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A novel mechanism of reaction-induced active molecular motion, not involving any kind of self-
propulsion, is proposed and analyzed. Because of the momentum exchange with the surrounding
solvent, conformational transitions in mechano-chemical enzymes are accompanied by motions of
their centers of mass. As we show, in combination with rotational diffusion, such repeated reciprocal
motions generate an additional random walk - or molecular dancing - and hence boost translational
diffusion of an enzyme. A systematic theory of this phenomenon is developed, using as an example a
simple enzyme model of a rigid two-state dumbbell. To support the analysis, numerical simulations
are performed. Our conclusion is that the phenomenon of molecular dancing could underlie the
observations of reaction-induced diffusion enhancement in enzymes. Major experimental findings,
such as the occurrence of leaps, the anti-chemotaxis, the linear dependence on the reaction turnover
rate and on the rate of energy supply, become thus explained. Moreover, the dancing behavior
is possible in other systems, natural and synthetic, too. In the future, interesting biotechnology
applications may be developed using such effects.

I. INTRODUCTION

When the phenomena of active motion on nano- and
microscales have been previously considered, the discus-
sion has been typically focused on self-propulsion mecha-
nisms based on hydrodynamic interaction forces or on the
chemotaxis, diffusio- and thermophoresis effects [1–9].
Here, we bring attention to a different kind of reaction-
induced active molecular motion where self-propulsion is
not involved.
If a pair of human dancers steps forward and back

along the same direction, they would keep their position
on the floor. However, if the pair is waltzing, i.e. turn-
ing between the steps, the entire floor would become ex-
plored. This is because a combination of reciprocal steps
and arbitrary rotations generates a translational random
walk. As we intend to show, similar dancing behavior is
possible on molecular scales, leading to reaction-induced
diffusion enhancement in enzymes.
Within its cycle, a mechanochemical enzyme under-

goes conformational transitions induced by changes in
its ligand state. Because of the momentum exchange be-
tween the enzyme and the surrounding fluid, such tran-
sitions are accompanied by shifts, or steps, in the spatial
position of enzyme’s center of mass (CM). The shifts in
the CM position can be comparable to enzyme’s size. Im-
portantly, the CM shifts are almost reciprocal within the
turnover cycles of real enzymes, so that they cancel one
another and no significant self-propulsion occurs [5, 6, 8].
In combination with rotational diffusion, the reciprocal

CM shifts lead, however, to dancing of enzymes. The
rotational diffusion on molecular scales is typically so fast
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that an enzyme would tumble after each next reaction
event within its turnover cycle. Hence, an additional
active random walk would arise, enhancing translational
diffusion of the enzyme.

Boosted diffusion for catalytically active enzymes
has been experimentally reported by several research
groups [2, 10–16]. While this behavior has already been
a subject of reviews [1, 17] and interesting biotechnol-
ogy applications have been discussed [18], its nature re-
mains poorly understood. Importantly, it was demon-
strated [8] that the observed diffusion enhancement can-
not be explained by self-propulsion due to hydrodynamic
intramolecular interactions between moving protein do-
mains, because it is too weak [3–6]. Although other ap-
proaches have been more recently proposed [19–21], they
are still only in partial agreement with the experimental
results (see discussion in Section VI for the details).

In studies of hydrodynamic molecular effects, simpli-
fied minimal models were previously used. Thus, for ex-
ample, the three-bead Golestanian swimmer model [22]
was employed to analyze self-propulsion effects for en-
zymes [8] and two-bead models were used to study diffu-
sion enhancement for passive tracer particles in the so-
lutions of active enzymes [23–26]. Moreover, the effects
of hydrodynamic interactions between beads in an oscil-
lating deformable dumbbell were analyzed as a poten-
tial mechanism of diffusion enhancement for single en-
zymes [26–29].

Below, we consider models of molecules formed by a set
of beads, with conformations depending on the reaction
state. In contrast to swimming, hydrodynamic interac-
tions between the beads are not essential for the danc-
ing behavior that we intend to explore. Because of this,
the analysis is performed within the Langevin descrip-
tion where the action of fluid is taken into account merely
through viscous friction forces applied to the beads and
hydrodynamic interactions between them are dropped.
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mailto:kitahata@chiba-u.jp
mailto:mikhailov@fhi-berlin.mpg.de


2

The notions of the center of mass and of the rotation
center of a molecule, that play an important role in our
theory, are introduced and compared in Section II. To il-
lustrate principal effects, a minimal model of a two-state
rigid dumbbell is first chosen by us in Section III. We
show that dancing generates a random walk where finite
leaps are alternating with the intervals of smooth ther-
mal Brownian motion. Later on, in Section IV, a general
theory for enzymes consisting of an arbitrary number of
interacting beads with various reactions, changing the
conformations, is constructed. For clarity, only the sum-
mary of results is given there, while technical derivation
details are moved to the Appendix. Numerical simula-
tions, that confirm theoretical predictions, are presented
in Section V. The theory is compared with experimen-
tal facts on boosted diffusion in catalytically active en-
zymes in Section VI. The conclusions are formulated in
Section VII.

II. CENTER OF MASS VS. ROTATION

CENTER

For a molecule with N beads of equal mass, the cen-
ter of mass (CM) is defined as R = (1/N)

∑

i Ri. The
rotation center (RC) of the molecule is given by Q =
(1/Γ)

∑

i γiRi. Here, γi = 1/µi is the friction coefficient
of bead i, Γ =

∑

i γi is the friction coefficient of the en-
tire molecule, and µi is the mobility of bead i. As shown
in the Appendix, RC is a spatial position with respect to
which the total torque vanishes when forces are applied
to the beads in such a way that only translational motion
of the entire molecule takes place.
The difference between the behavior of RC and CM

can be illustrated by an example. Consider a dimer made
by two interacting beads. In the overdamped Langevin
description, the equations of motion for the beads are

γ1
dR1

dt
= f + ξ1(t), γ2

dR2

dt
= −f + ξ2(t) (1)

where f = −∂U/∂R1 is the interaction force that de-
pends on the distance r12 = |R1−R2| between the beads,
and ξ1,2(t) are independent thermal noises, such that

〈ξi,α(t)ξj,β(t
′)〉 = 2γikBTδijδαβδ(t− t′) (2)

where (i, j) = 1, 2 and (α, β) = (x, y, z).
The equations of motion for the CM position R =

(R1 +R2)/2 and for the deviation r1 = R1 −R from it
are

dR

dt
=

1

2
(µ1 − µ2)f + χ(t),

dr1
dt

=
1

2
(µ1 + µ2)f + ρ(t), (3)

where thermal noises are χ(t) = (1/2)
(

µ1ξ1(t)+µ2ξ2(t)
)

and ρ(t) = (1/2)
(

µ1ξ1(t)− µ2ξ2(t)
)

. Note that we have

〈χα(t)ρβ(t
′)〉 =

1

2
(µ1 − µ2)kBTδαβδ(t− t′). (4)

If the mobilities of beads are different (µ1 6= µ2), the
motion of CM depends through the interaction force f

on the dimer orientation and the distance between the
beads. This means that the CM position is not conserved:
it is sensitive to the conformation and orientation of the
molecule. Additionally, a dependence of the CM position
on dimer’s conformation and orientation arises through
correlations between thermal noises χ(t) and ρ(t).

On the other hand, the equations of motion for the
RC of the dimer, Q = (γ1R1 + γ2R2)/Γ, and for the
deviation q1 = R1 −Q from it are

Γ
dQ

dt
= η(t), γ1

dq1

dt
= f + ζ(t), (5)

where Γ = γ1+γ2. For thermal noises η(t) = ξ1(t)+ξ2(t)
and ζ(t) = (1/Γ)(γ2ξ1(t)− γ1ξ2(t)), we have

〈ηα(t)ηβ(t
′)〉 = 2ΓkBTδαβδ(t− t′), (6)

〈ζα(t)ζβ(t
′)〉 = 2(γ1γ2/Γ)kBTδαβδ(t− t′). (7)

Importantly, these noises are independent, i.e.

〈ηα(t)ζβ(t
′)〉 = 0. (8)

Hence, the rotation center Q(t) performs free Brown-
ian motion statistically independent from conformational
and orientational fluctuations described by the Langevin
equation for q1(t). This means that, in contrast to CM,
the motion of RC is separate from the instantaneous con-
formation and orientation of the dimer.

As shown further in Appendix, such separation of mo-
tions holds generally for a molecule with N beads with
arbitrary interactions between them. The motion of CM
is affected by conformational fluctuations of the molecule,
whereas the motion of RC is independent from them.
Thermal rotational fluctuations take place around RC,
but not around CM.

Note that shifts of CM in response to intramolecu-
lar conformational transitions and to molecular rotations
manifest an exchange of mechanical momentum between
the molecule and the surrounding fluid. Although some-
times overlooked, such momentum exchange is actually
present even within the Langevin description where hy-
drodynamic interactions between the particles (such as in
the Oseen approximation) are completely dropped. Fluid
dynamics enters into the description only through the
viscous friction force.

