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Evolution in time-varying environments naturally leads to adaptable biological systems that can
easily switch functionalities. Advances in the synthesis of environmentally-responsive materials
therefore open up the possibility of creating a wide range of synthetic materials which can also
be trained for adaptability. We consider high-dimensional inverse problems for materials where
any particular functionality can be realized by numerous equivalent choices of design parameters.
By periodically switching targets in a given design algorithm, we can teach a material to perform
incompatible functionalities with minimal changes in design parameters. We exhibit this learning
strategy for adaptability in two simulated settings: elastic networks that are designed to switch de-
formation modes with minimal bond changes; and heteropolymers whose folding pathway selections
are controlled by a minimal set of monomer affinities. The resulting designs can reveal physical
principles, such as nucleation-controlled folding, that enable adaptability.

Considered as materials, biological systems are striking
in their ability to perform many individually demand-
ing tasks in contexts that can often change over time.
This success can be attributed to “meta-properties” like
modularity[1–5], robustness[6], plasticity for learning[7],
and multifunctionality[8–11]. While inverse materials de-
sign has sought to optimize specific properties [12–20],
less attention has been given to identifying general design
strategies for creating materials with meta-properties.

Here, we show how a biologically-inspired design
method can target one such meta-property, adaptability.
By adaptability, we mean the ability to switch between
mutually-incompatible functions with minimal changes
in design parameters. For example, an adaptable elastic
network could switch from a negative Poisson ratio to a
positive one with minimal network changes, even though
a single network alone can only have one Poisson ratio.
In this example, the mutually-incompatible functions are
the different Poisson ratios, and the design parameters
are the stiffnesses of the network bonds. A truly adapt-
able material will be as good as a non-adaptable material
at any given function, but will require fewer modifications
to produce a distinct, incompatible function.

At first glance, the existence of a truly adaptable ma-
terial seems highly improbable. However, if the design
space of the material is high-dimensional, then we should
generically expect that there are many distinct choices
of design parameters with equivalent performance for a
given function[1, 16, 21–25]. Our goal is to identify the
much more rare subsets of design solutions which both
perform the given function and are adaptable.

In our approach, we take existing optimization algo-
rithms for a target function and repeatedly switch the
target before optimization is completed for any one func-
tion. The partially adapted design parameters for one
function are used as initial conditions for optimizing the

second function. This intuitively requires the solutions
identified in successful periods of training to drift closer
to each other in design space with each switch (Fig. 1).

The underlying logic of this approach is that the sets
of design parameters which survive the oscillating selec-
tion process are required to be similar by construction.
This implies that there are shared design characteristics
between the solutions, even though the functions they
perform are incompatible.

We note that our approach does not directly optimize
a metric of adaptability. Instead, material adaptability
arises because of the sequence of selection pressures the
material is subject to during design optimization. Our
method functions as a wrapper to existing optimization
algorithms. It is therefore compatible with a wide range
of pre-existing materials design procedures, ranging from
fully computer-based[12, 14] to fully in situ[26, 27].

Our work extends intuition developed earlier on
modularity[1, 3] in biological contexts to canonical syn-
thetic materials platforms. However, in these prior
works, the ‘environment’ itself was chosen to be modular.
The resulting system reflected the modules specified by
the environment: e.g., with logic circuits[1], the environ-
ment switched between selecting for computing an AND
operation between two sub-goals, or an OR operation
between those same two sub-goals. Consequently, the re-
sulting logic circuits developed modules for computing
these sub-goals which could be quickly recombined to
achieve AND or OR with minimal changes to the circuit.

