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Abstract

Animal groups collaborate with one another throughout their lives to better comprehend their surroundings. Here, we
try to model, using continuous random walks, how the entire process of birth, reproduction, and death might impact
the searching process. We attempt to simulate an ecosystem where the post-reproductive foragers leave their colonies
to discover where the targets are while others stay and breed at the base. Actually, a group of foragers searches for a
location from where they access the targets for food supply. Particularly, we have explored a hypothetical situation in
which the relocation to the new position depends on the agreement level of the species as well as an additional waiting
time due to this agreement level. In this backdrop, detailed numerical results reveal that searching for an optimal
position at an optimal mean time can be captured for a suitable range of the agreement level. We have also shown, for
a given agreement level, the optimal mean time linearly increases with the Death-to-Birth ratio.

Keywords: Foraging, Collective learning

1. Introduction

Many animals rely extensively on learning mecha-
nisms to adapt to their environment. The movement
of animal groupings is primarily motivated by a set of
objectives (mostly food). Many animal species live in
groups and work together to attain goals [1, 2]. On the
other hand, these objectives may be scattered and too
far away from the initial location of the colony. In this
situation, the groups frequently strive to relocate their
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colonies to locations that are close to all of the objec-
tives [3]. Many well-known benefits of socialization in-
clude reduced predation risk and increased sensing and
decision-making abilities while foraging for food in un-
familiar surroundings [4].

For instance, female whales in their reproductive
years lead groups during collective migration in salmon
feeding sites [5]. Leadership by the post-reproductively
old is especially noticeable in tough years with low
salmon abundance. This discovery is significant be-
cause salmon abundance influences both mortality and
reproductive success in resident killer whales [6, 7].
Nest location selection in Leptothorax albipennis has
also been studied previously [8]. Colonies were dis-

Preprint submitted to Chaos, Solitons & Fractals November 7, 2022

ar
X

iv
:2

21
1.

02
42

4v
1 

 [
nl

in
.A

O
] 

 4
 N

ov
 2

02
2



covered to make complex decisions, considering factors
other than the fundamental advantages of each location.
Leadership qualities of individuals have a considerable
impact on the future of a population who help in mak-
ing decisions whether or not to move based on a spe-
cific kind of information they send to the colony [9, 10].
Several scientists have recently suggested that advanced
social insect colonies are higher-order cognitive entities
or supraorganismal systems capable of analyzing con-
ditions and developing adaptive solutions to challenges.
Honeybee foragers collaborate by exchanging informa-
tion about plentiful food sources [11, 12].

Collective learning is suggested to be beneficial for
animal groups. They may make a number of decisions
based on prior accomplishments during foraging, min-
imizing the amount of time spent looking for things
[13, 14, 15, 16]. Markovian random walk models,
which assume foragers have no memory, have proved
useful in determining how specific kinesthetic aware-
ness and resource distribution effect foraging success
[17, 18, 19]. Such models, on the other hand, over-
look the fact that animals repeat specific behaviors and
are unable to account for the impact of previous move-
ment decisions, so it is often of interest to study the
effects of the foragers’ interaction network on collec-
tive learning [20, 21].The information transfer among
the group allows them to learn about the global envi-
ronment. Communication across long range can be ob-
served in many animals such as elephants [22, 23, 24].
We wish to quantify here, by means of uniform Marko-
vian random walks, how the entire process of birth, re-
production, death, and information transfer, which may
be instantaneous, can affect the searching process. The
structure of social networks is likely to be relevant in
such processes since certain individuals are more im-
portant than others(the post-reproductive organisms) for
transmitting information on food locations.