III. DANCING OF DUMBBELLS

In this section, the phenomena of molecular dancing
will be introduced by using, as an example, a minimal
enzyme model of a reactive dumbbell.
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FIG. 1. Reaction cycle of the model dumbbell enzyme. The
dumbbell consists of two beads connected by a link of a fixed
length 2a. Substrate S binds in the state E to domain 1
(left) and the substrate-enzyme complex ES is formed. In
this state, rapid conversion of substrate into product P oc-
curs, so that a transition to the product-enzyme complex EP
takes place. After that, the product is released. The distance
between the beads remains fixed, but the viscous friction co-
efficients of the beads become changed in the state EP . The
RC and CM of the dumbbell are shown by red and blue dots,
respectively. The two centers coincide in the states E and ES
but they are shifted one from another in the state EP

A. The reactive dumbbell model

The model dumbbell enzyme consists of two beads of
equal mass connected by a stiff link of length 2a. For
real enzymes, the beads would have corresponded to two
protein domains. Only domain 1 is catalytically active:
substrate S can bind to it, become converted to product
P and then be released. Hence, the reaction is (Fig. 1)

S + E → ES → EP → E + P (9)

and instantaneous evacuation of the product takes place.
Note that the irreversibility of this reaction implies a
large difference in the Gibbs free energy between the sub-
strate and the product.
On the considered timescales, inertia is negligible and

the overdamped Langevin description holds. Hence, the
beads are characterized by their mobility µ1,2 and vis-
cous friction coefficients γ1,2 = 1/µ1,2. The friction coef-
ficients of the beads depend on the chemical state. We
shall assume that γ1 = γ2 = γ in the states E and ES,
but γ1 = γ+∆γ and γ2 = γ−∆γ in the state EP. Hence,
bead 1 becomes less mobile and bead 2 is more mobile
when the product is formed.
It will be further assumed that the substrate-enzyme

complex ES has a very short lifetime, so that it becomes
immediately converted into the product-enzyme complex
EP. Hence, in the final employed model, there are only
two states: s = 0 (E ) and s = 1 (EP), and the reaction
scheme is reduced to

S + E
κ10

−−→ EP
κ01

−−→ E + P (10)

where κ10, κ01 are reaction rate constants and κ10 = νcs
(with cs being the substrate concentration).
For the dumbbell, the CM always lies in its geometric

center. The RC is shifted from the geometric center by

distance

d =
∆γ

γ
a (11)

in the state EP (s = 1) and coincides with it in the state
E (s = 0); here a is the half-length of the dumbbell.
Hence, chemical transitions between the states within a
turnover cycle are accompanied by RC shifts.

The reactive dumbbell model can be viewed as an ide-
alization for an enzyme protein with two domains. The
friction coefficient of a protein domain can be written as
γ = 6πνR, where ν is the solvent viscosity, thus intro-
ducing the effective hydrodynamic (or Stokes) radius R
of the domain. The hydrodynamic radius of a protein
represents the radius of a spherical particle that, within
the Stokes approximation, would have the same friction
coefficient as it. Importantly, the hydrodynamic radius
can change even though the mass of a protein remains
conserved. For example, in a folding-unfolding transi-
tion, the unfolded protein shall have a larger hydrody-
namic radius than the folded one. Any conformational
change within a protein domain generally affects its fric-
tion coefficient and its hydrodynamic radius. It should
be stressed that the model does not assume the mass
transfer between the two domains.

B. Reaction-induced random walk

In chemical transitions E → EP and EP → E, RC
of the dumbbell moves away from CM and back towards
it. As has been shown in Section II, rotational diffusion
of the dumbbell always takes place around RC. Because
CM is shifted from RC in the state EP (s = 1), it would
therefore rotate around RC under thermal orientational
fluctuations in this state (Fig. 2a). On the other hand,
because CM coincides with RC in the state E (s = 0),
its position would not be changed by rotational diffusion
in this state.

If only rotational diffusion is taken into account, the
trajectories of CM and RC would therefore look as shown
in Fig. 2b. The RC makes jumps of equal length d along
the instantaneous dumbbell directions in chemical tran-
sitions, but remains immobile in the intervals between
them. The CM position is not changed under such tran-
sitions. However, CM makes random rotations around
RC due to thermal rotational diffusion of the dumbbell
when it is in the state s = 1.

If translational diffusion is additionally included, the
CM would thus perform a random walk, i.e. molecular
dancing, that is a superposition of thermal Brownian mo-
tion and rapid leaps (Fig. 2c). The leaps of CM represent
random thermal rotations of CM around RC in the chem-
ical state EP ; they occur under the reaction and are of
molecular size.
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(c)

(a) (b)

FIG. 2. (a) In the state EP , the RC (blue dot) of the dumb-
bell is shifted away from its CM (red dot), whereas in the
state E both centers coincide. Rotational diffusion induces
CM rotation (along the red circular segment) in the state
EP , but has no effect on CM in the state E. (b) Rotations
of CM around various centers in consequent reaction cycles
generate a random walk. Trajectories of CM (red) and RC
(black) are shown. RC shifts occur under transitions E → EP
and EP → E, and CM rotations take place in the states EP .
Thermal Brownian motion is, for simplicity, dropped in this
plot. (c) A typical CM trajectory (schematic) for the dumb-
bell. Intervals of thermal Brownian motion (brown) alternate
with random leaps (red).

C. Diffusion enhancement

The leaps would contribute to the molecular mean-
square displacement over a long time and, under the re-
action, dumbbell diffusion would become enhanced. The
additional contribution to the diffusion coefficient, arising
because of the molecular dancing effect, can be estimated
in the following way.

Within the lifetime τ1 of the state s = 1, the dumbbell
would change due to rotational diffusion its orientation
from n = n(t) to n′ = n(t+τ1). Because CM is shifted by
distance d from the center around which random rotation
takes place, its spatial position would become shifted by
vector u = d(n′ − n) in each turnover cycle.

For the reaction-induced random walk, the mean-
square CM displacement over the time t0 comprising
many independent turnover cycles can be written in the

three-dimensional case as 〈∆R(t0)
2〉 = 〈u2〉kt0 where k

is the turnover rate (so that kt0 gives the mean number
of reaction cycles within time t0). Because the diffu-
sion coefficient for a random walk can generally be deter-
mined as D = (1/6) limt0→∞(1/t0)〈∆R(t0)

2〉, reaction-
induced dancing increases the diffusion coefficient by
Ddance = (1/6)k〈u2〉.
The mean-square leap u(τ1) = d

(

n(t + τ1) − n(t)
)

within the lifetime time τ1 of the state EP is

〈u(τ1)
2〉 =2d2 [1− 〈n(t+ τ1)n(t)〉]

=2d2
[

1− exp(−D1
rotτ1)

]

(12)

where D1
rot is the rotational diffusion coefficient of the

dumbbell in the state EP.
The lifetimes τ1 of the state EP have probability distri-

bution p(τ1) = κ01 exp (−κ01τ1). After taking the aver-
age over τ1, we determine a contribution to the diffusion
coefficient due to molecular dancing effect

Ddance =
1

3
kd2

D1
rot

κ01 +D1
rot

. (13)

In the derivation of equation (13), we have assumed
that each next reaction cycle starts from a random and
independent orientation of the dumbbell. This assump-
tion is satisfied if the molecule would typically tumble
many times between the cycles. In other words, the ori-
entational correlation time τ0rot = 1/D0

rot in the ligand-
free state s = 0 must be much shorter than the waiting
time τ0 = 1/κ10 for substrate binding and, thus, initia-
tion of the next cycle. Hence, the condition D0

rot ≫ κ10

must be satisfied.
The result (13) clearly shows that the considered dif-

fusion enhancement emerges from an interplay between
chemical transitions and rotational diffusion. Indeed, it
can be seen that Ddance vanishes in the limit of κ01 ≫
D1

rot, i.e. when the lifetime of the state s = 1 is so short
that the dumbbell does not significantly change its ori-
entation within it. In the opposite limit of very fast ro-
tational diffusion (κ01 ≪ D1

rot), the dependence on D1
rot

disappears and we have a simple result

Ddance =
1

3
kd2. (14)

Generally, diffusion constants of the dumbbell are dif-
ferent in the states s = 0 and s = 1. If the viscous friction
coefficients of the dumbbell in these two states are Γ0 and
Γ1, the respective diffusion constants are D0 = kBT/Γ0

and D1 = kBT/Γ1. If π0 and π1 are occupation prob-
abilities of the two states (that is, relative times spent
by the molecule in each of them), the total effective dif-
fusion coefficient for the reactive dumbbell can therefore
be estimated as Deff = D0π0 +D1π1 +Ddance.
In the considered example, where γ1 = γ2 = γ in

the state s = 0 and γ1 = γ + ∆γ and γ2 = γ − ∆γ
in the state s = 1, we have however D1 = D0 and,
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therefore, Deff = D0 + Ddance. Hence, the contribu-
tion from molecular dancing yields the complete reaction-
induced diffusion enhancement in this special case, i.e.
∆D = Deff −D0 = Ddance.
Note that the CM random walk under molecular danc-

ing can be approximated by a classical diffusion process
only on the length and timescales longer than the size and
duration of an CM leap, i.e. on the length scale larger
than d and the timescale larger than the characteristic
lifetime 1/κ01 of the state s = 1.

D. Anti-chemotaxis for dumbbells

Now, we consider a situation when a spatial gradient
of the substrate concentration cs is present for considered
dumbbells.
The evolution equation for the probability density

P (R, t) of the CM position R of the dumbbells can be de-
rived via the Kramers-Moyal expansion [40]. Generally,
this Fokker-Planck equation has the form

∂P

∂t
= −

∂

∂Rα

[

K(1)
α (R)P

]

+
1

2

∂2

∂Rα∂Rβ

[

K
(2)
αβ (R)P

]

(15)

where {α, β} = {x, y, z} and summation over the re-
peated indices is assumed. The coefficients are

K(1)
α (R) = lim

∆t→∞

〈∆Rα(∆t)〉

∆t
, (16)

K
(2)
αβ (R) = lim

∆t→∞

〈∆Rα(∆t)∆Rβ(∆t)〉

∆t
(17)

where ∆Rα(∆t) = Rα(t+∆t)−Rα(t).
We assume that rotational diffusion is fast, i.e. D0

rot ≫
k. Then, the dumbbell would tumble many times be-
tween its next cycles, with all its orientations becoming
equally probable. Hence, even if a spatial gradient of sub-
strate concentration is present, it cannot impose a pre-
ferred molecular direction of motion. The resulting sym-

metry implies that K
(1)
α = 0 and that K

(2)
αβ = 2Deffδαβ

where Deff(R) = D0 + Ddance(R) is the local diffusion
coefficient. Thus, the evolution equation for the local
enzyme concentration c = N0P will be

∂c

∂t
= ∇2 [Deff(R)c] . (18)

where N0 is the total number of enzymes.
For low substrate concentrations cs, the turnover rate

k in equation (13) is proportional to substrate concentra-
tion cs, implying that the effective diffusion coefficient is
also linear in cs, i.e. Deff(R) = D0 + λcs(R) with some
constant coefficient λ. Substituting this into the above
equation and transforming it to the standard form of the
diffusion equation, we obtain

∂c

∂t
= ∇ [(λ∇cs) c] +∇ (Deff∇c) . (19)

Hence, a spatial gradient in the substrate concentration
induces the flow J = −λ∇cs of dumbbells in the direction
opposite to the substrate concentration gradient ∇cs.