In contrast, in many problems relevant to materials,
the different goals or functions required may not have
any obvious modular structure. For example, consider
two goals G1, G2 representing a material with different
Poisson ratios, or a polymer folding into two distinct
structures with no common sub-structures. In this work,
we focus on such arbitrary goals that are not chosen to
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FIG. 1. Evolving design parameters towards different target functionalities over time can select for highly
adaptable materials. (a) Materials can be characterized by their design parameters (e.g. for an elastic network, the rest
length and stiffness of each bond are design parameters). The design parameter-to-function map is often highly degenerate;
many choices of design parameters (e.g., orange region) can achieve the same equivalent function (e.g., G2). Some parts of
orange region might be close to design parameters (green) that achieve an alternative function G2; such regions can often be
vanishingly small but correspond to materials that can quickly adapt from exhibiting function G1 to G2 with minimal changes.
We have drawn regions for each goal as simply connected regions, but the topology may be more complex. (b) Optimization
for a single, fixed goal either G1 or G2 will typically result in non-adaptable materials that are good at function G1 or G2 but
not adaptable. Switching between the two goals on a fixed timescale τ , even if the parameters are not yet well-adapted to the
current target goal, by construction selects for parameters that are closer together in parameter space. Faster switching selects
for closer parameter sets that might be rarer or might not exist.

be modular in any obvious sense. We will nevertheless
use the alternating selection paradigm of prior biologi-
cal works; we find that such design protocols can reveal
adaptable organization of materials that can be rational-
ized in retrospect, even for goals not organized in any
obvious modular manner.

We demonstrate the utility of this method in the
context of two distinct simulated systems - (a) soft
materials with locally tunable elastic modulii, and (b)
self-assembling heteropolymers with tunable interaction
affinities between monomers. In both systems, rapidly
oscillating training goals allows us to find design pa-
rameters which can switch between mutually exclusive
functions with minimal parameter changes. In the self-
assembly case, we gain physical insight into the origin
of adaptability, as selecting for adaptability localizes pa-
rameter changes to interaction units which control kinetic
barriers in the folding landscape. Similarly, in the elastic
networks, we find that adaptability arises from a coher-
ent displacement unit which is easily shifted to perform
opposing allosteric motions. Thus, our work suggests a
broad strategy to discover physical mechanisms that en-
able adaptability in materials with arbitrary underlying
physics.

RESULTS

Mechanical metamaterials

In the context of mechanical materials, we first fo-
cus on allosteric response, that is, the ability of an elas-
tic network to exhibit a desired strain at a distant tar-

get site if strained at a specific source site. Such al-
losteric responses have been created through multiple
methods [3, 28–32]. Typically, there are multiple design
parameters that give rise to an allosteric response, which
means that the design space is degenerate with respect
to that particular allosteric motion. Our goal is to search
through this degenerate design space for the smaller set
of parameters that can perform a specific, different, in-
compatible allosteric response with minimal adjustment.

We use a 2-d mass-spring network to model allostery
in a mechanical system. Specifically, we simulate a 22-
node hexagonal lattice with fixed boundary conditions.
While the geometry and rest lengths of all springs are
fixed, the collection of 83 spring constants K = {ki}83i=1

are design parameters that can be tuned to get specific
allosteric responses. The two motions we train for, G1
and G2, correspond to two opposite responses for the
same input at the same source site (Fig. 2A). We first
reproduce such single-function design by starting from
many random initial conditions and running a gradient
descent procedure on a fitness function related to the
dynamical matrix.

Our fitness function rewards the softest mode trans-
mitting strain from source to target while also rewarding
a large energy gap between such a soft mode and the next
mode; see Supplementary Information for further detail.
Other works have created such allosteric materials us-
ing a range of different fitness functions and optimiza-
tion procedures[28, 29]. Our procedure, while different
in detail from previous work, nevertheless consistently
produces networks with the desired allosteric response.

Crucially, we find that there are numerous choices of
design parameters K - here, bond stiffnesses - that can
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FIG. 2. Oscillatory training protocols generate adaptable solutions for allostery in elastic networks (A) We
perform training on elastic networks with tunable bond stiffnesses. Goals G1 and G2 seek extensile and contractile strains
respectively at a pair of target nodes in response to strain at a pair of input nodes. Target nodes, applied strain, and input
nodes are the same for G1 and G2. (B) Each successful run of training generates a pair of elastic networks; one performs
G1, the other performs G2. We show the network which performs G1, bonds colored by relative stiffness. Bond stiffnesses
which change > 10% to switch to G2 circled in black. Network examples from training without oscillations (left), and with
oscillations (right). (C) Performance on each goal G1, G2 quantified by a cost function. Lower cost function indicates improved
performance. Training drives cost function of on-target goal lower during each period. Background color panels indicate on-
target goal. τ indicates training steps per period of goal oscillation. (D) Faster oscillation (smaller τ) during training gives
networks with higher adaptability (defined as fraction of all bond stiffnesses which change beyond 10% threshold when switching
between G1 and G2). Violin plots show distribution of changed bond fraction over successfully trained network pairs, black
lines indicate minimum, mean, and maximum values.

