
Improving mean-field network percolation models with

neighbourhood information

Chris Jones 1,2 and Karoline Wiesner 2

1School of Mathematics, University of Bristol, Bristol, UK
2Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

Abstract

Mean field theory models of percolation on networks provide analytic estimates of network robustness
under node or edge removal. We introduce a new mean field theory model based on generating functions
that includes information about the tree-likeness of each node’s local neighbourhood. We show that our
new model outperforms all other generating function models in prediction accuracy when testing their
estimates on a wide range of real-world network data. We compare the new model’s performance against
the recently introduced message passing models and provide evidence that the standard version is also
outperformed, while the ‘loopy’ version is only outperformed on a targeted attack strategy. As we show,
however, the computational complexity of our model implementation is much lower than that of message
passing algorithms. We provide evidence that all discussed models are poor in predicting networks with
highly modular structure with dispersed modules, which are also characterised by high mixing times,
identifying this as a general limitation of percolation prediction models.

1 Introduction

Examples of complex networks may be found across many different real world systems, such as protein-
protein interactions [1], online social networks [2], financial transactions [3], power grids [4] and ecosys-
tems [5]. For many of these systems, one property of interest is robustness, which typically refers to
how well a network can retain its structure and/or function as it undergoes some disruption, such as the
removal of nodes or edges [6]. Robustness is of interest because we may want to know how real world
systems can withstand or react to damage of some kind, whether that is from random events such as
extreme weather or from targeted attacks such as the intentional taking down of internet servers. If we
can predict how real-world networks will behave in these scenarios and identify what makes them robust
or fragile, then we can potentially alter their structures to make them more or less robust in the future.

The most prevalent method for modelling network robustness is via the use of percolation theory,
which may model phenomena such as the spreading of disease through a population [7], the dynamics of
traffic in a city [8], or intentional attacks on internet servers [9]. With percolation theory, we consider
the systematic removal of nodes or edges from a network in either a random order, or in a specific order
according to some targeting. Percolation may be computationally simulated [10] but this approach has
two crucial drawbacks: it is computationally expensive, and it cannot explain the structural properties
of networks that affect robustness. If we wish to predict network robustness, it is convenient to have a
less time consuming method, and if we want to alter network robustness then we want a method which
will tell us the network properties which affect robustness.

A more efficient approach to predicting robustness is to use analytical mean-field theory models which
make use of generating functions [11]. These generating function models work by using information
about the local neighbourhoods of the nodes on the network and averaging this local information over
the entire network. The generating function model of [11] assumes random network structure, and
generating function models which include correlations and transitivity have since been developed [12,13].
To improve upon the generating function models, we introduce a new metric which measures how tree-
like the local neighbourhoods of nodes in a network are. Based on this metric, which we call the tree
factor, we introduce a new generating function model. We compute analytic estimates of percolation
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robustness using this model and show that it outperforms all existing generating function models when
tested on a large range of real-world network data.

Based on this success, we studied the remaining inaccuracy in the analytic estimates for some of the
networks and looked for general

conditions under which generating function models are unable to effectively predict network robust-
ness. The conditions we were able to identify are a highly modular structure with dispersed modules.
We show that these poorly predicted networks also have high mixing times for simple random walks
occurring on them, which gives us a simple, single metric which may be used as a diagnostic for when
generating function model results can be considered reliable. Additionally, our results provide useful
information about the conditions under which networks are fragile, and point towards possible methods
for robustness enhancement.

Recently, mean-field methods have been supplanted in studies of network percolation by message
passing methods [14–16]. The stated reasons for moving from generating function to message passing
methods include the fact that generating function models assume infinite network size, and that they
use summary data such as networks’ degree distributions to make their predictions, omitting relevant
structural information and making poor predictions [6, 14–16]. By contrast, message passing methods
operate upon the adjacency matrix of networks, and so they capture the finite nature of real networks
without having to use summary information.

Previous research, however, has established that simple message passing models fail to produce accu-
rate predictions due to their assumptions of local tree-likeness, and even some more sophisticated models
exhibit similar problems [15]. We, therefore, compare the accuracy of these methods to the performance
of the generating function models. We consider the simplistic message passing model [14] and a recently
developed model designed to include information about local loops [16]. We find that in all cases except
two our tree-factor model outperforms the message passing algorithms. In all cases does our model
provide a computationally much more efficient way of estimating network percolation robustness. Fur-
thermore, we find that message passing models also make more inaccurate predictions for high mixing
time networks, indicating a general limitation of percolation prediction methods.

2 Methods

2.1 Existing Generating Function Models

The predictions of robustness in this paper rely upon generating functions, which are a means of repre-
senting probability distributions as power series. The probability distributions of interest when predicting
network robustness in the simplest generating function model are the degree distribution p(k) and the
remaining degree distribution q(k′). The degree distribution gives the probability of a randomly selected
node having degree k, and the remaining degree distribution gives the probability of reaching a node
with k′ so-called remaining edges via a randomly selected edge, where k′ is k − 1, i.e. the node’s degree
with the traversed edge being discounted.

The generating function for the degree distribution is expressed as

g0(z) =

∞∑

k=0

p(k)zk, (1)

where z is some arbitrary number, and the generating function for the remaining degree distribution
is given by

g1(z) =

∞∑

k′=0

q(k′)zk
′
=

1

⟨k⟩
∞∑

k=1

(k − 1)p(k − 1)zk−1, (2)

where ⟨k⟩ is the average degree of nodes in the network. One approach to understanding network
robustness is to consider how well connected a network remains as nodes or edges are removed from it,
specifically by measuring the size of the largest connected component (LCC) in the network throughout
the process of node or edge removal. Generating functions allow one to model this process by predicting
the probabilities of nodes being in the LCC. If one starts with some average probability u that a node
is not connected to LCC via one of its neighbours, then the total probability of a node of degree k not
being connected to the LCC is uk. Averaging over all nodes, this gives

g0(u) =

∞∑

k=0

p(k)uk, (3)
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which is the average probability that a node is not connected to the LCC. The value of u will depend
upon the ratio of nodes or edges which are still present in the network, defined as φ. The probability of
one node not being connected to the LCC via one of its neighbours with k degree is 1− φ+ φuk−1, and
this may be averaged over the remaining degree distribution q(k′) to give

u = 1− φ+ φg1(u), (4)

a self consistency relation which gives the average probability of a node not being connected to the
LCC via one of its neighbours.

Finally, we may calculate the size of the LCC using Equations (3) and (4). In the case of random
node removal, the size of the LCC, Snode, is given by

Snode = φ(1− g0(u)), (5)

which is simply the ratio of removed nodes multiplied by the probability of a node being connected
to the LCC. For random edge removal, the size of the LCC Sedge may be calculated as

Sedge = 1− g0(u), (6)

differing from Equation (5) by a factor of φ. The preceding results apply for random node and edge
removal, but we may also want to know how the size of the LCC changes when a network undergoes a
series of targeted attacks. The most simplistic method of targeted attack is to remove nodes from the
network in descending degree order, and this may also be modelled using generating functions.

Assuming random structure on a network undergoing targeted attacks, we may follow a similar logic
to that which gave us g0(u) from Equation (3). If we start with some average probability u of not being
in the LCC, then the probability that a node of degree k is not connected to the LCC via its neighbours
is uk. However, for targeted attacks we must explicitly factor in the probability φk of a node of degree
k having been removed from the network, and so the probability of not being in the LCC is φku

k for a
node of degree k. If we remove all nodes above some degree k0, then φk = 0 when k > k0, and φk = 1
when k ≤ k0. If we remove some nodes of degree k0, then φk0 will be equal to the proportion of nodes
of degree k0 that have been removed.