IV. GENERAL THEORY OF MOLECULAR

DANCING

In this section, a systematic theory of molecular danc-
ing will be developed. For clarity, only a summary of
results will be presented, while technical derivation de-
tails shall be given separately in the Appendix.

A. The model

The model enzyme molecule consists of i = 1, 2, .., N
beads of equal mass. It can be found in different chem-
ical states s. The beads i and j interact via pair inter-
action potentials Us

ij(rij) that are functions of the dis-
tances rij = |Ri −Rj| between them, where Ri denotes
the position of the bead i. The interaction potentials gen-
erally depend on the chemical state s. In the Langevin
description, each bead i is characterized by its mobility
coefficient µs

i depending on the chemical state s.
Reactions represent stochastic transitions between

chemical states. To simplify derivations, we assume that
each reaction s′ → s occurs only in a definite confor-
mation determined by a certain set of distances {rss

′

ij }
between the beads. Hence, conformation-dependent re-
action rate constants are

W ss′ = wss′
∏

i,j

δ
(

|Ri −Rj| − rss
′

ij

)

, (20)

where the delta-functions take into account that a reac-
tion s′ → s is possible only in a definite configuration.

B. Master equations

The system is characterized by a set of multi-particle
probability distributions ps({Rk}, t) in different chemical
states. They satisfy a system of coupled master equations

∂ps

∂t
= −

∑

i

∂jsi,α
∂Ri,α

+
∑

s′

(

W ss′ps
′

−W s′sps
)

. (21)

Here and below, summation over repeated Greek indices
α = {x, y, z} is always assumed. In the overdamped
Langevin description, probability flows are

jsi,α = −µs
i





∑

j

∂Us
ij(rij)

∂Ri,α

ps + kBT
∂ps

∂Ri,α



 , (22)

where the last term accounts for thermal noise.
On the other hand, joint probability distributions

psRC(Q
s, {qs

k}, t) for the RC positions Qs and for the de-
viations from them qs

k = Rk −Qs in different chemical
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states obey the following evolution equations (see Ap-
pendix for the derivation):

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α

+
∑

s′



wss′
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rss
′

ij

)

×ps
′

RC

(

Qs − dss′ , {qs
k + dss′}

)

−ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

psRC (Qs, {qs
k})



 .

(23)

Here, dss′ = Qs − Qs′ is the shift in the RC position
in the reaction s′ → s; it is given by equation (A19).
The probability fluxes Hs and hs

i are given by equations
(A16) and (A17) in the Appendix.
A remarkable property of evolution equations (23) is

that, in absence of reactions, the RC dynamics is decou-
pled from conformational dynamics and from rotations
of the enzyme molecule.

C. Effective diffusion

As shown in the Appendix, starting from the master
equation (23), an approximate closed evolution equation
for the CM probability distribution P (R, t) on long time
and length scales can be derived assuming that locally
the reaction is in a steady state. For local enzyme con-
centration c = N0P , an approximate diffusion equation is
thus obtained, with the effective diffusion constant given
by

Deff =
∑

s

π̄sDs +
1

6

∑

s,s′

kss
′

(

dss
′

)2

. (24)

Here, kss
′

is the mean rate, given by equation (A46), of
the reaction s′ → s in the steady state , π̄s is the respec-
tive occupation probability of the chemical state s, dss

′

is
the length of a RC shift accompanying a chemical tran-
sition from s′ to s, and Ds = kBTM

s is the equilibrium
diffusion constant of the molecule in the conformation
corresponding to the state s. To determine diffusion en-
hancement, one needs to subtract from Deff the diffusion
constant of the molecule in absence of reactions.
As an example, an irreversible reaction cycle

s0
κ10

−−→ s1
κ21

−−→ s2 → · · · → sK
κ0K

−−→ s0 (25)

can be considered. In this case, the rates of all transitions
in the steady state are the same and equal to the turnover
rate k. Hence, diffusion enhancement is given by

∆D =
∑

l=1,...,K

π̄l
(

Dl −D0
)

+
1

6
k

∑

l=0,...,K

(

dl+1,l
)2

(26)

where the notation dK+1,K = d0,K is used and D0 is the
diffusion constant in the absence of the reaction (i.e., in
the state with l = 0). The first term takes into account a
change in the diffusion constant because new states can
become occupied under the reaction and the second term
is due to the molecular dancing effect.
For the model dumbbell enzyme with two states s0 and

s1 and the reaction s0 → s1 → s0, where the first reaction
step corresponds to binding of substrate, we have

∆D =
(

D1 −D0
)

π̄1 +
1

3
kd2 (27)

with d = d10 = d01 and

π̄1 =
κ10

κ01 + κ10
=

νscs
κ01 + νscs

, (28)

k =
κ10κ01

κ01 + κ10
= νscs

(

1− π̄1
)

, (29)

where κ10 = νscs is the substrate binding rate constant,
cs is the substrate concentration and νs is a proportion-
ality constant.
Note that the first term in equation (27) coincides with

the estimate for the diffusion enhancement in two-state
enzymes previously obtained in Refs. [19–21]. The sec-
ond term arises due to the effect of molecular dancing
introduced by us.
The approximate diffusion description holds on the

length scales longer than the characteristic size dss
′

of
a leap and on the timescales larger than the typical du-
ration of a leap.

D. Equilibrium systems

At thermal equilibrium, transition rate constants κss′

satisfy the conditions of detailed balance. The rates of
forward and reverse reactions are equal for each reaction
step (i.e. kss

′

= ks
′s). The chemical potentials of the

substrate and the product are the same. The occupation
probabilities πs of different states s are determined only
by the Gibbs free energies of these states and do not
depend on the reaction rates
Since deviations from equilibrium were not explicitly

assumed, the developed theory of molecular dancing is
applicable to equilibrium systems too. The equation
(24) for the effective diffusion constant Deff holds in this
case as well. A special feature of equilibrium systems
is that, because kss

′

= ks
′s at equilibrium and because

dss′ = −ds′s, the contributions into the diffusion from
forward and reverse reactions are equal at each elemen-
tary reaction step.
As an illustration, a chain of equilibrium reversible re-

actions can be considered,

s0
κ10

⇄

κ01

s1
κ21

⇄

κ12

s2 ⇄ · · · ⇄ sK
κ0K

⇄

κK0

s0. (30)
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Here, the first forward transition corresponds to binding
of substrate and the last forward transition represents
product release. For the rate constants of forward sub-
strate and reverse product binding, we have κ10 = νscs
and κK0 = νpcp where cs and cp are substrate and prod-
uct concentrations, and νs and νp are proportionality co-
efficients. The detailed balance implies that, for each pair
of states sl and sl+1, we have

κl,l+1 = κl+1,l exp
[

−
(

E l − E l+1
)

/kBT
]

(31)

where E l is the Gibbs free energy of the state sl. More-
over,

κ01 = νscs exp
[

−
(

E0 − E1
)

/kBT
]

(32)

and

νpcp = κ0K exp
[

−
(

EK − E0
)

/kBT
]

. (33)

As follows from the above equations, the equilibrium is
reached at the product concentration cp satisfying the
equation

νpcp = νscs exp
[

−
(

E0 − EK
)

/kBT
]

. (34)

It means that the chemical potentials of the substrate
and the product become equal once the equilibrium is
achieved.
The effective diffusion constant for the enzymes cat-

alyzing the equilibrium reaction (30) is

Deff =
∑

l=0,...,K

Dlπ̄l +
1

3

∑

l=0,...,K

κl+1,lπ̄l
(

dl+1,l
)2

(35)

where we have again used the notations κK+1,K = κ0K

and dK+1,K = d0K . The equilibrium occupation proba-
bilities π̄l of different states l = 0, . . . ,K are

π̄l =
exp

(

− E l/kBT
)

∑

l=0,...,K exp
(

− E l/kBT
) . (36)

The first term in equation (35) represents the weighted
average of diffusion coefficients in absence of reactions in
different states; it does not depend on reaction rates. The
second term is due to the dancing effects. As we see, each
elementary equilibrium reaction gives a contribution to
the diffusion coefficient proportional to its rate. Because
contributions from forward and reverse reaction steps are
equal, summation is left only over the forward reactions,
with the factor 1/6 changed to 1/3.
Under reaction-induced diffusion enhancement, only a

kinetic coefficient (i.e., the diffusion constant controlling
the rate of relaxation for concentration distribution of en-
zymes) is increased. Hence, diffusion boosting does not
imply that work has to be performed. Therefore, dif-
fusion enhancement is possible under reversible equilib-
rium chemical reactions too. This has been pointed out

in earlier publications [27, 28] and it also follows from the
theory constructed above.
Generally, it is well-known that any reaction generates

additional internal noise, whose intensity is proportion-
all to the respective reaction rate (see ref.[30, 31]). How-
ever, only the effects of reaction noise on fluctuations of
chemical concentrations have been considered so far. As
found in the present study, reaction noise can also lead
to diffusion enhancement through the molecular dancing
mechanism.
Although reaction-induced diffusion enhancement in

equilibrium systems is principally important, this effect
would typically be much weaker than diffusion boosting
in non-equilibrium and practically irreversible reactions
with high energy release.This is because, at equilibrium,
only the states s with the energies Es, differing by about
the thermal energy kBT , could be occupied. Usually,
molecular conformations would not differ much over the
states that could be reached by thermal fluctuations, so
that the RC shifts dss′ in transitions between them would
be small.