separately perform each of the goals G1 and G2. One of
these networks for G1 is shown in Fig. 2B(left); the oth-
ers are very different in the choice of K but are equivalent
in terms of performance at G1.

To leverage this degeneracy in design parameters for
adaptability, we studied a family of algorithms in which
the target goal is switched periodically between G1 and
G2 during design optimization at different timescales τ ,
where τ is the number of optimization steps per period.
In this way, design parameters partially optimized for one
goal, say G1, are used as initial conditions for the next
period of design that targets G2. Following our intuition
in Fig. 1, any two sets of design parameters produced
consecutively in this way are likely to be similar.

The results of switching at different frequencies are
shown in Fig. 2B-D. We find that such oscillatory design
has two distinct phases. Initially, the design parameters
are not good at either goal G1, G2 at the time of training
goal switches (Fig. 2C). After this phase, we find one of
two outcomes: (a) success, i.e., convergence to a limit cy-
cle between a pair of design parameters (bond stiffnesses)
K1 and K2 that are good at G1 and G2 respectively (Fig.
2C) or (b) failure, i.e., convergence to design parameters
that are good at neither property.

In successful cases, we can measure adaptability of the
pair K1,K2 as the number of bonds that need to change
their elastic constant kij by more than 10%.

To understand the robustness of our procedure, we
repeated the above simulations for 500 random initial
assignments of bond stiffness for each of 4 different os-

cillation timescales τ (Fig. 2D). We see a substantial
and systematic increase in adaptability with frequency
of switching, when restricting to successful runs. Intu-
itively, for more rapid switching times, when the process
does converge on a limit cycle, the pair K1,K2 are closer,
as they must be since there is less design time to get from
one to another.

For example, using an oscillation timescale τ = 50, we
discover networks that can switch function by changing
as few as 5 bonds (Fig. 2B(right)). In contrast, networks
obtained by optimizing for G1 or G2 alone typically differ
significantly in 40 bonds (Fig. 2B(right),D).

To better understand how adaptability arises under os-
cillatory training, we optimized several larger networks.
While in small networks it was more difficult to identify
physical principles in the optimized networks, in larger
networks the mechanical signatures of allostery were vi-
sually clear. In one example network, we found that
oscillatory training produced a section of the network
which moved coherently (Supplemental Fig. 1, bottom).
This section is diverted with just a small number of bond
stiffness changes, shifting from an in-phase to an out-of-
phase motion. Surprisingly, training for only one motion
at a time also produced networks with coherent motions
(Supplemental Fig. 1, top). However, the coherent mo-
tions selected for in the non-oscillatory training differed
between the G1 and G2 goals. This contrast between os-
cillatory and non-oscillatory pairs was observed in several
other large networks (Supplemental Fig. 2).
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FIG. 3. Oscillatory training protocols generate networks with adaptable Poisson ratios. (A) 2D elastic networks with
disordered geometry are trained for Poisson ratios ν > 0.75 (G1) or ν < −0.75 (G2). During training, bonds are irreversibly
removed based on local stress in response to applied strain. (B) Each successful run of training generates a pair of elastic
networks; one network performs G1, the other performs G2. We show the network which performs G1. Bond changes required
for switching to G2 are circled in black. Network examples from training without oscillations (left), and with oscillations (right).
(C) An ensemble of 200 networks undergoing oscillatory training with bond removal results in successful switching between
G1 and G2 in 12 networks. Background color panels indicate on-target goal. τ indicates bonds removed per period of goal
oscillation. (D) Successful networks trained with oscillation have a bond difference of 20 bonds. Networks trained without
oscillation showed bond differences ranging from 50− 100.

