to test
the scaling prediction and the value of correlation length exponent ν = 0.8± 0.096 obtained from the scaling relation
ν = 1/(d− df ).

IX. RANDOM YIELDING TRANSITION IN FLAT BI-PERIODIC VERTEX MODEL

In order to test whether the spherical geometry affects the values of the critical exponents, we have measured
the exponents τ , z and df in a flat two-dimensional vertex model with bi-periodic boundary conditions. We find a
power-law avalanche size distribution consistent with the exponent τ ≈ 1.35 we reported for the spherical geometry
(Fig. S.5a). Moreover, the fractal dimension df ≈ 0.75 measured in the spherical geometry leads to the collapse of the
avalanche size distribution (see Fig. S.5b) and the same value is consistent with the finite-size scaling of the consecutive
moments of avalanche size statistics (Fig. S.5d). Finally, we find that avalanche duration scales with avalanche size
with an exponent z/df ≈ 0.68, consistent with the value of exponent z reported in the spherical geometry (Fig. S.5c).
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(a) (b)

FIG. S.3. Avalanche statistics. (a) Ratio of consecutive moments of avalanche size distribution scales with linear system size√
N as 〈Sm+1〉/〈Sm〉 ∼ Ndf/2, with df = 0.75±0.15. (b) Collapse of avalanche size distribution for different system sizes with

the exponents τ = 1.35, and df = 0.75.

(a) (b)

FIG. S.4. The fit of bond length distribution to power-law P (`) ∼ `θ, by considering various values of the lower and upper
limit of bond lengths for the fit. The horizontal dashes lines show the range of θ value predicted by the scaling relation (Eq. 6
in the main text). (a) Shows the measured values of θ for different values of upper limit while fixing the lower limit at 0.01.
The vertical line shows the upper limit value that is shown in Fig. 3b of the main text. (b) Shows how the measurement
of θ changes as we shift the fitting window by varying the lower limit and doing the fit for one decade. The color shows
r = (1/K)

∑K
j=0(P (`j)− `θj )2, the average of squared residuals of the least squares fit, where sum is over K bonds with lengths

in the fitting interval.
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(a) (b)

(c) (d)

FIG. S.5. Avalanche statistics in flat bi-periodic vertex model tissues. (a) avalanche size distribution P (S) is a power law
with exponent τ ≈ 1.35 indicated by the dashed line. (b) Collapse of P (S) with df = 0.75 for a wide range of tissue sizes.

(c) Avalanche duration vs avalanche size. The solid black line shows T ∼ Sz/df , with z/df ≈ 0.68. (d) Ratio of consecutive

moments of avalanche size distribution scales with linear system size
√
N as 〈Sm+1〉/〈Sm〉 ∼ Ndf/2, with df = 0.75 marked by

the solid black lines.