E. Systems with spatial gradients

Systems with spatial gradients can be furthermore con-
sidered. Both the solution parameters and the reaction
rates may depend on the spatial position R, leading to
spatial dependence of Ds, kss

′

and π̄s. For such sys-
tems, an approximate evolution equation for distribution
of enzymes is derived in Appendix.
Written in the standard form of a diffusion equation

with a drift term, the evolution equation (A55) for the
local enzyme concentration c becomes

∂c

∂t
= −

∂

∂R
[V(R)c] +

∂

∂R

[

Deff(R)
∂c

∂R

]

(37)

where

Deff(R) =
∑

s

Ds(R)π̄s(R) +
1

6

∑

s,s′

kss
′

(R)
(

dss
′

)2

(38)

and

V(R) = −
∑

s

Ds(R)
∂π̄s

∂R
−

1

6

∑

s,s′

(

dss
′

)2 ∂kss
′

∂R
(39)

with kss
′

(R) = κss′(R)π̄s(R). This general equation
provides an opportunity to discuss drift and diffusion un-
der different kinds of spatial gradients.
Suppose first that only the diffusion coefficients Ds in

various chemical states depend on the spatial position,
whereas the reaction rates kss

′

and the occupation prob-
abilities π̄s(R) of chemical states are independent of R.
As follows from equation (39), we have V(R) = 0 in this
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case. Therefore, the evolution equation (37) is reduced
to

∂P

∂t
=

∂

∂Rα

[

Deff(R)
∂c

∂Rα

]

(40)

where

Deff(R) =
∑

s

Ds(R)π̄s +
1

6

∑

s,s′

kss
′

(

dss
′

)2

. (41)

Note that diffusion coefficients Ds can have spatial varia-
tion because such parameters as temperature or solution
viscosity depend on the particle position in space.
Equation (40) is the classical diffusion equation in sys-

tems with spatial gradients; it does not include the drift.
According to it, in the steady state in absence of flux,
the particles should be uniformly distributed, despite the
presence of the gradients:

J = −Deff(R)∇c = 0 → c(R) = const. (42)

Next we consider an opposite situation, when the rates
of spatial reactions and/or occupation probabilities vary
in space, but diffusion constants Ds do not depend on
spatial coordinates. In this case, the drift velocity (39)
does not vanish. It can be moreover equivalently written
as

V = −
∂Deff

∂R
. (43)

so that the evolution equation (37) takes the form

∂c

∂t
= ∇2 [Deff(R)c] . (44)

According to this equation, in the steady state in ab-
sence of flux, we should have

J = −∇ [Deff(R)c] = 0 → c(R) =
A

Deff(R)
(45)

where A is a normalization factor. Hence, molecules are
depleted in the regions where their diffusion is fast.
As an example, we can again take the reaction cycle

(25) with two states s = 0 and s = 1. At relatively small
substrate concentrations, the turnover rate k of this reac-
tion and the occupation probability π1 of the state s = 1
are proportional to the substrate concentration cs, i.e.
we have k = ucs and π1 = vcs with some proportion-
ality factors u and v. If there is a spatial gradient of
the substrate concentration, this leads to a gradient in
the turnover rate, ∇k = u∇cs, and to a gradient in the
occupation probability, ∇π1 = v∇cs. Because the contri-
butions to the diffusion coefficient are linear in k and π1,
the drift velocity V = −∇Deff will be proportional to the
substrate concentration gradient ∇cs and directed oppo-
sitely to it. This can be described as an anti-chemotaxis
effect.

Finally, if not only the reaction rates and occupation
probabilities of different chemical states, but also the dif-
fusion constants in such individual states depend on the
particle position in space, the drift is present, but its
velocity does not satisfy equation (43). Moreover, the
evolution equation cannot be written in the simple anti-
chemotaxis form (44) and general evolution equation (37)
must be always used in such general case.

V. NUMERICAL SIMULATIONS

Numerical simulations were performed for the model of
deformable two-state dumbbells that was slightly differ-
ent from that used in Section II. The stochastic dynamics
of the dumbbell with two beads at positions R1 and R2

was described by equations (1). The interaction potential
was chosen as

U(r12) =
U0

2
(r12 − ℓ0)

2 (46)

where r12 = |R1−R2| and ℓ0 = 2a. Thus, explicitly, the
dynamics equations were

γ1
dR1

dt
= U0 (|R2 −R1| − ℓ0)

R2 −R1

|R2 −R1|
+ ξ1(t) (47)

γ2
dR2

dt
= U0 (|R2 −R1| − ℓ0)

R1 −R2

|R1 −R2|
+ ξ2(t) (48)

where

〈ξi,α(t)ξj,β(s)〉 = 2γikBTδijδαβδ(t− s) (49)

Two-dimensional systems were considered, i.e. (α, β) =
(x, y).
In the simulation model, we have moreover dropped

the assumption that transitions between the states s = 0
and s = 1 are possible only in a definite conformation
(that is, at a certain distance r12 between the beads).
Instead, the transitions from s = 0 to s = 1 and back
were allowed at rate constants κ10 and κ01 independent
from the distance between the beads. We had γ1 = γ2 =
γ in the state s = 0 and γ1 = γ +∆γ and γ2 = γ −∆γ
in the state s = 1. Since the dumbbells were deformable
and transitions could take place at any distance between
the beads, there was a distribution of RC shifts and only
the characteristic RC shift was given by equation (11).
Note that the viscous friction coefficient Γ = γ1 + γ2

was the same in the states s = 0 and s = 1. There-
fore, the diffusion constants of the dumbbell were also
the same in these states, i.e. D0 = D1. Hence, if the en-
hancement of translational diffusion took place, it could
only be due to the dancing effects.
The parameters were fixed as U0 = 2, ℓ0 = 2a = 1,

γ = 1, kBT = 1, and κ01 = 10; the remaining parameters
∆γ and κ10 were varied in the simulations. Thus, the
characteristic RC shifts were d = ℓ0∆γ/Γ = ∆γ/2.
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FIG. 3. The RC trajectory of the dumbbell over time t = 5
within the window of length L = 4 (for ∆γ = 0.8, κ10 =
4, κ01 = 10, other parameters are given in the text). Frag-
ments of the trajectory corresponding to the state s = 0 are
shown as green, those corresponding to s = 1 are brown, and
RC leaps in the transitions between the two states are dis-
played as red lines.

The numerical integration was performed using the ex-
plicit Euler method with the fixed time step of ∆t =
10−3. The initial condition was set as R1 = aex and
R2 = −aex. Ensemble averages were calculated from
the data for 107 dumbbells.

Figure 3 displays a typical RC trajectory of the dumb-
bell. Here, the parts of the trajectory corresponding to
s = 0 are shown in green and the parts corresponding
to s = 1 are in brown. The RC shifts in the (instanta-
neous) transitions between such two states are shown by
red lines. Their lengths are different because the dumb-
bell in the simulation model was deformable, in contrast
to the stiff dumbbell considered in Section II.

The mean-square displacements (MSD) of CM were
numerically determined. For all considered parameter
values, MSD was linear in time. The effective diffu-
sion coefficients could be calculated by dividing the MSD
by 4t at t = 100. Fig. 4(a) shows the numerically ob-
tained dependence of the relative diffusion enhancement
∆D/D0 on the model parameter ∆γ at κ10 = 1.

To interpret the simulation results, we additionally
determined rotational diffusion coefficients Ds

rot for the
dumbbells. For the chosen parameter values, we found
that D0

rot = 2.0 in the state s = 0. The rotational diffu-
sion coefficient in the state s = 1 increased with ∆γ as
shown in Fig. 5, reaching D1

rot = 5.6 at ∆γ = 0.8. The
orientational correlation time was τ0rot = 1/D0

rot = 0.5
in the state s = 0. Such time τ1rot = 1/D1

rot in the state
s = 1 decreased from 0.5 at ∆γ = 0 to 0.179 at ∆γ = 0.8.

Since, in the simulations, the characteristic lifetime of
the state s = 1 was equal to τ1 = 1/κ01 = 0.1, this life-
time was comparable with the orientational correlation
time in this state. In this case, the more general depen-

0.4 0.80

0.03

0.06

0

1 30

(a)

(b)
Δγ

k
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0.1
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Δ
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0
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 /
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FIG. 4. Numerically determined relative diffusion enhance-
ments ∆D/D0 = (Deff −D0)/D0 as functions (a) of the pa-
rameter ∆γ (at κ10 = 1) and (b) of the reaction turnover rate
k (at ∆γ = 0.8). To obtain the data in (b), simulations at
κ01 = 10 and for κ10 varying from 0 to 4.2 were performed;
the turnover rates k were then determined by using equation
(51). For comparison, solid curves in (a,b) show the depen-
dence predicted by equation (50); numerical values for D1

rot

from Fig. 5 were here used.
D

ro
t

0.4 0.80

3

6

0

Δγ

1

FIG. 5. Dependence of the rotational diffusion coefficient D1
rot

on the parameter ∆γ in the state s = 1. For other parameters,
see the text.

dence, such as in equation (13), should be used:

Ddance =
1

2
kd2

D1
rot

κ01 +D1
rot

. (50)

In contrast to equation (13), the prefactor is changed
from 1/3 to 1/2 because the system is two-dimensional.
Here, both d and D1

rot can depend on ∆γ. Note that, in
the considered model, we have ∆D = Ddance.
The theoretical estimate for the relative diffusion en-

hancement, based on the equation (50) and using the de-
pendence of D1

rot on ∆γ from Fig. 5, is shown by the solid
curve in Fig. 4a. We see that the agreement between the
simulation data and the theoretical predictions is good.
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In Fig. 4(b), the dependence of the diffusion enhance-
ment on the reaction turnover rate k, based on the sim-
ulation data, is moreover displayed. In the considered
model, the turnover rate is given by the equation

k =
κ10κ01

κ01 + κ10
. (51)

In the simulations used in Fig. 4(b), the substrate bind-
ing rate κ10 was varied between 0 and 4.2, whereas the
rate constant of product formation was fixed at κ01 = 10.
Hence, the data for the range 0 < k < 3 could be col-
lected.
For comparison, the linear dependence, predicted by

equation (50), is shown by the solid line in Fig. 4b. As we
see, such linear dependence holds only at relatively small
turnover rates. The difference at the higher turnover
rates is due to correlations between the cycles.
Indeed, in the derivation of equation (50), it was as-

sumed that dumbbell orientations in the next cycles were
statistically independent, i.e. the memory of orientation
was lost before the start of a new cycle. This implies that,
for the linear dependence to hold, the orientational cor-
relation time τ0rot in the state s = 0 must be much shorter
that the waiting time for substrate binding and, hence,
initiation of a new cycle. Such waiting time τ1 = 1/κ10 is
inversely proportional to the substrate binding rate and
gets shorter when it is increased.
In the simulations in Fig. 4(b), κ10 was between 0 and