Local learning rules

In Fig. 2, we showed that adaptable allosteric response
can be created in elastic networks by alternating training
for two incompatible motions. This training relied on the
optimization of a global cost function under gradient de-
scent. However, recent examples of elastic network train-
ing aim to change bulk elastic moduli with algorithms
which use local information as input, and modify the
network in an irreversible fashion[33, 34]. When train-
ing for adaptability in mechanical allostery, we implicitly
assumed that the dynamics of training would allow for
returns to previously visited regions of design parameter
space. It is not clear that we can train for adaptability
without the ability to move unrestricted through design
parameter space. Here, show that we can extend our
oscillatory training framework to the task of developing
bulk elastic response even with irreversible local update
rules.

Our two target goals G1 and G2 now correspond to
having Poisson ratios of > .75 and < −.75 respectively
(Fig. 3A). We will use the same notation as in the pre-
vious section - G1 and G2 - to refer to these goals. The
Poisson ratio ν of a material describes its bulk deforma-
tion response to a uniaxial strain. If the applied strain is
compressive, a negative ν indicates that a network will
contract along the axis orthogonal to the strain, while
a positive ν indicates that a network will expand along
the orthogonal axis. Note that for isotropic materials,

ν is constrained to be within [−1, 1], but here we con-
sider materials which may become anisotropic as they
are trained; see Supplementary Information for further
detail.

Our algorithm for training elastic networks to perform
G1 and G2 proceeds by the irreversible removal of bonds
based on local information. Our design parameters are
the presence or absence of a bond in the lattice, but we
do not allow bond additions. We initialize our train-
ing with disordered 2D mass-spring networks of approxi-
mately 200 nodes. We simulate these lattices under peri-
odic boundary conditions. During training, we enforce a
deformation on the network, measure the strain in each
bond, and then remove the bond which experiences the
most strain. When we train for positive ν, we compress
the network along the y-axis and stretch it along the x-
axis. Analogously, we train for negative ν by compress-
ing the network along the y-axis while also compressing
it along the x-axis. During oscillatory training, we alter-
nate which of these deformations is applied. See Supple-
mentary Information for further detail.

Despite the differences between the goals and algo-
rithms considered here compared to those utilized in the
design of adaptable allostery, we find that a similar pic-
ture of adaptable mechanical design under oscillatory
training emerges (Fig. 3B-D). Even when trained from
the same initial disordered network, training for G1 and
G2 produce pairs of networks with many differences in
their bond removals (Fig. 3B(left)). In contrast, when we
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FIG. 4. Oscillatory training protocols generate adaptable solutions for heteropolymer folding. (A) We train the
monomer interaction matrix for a heteropolymer of length 13 in order to target different folded structures - a clockwise spiral G1
and a counter-clockwise spiral G2 - in finite time, starting from an unfolded state. Monomers are colored according to position.
(B) Performance on each goal G1, G2 is quantified by a cost function. Lower cost function indicates improved performance.
Training drives cost function of on-target goal lower during each period. Background color panels indicate on-target goal. τ
indicates training steps per period of goal oscillation. (C) Trained interaction matrices that target a spiral G1 and an anti-spiral
G2: (bottom) matrices A1, A2; upper triangle is the matrix, and the lower triangle shows upper quartile interaction values.
(top) matrix difference |A1 − A2|. Both top and bottom panels are averaged over no-oscillation (n=40) and with-oscillation
(n=62) training runs, thresholded at 1 kT. Polymer ends are positioned at the center of interaction matrices. (D) Fraction of
interactions which change by > 2 kT to switch between G1, G2. Violin plots show distribution over no-oscillation training pairs
(n=40) and with-oscillation pairs (n=62). Lines indicate minimum, mean, and maximum values.

oscillate which deformation is applied once every 20 bond
removals, we find that the difference between such net-
work pairs is substantially lower (Fig. 3B(right)). This
alternation comes at a cost; in an ensemble of networks
undergoing oscillatory training, approximately 50% ex-
perience mechanical failure before the training ends, due
to the irreversible nature of bond removals. Of those that
survive the training, 12% are able to rapidly switch be-
tween G1 and G2, with an overall yield of 6% (Fig. 3C).
When comparing an ensemble of networks trained with
oscillation to an ensemble of networks trained without,
we find quantitative evidence that adaptability increases
with oscillatory training, at the cost of lower yield (Fig.
3D).