Averaging over all nodes, we get the generating function for targeted attacks analogous to g0(z) from
Equation (3)

f0(u) =

∞∑

k=0

p(k)φku
k. (7)

This generating function gives the average probability that a node is both present in the network and
is not connected to the LCC. To calculate the probability of a node being in the LCC (and therefore the
size of the LCC), we must subtract f0(u) from the average probability of a node being present in the
network. Since we are considering targeted attacks, this probability is dependent upon the degree values
of nodes and is given by

f0(1) =

∞∑

k=0

p(k)φk, (8)

and therefore the expression for the size of the LCC is

Starg = f0(1)− f0(u). (9)

For targeted attacks, we must also update our expression for u. The probability of some node not
being connected to the LCC via a particular neighbour of degree k is 1 − φk + φku

k−1, and averaging
this over the remaining degree distribution q(k′) gives the self consistency relation

u = 1− f1(1) + f1(u), (10)

where

f1(u) =

∞∑

k′=0

q(k′)φk′+1u
k′
. (11)

Note that all of Equations (1)-(11) are sourced from [17]. While these expressions are able to elegantly
describe how a network behaves as it undergoes node or edge removal, this approach is only accurate
by definition if the network in question is locally tree like. It assumes that the network is configured
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“randomly”, i.e. in keeping with the configuration model [18], and this is often not the case for real-world
networks. A greater level of structural detail may be achieved by using generating function models which
take correlations [12] or clustering [13] into account. In the following, Equations (12)-(15) are taken from
or are derived from [12], and Equations (16)-(19) are from or follow directly from [13].

For random node or edge removal, when including correlations we calculate the quantity uk, the
average probability that an edge connected to a node of degree k connects to another node which is not
part of the LCC. This is given by the equation

uk = 1− φ+ φ

∞∑

j=1

π(j|k)(uj)
j−1, (12)

where π(j|k) is the conditional probability of traversing an edge from a node of degree k to a node of
degree j. For random node and edge removal respectively, the size of the LCC is therefore given by

Scorr
node = φ(1−

∞∑

k=0

p(k)(uk)
k), (13)

Scorr
edge = 1−

∞∑

k=0

p(k)(uk)
k. (14)

For targeted attacks, the expression for f1(u) becomes

f1(uk) = φk

∞∑

j=1

π(j|k)φj(uj)
j−1. (15)

Equations (7), (8), (9) and (10) may then be updated to include uk accordingly, which allows us to
calculate the size of the LCC for targeted attacks including information about correlations.

For clustering, when modelling random node and edge removal it is necessary to only substitute the
expression for g1(u) with that of gC(u), where

gC(u) = g1(C + (1− C)u), (16)

where C is a measure of clustering called transitivity, given by the equation

C =
3Nt

N3
, (17)

where Nt is the number of triangles in the network and N3 is the number of “triads” in the network.
A triad is a formation of three nodes where one node, α, has edges leading to two neighbours, β and γ,
which may or may not share an edge.

Consequently, when including clustering the expression for u becomes

u = 1− φ+ φgC(u), (18)

and the calculations for LCC size under random node and edge removal remain the same as they are
in Equations (5) and (6). Finally, when modelling targeted attacks while including information about
clustering, the expression for f1(u) is replaced with fC(u), where

fC(u) = f1(C + (1− C)u), (19)

and this may be substituted for f1(u) into Equation (10) to calculate u and subsequently the size of
the LCC for targeted attacks while including information about clustering.

2.2 Message Passing

The other group of models we consider in this paper are known as message passing models, which consider
each node and edge in a network individually, as opposed to using a network’s degree distribution. The
message passing model simulates a message being sent between connected nodes, communicating whether
or not they are in the LCC. The most simplistic message passing model for percolation assumes that the
given network is locally tree like [14], we describe it here and refer to it as the tree like message passing
method.

For a network undergoing percolation, each node i has a probability µi of not being in the LCC. This
is dependent upon the probabilities that each of its neighbours j to which i is still connected in its local
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neighbourhood Ni are not connected to the LCC via some route that does not include node i. For node
and edge removal respectively, this may be written as

µi(node) = 1− φ+ φ
∏

j∈Ni

µj→i(node), (20)

µi(edge) =
∏

j∈Ni

(1− φ+ φµj→i(edge)), (21)

where µj→i is the probability that j is not connected to the LCC via any route which does not contain
i. µj→i itself is dependent upon the probability that each of j’s neighbours, excluding i, is not connected
to the LCC, and so we can define

µj→i(node) = 1− φ+ φ
∏

k∈Nj ,k ̸=i

µk→j(node), (22)

µj→i(edge) =
∏

k∈Nj ,k ̸=i

(1− φ+ φµk→j(edge)). (23)

For a given ratio of removed nodes or edges φ, this gives us an LCC connection probability for each
edge in the network. Equations (23) and (22) may be solved iteratively until they converge for some φ.
We may then calculate the size of the LCC as

S(φ) =
1

N

N∑

i=0

µi, (24)

for both node and edge removal. It is also straightforward to adapt the node removal equations for
targeted node removal, where φ will vary depending on the total number of nodes removed and the
degree value of the relevant node.

The main drawback of this model is that it assumes local tree-likeness, and only holds true if there
are relatively few loops on the network in question. Here we consider a recently developed model which
explicitly takes into account the loops in each node’s local neighbourhood [16], referred to as the loopy
message passing method.

In the loopy message passing model, each node’s local neighbourhood is expanded to include loops of
a certain length. In the original model, loops of length 2 are included, which describes moving to a node’s
neighbour and back. The newer model allows for loops of any length, but here we restrict ourselves to
loops of length 4.

A node’s neighbourhood Ni is expanded to include any node within a loop of length 4 starting from
i. The neighbourhood may be in some configuration Γi depending on the nodes or edges removed, and
we set σij(Γi) = 1 if there is a path between i and j in state Γi, and 0 if not. The probability of i being
in the LCC becomes

µi =
∑

Γi

P (Γi)
∏

j∈Ni

µ
σij(Γi)

j→i , (25)

where P (Γi) is the probability of the configuration Γi occurring. While this expression averages over
all possible Γi configurations, this is highly impractical and computationally expensive, and so Monte
Carlo simulations may be used instead to estimate µi. As before, we may calculate µj→i, but the
neighbourhood we consider is Nj→i, which is the neighbourhood of j excluding nodes or edges in the
neighbourhood of i. µj→i is given by

µj→i =
∑

Γj→i

P (Γj→i)
∏

j∈Nj→i

µ
σjk(Γj→i)

k→j , (26)

where again Monte Carlo simulations are used to estimate µj→i by averaging over different Γj→i

configurations. As before, Equation (26) may be solved iteratively to convergence, and the LCC size may
be calculated using Equation (24).
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2.3 Simulating Percolation and Calculating Robustness

In order to evaluate how well the models we consider predict robustness, we must compare their results
against direct simulations of node and edge removal. This may be done using an algorithm devised by
Newman and Ziff [10], where nodes or edges are added to a network sequentially, and at each point the
size of the LCC is measured. This is equivalent to a time reversed procedure of node or edge removal.
This method of simulation requires several repetitions in order to get an accurate average for the size of
the LCC at each stage of node or edge removal. From these simulations, we can plot a curve of the LCC
size against the proportion of active nodes or edges in the network, and we show examples in Figure 1.

Figure 1: LCC size S(φ) against ratio of active nodes or edges φ for (a) the lastfm social network [19] and
(b) a power grid in the western United States [20]. Robustness curves are given for random node removal,

random edge removal, and targeted node removal.

Information about the robustness of a network may be condensed into a simple, single metric using
the LCC curve. The robustness measure proposed by Schneider et al [21] measures the area underneath
the curve of the size of the LCC plotted against the ratio of nodes or edges removed from the network.
The robustness measure ρ is given by

ρ =

∫ 1

0

S(φ)dφ. (27)

For random and targeted node removal, the robustness ρ is between 0 and 0.5, and for edge removal
ρ is in the range of 0 to 1. This robustness measure captures the information provided by the entire LCC
curve, allowing one to draw conclusions about how a network behaves throughout the entire process of
node or edge removal.