4.2, so that the shortest waiting time was τ0 = 0.24 at
the largest considered turnover rate k = 3. Hence, it
was already comparable to the orientational correlation
time τ0rot = 1/D0

rot = 0.5 in the state s = 0. Therefore,
the assumption of statistical independence of the cycles
became violated at the higher turnover rates, leading to
the deviations from the linear law (50).
Note that, because of equation (51), the linear de-

pendence of ∆D on k implies the Michaelis-Menten de-
pendence on the substrate binding rate. Therefore, the
deviations from the linear dependence mean that the
Michaelis-Menten dependence of diffusion enhancement
on the substrate concentration holds only at relatively
low concentrations of the substrate.
Additionally, we considered the situation when the re-

action rate κ10 depended on the position. We have set
the size of the 2D system as L × L with L = 10 and
introduced the periodic boundary condition along both
directions x and y. We have chosen

κ10 =

{

2 nL−∆L < y < nL+∆L
0 otherwise,

(52)

where n is an integer. Hence, the reaction was taking
place only within a central stripe of width 2∆L.
To accumulate the data, simulations were performed

for a system of N = 107 independent dumbbells with
the uniform initial distribution. The integration was car-
ried out until t = 100 and the position distribution was
obtained by averaging the distribution at every 0.1 time
unit for 50 < t ≤ 100.
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FIG. 6. Anti-chemotaxis. The final stationary particle dis-
tribution, projected on the y-axis, is shown. The substrate
binding rate was set to be κ10 = 2 for −∆L < y < ∆L with
∆L = 2, while it was zero outside of this interval; ∆γ = 0.8
and other parameters are the same as in Fig. 3. For com-
parison, the distribution P (y) = C/Deff (y) is also displayed
(dashed curve).

The obtained stationary distribution, projected on the
y- axis, in the steady state is shown in Fig. 6. One can
clearly see that the concentration is depleted in the cen-
tral region where the reaction is present and, therefore,
the diffusion is enhanced. Furthermore, the local con-
centration of dumbbells is approximately inversely pro-
portional to the local diffusion coefficient, as predicted by
equation (45). This directly confirms the anti-chemotaxis
effect,

It should be stressed that in the model used in nu-
merical simulations, as well as in the general model in
Section IV, rotational diffusion of the molecule results
solely from translational diffusion of the beads (which
have no own rotational friction). Thus, for a dumbbell,
the rotational diffusion coefficient diverges in our model
when the friction coefficient becomes vanishingly small
for one of its beads (because it can then rotate without
any friction around the second bead). In reality, the ro-
tational diffusion constant of the dumbbell is bounded in
this case by the remaining own rotational friction of the
second bead.

However, the limit of diverging rotational diffusion
has not been approached in our numerical simulations
(as seen in Fig. 5, the rotational diffusion coefficient of
the dumbbell could only increase by about a factor of
2 within the considered parameter range). Moreover, as
shown in Section III, diffusion boosting ceases to depend
on the rotational diffusion constant of the dumbbell, pro-
vided that it is large enough (see equation (13)); there-
fore, the correct value of such constant is not important
in this case. Note furthermore that, in the related re-
search on systems of self-propelled dumbbells, the own
rotational viscous friction of the beads is often neglected
too [32–34].
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VI. DISCUSSION: BOOSTED DIFFUSION OF

ENZYMES

In several enzymes, such as urease, catalase or acetyl-
cholinesterase (AChE), substantial diffusion enhance-
ment by tens of percent has been reported under reac-
tion conditions by diverse research groups [1, 2, 13]. The
common feature of these enzymes is that they have high
turnover rates of about k = 105 s−1. Moreover, they
are highly exergonic, with the net Gibbs free energy re-
lease ∆G by tens of kBT within a catalytic cycle[16].
They are also oligomeric: urease forms rings with six
catalytically active monomers, catalase is a tetramer and
AChE is a dimer. Weak diffusion enhancement by a few
percent has been seen for some enzymes with moder-
ate Gibbs free energy release and typical (slow) turnover
rates too[15, 16]. According to the detailed study [16],
boosted diffusion is absent for endergonic reactions, i.e.
for the reactions that are not able to generate mechani-
cal work. All known reactions with boosted diffusion are
exothermic, i.e. releasing heat. Diffusion enhancement
has been once reported [35] for a slow endothermic re-
action catalyzed by aldolase, but this observation could
not be later confirmed [36].

Super-resolution optical microscopy experiments have
suggested that, under highly boosted diffusion, the en-
zymes perform sudden leaps by about tens of nanometers
within tens of microseconds and such leaps are superim-
posed on the classical thermal Brownian motion [2]. The
leaps, that could not be directly observed, but were de-
duced by the statistical analysis of experimental data,
had lengths of 50–100 nm. Note however that, as men-
tioned by the authors[2], these values represented “up-
per bounds of leap length because what we express here
as ballistic speed likely consists of a sequence of shorter
steps that have not yet randomized.” Hence, elemen-
tary leaps (“steps”) could have been actually shorter,
i.e. of the order of the typical protein molecule size of
10 nm. Remarkably, the intervals between the leaps were
of about the same duration as the turnover times.
Examination of further data for various enzymes has

revealed that diffusion enhancement is linearly propor-
tional to the turnover rate [16]. Moreover, a linear de-
pendence of diffusion enhancement on the Gibbs energy
release per a turnover cycle holds [16]. When a spatial
gradient of the substrate concentration is present, the
enzymes drift in the direction opposite to it, which has
been described as an anti-chemotaxis effect [2]. Further-
more, the local enzyme concentration in the steady state
is inversely proportional to the local diffusion coefficient
[2].
To interpret such observations, it has been repeatedly

suggested that some form of molecular self-propulsion is
involved [1, 2]. However, no feasible mechanism of suffi-
ciently strong self-propulsion could be identified so far.
Furthermore, there is a common problem under any

self-propulsion mechanism. The velocity of a self-
propelling particle in the low Reynolds number regime

should be proportional to the rate at which energy is
supplied to it. Hence, leap lengths should be also propor-
tional to this rate and the mean-square displacement, de-
termining the diffusion constant, must be then quadratic
in the rate of energy release. But, as already noted, the
actual diffusion boosting is a linear function of the energy
release rate [16].
It has been also noted [19–21] that boosted diffusion

can arise because more compact, and thus more mobile,
enzyme conformations might become occupied under a
reaction, leading, in the case of two-state models, to an
increase of the diffusion coefficient corresponding to the
first term in equation (27). This has already allowed
to reproduce the anti-chemotaxis effect, but has left not
explained the characteristic molecular leaps [2] and the
reported strong difference in boosting between exergonic
and endergonic enzymes[16].
Reaction-induced molecular dancing, considered by us,

could be instead responsible for the observed boosted dif-
fusion of enzymes. Indeed, principal aspects of the ob-
served effects become thus reproduced:

• Under molecular dancing, an enzyme performs the
leaps of a length comparable to its size in each
turnover cycle. For oligomeric structures, the size
of a leap can be comparable to structure’s length.

• Such independent leaps in random directions
lead to diffusion enhancement proportional to the
turnover rate (note that, even for fast enzymes,
turnover times are still longer than orientational
correlation times),

• The anti-chemotaxis effect is predicted, with the
drift of enzymes against the substrate concentra-
tion gradient. The local enzyme concentration in
the steady state is inversely proportional to the lo-
cal diffusion coefficient.

• Numerical estimates can be made by using the de-
pendence ∆D = (1/3)kd2 for the model dumbbell
enzymes. If the RC shift d within the reaction cycle
is comparable to the enzyme size, d = 10 nm can
be taken. Then, for enzymes with high turnover
rates k = 105 s−1, the diffusion enhancement about
∆D = 10−7 cm2/s is obtained, which is compara-
ble to the typical diffusion constants of proteins and
is consistent with the reported maximum diffusion
enhancement by tens of percent [1, 2].

• Typical rotation diffusion constants for proteins, as
yielded both by MD simulations and NMR mea-
surements, are of the order of Drot = 107 s−1 (see
ref.[37]). Hence, even for the fastest enzymes with
the turnover rates about k = 105 s−1, the condition
Drot ≫ k would be satisfied, i.e. the enzyme direc-
tion would be randomized between the cycles. For
mesoscopic enzymic structures, such as the urease
rings, rotational diffusion can be however slower,
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so that subsequent leaps (“steps”) are not yet com-
pletely randomized. The regimes without complete
randomization of dumbbell orientations were also
observed in our numerical simulations in Section V
when reaction rates k were increased.

There are also several issues that need to be further
discussed:

• The Protein Data Base (PDB) does not show signif-
icant ligand-induced conformational changes in the
enzymes where substantial boosting takes place.
Hence, there is no structural evidence for the ex-
istence of a state with a largely different enzyme
shape, as would have been necessary for the danc-
ing effects.

However, the PDB data is based on X-ray diffrac-
tion experiments with crystallized proteins and
therefore it can contain only stable states (in
the case of a reaction, they are typically yielded
by employing non-reactive ligand analogs). Such
data does not include information on the transient
states.

As already noted, enzymes with substantial diffu-
sion enhancement tend to be oligomeric. Urease,
where the strongest boosting was seen, is a hexamer
with the rings formed by six catalytically active
identical subunits. The amount of energy released
in each subunit within a turnover cycle in this en-
zyme is so high that even reaction-induced breakup
of the rings has been suggested [38]. Although
the breakup has been experimentally excluded [14],
transient deformations of the rings could still be
strong. For oligomeric enzymes, the transient state
with a short lifetime can correspond to the excita-
tion of a normal mode representing a deformation
of the oligomeric superstructure, such as the urease
ring, immediately after the catalytic reaction event.

To roughly account for this in the considered min-
imal description, a modified model of an excitable

dumbbell with the reaction scheme

S + E → EP ∗ → EP → E + P. (53)

can be introduced. This dumbbell has a transient
excited state EP ∗. One can assume that only in
this transient state of the enzyme-product complex,
the friction coefficients of the beads are changed.
For example, we can choose γ1 = γ +∆γ and γ2 =
γ−∆γ in the state EP ∗ and equal to γ in all other
states.