Heterpolymer folding

Having demonstrated our method’s success in design-
ing adaptable mechanical networks, we turned to another
paradigmatic class of tunable synthetic materials.

Programmable self-assembly of single target structures
has been explored in many systems, ranging from col-
loids to proteins and DNA. Across these diverse systems,
a similar set of design parameters are tuned to target as-
sembly of a desired structure. Typically, these parame-
ters include a matrix of binding affinities between build-
ing blocks, in addition to global parameters like tem-
perature and concentrations. We refer to the matrix of
binding affinities as the affinity matrix.

In most approaches to self-assembly [35, 36], the affin-
ity matrix closely resembles the contact matrix of the
building blocks in the desired structure Γ. That is, par-
ticles in contact in Γ should typically have stronger bind-
ing affinities compared to particles not in contact in Γ,
thereby energetically stabilizing the structure relative to
other configurations of the same particles.

As a result, design parameters optimal for assembling
a structure Γa would not be good at assembling an unre-
lated structure Γb with high yield. This makes adaptabil-
ity in self-assembly seem difficult from the outset. The
stochastic nature of self-assembly provides an additional
complication compared to elastic networks.

To test whether we can design a self-assembling sys-
tem to be adaptable, we built a simulation of 2-d het-
eropolymer folding using the HOOMD-blue software[37].
Specifically, we consider a polymer of 13 monomers, each
of which is bonded to the next with harmonic springs.
A harmonic bending energy is present to stabilize the
fully-extended polymer state with a persistence length
of 5.5. Each monomer interacts with all non-neighbor
monomers through an attractive Morse potential with a
tunable affinity. The affinities have a maximal value of
6 kT and a minimal value of 0 kT. As such, the design
space has dimension 66, equal to the number of lower-
triangular entries in a 13 × 13 affinity matrix without
including the first off-diagonal; see Supplementary Infor-
mation for further simulation details.

Our task is to select affinity matrices which can read-
ily switch between two distinct, mutually exclusive de-
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sign goals (Fig. 4A). Our first goal, G1, is to produce
polymers that fold from a fully-extended initial condi-
tion into a spiral with a winding number exceeding that
of 1.0 around the monomer at the head of the polymer.
As self-assembly is stochastic, we further specify that this
must occur with greater than 70% probability within 500
units of simulation time. G2 is defined analogously, with
the difference being that the target structure is now an
anti-spiral, which has a winding number exceeding that
of 1.0 measured relative to the monomer at the tail of the
polymer. Note that use the same notation as in previous
sections - G1 and G2 - to refer to these goals.

We optimize the yield of a given target structure over
the 66 design parameters using the Covariance Matrix
Adaptation-Evolutionary Strategy (CMA-ES) [38, 39]
that simulates an evolving population of design parame-
ters. The loss function for our implementation of CMA-
ES is the negative of the yield, with a floor set by the
minimum 70% yield required for successfully achieving
either G1 or G2; see Supplementary Information for fur-
ther parameter choice details.

We perform optimization with two training protocols:
1. “no-oscillation” training, where G1 and G2 are op-
timized individually, and 2. “with-oscillation” training,
where we switch between G1 and G2 with a period of 5
training steps. When we successfully perform optimiza-
tion in with-oscillation training, we see that the maximal
yield of each goal increases in an alternating fashion with
each passing training period (Fig. 4B). This suggests
that oscillating training is converging to affinity matrix
solutions which can easily switch between G1 and G2.
Through this procedure, we collect a set of affinity ma-
trix pairs A1, A2. Additionally, we verify that the adapt-
ability of our pairs A1, A2 do not come at the expense
of significant performance degradation on the individual
goals they are trained for (Supplemental Fig. 3). We
collect an analogous set of pairs for no-oscillation train-
ing simply by running converged optimizations from the
same initial conditions.