Here, we try to hypothetically recreate an ecological
setup based on a continuous random walk model. Here,
some foragers leave their colonies to learn where tar-
gets are, while others stay and breed at the base. The
colony is then relocated to the most advantageous posi-
tions, where all objectives are within easy reach. Once
the population has reached an ideal position, it can stay
there for the rest of its existence until a new target
emerges. In order to do so, the elders of the community
who lost their potential to reproduce leave the colony
in search of targets. Once a target is reached, it sends
a signal to the colony. Now, the colony must decide
whether or not to relocate to the best site. Some for-
agers agree to relocate, but this may not be enough to
persuade the rest of the group to relocate. As a result,

they try to convince others, which costs time, and this
time acts as a penalty for reaching optimum. The colony
shifts if a certain number of individuals agree. Our tar-
get is to track a suitable set of parameters (agreement
level, penalty time, and Death-to-Birth ratio) in order to
find out the optimal time to reach the final destination.
We have shown that our stochastic simulation, under a
proper choice of agreement level, eventually attains the
centroid. The paper is organized as follows. In the Sec.
2 we have discussed the models, i.e., random movement
of the agents in a finite domain. Related parameters are
also discussed. All the numerical results are discussed
in the Sec. 3. We conclude our results from our intuitive
model in Sec. 4.

2. ENVIRONMENT AND MODEL DESCRIP-
TION

Our model starts with a community of N members
ranging in age randomly chosen from one to hundred,
setting out on their journey of in search of NT target
points in a two-dimensional space limited by [−a,a]×
[−a,a]. The model considers birth, ageing, death and
age-related fertility to be the controlling factors in the
dynamics. However the gender of the individuals has
not been taken into account. Here one simulation step
has been taken to be the time unit of the age of the
members. In addition to the three parameters such as
agreement level (p), birth rate (B), and death rate (D),
we introduce another quantity called penalty factor (λ )
which will be discussed in the description later. The
process begins by generating a square of length δ which
is called Colony. The centre of the colony is uniformly
chosen at random in the 2D space constrained within
[−a/2,a/2]× [−a/2,a/2]. We draw a schematic dia-
gram in Fig. 1. Here, we observe a colony consists of
infant and adult organisms, four targets. This figure in-
form us how colony of organisms shifts based on their
internal interactions.

The initial population of 100 foragers is then ran-
domly positioned inside the colony. Their ages vary
from 1 to 100, i.e., one such forager per age. Because
our model incorporates the processes of birth, aging,
and death, foragers above the age of 100 may emerge.
As time passes, the processes give rise to various age
groups. Now we try to provide a specific role for each
of the three age groups, namely those under the age of
20, those between the ages of 20 and 60, and those ex-
ceeding 60. The foragers under the age of 20 are neither
involved in reproduction nor foraging, foragers with age
in between 20 and 60 are involved in reproduction and
those with age greater than 60 achieve menopause (loses
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Figure 1: Schematic diagram of the process. This plot captures the whole process of our model pictorially. The yellow organisms represent
infants who are unable to reproduce. The adult individuals who can reproduce are represented by blue organisms, whereas the seniors who have
lost their ability to reproduce are represented by grey. As we observe, new infants are being born, and one of the adult organisms ages and loses the
ability to reproduce. The aged individual then departs the colony in search of targets. T1, T2, T3, and T4 are four targets which are indicated by red
star. A forager detects a target when this forager enters the ε neighborhood of any target. Then, it gives information to the colony. As desired, the
colony subsequently updates its location to reach the optimal position marked as a black dot.

the ability to reproduce) leave the colony and set out in
search of targets (for the whales, it is the salmon-rich
areas), as shown in Fig. 1. As the foragers from age 1
to 60 remain in the colony and don’t participate in for-
aging, we call them ’static Foragers’. In this model, we
have tried to fix four target points: T1,T2,T3 and T4.