2.4 Measuring Prediction Inaccuracy

In this paper we consider how accurate the percolation predictions made using generating function models
are compared to ”real” results obtained via simulation. One method for doing this is to measure the
coefficient of determination, R2, between robustness ρ values obtained via simulation and via generating
function predictions. However, this method only works for a dataset of many networks. If we want to
assess how well a single network is predicted by generating function models, we require an alternative
method. To assess prediction inaccuracy for an individual network, we consider the area between the
predicted LCC curve and the real LCC curve, originally developed as a method of assessing prediction
inaccuracy in [15]. Prediction inaccuracy is given by

∆ =

∫ 1

0

|Sreal − Spredict|dφ, (28)

which ranges between 0 and 0.5 for random and targeted node removal, and 0 and 1 for random edge
removal. Higher values indicate more inaccurate predictions. These ∆ values may then be compared
against a variety of network properties in order to determine the instances in which generating function
models fail to accurately predict network robustness. We consider the cutoff for a prediction being highly
inaccurate to be ∆ ≥ 0.05, which is 10% of maximum inaccuracy for random and targeted node removal
and 5% of maximum inaccuracy for random bond removal.
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2.5 Modularity

In our results, we find that one network measure which indicates how well generating function models
predict percolation is the modularity of a network’s maximum modularity partitioning. Modularity
is measured by dividing up a network into several different communities, and then summing over the
difference between the number of edges any two nodes v and w in a community share and the expected
number of edges between them [22]. This may be written as

Q =
1

2m

(∑

vw

Avw − kvkw
2m

)
δ(cv, cw), (29)

where m is the number of edges, Avw is the adjacency matrix value for nodes v, w which takes the
value 1 if there is an edge between them and zero otherwise, ki is the degree of the ith node, ci is the
community to which node i belongs and δ(cv, cw) takes a value of 1 if nodes v and w are in the same
community, and 0 otherwise. Modularity takes values from − 1

2
to 1, with lower values for networks

with less modular and more random structure, and higher values for networks with highly modular and
non-random structure.

Several algorithms exist for computing maximum modularity. They divide a given network into
communities such that the modularity Q is maximized [23, 24], with the most recent innovation being
the Leiden algorithm [25], with computational time scaling almost linearly with number of nodes. In our
results, we use the Leiden algorithm in order to partition real networks and measure the modularity Q
of these partitions.

2.6 Mixing Time

Another network measure which we relate to the quality of generating function predictions is mixing
time. The mixing time of a network may be estimated analytically by using spectral methods on the
transition matrix for a simple random walk. A simple random walker on a network will move from some
node to any one of its neighbours with uniform probability, and so a network’s transition probability
matrix P for this kind of walk is given by

P = D−1A, (30)

where D is the network’s diagonal matrix, which has each node’s degree value on the diagonal and
0 values elsewhere, and A is the network’s adjacency matrix, where for simple undirected networks each
entry aij is 1 if there is an edge between nodes i and j, and 0 otherwise. It has been established that
the reciprocal of the spectral gap between the two largest eigenvalues of the transition matrix P give an
estimate of mixing time [26]. The mixing time measures how long it takes for a random walk to reach a
stationary state - in other words, the expected length of time before the trajectory of the random walker
is unaffected by its initial starting point. The largest eigenvalue of P is simply λ1 = 1, so the mixing
time is estimated as simply

tmix =
1

1− λ2
, (31)

where λ2 is the second largest eigenvalue of the transition matrix P . λ2 can be found fairly rapidly
on sparse matrices (and therefore sparse networks) using the implicitly restarted lanczos method [27]
implemented in computational packages such as scipy.sparse.linalg [28], and so it is easy to quickly
estimate mixing time on the real networks we consider. Mixing time has previously been related to
the small world-ness of networks [29] and can be used to indicate when predictions of certain network
properties will be inaccurate [30–32], and we use it in the following for a similar purpose.

3 Results

3.1 Predicting Structural Robustness with Generating Function and
Message Passing Models

To assess how accurate the predictions made by generating function models are, we can compare predicted
robustness from these models against real robustness obtained from repeated Newman-Ziff simulations.
For this, we use a dataset of 100 different real-world networks, including social, biological, ecological
technological and infrastructural networks. A table of these networks is provided in the Supplementary
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Materials. Some real world networks are recorded as having separate, disconnected components, and so
for consistency we only consider the largest connected component in the initial data. This means that
all of the networks we consider are initially connected. We obtain real robustness values for these 100
networks via simulation and for each generating function method we calculate predicted robustness. We
then measure the coefficient of determination, R2, between the real and predicted robustness values. Since
the real robustness values are calculated by simulating node or edge removal, we repeat the simulations
between 10 and 200 times depending on the size of the network. From these repeated tests, we are able
to get average real robustness values and the error in robustness. These results for the three generating
function models described in Section 2.1 are presented in Figure 2.

Figure 2: Comparisons of real and predicted robustness values for generating function models. Plots in
blue are for random node removal, plots in orange are for random edge removal, and plots in purple are for
targeted node removal. (a) (f) and (k) are for generating function predictions assuming random structure,
(b), (g) and (l) are for generating function predictions including correlation information, (c), (h) and

(m) are for generating function predictions including clustering information, (d), (i) and (n) are
predictions for the tree like message passing method and (e), (j) and (o) are predictions for the loopy
message passing method. The error bars for all plots represent the error in robustness from simulations.

For random node and edge removal, predicted values are generally closer to real values for more robust
networks. For random and targeted node removal, there are some significant discrepancies between
predicted and real robustness values for all models, but for edge removal, the predictions are typically
more accurate. It is also notable that for almost all models and removal scenarios, the robustness
predictions mostly over estimate robustness when the predictions are inaccurate.

We can see from Figure 2 that while the generating function models are generally indicative of
robustness, there can still be significant discrepancies between real and predicted robustness values,
especially for random and targeted node removal. Clearly, there are elements of network structure which
are relevant to robustness that are ignored by these models. The tree like message passing model only
outperforms generating function models for random edge removal by a small margin, indicating that this
model is not much of an improvement upon generating function models in terms of producing accurate
predictions. The loopy message passing model outperforms all others for random node and random edge
removal significantly, but is the worst model for predicting targeted node removal.

Additionally, it should be noted that the message passing models are more computationally expensive
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than the generating function models. For the generating function models, there is only one self consistency
equation to solve for each active ratio of nodes or edges. For correlated structure, there are np̸=0 equations,
where np ̸=0 is the number of non-zero entries in the degree distribution. In comparison, the tree like
message passing method has 2E self consistency equations, where E is the number of edges in the
network, and for the loopy model there are estimated to be N logN equations for sparse networks [16],
where N is the number of nodes in the network. As the authors of the loopy model note, this can make
the loopy network passing method on par with directly simulating percolation in terms of computational
expense, and so message passing methods may not be favourable for limited computational resources
or larger networks. For our dataset of 100 networks, the median value of 2E

np̸=0
= 319, and the median

value of N logN
np ̸=0

= 614, so message passing methods are considerably more computationally expensive

than generating function models. Furthermore, it is possible for np̸=0 to remain quite small on very large
but sparse networks, making generating function models more suited to efficiently predicting robustness
of very large sparse networks. Data on values of np ̸=0, 2E and NlogN for our dataset is given in the
Supplementary Materials. With this in mind, it is worth attempting to refine generating function models
further for applications on large networks or where computational resources are scarce.

3.2 Introducing the Tree Factor and a New Generating Function Model

In order to improve upon the predictions of existing generating function models, we can alter them such
that they do not assume locally tree like structure. The generating function model which uses transitivity
[13] does this to a certain extent, and several message passing models [15, 16] include more precise
information about the local neighbourhoods of nodes such that they do not assume local tree likeness.
Such an approach has even been taken for calculating the mean first passage times of random walks on
networks [31], and so our new model follows a similar logic to these other methods for incorporating
realistic local neighbourhood information.

Here we adapt the generating function model for correlated structure to include information about
how locally tree-like the network is. Let us consider a network for which no nodes or edges have been
removed, but may be made up of disconnected components. Starting from some node A of degree kA,
the node is not connected to the LCC with probability (uA)

kA , where uA is the average probability that
a neighbour of A is not connected to the LCC. To find uA, we want to know the probability that each of
A’s neighbours B,C,D are not in the LCC.