To characterize the distribution of successful affinity
matrix pairs, we computed the average difference be-
tween a matrix that achieved G1 and its corresponding
G2 partner (Fig. 4C, top row), focusing only on en-
tries that changed substantially (i.e., by more than 1
kT). The resulting average difference matrix from the
no-oscillation training shows many more changed entries
than the matrices from with-oscillation training. This
visually suggests that oscillatory training identifies more
adaptable regions of design space, where the affinity ma-
trices which achieve G1 are closer to those which achieve
G2. The average affinity matrix for each goal supports
the same conclusion (Fig. 4C, bottom row). Note that
we have shifted the monomer numbering when plotting
affinity matrices, for ease of visual comparison.

To quantitatively confirm these visual conclusions, we
compute the fraction of matrix entries that change by
more than 2 kT between each A1, A2 affinity matrix pair
(Fig. 4D). As expected, the distribution of this met-
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FIG. 5. Adaptability in polymer folding relies on lo-
calizing interaction changes to nucleation barriers. A.
When trained without oscillations, energy landscapes (car-
toons) targeting G1 (green) and G2 (orange) have deep en-
ergy minima at their on-target G1 and G2 (black open cir-
cle) but high energy at off-target G2 and G1 (black solid cir-
cle) respectively. With oscillatory training, discrimination is
now kinetic; both on- and off-target energies remain low, but
the landscape develop kinetic barriers to folding (white cross
black squares). Kinetic barriers enable adaptability since fold-
ing can changed by changing a small number of contacts in
the nucleation seed. B. Off-target energy distributions for
no-oscillation (left) and with-oscillation (right) training (data
from 40 and 62 simulation runs respectively); energy is rela-
tive to the mean of the no-oscillation on-target distribution.
The off-target distribution is lower in energy than in with-
oscillation training. Violin plot lines indicate minima, means,
and maxima. C. As in Fig. 4C, interaction matrix differ-
ences between G1 and G2, for no-oscillation (left) and with-
oscillation (right) training. Barrier contacts are overlaid as
white cross black squares; oscillatory training localizes inter-
action matrix changes to the barrier contacts. Monomers are
colored according to position.

ric across all such pairs is substantially higher for no-
oscillation training than for with-oscillation training.

Physical interpretation

The adaptability of self-assembly found here is surpris-
ing at first glance. The average adaptable pair of affinity
matrices A1, A2 resemble each other for the majority of
elements (Fig. 4C, right), yet fold into incompatible con-
figurations with high yield.

To understand the physical design principles underly-
ing such adaptability, we estimated aspects of the folding



7

energy landscape for affinity matrices A found through
oscillatory and non-oscillatory training; we computed the
energies of folded configurations with different winding
number (see Supplementary Information).We find that
on-target structures are similarly stabilized by both os-
cillatory and non-oscillatory training as suggested by the
cartoon in Fig. 5A (open circles).

However, the two training protocols differ in how they
treat off-target structures. With non-oscillatory train-
ing, the off-target structures are relatively high in en-
ergy (solid circle in Fig. 5A,B) since training is only
ever shown the on-target structure. Consequently, the
affinity matrix requires extensive changes to assemble the
previously-off-target structure (Fig. 5C).

In contrast, with oscillatory training, off-target struc-
tures remain low energy states even with the affinity ma-
trix that target a radically distinct on-target structure.
Relative to the no-oscillation off-target distribution, the
with-oscillation off-target distribution is lower by ∼ 10
kT (Fig. 5B).

Despite such energetic stabilization of off-target struc-
tures, with-oscillation training results in on-target folding
by exploiting kinetics. Folding is controlled by a nucle-
ation barrier that is higher for the off-target structure
than for the on-target structure (cartoon Fig.5A; right).

Using the estimated energy landscapes, we can iden-
tify “barrier contacts” that need to form in a partially
folded nucleation seed before subsequent downhill fold-
ing to completion. Oscillatory training localizes the few
changed affinities to those involved in forming barrier
contacts (black in Fig. 5C).