All the foragers who leave the colony in search of
food follow a rule of movement. While moving, step
size and direction play an important role. While the
step size is fixed at h = 0.1, where h is the step size,
the direction is chosen based on θ where θ is the angle
of movement with respect to the positive x-axis. Here,
θ is uniformly chosen from (−π,π). Therefore, θ ∼
Uniform (−π,π) for each step. Let the position of the
forager be denoted by (Xn,Yn). Then, the motion of for-
ager is described by [28, 29]

Xn+1 = Xn +hv0 cos(θn) (1)
Yn+1 = Yn +hv0 sin(θn) (2)

The explicit distribution for cos(θn) and sin(θn) can be

determined. Let, ∆Xn = Xn+1−Xn and ∆Yn =Yn+1−Yn,[
∆Xn
∆Yn

]
=

[
hv0 cosθn
hv0 sinθn

]
. (3)

Because θn ∼Uniform(−π,π), so the distribution func-
tion of ∆Xn and ∆Yn are,

F∆Xn(x) =
1
2
+

arcsin x
hv0

π

F∆Yn(y) =
1
2
+

arcsin y
hv0

π
.

(4)

This shows that ∆Xn ∼ ∆Yn, i.e. ∆Xn and ∆Yn are identi-
cally distributed. Moreover, this brings out that the walk
taken by the species is isotropic in nature.

As already discussed, the space of movement is re-
stricted. As the foragers move, they may hit the bound-
ary multiple times. As seen in Fig. 2, whenever a for-
ager comes in contact with a boundary in its path, it
is reflected inside the bounded region. At the time of
reflection, the orientation of the particle also changes
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Figure 2: Reflective boundary condition. When the forager encoun-
ters the boundary in its path, it is reflected inside the bounded region.
At the time of reflection, the forager moves the remaining distance
along the direction of reflection.

along the direction of reflection. Such conditions are
often suitable due to the availability of finite space.
This, we call as the Reflective Condition in our model
[25, 26, 27]. This is all about the movement of foragers.

Besides the process of foraging, the birth and death
of foragers also play an important role in the process.
The static-foragers with ages between 20 and 60 are
taken to be capable of reproducing. Let the number of
new foragers produced at n-th step be Xn. Then we as-
sume that Xn ∼ Poisson(µ) where µ = mB, where m
is the number of foragers who are capable of reproduc-
ing at that time step 1. The foragers’ birth process has
been purposefully intended to be Poisson(mB). Now,
we are going to reason behind the selection of Poisson
distribution. Let us assume that the number of mating
processes in the colony be ml, and l is constant. Each
of these processes has the potential to either produce
a new forager or fail. Let r be the success probabil-
ity. As a result, the number of people created follows
the Binomial(ml,r) distribution. Now, this is approxi-
mated with the Poisson(mB) distribution (as the num-
ber of mating processes will be quite large compared to
successes), where B = lr is the birth rate assumed to be
constant for a population.

Another factor Death rate (D) determines the proba-
bility of death of each foragers at a particular time step.
The probability of death of a forager is defined to be
1− e−Dk, where k is the age of the individual. A for-
ager’s vulnerability to mortality rises as he or she grows

1Note: The position of new foragers are generated randomly inside
the colony.

older. As a result, a forager’s chances of dying grow
fast. As a result, a model option was chosen such that
foragers die out with a probability of 1− e−Dk. If Y
denotes the random variable that a forager dies, then
Y ∼ Bernoulli(1− e−Dk). So, we get two expressions
of probability mass functions associated with birth and
death processes as follows,

P(Xn = x) =
eµ µx

x!
, where µ = mB, x ∈ N

P(Y = y) = (1− e−Dk)ye−Dk(1−y), where y ∈ {0,1}.
(5)

While these processes are going on, the foragers mov-
ing in search of food may sometimes come close to the
target points. How close the forager is to the target de-
termines whether the target is achieved or not. We con-
sider that a target point is reached if one of the foragers
is at a distance lesser than ε = 0.01 from the target.