In the original generating function model, we would assume that each neighbour B,C,D of A has
unique second neighbours, i.e. B,C,D do not share any neighbours besides A, and to get uA we would
average over values of (uB)

kB−1,(uC)
kC−1,(uD)kD−1. However, this is not typically the case on real

networks. To bring the model closer to reality, we could adjust each of the exponents kB−1,kC−1,kD−1
such that they reflect how B,C,D connects A to its second neighbours. In order to do this, we count
each second neighbour only once, divide up second neighbours between each first neighbour they are
connected to, and adjust the degree of each first neighbour accordingly when calculating the probability
that a given first neighbour is not in the LCC. For node removal, we count nodes that are distance two
(i.e. shortest path length two) away from the origin node A as second neighbours, and for edge removal
we count nodes that are two non-backtracking steps away from the origin node A as second neighbours.
An example node neighbourhood is shown in Figure 3.

For the generating function model, we must average over degree values, and so cannot individually
adjust the remaining degree of every first neighbour in every local neighbourhood. For a given origin
node, we can get an average adjustment factor, which we call the tree factor, T, by dividing the number
of second neighbours by the total remaining degrees of the first neighbours. This may be written as

T =
n2∑
k′ , (32)

where n2 is the number of second neighbours, and k′ is the remaining degree of some first neighbour.
In our example neighbourhood from Figure 3, node A has a tree factor of TA = 1

2
when treating nodes

at distance two as second neighbours, and a tree factor of TA = 3
4
when treating nodes at two non-

backtracking steps away as second neighbours. Using A’s tree factor TA, we could calculate uA as the
average of (uB)

(kB−1)TA ,(uC)
(kC−1)TA ,(uD)(kD−1)TA

Expanding this over an entire network, we can define the degree-averaged tree factor for the average
node of some degree k, given by

Tk =
⟨n2⟩k

⟨∑ k′⟩k
, (33)
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Figure 3: Example local neighbourhoods of some node A. Neighbourhood (a) exhibits locally tree-like
structure, whereas (b) is not locally tree-like. To provide an example of how degree values are adjusted,
node B connects to 3 unique nodes in (a), whereas in (b) node B is counted as connecting to 4

3 nodes at
distance two from A, and 7

3 nodes at two non-backtracking steps away from A.

where we divide the average number of second neighbours by the average total remaining degree of
first neighbours for some starting node of degree k.

Using the degree-averaged tree factor, we can scale up our calculation for uA across an entire network
for any given node of degree k, and once we reintroduce considerations of node and edge removal this
leads us to a new expression for uk, similar to 12, where we use the degree averaged tree factor Tk to
allow for averaging over the entire network.

uk = 1− φ+ φ

∞∑

j=0

π(j|k)(uj)
(j−1)Tk . (34)

And for targeted node removal we can adjust Equation (15) in a similar manner

f1(uk) = φk

∞∑

j=0

π(j|k)φj(uj)
(j−1)Tk . (35)

Using Equation (34) in conjunction with Equations (13) and (14), and using Equation (35) with
Equations (10) and (9), we may make new predictions for network robustness. As before, this new tree
factor generating function model requires solving np̸=0 self consistency equations in order to find the
value of S(φ) for some φ. The predictions of network robustness made by this model are given in Figure
4.

Figure 4: Comparison between predicted robustness using tree factor generating function model and real
robustness for various real networks. (a) is for robustness against random node removal, (b) is for random
edge removal, and (c) is for targeted node removal.

Overall, this method of prediction outperforms the previously discussed generating function models
and the tree like message passing model for all types of node and edge removal. However, there are still
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some outlier networks which negatively affect the overall prediction accuracy. Specifically, the tree factor
generating function model substantially overestimates the robustness of some networks. In the following
we identify the properties of these outliers which explain why they are poorly predicted.

3.3 Limitations of mean-field models

In the Supplementary Materials, we consider two possible sources of inaccuracy: network size, and
lack of local network information. We conclude that both of these are insufficient explanations for the
prediction outliers we see in Figure 4. However, we are still missing information which cannot be easily
captured using a mean field theory approach. One possibility is that networks are inaccurately predicted
if they exhibit very different structural properties in different areas of the network, and so the statistical
assumptions of the generating function models break down for such networks. In order to identify such
networks, we may measure how well they may be subdivided into smaller local communities, and measure
the quality of these divisions by calculating their modularity.

We partition real world networks from our dataset and calculate their modularity for partitions found
using modularity maximising methods described in Section 2.5. Prediction inaccuracy ∆ is also calcu-
lated for each individual network using the method from Section 2.4. These modularity and prediction
inaccuracy values are compared in Figure 5 for the tree structure generating function model predictions.
Modularity is compared against prediction inaccuracy for random node removal, random edge removal,
and targeted node removal.

Figure 5: Prediction inaccuracy against modularity. (a) is for robustness against random node removal, (b)
is for random edge removal, and (c) is for targeted node removal. Dashed lines are included to mark the
points at which Q = 0.75 and ∆ = 0.05.

We can see that low modularity networks are generally well predicted by the tree factor generating
function model, whereas poorly predicted networks tend to have high modularity, and this is true for
all methods of removal. We would expect that the outliers in Figure 4 are primarily highly modular
networks based on these results. While this allows us to identify a group of networks in which we will
find poor predictions, this does not perfectly isolate the poorly predicted networks from the well predicted
networks.

Given this consideration of modularity and its impact on robustness predictions, it is important to note
that generating function models which incorporate the modular structure of networks also exist [33–35].
The relevant generating function equations and resulting equations for network LCC size are given in the
Supplementary Materials. Using the generating function model which incorporates modular structure,
we find that it does not produce robustness predictions which are more accurate than the tree factor
model. Additionally, we establish that prediction inaccuracy does not stem from any sort of heterogeneity
between the internal structure of different modules. These results are all provided in the Supplementary
Materials. If the internal structures of the modules are not the primary source of prediction inaccuracy,
then we are led to consider the structure which exists between different modules on highly modular
networks.

3.4 Modular Dispersal

In order to understand the structure which exists between modules in networks, we constructed modular
pseudographs where modules are represented as nodes, and edges exist between nodes only if there is a
direct connection between the modules they represent. An example of this is given in Figure 6, where
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Zachary’s karate club network [36] is partitioned using the Leiden algorithm and a modular pseudograph
is drawn based on these modules.

Figure 6: Reduction of the Zachary karate club network (a) into a modular pseudograph (b).

Applying this to highly modular networks, we can examine the interconnection between their modules.
Two examples are given in Figure 7, where Figure 7(c) depicts the pseudograph of a network which is well
predicted by the tree factor generating model, and Figure 7(a) is the pseudograph of a poorly predicted
network.

Figure 7: Two modular pseudographs and a comparison of real and predicted robustness values against
random node removal using tree factor predictions. (a) is the pseudograph of a power grid in the western
United States [20], where the original network has Q = 0.935. (b) is a replication of Figure 4(a), with the
lastfm and power grid networks highlighted. (c) is the pseudograph for the lastfm social network [19], with
the original network having Q = 0.819.

We can see that the modules of the pseudograph in Figure 7(c) are generally closely connected to
one another, whereas in Figure 7(a) they are substantially more dispersed, and so reaching one module
from another may require passing through many other modules. This dispersal may be measured by the
average shortest path length on the pseudograph, and we define this dispersal D as

D =

∑N
i,j dist(vi, vj)

N(N − 1)
, (36)

where N is the number of modules and dist(vi, vj) is the shortest distance between modules vi and vj .
N(N−1) gives the total number of paths in the pseudograph, but this only holds true if the pseudograph
is connected. For all networks we consider this is true, as we start by considering the largest connected
component in the initial network data. Note that the dispersal D is calculated by treating modules
as single nodes with no interior structure, and so the size of the modules themselves does not influence
dispersal, only the connections between them. In Figure 8 modular dispersal D is compared to prediction
inaccuracy for networks with Q > 0.75, which make up 32 networks out of our dataset of 100.