Diffusion enhancement for such excitable dumbbell
is determined by the general estimate (26). If the
transient excitable state has a short life-time, its
occupation probability is low, so that the first term
in equation (26) is small. Moreover, only the transi-
tions E+S → EP ∗ and EP ∗ → EP will contribute

to the second term. Hence, the diffusion enhance-
ment is still given by ∆D = (1/3)kd2 where k is
the turnover rate and d is the shift of the rota-
tion center in these two transitions. Therefore, the
above numerical estimates continue to be applica-
ble in this case, even in absence of a (meta)stable
ligand-bound enzyme state,

• Moreover, the reported diffusion boosting was pro-
portional to the difference ∆G in Gibbs free en-
ergies between the substrate and the product, but
such dependence appears to be absent in equation
(24) for diffusion enhancement due to molecular
dancing.

The dependence enters, however, into the the-
ory when elastic deformations are explicitly intro-
duced. Generally, the elastic deformation energy
contained in a normal mode with amplitude A is
∆E = (1/2)KA2 whereK is the mode stiffness con-
stant. Elastic deformations in the enzyme lead to
changes in friction coefficients of its domains and
therefore to shifts in the rotation center. It can be
expected that the magnitude of an RC shift would
be proportional to the amplitude of the excited nor-
mal mode, i.e. that d ∝ A.

This implies that, for the change in the diffusion
coefficient, we would have ∆D ∝ A2 ∝ ∆E . Hence,
if the elastic deformation energy ∆E represents a
dominant contribution into the change |∆G| of the
Gibbs free energy under the reaction, diffusion en-
hancement should be linear in ∆G, as indeed ob-
served [16]. Note furthermore that, if the excita-
tion energy is stored in elastic deformations, it can
be further used to perform work. This means that
the respective chemical reactions would be exer-
gonic, also in agreement with the experimental re-
sults [16].

For oligomeric enzymes, large elastic deformations
of their mesoscopic multi-unit structures (such as
the urease ring) can follow after a catalytic event
with much energy release in one of the subunits.
For example, the excited normal mode in urease
can correspond to a strong deformation of the ring.
Then, its amplitude A and the RC shift d, deter-
mining the leap length, would be of the same meso-
scopic order of magnitude as the diameter of the
ring.

While the arguments presented in this Section make
very likely an explanation of boosted diffusion in terms of
molecular dancing effects, quantitative treatment of the
proposed effects for specific enzymes and detailed com-
parison of the predictions to the respective experimental
results remain to be undertaken. This should be a sub-
ject of future work. Additional experiments to test the
theory need to be performed.
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VII. CONCLUSIONS

In this study, a novel mechanism of reaction-induced
motion for enzymes has been proposed and analyzed. In
contrast to previously known mechanisms, it does not
involve self-propulsion. Instead, it is based on the effect
of molecular dancing introduced by us. Both a general
theory of these phenomena has been constructed and the
analysis for a simple model of the two-state dumbbell
has been performed. Theoretical predictions have been
checked in direct numerical simulations.
As we have found, a statistical description in terms of

molecular centers of mass does not provide a good basis
for considering the reaction effects. This is because, in
solutions, the center of mass is not conserved even in ab-
sence of the reactions and hydrodynamic interactions, i.e.
only under potential interactions between the domains.
In contrast to this, separation of variables in absence of
the reactions and hydrodynamic interactions takes place
in the description in terms of the rotation center of a
molecule.
Hence, the position of the rotation center (but not of

the center of mass) represents a slow variable similar,
e.g., to the oscillation phase. When chemical reactions
are added, this variable undergoes, in presence of rota-
tional diffusion, an additional translational random walk.
Remarkably, while the two systems are physically much
different, the mathematical theory of molecular dancing
resembles the classical Kuramoto theory [39] for phase
drift in populations of coupled oscillators.
It has been previously known that reactions generate

additional noise, but only the enhancement of concen-
tration fluctuations due to the internal noise of reactions
has been considered so far (see, e.g., ref.[30, 31]). In the
present study, we have essentially demonstrated that cou-
pling between the mass center and changes in molecular
conformations generates a different kind of reaction noise
that enhances spatial diffusion of molecules. Note that,
similar to the previously known effects of internal reac-
tion noise[30, 31], both equilibrium and nonequilibrium
reactions can boost molecular diffusion. However, it can
be expected that, for equilibrium reactions, this would
be a weak effect.
Our analysis strongly suggests that molecular dancing

has been responsible for boosted diffusion observed for
various enzymes. Additional investigations and experi-
mental tests are however needed to confirm this.
In the present study, hydrodynamic effects for proteins

were taken into account in the simplest Langevin descrip-
tion, with the viscous friction coefficient dependent on
the shape of a protein domain. Hydrodynamic interac-
tions between the domains (beads) are not principal for
the considered dancing mechanism and they have been
neglected by us. For completeness, they should still be,
however, taken into account in future theoretical work.
The attention in this study was focused on enzymes.

However, the constructed theory is more general and it
can be applied to other systems, natural or artificial,

as well. Synthetic micro-dancers can be designed and
used to test directly the predictions of boosted diffusion.
Various biotechnology applications with synthetic micro-
dancers can be developed too.
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Appendix A: Derivation details of the general theory

In this Appendix, a detailed formulation of the theory
of reaction-induced molecular dancing is presented.

1. Stochastic Langevin dynamics of CM and RC in

absence of reactions

In absence of reactions, the master equation (21) cor-
responds to a set of stochastic Langevin equations

γs
i

dRi,α

dt
= −

∑

j

∂Us
ij

∂Ri,α

+ ξi,α(t) (A1)

with independent thermal noises, such that

〈ξi,α(t)ξj,β(t
′)〉 = 2γs

i kBTδijδαβδ(t− t′). (A2)

The CM position of a molecule is R = (1/N)
∑

i Ri

and the deviations from it are ri = Ri −R. Stochastic
Langevin equations for these variables are

dRα

dt
= −

1

2N

∑

i,j

(µs
i − µs

j)
∂Us

ij

∂ri,α
+ χα(t) (A3)

dri,α
dt

= −
∑

j

µs
i

∂Us
ij

∂ri,α
+

1

2N

∑

i,j

(µs
i − µs

j)
∂Us

ij

∂ri,α
+ ρi,α(t)

(A4)

with thermal noises χα(t) = (1/N)
∑

i µ
s
i ξi,α(t) and

ρi,α(t) = µs
i ξi,α(t) − χα(t). The correlation functions

of the noises are

〈χα(t)χβ(t
′)〉 =

2

N
µ̄skBTδαβδ(t− t′). (A5)

〈χα(t)ρi,β(t
′)〉 =

2

N
(µs

i − µ̄s)kBTδαβδ(t− t′). (A6)
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〈ρi,α(t)ρj,β(t
′)〉 =2kBT

(

µs
i δij −

1

N
µs
i −

1

N
µs
j +

1

N
µ̄s
)

× δαβδ(t− t′) (A7)

where µ̄s = (1/N)
∑

i µ
s
i is the mean mobility of the

beads in the chemical state s.
Unless the mobilities of all beads are equal, the motion

of CM is thus affected by conformational intramolecu-
lar dynamics and by rotations of the molecule. The in-
tramolecular forces enter into the motion equation (A3)
for CM. Moreover, as seen in equation (A6), the CM noise
χ(t) is correlated with the intramolecular noises ρi(t).
The RC position of a molecule in the state s is Qs =

∑

i(γ
s
i /Γ

s)Ri, where Γs =
∑

i γ
s
i , and the deviations

from it are qs
i = Ri −Qs.

It can be verified that Qs(t) indeed represents the po-
sition of the center around which rotations take place. To
induce rigid translational motion of the entire molecule
at velocity V, forces Fs

i = −γs
iV need to be applied to

individual beads. The total torque Ns, created by such
forces with respect to the positionQs, is zero, as it should
be for the RC. We have Ns =

∑

i

[

Fs
i × (Ri − Qs)

]

=

−
∑

i γ
s
i

[

V × (Ri −Qs)
]

= 0.
Stochastic Langevin equations for the RC variables are

Γs dQ
s
α

dt
= ηα(t), (A8)

γs
i

dqsi,α
dt

= −
∑

j

∂Us
ij

∂qsi,α
+ ζi,α(t) (A9)

with thermal noises ηα(t) =
∑

i ξi,α(t) and ζi,α(t) =
ξi,α(t) − (γs

i /Γ
s)ηα(t). The correlation functions of the

noises are

〈ηα(t)ηβ(t
′)〉 = 2ΓskBTδαβδ(t− t′), (A10)

〈ηα(t)ζi,β(t
′)〉 = 0, (A11)

〈ζi,α(t)ζj,β(t
′)〉 = 2γs

i

(

δij −
γs
j

Γs

)

kBTδαβδ(t− t′).

(A12)

Remarkably, the motion of RC is decoupled from the
intermolecar dynamics and it is also not affected by ro-
tations of a molecule. The intramolecular forces do not
enter into the equation of motion (A8) for RC. Moreover,
as seen in equation (A11), the RC noise η(t) is indepen-
dent from the intramolecular noises ζi(t). Thus, thermal
rotational fluctuations take place around RC.
According to equation (A12), intramolecular noises

acting on different beads (when i 6= j) are anti-correlated.
Such cross-correlations arise because N stochastic vari-
ables qs

i (t) must satisfy the constraint

∑

i

γs
i

Γs
qs
i = 0. (A13)

2. Master equation for RC

The system is characterized by a set of
(N + 1)-dimensional probability distributions
{psRC(Q

s, {qs
k}, t)}. The RC distributions in differ-

ent chemical states are obtained by averaging, i.e.
as

P s
RC(Q

s, t) =

∫

psRC(Q
s, {qs

k}, t)d
Nqs

k. (A14)

In absence of reactions, the master equation follows
from the Langevin equations (A8)-(A12). If a Langevin
equation for a stochastic variable is known, the Fokker-
Planck equation for the probability distribution of this
variable can be constructed (see ref.[40]). In the case of
equations (A8)-(A12), such general construction yields

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α
(A15)

where

Hs
α = −kBTM

s∂p
s
RC

∂Qs
α

, (A16)

and

hs
i,α =− µs

i





∑

j

∂Us
ij

∂qsi,α
psRC + kBT

∂psRC

∂qsi,α





+ kBTM
s
∑

j

∂psRC

∂qj,α
. (A17)

Here, M s is the mobility of the whole molecule,

M s =
1

Γs
=

1
∑

i(1/µ
s
i )
. (A18)

The last term in equation (A17) is due to the constraint
(A13).