Thus, our time-varying algorithm points at a physi-
cal principle for adaptive self-assembly of independent
validity. Kinetic yield is controlled by partially folded
early intermediate structures that correspond to nucle-
ation barriers. These barriers can be lowered in energy
or conversely destabilized by relatively few changes to
the affinity matrix, resulting in the spiral or anti-spiral
with high selectivity. Similar principles might apply more
broadly to proteins and ribozymes where partly folded
configurations, en route to fully-folded configurations can
be destabilized; indeed, such mechanisms might operate
in experimentally characterized adaptable proteins and
ribozymes where a single mutation can switch the poly-
mer between distinct structures and thus function.

DISCUSSION

Biological materials differ from man-made materials
in not just their physics and composition but also in the
history of their development. In fact, the way biological
materials are arrived at, through a process of incremen-
tal evolution in a sequence of historic environments, is
critical in understanding why they function differently
from man-made materials. While man-made materials
can sometimes rival or even exceed specific functionalities
of natural systems, these synthetic systems are lagging

precisely in meta-properties like adaptability, robustness
and ability to acquire new functions on the fly.

Here, we have shown how one such property, adaptabil-
ity, can arise without any direct targeting or optimiza-
tion. Instead, we find adaptable materials by applying
a time-varying sequence of selection pressures during de-
sign optimization.

This adaptability comes through the spontaneous for-
mation of identifiable physical units, despite the fact that
our goals and systems were not explicitly modular in
form. In contrast, prior work[1, 3] used explicit mod-
ularly varying goals to show a potential origin of modu-
larity and adaptability in biological systems. Thus our
work can be seen as building on those ideas to discover
physical principles specific to the physics of systems stud-
ied (e.g., nucleation for polymer folding) that allow for
adaptability.

Our proposed method has potentially wide applicabil-
ity, in that it functions as a wrapper around pre-existing
design programs, and hence can be applied without in-
depth knowledge of a system.

However, our method can also help reveal new system-
specific physical insights that can then be exploited with-
out further need for our method. For example, in many
of the current platforms for self-assembly, the yield is fre-
quently governed by kinetics rather than equilibrium free
energies[40–42]. Our simulations of heteropolymer self-
assembly revealed a broadly relevant design principle for
such systems – nucleation barriers in energy landscapes
can be leveraged to create adaptability in self-assembly.
Similarly, in the context of elastic networks, we identified
that coherent motions which link two allosteric sites can
be easily diverted in order to achieve incompatible goals.
These insight can now be used to guide design without
need for blind numeric optimization, both in synthetic
systems like colloids, DNA, and foams, but also in natu-
ral systems like proteins[42].

One key condition for our method is already clear from
the pilot examples in this study. In order for our adapt-
ability framework to succeed, the goals under consider-
ation must have “neutral variation”[43–45]; there must
exist changes in design parameters that have no cost in
terms of the current target functionality but that help
adapt to new functionality. The systems studied here
have such degeneracy; for example, many elastic net-
works with different bond stiffnesses showed the same
desired allosteric response. In fact, degeneracy is gener-
ically expected whenever systems are disordered, with
the number of design parameters often being extensive in
the size of the system. In biological examples too, such
genotype-to-phenotype maps are often redundant when
the space of genotypes (or design parameters) is larger di-
mensional than the space of phenotypes (exhibted prop-
erties). We do not expect as much success in systems
such as self-assembled crystals with only 1 or 2 species
or regular lattices of elastic elements.
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[44] Grüner, W., Giegerich, R., Strothmann, D., Reidys, C.,
Weber, J., Hofacker, I. L., Stadler, P. F., and Schuster,
P., “Analysis of RNA sequence structure maps by exhaus-
tive enumeration I. Neutral networks,” Monatsh. Chem.,
Vol. 127, No. 4, Jan. 1996, pp. 355–374.

[45] Schultes, E. A. and Bartel, D. P., “One sequence, two
ribozymes: implications for the emergence of new ri-
bozyme folds,” Science, Vol. 289, No. 5478, July 2000,
pp. 448–452.


	Learning to learn: Non-equilibrium design protocols for adaptable materials
	Abstract
	 Results
	 Mechanical metamaterials
	 Local learning rules

	 Heterpolymer folding
	 Physical interpretation


	 Discussion
	 References