Networks with more dispersed modules, as measured by pseudograph average shortest path length,
tend to be more inaccurately predicted by the tree factor generating function model, although some well
predicted networks are classed as highly dispersed, particularly for targeted node removal. This allows
us to identify and isolate a subset of networks for which many predictions will be highly inaccurate, and
to understand the structural characteristics of such networks.
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Figure 8: Prediction inaccuracy for highly modular networks against modular dispersal. (a) is for robustness
against random node removal, (b) is for random edge removal, and (c) is for targeted node removal. Dashed
lines are included to mark the points at which D = 2 and ∆ = 0.05.

However, this approach has some drawbacks. Firstly, modularity itself is not a property of a network,
but instead a measure of how well a given partition divides up a network. Modularity maximisation is only
one approach to understanding network community structure, and recent research has established that
there is no one “ideal” community detection method [37]. At best, we might conclude that networks we
call “highly modular” have strong indications of community structure, but the limitations of modularity
maximising methods mean that this is not certain, and the communities found using this method may
not be “true” communities. Secondly, identifying highly modular, highly dispersed networks is a two
step process, so clearly a single heuristic would be preferable for identifying poorly predicted networks.
Therefore, we must consider other properties which may be possessed by highly modular, highly dispersed
networks.

3.5 High Mixing Time Networks

In the Supplementary Materials, we investigate the possibility that poorly predicted networks are lattice-
like and non-small world, using Watts-Strogatz models for reference, but find that this is not the case
when using metrics such as transitivity and average shortest path length to measure lattice-likeness and
small worldness. However, this is only one approach to understanding small worldness. While networks
with small average shortest path lengths have small distances between nodes, this does not necessarily
mean there are many paths between nodes, and this is suggested by the presence of highly modular,
highly dispersed networks with relatively low average shortest path lengths. On such networks, we might
expect that a random walk process may take a long time to reach nodes, as the walker may get stuck
within modules. In order to measure how well a random walker may move around a network, we may
measure the mixing time tmix described in Section 2.6, which previous research has indicated [29] is a
better indicator of the traversability of a network than metrics such as average shortest path length. We
evaluate mixing time tmix on our dataset of real networks and compare with prediction inaccuracy ∆,
and these results are shown in Figure 9.

We see that high mixing time networks tend to be more inaccurately predicted for random node and
random edge removal for both the tree factor generating function model and the loopy message passing
model. If we consider all networks with tmix > 550 to be “high mixing time”, we find that 13 of 14
networks with ∆ > 0.05 for random node removal are classed as high mixing time networks. Similarly,
if we consider networks with Q > 0.75 and D > 2 to be highly modular, highly dispersed networks, we
find that 13 out of 15 highly modular, highly dispersed networks are also classed as high mixing time
networks.

Interestingly, this result is similar to results found by Maier et al. [30–32], where Maier and Brockmann
[30] developed a method for predicting the average time to visit all nodes on a network (cover time)
and applied this to real networks, but found that this method would break down on networks with
sufficiently large mixing times. Similarly, in work by Maier et al. [31], cover time was predicted on
artificially constructed networks by relating it to the average time to visit one node starting from any
other (mean first passage time), which is itself related to mixing time, and these predictions also broke
down for conditions which resulted in high mixing times.

To demonstrate the usefulness of identifying high mixing time networks, we can replot Figure 4
but exclude networks with tmix > 550. This gives Figure 10. Similar results are provided in the
Supplementary Materials, where robustness comparison plots are given for other generating function
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Figure 9: Prediction inaccuracy on real networks against mixing time tmix plotted on a log scale. (a), (b)
and (c) are for the tree factor generating function model, and (d), (e) and (f) are for the message passing
model. For random node and random edge removal, inaccuracy tends to be higher for high mixing time,
and for targeted node removal there is no clear relationship. Dashed lines are included to mark the points
at which tmix = 550 and ∆ = 0.05.

model methods while excluding high mixing time networks. For all generating function models and
methods of node or edge removal, we see a significant improvement in overall prediction quality once
high mixing time networks are excluded.

By excluding high mixing time networks, the overall accuracy of predicted robustness values (as
measured by the coefficient of determination) is substantially improved. The number of excluded networks
is 14 out of 100, which is a sizeable portion, but nevertheless this result indicates that the tree factor
generating function model predicts robustness against random node removal, random edge removal and
targeted node removal quite accurately for a significant majority of networks. When high mixing time
networks are excluded, the tree factor model outperforms all other generating function models with the
exception of the correlated structure generating function model for random edge removal, which exhibits
R2 = 0.971. The tree factor also outperforms the tree like message passing model for random node and
targeted node removal, but not random edge removal. As before, the loopy message passing model is
the most accurate model for random node and random edge removal, but the least accurate for targeted
node removal.

The robustness comparison data for other models when excluding high mixing time networks is
provided in the Supplementary Materials.

4 Conclusion

We have shown that existing generating function models have limited effectiveness when attempting
to predict the robustness of real-world networks as they necessarily ignore certain aspects of network
structure. The tree like message passing model is only a marginal improvement on these models for
random edge removal, and while the loopy message passing model is the best for random node and
random edge removal predictions, the message passing models are considerably more computationally
expensive than generating function methods. In order improve upon exisitng generating function models,
we have introduced a method to measure the local tree likeness of networks.

We defined a new quantity, the tree factor T . This is a local property which measures the ratio
of a node’s second neighbours to the possible maximum second neighbours it could have. Averaging
this quantity for each degree value in a network, we can create a new generating function model which
accounts for how locally tree like the neighbourhoods of nodes are and produces predictions of network
robustness that are more accurate than those made by other generating function models and the tree
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Figure 10: Comparison between predicted robustness using tree factor generating function model and real
robustness for various real networks, excluding high mixing time networks. (a), (b) and (c) are for the tree
factor generating function model, and (d), (e) and (f) are for the message passing model.

like message passing model. It remains to be seen whether the inclusion of the tree factor may improve
other network models which assume locally tree like structure.

We go on to consider other possible structural properties which can cause percolation predictions
to be inaccurate. Our results rule out the possibility that network size is a significant influence on
prediction inaccuracy, which points against the assumption that generating function models fail to make
accurate predictions due to the finite-ness of real networks. Similarly, we find that inaccuracies do not
appear to stem from either missing local information or differences between the structure of modules
for highly modular networks. Instead, we demonstrate that the discrepancies in accuracy are most
pronounced on networks that exhibit community structure in the form of high maximum modularity and
have dispersed modules. This is likely because such networks are not statistically similar throughout
their entire structures in the manner assumed by the generating function model, with modules that are
far away from the “core” of the network being more vulnerable to disconnection than is modelled by
existing generating function models.

However, it is a well known problem in community detection that it is difficult to definitively identify
community structure on networks using any one community detection method, and so at best we can only
say that poorly predicted networks have strong indications of dispersed communities. Alternatively, we
find that poorly predicted networks exhibit high mixing times for simple random walks, but interestingly
this does not appear to be due to a lack of small world characteristics. Mixing time is a singular, easy
to assess metric, making it a useful diagnostic tool for determining when one might expect percolation
prediction methods to give accurate results. This also relates to other results [30–32] where high mixing
time is indicative of the conditions under which models of network behaviour break down, and as such
examining the general unpredictability of high mixing time networks may be worth future study.

When high mixing time networks are excluded from our dataset, then the predictions of robustness
given by the tree factor generating function model are generally quite accurate, and for the loopy mes-
sage passing model they are nearly perfectly accurate for random edge removal. While message passing
methods produce more accurate predictions for random node and random edge removal than generating
function models when excluding high mixing time networks, they require solving often several hundred
times more self consistency equations in order to predict LCC size, making them much more computa-
tionally expensive. Depending on how much one may be able to tolerate a certain amount of prediction
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inaccuracy and the computational resources available to them, it may be more suitable to use generating
function models than message passing models in some contexts.