Next, reaction terms can be added into the master
equation (A15). In doing this, it should be taken into ac-
count that the RC is different in different chemical states.
The shift of RC in a transition from s′ to s is

dss′ = Qs −Qs′ =
∑

i

(γs
i

Γs
−

γs′

i

Γs′

)

ri = −
1

Γs

∑

i′

γs
i′q

s′

i′ .

(A19)

Thus, a reaction event s′ → s is accompanied by a shift
in the coordinates Qs′ → Qs, qs′

k → qs
k, such that

Qs′ = Qs − dss′ , qs′

k = qs
k + dss′ . (A20)

When the reactions are included, the master equation



15

is

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α

+
∑

s′





∫

wss′
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣− rss
′

ij

)

×δ

(

Qs −Qs′ +
1

Γs

∑

i′

γs
i′q

s′

i′

)

×
∏

k

δ

(

qs
k − qs′

k −
1

Γs

∑

i′

γs
i′q

s′

i′

)

×ps
′

RC(Q
s′ , {qs′

k })dQ
s′dNqs′

k

−ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

psRC (Qs, {qs
k})



 (A21)

Integration over Qs′ can be performed and, after that,
we obtain the evolution equations in the final simple
form:

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α

+
∑

s′





∫

wss′
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣− rss
′

ij

)

×
∏

k

δ
(

qs
k − qs′

k + dss′
)

×ps
′

RC

(

Qs − dss′ , {qs′

k }
)

dNqs′

k

−ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

psRC (Qs, {qs
k})



 (A22)

where dss′ is given by equation (A19).
This result has a simple interpretation. The first term

on the right side describes free diffusion motion of RC.
The second term accounts for rotational diffusion and
conformational fluctuations. The last term corresponds
to chemical reactions. A reaction from the state s′ to the
state s and back is allowed only in a definite conforma-
tion specified by a set of pair distances rss

′

ij between the
beads. The molecule in such conformation can, however,
be still arbitrarily rotated in space. Each chemical reac-
tion s′ → s involves a shift in the RC position by dss′

that depends on the conformation and orientation of the
molecule before the transition event.

3. Systems without reactions

When the reaction terms are absent, the master equa-
tion (A22) becomes

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α
. (A23)

Note that, without the reactions, the molecule is always
in the same chemical state.
In this evolution equation, separation of variables Qs

and qs
i , i = 1, . . . , N , takes place. The RC probability

flux H depends only on Qs, whereas the fluxes hs
i are

independent from the RC position. By averaging over
the set of qs

i variables, a closed evolution equation for
RC is derived:

∂P s
RC

∂t
= Ds ∂2P s

RC

∂ (Qs
α)

2 (A24)

where the diffusion constant is Ds = kBTM
s and

M s = 1/
(
∑

i γ
s
i

)

is the mobility coefficient of the en-
tire molecule consisting of N beads. Remarkably, M s

is the same as the mobility of a rigid molecule with the
beads of individual mobility µs

i . Note that this is an ex-
act evolution equation, because no approximations were
made to derive it from the master equation (A23) for the
joint probability distribution.
As follows from our analysis based on the Langevin

equations, there is no separation of the CM variables R
and ri, i = 1, . . . , N . Therefore, an exact closed evolution
equation for the CM probability distribution PCM (R),
averaged over ri, cannot be derived even in absence of
chemical reactions. Indeed, on the short timescales, char-
acteristic for conformational and orientational fluctua-
tions, dancing of CM takes places.
Nonetheless, if we consider a smooth CM probability

distribution P̃CM , averaged over time intervals longer
than such short timescales, its evolution will be given
by equation

∂P s
CM

∂t
= Ds ∂

2P s
CM

∂R2
α

(A25)

with the same diffusion coefficient Ds as in equation
(A24).
This follows from the fact that the two collective vari-

ables R(t) and Qs(t) differ only by a term of the or-
der of the size of a molecule and the magnitude of
the difference cannot indefinitely increase with time.

Hence, the long-time limits limt→∞(1/t)〈
(

∆R(t)
)2
〉 and

limt→∞(1/t)〈
(

∆Qs(t)
)2
〉 for their mean-square displace-

ments must coincide, implying that the diffusion con-
stants are the same.
For thermal equilibrium at temperature T in absence

of reactions, the system is described by the Boltzmann
probability distribution

ρsRC({qi}) =
1

Zs
exp



−
1

2kBT

∑

i,j

Us
ij(q

s
i − qs

j)





(A26)

where Zs is the normalization factor. It can be checked
that this distribution is a solution of the master equation
(A15). Note that the contribution from the last term in
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the flux hs
i vanishes because, for the Boltzmann distri-

bution, we have

∑

i,j

∂2ρsRC

∂qsi ∂q
s
j

= 0. (A27)

The equilibrium distribution (A26) depends only on
distances between the beads. Such distances determine a
conformation, but leave arbitrary the orientation of the
molecule. The equilibrium state is statistically isotropic,
with all molecular orientations having the same statisti-
cal weight.

4. Approximate evolution equation for systems

with reactions

Above, exact evolution equations (A22) for joint RC
probability distribution for systems with reactions has
been derived. Now, we want to obtain from it an approx-
imate evolution for reduced RC probability distributions
(A14) .
By averaging equations (A22) over variables qs

i , the
following system of equations for reduced distributions
P s
RC is found:

∂P s
RC

∂t
= Ds ∂

2P s
RC

(∂Qs
α)

2

+
∑

s′





∫

wss′
∏

i,j

δ
(∣

∣

∣
qs′

i − qs′

j

∣

∣

∣
− rss

′

ij

)

×ps
′

RC

(

Qs +
1

Γs

∑

k

γs
kq

s′

k , {q
s′

k }

)

dNqs′

k

−

∫

ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

psRC (Qs, {qs
k})d

Nqs
k



 .

(A28)

This system of equations for P s
RC(Q

s, t) is not closed:
reaction terms include averages taken with joint probabil-
ity distributions psRC(Q

s, {qs
k}). However, under certain

conditions, approximate closed evolution equations can
be derived.
The considered system possesses several distinct relax-

ation timescales. The characteristic timescale τc specifies
the time within which conformational equilibrium within
a molecule is reached. The orientational correlation time
τrot is the time within which the memory of initial orien-
tation is lost. The timescale τr is the characteristic time
within which chemical equilibrium is achieved.
In our approximate derivation, we shall assume that

the conditions τr ≫ τrot and τr ≫ τc are always satis-
fied. Hence, orientational and conformational equilibra-
tion represent the fastest processes. Reactions produce
correlations between the instantaneous RC position and

conformational/orientational molecular states. Such cor-
relations however persist only over a very short time. Be-
cause rotational diffusion is fast, the molecule randomly
tumbles between any two reaction events, so that the
memory of the initial orientation becomes lost.

Under such conditions, local conformational equilib-
rium is maintained. Therefore, probability distributions,
entering into the reaction terms, can be approximately
factorized

psRC(Q
s, {qs

k}, t) = P s
RC(Q

s, t)ρsRC({q
s
k}) (A29)

where ρsRC is given by equation (A26). Note that

∑

s

∫

P s
RC(Q

s)dQs = 1. (A30)

Substituting this and integrating over variables qs
k, a

closed set of evolution equations for RC distributions be-
comes obtained:

∂P s
RC

∂t
= Ds ∂

2P s
RC

(∂Qs
α)

2

+
∑

s′





∫

wss′
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣− rss
′

ij

)

× P s′

RC

(

Qs − dss′
)

ρs
′

RC

(

{qs′

k }
)

dNqs′

r

−

∫

ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

×P s
RC(Q

s)ρsRC({q
s
k})d

Nqs
k

]

(A31)

The evolution equations (A31) are nonlocal: because
of the integral terms, the rate of change of the proba-
bility distribution depends on the probability density in
the vicinity of a given point. This nonlocality is, how-
ever, short-ranged. Indeed, the RC shifts dss′ are of a
molecular size, but spatial distribution of enzymes would
vary only a little along such a length. We can use this
to approximately convert equations (A31) to local equa-
tions.

To do this, we use an approximate expansion

P s′

RC(Q
s − dss′ ) ≈P s′

RC(Q
s)− dss

′

α

∂P s′

RC

∂Qs′
α

+
1

2
dss

′

α dss
′

β

∂2P s′

RC

∂Qs′
α ∂Q

s′

β

. (A32)

where the derivatives are taken at Qs′ = Qs.

After substitution of this expansion into equation
(A31), we obtain a set of coupled local evolution equa-
tions for RC probability distributions in different chemi-
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cal states, i.e.

∂P s
RC

∂t
= Ds ∂

2P s
RC

(∂Qs
α)

2
−
∑

s′

Ass′

α

∂P s′

RC

∂Qs′
α

+
1

2

∑

s′

Bss′

αβ

∂2P s′

RC

∂Qs′
α ∂Q

s′

β

+
∑

s′





∫

wss′
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣− rss
′

ij

)

×P s′

RC(Q
s)ρs

′

RC({q
s′

k })d
Nqs′

k

−

∫

ws′s
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

×P s
RC(Q

s)ρsRC({q
s
k})d

Nqs
k

]

(A33)

where

Ass′

α =wss′
∫

dss
′

α ρs
′

RC({q
s′

k })

×
∏

i,j

δ
(

|qs′

i − qs′

j | − rss
′

ij

)

dNqs′

k , (A34)

Bss′

αβ =wss′
∫

dss
′

α dss
′

β ρs
′

RC({q
s′

k })

×
∏

i,j

δ
(∣

∣

∣
qs′

i − qs′

j

∣

∣

∣
− rss

′

ij

)

dNqs′

k (A35)

and dss′ = dss′ ({qs′

k }) is given by equation (A19).
It is convenient to introduce effective rate constants in

the steady state

κss′ = wss′
∫

ρs
′

RC({q
s′

k })
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣ − rss
′

ij

)

dNqs′

k .