Now, we construct a moving network because each
time step foragers change its position (here, a forager is
considered as a node). Of course, they are connected
in different ways, like through agreement or communi-
cating information to shift the colony. So, this Commu-
nication network is implemented among the foragers in
our model in the following ways. When the foragers
who moved out of the colony in search of food finds a
target point, the information about the location of the
achieved target point is passed on to the colony. Now
for each simulation, we fix the agreement level (p). As
in Fig. 1, we can see that after getting the information,
if at least p fraction (0≤ p≤ 1) of the static-foragers in
the colony agree instantly, the colony will move, and the
likelihood of this happening is (1− p). As a result, there
are at most (1− p) fraction of the members who did not
agree to relocate immediately. Now because the popu-
lation’s goal is to stay together and attain an ideal po-
sition from where food supplies are conveniently avail-
able, which would eventually benefit their subsequent
generations, the static-foragers who had consented to
migrate instantly begin convincing the rest of the for-
agers. This is when we introduce a penalty factor using
a new parameter λ , as the static-foragers who already
agreed to discuss with others in the colony in order to
convince them to move. This will take some time, say
τ and we assume that this convincing time to be

( e
ep

)λ .
So we can write

τ = τ0e(1−p)λ (6)

where, we set τ0 = 1 and −∞ < λ < ∞. The factor
(1− p) ≥ 0 makes 0 < τ < ∞. This means minimum
time (τ ≈ 0) is required to convince when λ →−∞ and
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Figure 3: Initial and final position of the colony. There are 4 targets
(T1,T2,T3, and T4) marked as Green crosses. The starting point of the
centroid of the colony is marked as 0 and the ending point of the cen-
troid of it is 4. Position 1 is the first position of the centroid where
the colony moves. Position 4 is the best place for the colony to stay
until a new target appears. The green dots represent the initial posi-
tion. The orange dots represent the position when the foragers find T1.
The red dots represent the position at which the foragers discovered
T2. Pink dots denote the position of foragers when they see target T3.
And lastly when they discover the last target T4, the position of the
foragers is denoted by purple.

maximum time is required for λ → ∞. Like birth rate
and death rate, agreement level (p) and λ are also fixed
for a particular simulation.

When the discussion ends and the foragers admit to
leaving the current location, the colony shifts to the cen-
troid of the already searched targets. This is the point
from where the sum of the square of the distances from
the already found targets is the least. We draw a diagram
in Fig. 3 where we demonstrate the movement of colony
in two dimensional space. Here the target positions are
at (xi,yi) (where, i= 1,2,3,4) and denoted by T1, T2, T3,
and T4. The targets are marked with green crosses. The
entire population starts from a region whose centroid is
rest at the position 0. When, a forager has reached the
first target (T1), then the centroid shifts to the position1.
The centroid follows the path: 1→ 2→ 3→ 4 when any
one of the foragers reaches the targets T1, T2, T3, and T4,
respectively. Our objective is to find the Optimal posi-
tion for an Optimal time, in presence of agreement level
and penalty time. The detailed numerical results are de-
scribed in the next section 3. Note that, the trajectory of

Figure 4: Variation of mean time against agreement level. The
mean time is plotted along ordinate, while the degree of agreement
is depicted along abscissa, which spans from 0 to 1 while fixing
D/B=0.00004. The three colors show the three different curves for
different λ ’s. A logarithmic trend line is fitted through the data for
λ =−∞ case with an R2 value of 97.97%. The equation of the line is
denoted in the figure.

the colony movement from initial to final is not unique
and it varies from one numerical experiment to another.
We have numerically shown that the orientation of the
colony movement does not alter the final optimal posi-
tion, and optimal time does not have strong fluctuations.
In this way, the colony ultimately achieves an Optimal
position at the end of the search process, and our numer-
ical experiment terminates.

3. Results

While simulating, we tried to alter various factors
like the ratio of the death rate to birth rate, p and λ ,
which gave the following results.