Clearly a useful future direction when seeking to improve percolation prediction methods is to incor-
porate information either about how dispersed highly modular networks are, or about structures which
give rise to high mixing times. Additionally, such networks’ robustness values tend to be substantially
overestimated by percolation prediction methods, indicating that high mixing times and high modularity
with module dispersal make a network considerably more vulnerable to node or edge removal than it
might otherwise be without modular dispersal, indicating that reducing mixing time or making modules
closer to one another could substantially improve network robustness.

Funding

C.J. was supported by Engineering and Physical Sciences Research Council Doctoral Training Partnership
funding (EP/R513179/1).

References

[1] G. Koh, P. Porras, B. Aranda, H. Hermjakob, and S. Orchard, “Analyzing protein–protein interac-
tion networks,” Journal of Proteome Research, vol. 11, no. 4, pp. 2014–2031, 2012.

[2] A. Majeed and I. Rauf, “Graph theory: A comprehensive survey about graph theory applications
in computer science and social networks,” Inventions, vol. 5, no. 1, 2020.

[3] G. Caldarelli, S. Battiston, D. Garlaschelli, and M. Catanzaro, Emergence of Complexity in Financial
Networks, pp. 399–423. Springer Berlin Heidelberg, 2004.

[4] F. Wenli, L. Zhigang, H. Z. Ping, and M. Shengwei, “Cascading failure model in power grids using
the complex network theory,” Iet Generation Transmission & Distribution, vol. 10, pp. 3940–3949,
2016.
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Supplementary Materials: Improving mean-field network

percolation models with neighbourhood information

Chris Jones 1,2 and Karoline Wiesner 2

1School of Mathematics, University of Bristol, Bristol, UK
2Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

1 Network Data

In Table 1, we provide data for 100 different real world networks used in this paper. The format for each
entry in the table is the name of the network and a citation for its source. References for each network’s
original source is given where possible. All network data was accessed via either The KONECT Project [1]
or via Network Repository [2].

Network Name np ̸=0 2E NLogN Reference
abiword 29 3438 5561.439 [3]
air-traffic 27 4816 8143.029 [1]
arabidopsis-interactions 75 21442 43208.15 [4]
amazon-links 25 7772 13948.81 [5]
asoiaf 51 5646 9741.357 [6]
bible-names 79 18118 35847.19 [1]
bio-CE-CX 40 4050 6695.511 [7]
bio-CE-GN 185 107360 253896.3 [7]
bio-CE-GT 46 6362 11141.66 [7]
bio-CE-HT 22 5376 9218.306 [7]
bio-CE-LC 24 2600 4048.126 [7]
bio-CE-PG 254 94618 221166.9 [7]
bio-DM-CX 222 153426 374733 [7]
bio-dmela-large 93 51138 112700.8 [8]
bio-DM-HT 27 9124 16693.07 [7]
bio-fly-brain 82 17810 35171.49 [9]
bio-HS-HT 99 27300 56444.56 [7]
bio-HS-LC 151 78954 181449.9 [7]
bio-human-protein-large 71 12836 24435.89 [10]
bio-mouse-brain 32 3072 4894.297 [9]
bio-SC-CC 162 69758 158440.1 [7]
bio-SC-GT 171 67964 153980.9 [7]
bio-SC-HT 269 126046 302478.8 [7]
bio-SC-LC 106 40896 88144.19 [7]
bio-yeast-large 27 3896 6408.119 [11]
ca-CondMat 122 182572 452815.5 [12]
ca-Erdos992 56 14856 28752.84 [13]
ca-GrQc 65 26844 55403.56 [12]
chess 152 111558 264753.4 [1]
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cit-citeseer 31 7336 13074.33 [14]
cit-cora 37 10138 18780.25 [15]
cit-DBLP 122 99126 232706.1 [16]
cit-iui 28 2316 3547.775 [17]
cond-mat-newman 69 89238 207456.9 [18]
crime 20 2946 4666.763 [1]
deezer europe 93 185504 460729.2 [19]
djavax 54 8816 16063.82 [20]
dnc-corecipient 124 20768 41705.93 [1]
econ-mahindas 71 15026 29118.99 [2]
econ-poli 39 5334 9137.203 [2]
econ-poli-large 90 34936 74103.5 [2]
email-EU 232 108794 257601.1 [12]
escorts 121 78032 179131.9 [21]
euroroad 9 2610 4065.872 [22]
fb-pages-company 106 104252 245881.2 [23]
fb-pages-government 219 178858 442805.8 [23]
fb-pages-politician 144 83412 192690 [23]
fb-pages-public-figure 184 134076 323546.9 [23]
fb-pages-sport 162 173622 428722.6 [23]
fb-pages-tvshow 85 34478 73033.23 [23]
Franz1 7 10222 18954.17 [2]
ia-email-univ 48 10902 20367.53 [24]
ia-fb-messages 65 12902 24575.9 [25]
ia-reality 74 15360 29839.57 [26]
lastfm asia 98 55612 123573.7 [19]
mammalia-voles-bhp-trapping 35 9124 16693.07 [27]
mammalia-voles-kcs-trapping 32 7152 12706.95 [27]
mammalia-voles-plj-trapping 30 4900 8303.457 [27]
mammalia-voles-rob-trapping 29 7796 13997.1 [27]
openflights 124 31290 65621.01 [28]
p2p-Gnutella04 65 79988 184052.2 [29]
p2p-Gnutella05 68 63674 143359.9 [29]
p2p-Gnutella06 67 63050 141820.1 [29]
p2p-Gnutella08 76 41552 89701.67 [29]
p2p-Gnutella09 73 52016 114828.1 [29]
p2p-Gnutella24 52 130718 314723.5 [29]
p2p-Gnutella25 46 109386 259131.7 [29]
phonecalls.edgelist 42 105682 249566.5 [30]
polblogs 144 33428 70584.57 [31]
power-bcspwr10 13 16542 32402.12 [32]
power-US-Grid 16 13188 25183.47 [33]
proteins stelzl 45 6212 10846.78 [34]
proteins vidal 50 12014 22698.4 [35]
rt-alwefaq 66 14118 27168.28 [36]
rt-bahrain 67 15954 31124.97 [36]
rt-ksa 55 16214 31689.13 [36]
rt-pol 163 96106 224970.7 [37]
small 25 6414 11244.06 [2]
soc-advogato 171 78748 180931.8 [38]
soc-anybeat 185 98264 230496.1 [39]
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soc-gplus.edges 130 78364 179966.3 [2]
soc-hamsterster 111 32194 67715.97 [1]
soc-sign-bitcoinalpha 113 28240 58595.67 [40]
soc-sign-bitcoinotc 131 42978 93094.99 [40]
soc-wiki-Vote 43 5828 10095.52 [41]
tech-as-caida2007 158 106762 252352.6 [42]
tech-internet-as 205 170246 419660.4 [43]
tech-pgp 83 48632 106647.4 [44]
tech-routers-rf 62 13264 25345.15 [45]
tech-WHOIS 242 113886 270789 [46]
uc-forum 78 14038 26997.01 [47]
uk 3 13674 26218.98 [48]
unicode-language 32 2490 3853.486 [1]
vtk 31 2714 4250.911 [3]
web-edu 47 12948 24673.53 [49]
web-EPA 73 17794 35136.42 [50]
web-indochina-2004 100 95212 222684.8 [51]
web-spam 174 74750 170900.2 [52]
web-webbase-2001 111 51186 112817 [51]
wikiquote-be 36 4788 8089.623 [1]

Table 1: Real world network data names, number of non-zero entries in degree distributions, two times
number of edges, number of nodes times logarithm of number of nodes and references.

2 Network Size, Local Information and Prediction Inaccuracy

Here we consider the possibility that a significant source of inaccuracy in predictions made by generating
function models comes from the fact that the models assume the network in question is infinite, whereas
in reality we are considering finite networks. This critique is raised in the review of percolation prediction
methods of [53]. However, we lack a well reasoned understanding of how much finite-ness has an adverse affect
on prediction accuracy when using generating functions. Therefore, we calculate prediction inaccuracies for
varying sizes of randomly configured networks.