(A36)

It can be moreover noted that, in all transition confor-
mations differing only by the orientation, the length dss

′

of the RC shift is the same and only the directions of the
vector dss′ are different.
We can write dss′ = dss

′

n where n is a unit orien-
tation vector. Because of the statistical isotropy of the
equilibrium state, all directions n are equally probable.
Therefore, we obtain

Ass′

α =
1

4π
κss′dss

′

∫

nαdn = 0 (A37)

and

Bss′

αβ =
1

4π
κss′

(

dss
′

)2
∫

nαnβdn =
1

3
δαβκ

ss′
(

dss
′

)2

(A38)

where
∫

(. . . )dn means integration over all possible ori-
entations of the vector n. Note that a three-dimensional
system is considered.

Hence, a set of coupled evolution equations for RC
probability distributions in different chemical states be-
comes derived:

∂P s
RC

∂t
=Ds ∂

2P s
RC

(∂Qs
α)

2
+

1

6

∑

s′

κss′
(

dss
′

)2 ∂2P s′

RC

(∂Qs′
α )

2

∣

∣

∣

∣

∣

Qs′=Qs

+
∑

s′

[

κss′P s′

RC(Q
s′ = Qs)− κs′sP s

RC(Q
s)
]

.

(A39)

The first term in the equation for the probability distri-
bution in chemical state s describes free diffusion with
the diffusion coefficient corresponding to this state. The
last term accounts for relaxation to the steady state. The
middle term is due to the molecular dancing effect.

5. Diffusion enhancement

Using equations (A39), the effect of boosted diffusion
can be analyzed. Note that, in these equations, probabil-
ities P s

RC in chemical states s depend on different vari-
ables Qs. However, according to the definition of such
variables, the difference between them is of the order of
the molecular size. But, for diffusion processes, concen-
tration distributions would not significantly vary within
such a length.
Hence, we can neglect the difference and treat all of

them as a single variable that specifies the position of a
molecule on a long length scale. Note, furthermore, that,
on such long scales, the difference between RC and CM
also disappears. Replacing Qs by R, we approximately
have

∂P s

∂t
=Ds ∂

2P s

∂R2
+

1

6

∑

s′

κss′
(

dss
′

)2 ∂2P s

∂R2

+
∑

s′

(

κss′P s′ − κs′sP s
)

. (A40)

These equations describe both diffusion and relaxation
to the chemical steady state. The latter process, with the
characteristic timescale of the turnover time, is however
much faster than diffusion. Therefore, we can apply the
adiabatic approximation and assume that, locally, the
system is in the steady state. This means that

P s(R, t) = π̄sP (R, t). (A41)

Here π̄s are steady-state occupation probabilities for dif-
ferent chemical states, such that

∑

s′

(

κss′ π̄s′ − κs′sπ̄s
)

= 0 (A42)

and
∑

s

πs = 1. (A43)
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Substituting this into equations (A40) and summing
them over s, an effective diffusion equation for concen-
tration c = N0P of enzymes is obtained,

∂c

∂t
= Deff

∂2c

∂R2
(A44)

where

Deff =
∑

s

Dsπ̄s +
1

6

∑

s,s′

kss
′

(

dss
′

)2

(A45)

and

kss
′

= κss′ π̄s′ (A46)

are reaction rates in the steady state.
To consider diffusion enhancement, we should subtract

the diffusion constant Deq in the equilibrium state from
Deff . Some caution is however needed when choosing
such “equilibrium state”. If the considered reaction is
irreversible, this is obviously the state in absence of the
reaction. In the (more general) case of reversible reac-
tions, this should be the state of chemical equilibrium.
In this latter state, reached at a special choice of sub-
strate concentrations, the reactions still go on, but with
the forward reactions statistically balanced by the reverse
ones. Generally, the equilibrium diffusion constant is

Deq =
∑

s

π̄s
eqD

s +
1

6

∑

s,s′

kss
′

eq

(

dss
′

)2

(A47)

where π̄s
eq and kss

′

eq are occupation probabilities of differ-
ent states and rates of transitions between the states at
(full chemical) equilibrium.
Hence, the non-equilibrium change ∆D = Deff − Deq

in the diffusion constant is

∆D =
∑

s

(

π̄s − π̄s
eq

)

Ds +
1

6

∑

s,s′

(

kss
′

− kss
′

eq

)(

dss
′

)2

.

(A48)

It consists of two parts. First, as a result of a non-
equilibrium reaction, occupation of different states can
change and new states can become occupied. The shapes
of a molecule are generally different in different states s
and, therefore, its diffusion coefficient Ds depends on the
chemical state. Thus, when occupation probabilities π̄s

are modified, this also affects the (mean) diffusion con-
stant of the enzyme.
The second term in equation (A48) represents a con-

tribution from the effects of molecular dancing described
by us. In contrast to the first term, it depends not on
the occupation numbers of various chemical states, but
on the rates kss

′

of transitions between them. It also de-
pends on the magnitudes of the shifts dss′ of the rotation
center in these transitions.
As a simple illustration, we can consider an example

of an irreversible reaction cycle

s0 → s1 → s2 → · · · → sK → s0. (A49)

Here, s0 represents the ligand-free enzyme and the first
transition corresponds to binding of a substrate in this
state. The last transition corresponds to product release,
returning the enzyme to the initial state. In the steady
state of this reaction, the rates of all elementary reactions
are the same; they are equal to the enzyme turnover rate
k. Taking into account that π̄0 = 1 −

∑

m=1,K π̄m and
that, in absence of the reaction, the enzyme can only be
in the state s0, we get

∆D =

K
∑

m=1

(

Ds −D0
)

π̄m +
k

6

K
∑

m=0

(

dm+1,m
)2

(A50)

where the notation dK+1,K = d0,K is used.
If all reaction steps inside the cycle are very fast (as

compared to substrate binding), occupation probabilities
of the states inside the cycle are small (i.e., π̄m ≪ 1).
For such fast enzymes, the dominant contribution to ∆D
comes from the last molecular dancing term, which is
determined solely by the reaction rate.
The excitable dumbbell model of an enzyme, that has

been introduced in Section VI, is described by the reac-
tion cycle (A49) with three states, such that d10 = d21 =
d and d02 = 0. Because the transitions inside the cycle
are fast, we approximately have ∆D = (1/3)kd2 accord-
ing to equation (A50). This coincides with the result (13)
in the limit when rotational diffusion is fast (so that ori-
entational equilibration always takes place between the
next reaction steps).
One can also consider diffusion enhancement in the

model described by the reaction cycle (A49) with two
states s0 and s1. In this case, we have

∆D =
(

D1 −D0
)

π̄1 +
1

3
kd2 (A51)

where d01 = d10 = d and k is the turnover rate.

6. Systems with spatial gradients

So far, it has been assumed that a system is uniform.
Now, we will extend the theory to systems with spatial
gradients. Such gradients typically arise when substrate
concentration varies in space. They may however also be
caused by variation of local reaction parameters, such as
illumination or pH. Moreover, viscosity of a solution can
be also non-uniform, resulting in mobility variation.
Since the system is non-uniform, chemical transition

rates (such as, e.g., the rate of substrate binding) de-
pend on the position of the molecule. We shall consider
only very slow spatial variations of such rates, so that
they do not change significantly on single-molecule length
scales. Then, it is not important which point within a
molecule is chosen to specify the rates. Therefore, for
convenience, we assume below that reaction rates are de-
termined by the RC position before the transition, i.e.
wss′ = wss′ (Qs′).
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In the non-uniform case, master equations (A22) are
replaced by

∂psRC

∂t
= −

∂Hs
α

∂Qs
α

−
∑

i

∂hs
i,α

∂qsi,α

+
∑

s′





∫

wss′ (Qs − dss′ )
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣− rss
′

ij

)

×
∏

k

δ
(

qs
k − qs′

k + dss′
)

ps
′

RC

(

Qs − dss′ , {qs′

k }
)

dNqs′

k

−ws′s(Qs)
∏

i,j

δ
(

∣

∣qs
i − qs

j

∣

∣− rs
′s

ij

)

psRC (Qs, {qs
k})



 .

(A52)

Now, the local steady state depends on the spatial po-
sition, so that the steady-state occupation probabilities
of chemical states are π̄s = π̄s(Qs). However, the equi-
librium conformational distribution ρsRC({q

s
k}) is not af-

fected by the variation of kinetic coefficients; it is still
given by the Boltzmann distribution (A26). Importantly,
this distribution remains isotropic despite the presence
of reaction parameter gradients. The factorization (A29)
continues to hold.
By repeating the above derivation steps, the following

set of coupled evolution equations for probability distri-
butions in different chemical states is obtained:

∂P s
RC

∂t
=

∂

∂Qs
α

[

Ds ∂P
s
RC

∂Qs
α

]

+
1

6

∑

s′

(

dss
′

)2 ∂2(κss′P s′

RC)

(∂Qs′
α )

2

∣

∣

∣

∣

∣

Qs′=Qs

+
∑

s′

[

κss′(Qs′ = Qs)P s′

RC(Q
s′ = Qs)

−κs′s(Qs)P s
RC(Q

s)
]

(A53)

where the local reaction rate constants are

κss′
(

Qs′
)

=wss′
(

Qs′
)

∫

ρs
′

RC

(

{qs′

k }
)

×
∏

i,j

δ
(∣

∣

∣q
s′

i − qs′

j

∣

∣

∣ − rss
′

ij

)

dNqs′

k . (A54)

The last term in equations (A53) describes relaxation
to the local steady state. It vanishes for P s

RC(Q
s) ∝

π̄s(Qs).

On the timescales longer than chemical relaxation
time and on the length scales larger than the charac-
teristic molecular size, the difference between RC and
CM distributions is negligible. By taking P s

RC(Q, t)s ≈
N0π̄

s(Rs)c(R, t) and summing over s, an approximate
eolution equation for the local concentration c of enzymes
in systems with spatial gradients is obtained

∂c

∂t
=

∂

∂R

[

∑

s

Ds ∂

∂R
(π̄sc)

]

+
1

6

∑

s,s′

(

dss
′

)2 ∂2

∂R2

[

κss′ π̄s′c
]

. (A55)
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