If T be the required time taken to reach the optimal
position for a trial, we calculate mean time 〈T 〉 over
10000 times numerical experiments. First, we try to
find a variation of mean time 〈T 〉 required in order
to achieve the optimal position with respect to the
agreement level (p), keeping the penalty factor λ and
β (= D/B) fixed and this variation is depicted in Fig. 4.
It is evident from this figure that λ = −∞ with p = 0
gives the least possible mean time as we neither require
anyone to agree nor they require any time to discuss
in order to move. It is as if at p = 0 and λ = −∞,
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Figure 5: Mean time versus Death-to-Birth ratio. The blue points
represents λ is 0, whereas the orange graph represents λ is 0.5 and
the grey graph represents λ is 0.9. The agreement level is fixed at
0.6, and three linear lines have also been fitted to the data with slopes
7×106,4×106,2×106 respectively.

the colony is under compulsion to move as soon as it
receives information. The minima for different values
of λ ’s appearing at different places are nevertheless
greater in magnitude than that obtained for λ = −∞.
Our physical perception is that it will take more time to
convince more foragers and less time to convince fewer
foragers. But, the figure clearly shows that for λ equals
7 and 8, the mean time decreases almost exponentially
w.ith respect to p achieving a minima somewhere
between 0 and 1 and then after a certain value of p,
the mean time again increases. At λ = −∞, whenever
p fraction of the foragers agree to move instantly, the
rest have to agree instantly, and there will be no time
for convincing them. At λ −−∞, we see a monotone
increase in mean time 〈T 〉 against p. At λ = −∞ and
7, the maximum mean time is when p = 1 whereas
for λ = 8, the maxima is achieved at p = 0. Fixing
λ = −∞, the mean time 〈T 〉 keeps on decreasing and
achieves minima at p = 0. Moreover, slight fluctuations
can be seen at λ =−∞ (blue curve). However, it should
have been less than the other curves as there is hardly
any time spent convincing the foragers who initially
didn’t agree to move when the colony received the
information.

Figure 5 depicts the variation of mean time (〈T 〉) with
respect to the ratio of Death Rate to Birth Rate, setting
Penalty factor λ to be 0.0, 0.5, and 0.9 fixing the agree-
ment level (p). The ratio on the x-axis ranges from 0
to 0.0004, with a typical time of 1000 to 6000 in the
Y-axis. At each values of λ , the graph shows a nearly

Figure 6: Mean time with variation of p and λ . A contour plot of
mean time as a function of p and λ , i.e., 〈T 〉= f (p,λ ).

identical fluctuation in 〈T 〉 in relation to the ratio. The
graph shows an increasing linear trend in 〈T 〉 as the ra-
tio of death to birth is increased. The graph also shows
that the 〈T 〉 for λ = 0.9 is greater than that for λ = 0.5
at all values of Death to Birth ratio. Similarly, 〈T 〉 for
λ = 0.5 is greater than that for λ = 0 at all values. Later
examination showed that the regression lines have R2

accuracy of 94.3%,94.92%,95.12% respectively. It is
also clear from the graph that the slopes of the fitted
line at λ = 0.9 is greater than that of the fitted line at
λ = 0.5, which is again greater than the slope of the
fitted line at λ = 0. Therefore, the rate of increase of
〈T 〉 against (D/B) at λ = 0.9 is greater than that of the
rate of increase of 〈T 〉 against (D/B) at λ = 0.5, which
is again greater than the rate of increase of 〈T 〉 against
(D/B) at λ = 0.

Figure 6 is a contour plot which depicts the variation
of 〈T 〉 with respect to the variation of p and λ simul-
taneously. The contour plot also displays an intriguing
model concept. There is a kink in the line λ = 6.5, as
seen. This demonstrates that the time spent in making a
decision is so minimal that it barely hinders the process
of getting to the best position. Moreover, The contour
shows that for values of p between 0 and 0.8 and for
most of the values of λ , mean time required is less than
2000. There is no value of λ for which mean time is
lesser than 4000 for p ∈ (0.9,1). Thus when agreement
is 100%, for all values of the penalty factor, the mean
time taken always remains higher than 4000.

4. Discussion

As we already know that foraging is the process of
looking for food resources. It has an impact on an an-
imal’s fitness since it is crucial to an animal’s capacity
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to live and reproduce. To understand foraging, behav-
ioral ecologists utilize economic models and categories;
many of these models are optimal models. Thus, for-
aging theory is explained in maximizing a foraging de-
cision’s reward. Many of these models’ payout is the
amount of energy the animal obtains per unit of time,
especially the highest ratio of energetic gain to cost dur-
ing foraging.