In Figure 11, we plot prediction inaccuracy against nodes in a network for randomly configured networks
with degree distributions generated by sampling either power-law or log-normal distributions. These dis-
tributions are used since they are representative of the degree distributions found on real networks [54, 55].
For all predictions, we use generating functions assuming random structure, i.e. without correlations, clus-
tering or tree factor information. Separate networks are generated 20 times for each size, with averages of
inaccuracies being taken. The power-law distribution we sample from is of the form

p(k) =
k−α

∑∞
n=0(n+ kmin)−α

, (37)

where α is an exponent term, kmin is the minimum degree and
∑∞

n=0(n + kmin)
−α is a normalisation

term. For all tests, α = 2.45 and kmin = 1. The log-normal distribution we sample from is of the form

p(k) =
1

kσ
√
2π

exp
(
− (ln(k)− µ)2

2σ2

)
, (38)

where µ and σ are the mean and standard deviation parameters respectively for the normal distribution
that the log-normal distribution is based on. For all tests, µ = 0.55 and σ = 0.2.

Let us consider the cutoff for a prediction being highly inaccurate to be ∆ ≥ 0.05, where ∆ =
∫
|Sreal −

Spredict|dφ, which is 10% of maximum inaccuracy for random and targeted node removal and 5% of maximum
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Figure 11: Prediction inaccuracy against network size for randomly configured networks. Points in green
are for power law graphs, and points in purple are for log normal graphs. (a) plots prediction inaccuracy
for random node removal, (b) is for random bond removal, and (c) is for targeted node removal. For all
predictions, random structure is assumed.

inaccuracy for random bond removal. From Figure 11, we can see that for all distributions and removal
methods prediction inaccuracy is under this threshold for networks above 400 nodes in size. For 1000 nodes,
the largest inaccuracy is approximately 0.025. In our dataset of 100 networks, the smallest network is 453
nodes large, and 87 networks exceed 1000 nodes in size. Therefore, we would not expect that network size
plays a significant role in producing inaccurate predictions for the networks we consider.

We confirm this by comparing network size against prediction inaccuracy for tree factor predictions of
robustness against random node removal for our 100 network dataset. This is provided in Figure 12, alongside
comparisons between inaccuracy and “global tree factor” and average degree. The global tree factor is given
by

TG =
⟨n2⟩

⟨∑ k′⟩ =
⟨n2⟩

⟨k2⟩ − ⟨k⟩ , (39)

where ⟨n2⟩ is the real average number of second neighbours, and ⟨k2⟩ − ⟨k⟩ is the theoretical average
nunber of second neighbours, derived in [56].

Figure 12: Prediction inaccuracy against various network properties. In (a), prediction inaccuracy is com-
pared to the logarithm of number of nodes, in (b) inaccuracy is compared to the global tree factor, and in
(c) prediction inaccuracy is compared to expected degree. These results are all for tree factor predictions of
random node removal.

In Figure 12(a), prediction inaccuracy is compared to the logarithm of nodes. We can see that network
size has little bearing on prediction inaccuracy, since we only consider networks larger than 400 nodes in
size, which the results in Figure 11 also suggest would not produce especially inaccurate predictions due to
their size.

We compare the global tree factor against prediction inaccuracy in Figure 12(b), but again find little
indication that this property impacts prediction inaccuracy. The global tree factor acts as an indicator of
the average local structure one is likely to find in a network, similar to global measures of degree-degree
correlation and clustering. With the lack of a clear relationship between prediction inaccuracy and global
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tree factor, we may infer that we have captured local network structure as best as possible with the tree
factor method.

Finally, Figure 12(c) shows that for more dense networks, percolation predictions are more accurate,
whereas for sparse networks predictions range from being very inaccurate to very accurate. This is likely
explained by the fact that network configuration plays a smaller role in determining robustness for dense
networks as opposed to sparse networks. While this result allows us to identify networks with similar
properties which may be inaccurately predicted by the generating function model, this does not identify
information that is currently missing from existing models, nor does it allow us to isolate only those networks
for which predictions are inaccurate.

3 Generating Functions for Modular Networks

When predicting percolation on modular networks, it is possible to use a generating function formalism
originally developed in order to describe percolation on interacting networks [57] which has subsequently
been extended to modular networks [58,59].

The generating function analagous to the probability distribution generating function of Equation (1) for
some module i is

gi = (1− ri)gii(uii) + rigii(uii)
m∏

j ̸=i

gij(uij), (40)

where ri is the fraction of nodes in i with connections to other modules, m is the number of modules,
uii and uij are the probabilities that an edge within the module and an edge leading out of the module
respectively is not connected to the LCC, and gii(uii) and gij(uij) are the generating functions for connections
within the module and connections leading out of the module respectively.

In order to determine values for uii and uij , it is necessary to define branching generating functions
analogous to Equation (2) and define new self consistency relations. These branching functions are given by

g
(ii)
i = (1− ri)

∑
qiu

ki−1
ii + ri

∑
qiu

ki−1
ii

m∏

j ̸=i

gij(uij), (41)

g
(ij)
i = gii(uii)

∑
qiju

kij−1
ij

m−1∏

j ̸=i

gij(uij), (42)

where qi and qij are remaining degree distributions for module i and for interconnections between i and
j respectively. Using these generating functions, self consistency relations for uii and uij may be defined as

uii = 1− g
(ii)
i [1− φuii, 1− φuij ], (43)

uij = 1− g
(ij)
i [1− φuii, 1− φuij ]. (44)

With these self consistency relations, it is then possible to calculate the the proportion of nodes in module
i which belong to the LCC as the network undergoes random node removal as

Snode
i = φ(1− gi[1− φuii, 1− φuij ]). (45)

For random edge removal, the expression for the proportion of nodes in module i in the LCC is very
similar, simply removing the initial φ term to give

Sedge
i = (1− gi[1− φuii, 1− φuij ]). (46)

Finally, for either node or edge removal, the size of the LCC is given by summing over values for the
relevant Si values for different modules, weighted by module size
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S =
m∑

i

Ni

N
Si, (47)

where Ni is the number of nodes in module i and N is the total number of nodes in the network.
Due to the fact that this method separates the degree values of nodes into their intra and inter module

degrees, it is not possible to straightforwardly adapt this method in order to make predictions of robustness
against targeted attacks.

With this model we are able to make comparisons between real and predicted robustness, similar to those
made in Figures 1 and 3, and these are given in Figure 13.

Figure 13: Comparison between predicted robustness using modular generating function model and real
robustness for various real networks. (a) considers robustness for random node removal, and (b) is for
random edge removal. This model cannot be directly adapted in order to generate predictions for targeted
attacks.

Despite the inclusion of information about modular network structure in this model, we can see that
it still produces many inaccurate predictions, and is generally less accurate than the tree factor model as
measured by the coefficient of determination. One possible reason for continued discrepancies in prediction
accuracy for the modular generating function model is that it is not the modularity of a network alone
which impacts how accurate robustness predictions are, but that there is some aspect of the structure within
modules which also influences robustness and prediction accuracy.

To test this, we measure the heterogeneity of module structures for highly modular (Q > 0.75) networks.
We measure the differences between the structure of modules in three different ways. Firstly, we examine
how well the degree distributions of each module in a network matches up to the global degree distribution
of the entire network. This is calculated using the K-L divergence [60] and may be written as

D(pnet|pmod) =
∑

k

pnet(k)log
( pnet(k)

pmod(k)

)
, (48)

where pnet(k) is the network degree distribution and pmod(k) is the module degree distribution. Averaging
over this divergence for every module then gives a measure of how significantly modules differ from the overall
network.

Secondly, we can look at the size of different modules, and measure whether modules tend to be similar
in size or span a range of sizes. We may calculate the normalised module size as the number of nodes in the
module divided by the number of nodes in the network. Taking the standard deviation of this normalised
module size across the whole network then provides a measure of module size heterogeneity.

Finally, we may measure the module average tree factor for each module. This is calculated analogously
to the global tree factor from Equation (39), where the average real number of second neighbours in the
module is divided by the average theoretical number of second neighbours. As before, taking the standard
deviation of this module average tree factor gives a measure of the structural heterogeneity between different
modules. Each of these three measures is plotted against prediction inaccuracy using the tree factor method
for predicting random node removal for networks with Q > 0.75 in Figure 14.
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Figure 14: Measures of module heterogeneity of highly modular networks against prediction inaccuracy. In
(a), prediction inaccuracy is compared to the average K-L divergence between module degree distribution
and network degree distribution. In (b), inaccuracy is compared to the standard deviation of normalised
module size, and in (c) prediction inaccuracy is compared the standard deviation of the module average tree
factor. These results are all for tree factor predictions of random node removal.

From the results in Figure 14, we can see that none of our measures of module heterogeneity correlate
with prediction inaccuracy, indicating that the source of inaccuracy is not due to any sort of difference
between the internal structures of different modules.

4 Prediction Inaccuracy of Loopy Message Passing Model

In this section, we examine how prediction inaccuracy for the loopy message passing model compares to
modularity and modular dispersion. In Figure 15, we provide comparisons for prediction inaccuracy ∆ and
modularity Q.

Figure 15: Prediction inaccuracy against modularity. (a) is for robustness against random node removal,
(b) is for random edge removal, and (c) is for targeted node removal. Dashed lines are included to mark
the points at which Q = 0.75 and ∆ = 0.05.

We can see that, similarly to the generating function model, the loopy message passing model tends to
be more inaccurate for higher modularity networks for random node and random edge removal, although
there is not a clear relationship between inaccuracy and modularity for targeted node removal. In Figure
16, we compare prediction inaccuracy ∆ and modular dispersal D.

Once again, we see that more dispersed networks tend to be more poorly predicted for random node
and random edge removal, with the relationship being less clear for targeted node removal. For the loopy
message passing model, prediction inaccuracy tends to be lower for random node and random edge removal
as compared to generating function models, and so more networks which are classed as “well predicted” (i.e.
those for which ∆ ≤ 0.05) are classed as being highly modular and highly dispersed.
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Figure 16: Prediction inaccuracy for highly modular networks against modular dispersal. (a) is for robustness
against random node removal, (b) is for random edge removal, and (c) is for targeted node removal. Dashed
lines are included to mark the points at which D = 2 and ∆ = 0.05.

5 Small World-ness

In the main text, we establish that highly modular, highly dispersed networks are poorly predicted by
generating function models, and identify the need for a single metric which indicates when predictions
are likely to be unreliable. Clearly highly modular, highly dispersed networks exhibit certain structural
non-randomness, and one may also expect that because their modules are dispersed, they are typically
further away from being “small worlds” than other networks. Therefore, assessing the “small world-ness”
of a network may provide an alternative approach to identifying networks poorly predicted by generating
function models.

First, we consider a model of a small world network in order to systematically evaluate how small world-
ness relates to prediction inaccuracy. The model we use is the Watts-Strogatz small world network [33], which
generates a network in a ring lattice and rewires edges with some rewiring probability. The initial lattice
configuration ensures a high clustering coefficient, and the rewiring brings the average shortest path length
of the network close to that of an equivalent randomly configured network. These properties - relatively high
clustering and relatively low average shortest path length - are taken to be indicative of small world-ness. A
related metric ω measures a network’s small world-ness along these lines [61], with ω given by

ω =
Lrand

L
− C

Clatt
, (49)

where L and Lrand are the average shortest path lengths of the network and its equivalent randomly
configured network respectively, and C and Clatt are the transitivity values of the real network and its
equivalent ring lattice network respectively. Values from ω typically range from −1, which indicates lattice-
likeness, to 1, which indicates randomness in configuration. Values around 0 are taken to be indicative of
small world properties.

This metric of small world-ness is not infallible, for example a network with a high average shortest path
length and low clustering coefficient would be erroneously identified as small world, but it is possible to
also consider the Lrand

L and C
Clatt

components separately as measures of randomness and lattice-likeness. As

reference values for Lrand and Clatt, we use approximations sourced from [62], which are

Lrand =
lnN

ln⟨k⟩ , (50)

Clatt =
3(⟨k⟩ − 2)

4(⟨k⟩ − 1)
. (51)

For the Watts-Strogatz model, we consider networks with 2000 nodes, average degree of 6 and rewiring
probabilities from 0 to 1 in increments of 0.05. For these networks, prediction inaccuracy for random node
removal is compared against the small world-ness measure ω, the randomness measure Lrand

L and the lattice

likeness measure C
Clatt

. These results are given in Figure 17.
These results indicate that, on Watts-Strogatz networks, generating function model predictions are poor

when networks are lattice like, and improve when networks exhibit small world and random properties.
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Figure 17: Prediction inaccuracy for random node removal on Watts-Strogatz networks against measures of
(a) small world-ness ω, (b) randomness Lrand

L and (c) lattice likeness C
Clatt

. As rewiring probability goes
from 0 to 1, small world-ness and randomness increase, whereas lattice likeness and prediction inaccuracy
decrease.

However, when we apply measures of small world-ness, randomness and lattice-likeness to our dataset of
real networks, we see that none of them clearly discriminate between poorly predicted and well predicted
networks, and this is shown for random node removal in Figure 18.

Figure 18: Prediction inaccuracy for random node removal on real world networks against measures of (a)
small world-ness ω, (b) randomness Lrand

L and (c) lattice likeness C
Clatt

. Dashed lines are included to mark
the point at which prediction inaccuracy = 0.05.

One insight we gain from these results is that it is possible for poorly predicted networks to have average
shortest path lengths that are close to those of equivalent random networks, and yet our prior results suggest
that they tend to possess modular structures with relatively large distances between modules. From this
we may conclude that on a poorly predicted network, any two nodes may not necessarily be far away from
each other, but they may be only tenuously connected if they are in different communities. This leads us to
consider the mixing time of a random walk as a possible measure for identifying networks which are poorly
predicted.

Figure 19: Prediction inaccuracy for (a) random node removal, (b) random edge removal and (c) targeted
node removal on Watts-Strogatz networks against mixing time tmix. As rewiring probability goes from 0 to
1, mixing time and prediction inaccuracy decrease.

From Figure 19, we can see that as mixing time decreases, prediction inaccuracy also decreases. In the
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main text, we also find that high mixing time networks are poorly predicted. While these results on the
Watts-Strogatz model gives us a sense of how predictions become more accurate as mixing time decreases, it
is worth noting that real networks can exhibit much higher mixing times and remain well predicted compared
to Watts-Strogatz networks.

6 Robustness Predictions Without High Mixing Time Networks

In this section, we provide robustness data for generating functions which assume random, correlated, clus-
tered and modular structure alongside the tree like and loopy message passing methods when high mixing
time networks are excluded from the dataset. This data is provided in Figure 20.

Figure 20: Comparisons of real and predicted robustness values. Plots in blue are for random node removal,
plots in orange are for random edge removal and plots in purple targeted node removal. Predictions in (a),

(f) and (k) use the random structure generating function model, (b), (g) and (l) use the correlation
structure generating function model, (c), (h) and (m) use the clustering structure generating function

model, (d), (i) and (n) use the tree like message passing model, and (e) and (j) use the modular structure
generating function model. Note that there are no predictions for robustness against targeted attacks using

the modular generating function model, as the model cannot be adapted to make such predictions.

For all methods and removal strategies, the overall quality of predictions as measured by the coefficient of
determination is significantly improved. With the exclusion of high mixing time networks, all models shown
here under perform the tree factor generating function model in terms of R2 for all methods of removal
with the exception of the correlations generating function model and tree like message passing model for
random edge removal. All models shown here under perform the loopy message passing model for random
node removal and random edge removal, but outperform the loopy message passing model for targeted node
removal.
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