Foraging can be categorized into two main types. The
first is solitary foraging when animals forage by them-
selves. The second is group foraging. Group foraging
includes when animals can be seen foraging together,
when it is beneficial for them to do so, and when it is
detrimental for them to do so. The fundamental goal
of this work is to build a model in which we attempt
to include group foraging, which is advantageous most
of the time, particularly when there is no rivalry among
the species. And in our model, we expect it to be this
because there is no competition, and therefore we strive
to build an optimum technique for obtaining the optimal
position in the shortest amount of time.

It is always our physical experience that when the
amount of agreement is high, the required time is re-
duced. However, the penalty factor is crucial in a pop-
ulation model like the one we attempted to create. For
each penalty factor, we find some ideal agreement level
where the time required is smaller and which is not al-
ways the 100% agreement level. For some values of
penalty factor, we even get non-monotonous behavior in
the mean time with a rise in agreement level, with min-
ima in between and subsequently an increase. When
the amount of agreement is low, i.e., p is near 0, the
colony is more likely to spend more time at the initial
site depending on the value λ takes. This inherent delay
accumulates, resulting in a substantially longer period
to attain an ideal posture. When the p is near 1, how-
ever, it takes significantly longer to discuss, delaying
the process of finding an ideal site. Therefore, there are
some optimal strategies to obtain the optimal position
depending on the value of the penalty factor (λ ).

Then, our emphasis changes to determine the best
approach depending on the Death-to-Birth ratio (β ).
When the penalty factor is set to 0,0.5, and 0.9, the
mean time varies almost linearly for Death-to-Birth ra-
tio (β )’s ranging from 0 to 0.004. For all λ values, the
mean time increases approximately linearly and reaches
a maximum when the ratio is equal to 0.0004. We also
see that the mean time taken to obtain the optimal posi-
tion at λ = 0.9 is greater than mean time at λ = 0.1 is
greater than mean time at λ = 0. This suggests that in-
creasing the penalty factor value can increase the mean
time required. When other criteria such as agreement

level (p), Death-to-Birth ratio (D/B), and penalty factor
(λ ) are held constant, a lower penalty factor is preferred.
We also come to know that for the values of penalty fac-
tor taking between 0 and 8, the mean time for agreement
level close to 1 remains greater than 6000. But there are
also agreement levels that take even lesser than 3000
to reach the optimal position. This is a clear indica-
tion of the fact that there is a better strategy to achieve
the optimal position in minimum time. Thus, altering
one parameter while holding the others constant always
yields an optimum approach. Using these strategies, we
can reduce the time of achieving the optimal position,
which will be ultimately beneficial for the population.

The future aspect of this type of research is reducing
the time spent searching for targets when drones are uti-
lized. One of the most critical responsibilities in drone
operations is finding a target rapidly. Rapid target de-
tection is very important for jobs like detecting rescue
victims during the golden period, monitoring the envi-
ronment, detecting military sites, and monitoring natu-
ral catastrophes.
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Appendix

Hence, the population becomes random depending on
the birth and death rates fixed for a particular simula-
tion. Let us define some random variables which will
help us measure the population growth of the foragers.

Zn := No. of foragers at nth step

χn,k := No. of foragers at nth step of age k

χn := {χn,k}∞
k=1i.e., a sequence of χn,k

Yn,k := No. of foragers of age k who dies at nth step
∀ k ∈ N

(7)
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The distributions of these random variables depend
on the previous step. However, the conditional distribu-
tion can be determined. The distribution of χn+1,1|χn is
given by Poisson distribution with parameter µ = mB,
where B is the Birth rate, and m is the number of for-
agers who are capable of reproducing. Hence, m =

∑
60
k=20 χn,k foragers are aged between 20 and 60, there-

fore can reproduce. On the other hand, each of the for-
agers of age k can die with probability 1−e−Dk. Hence,
the number of foragers dying in a particular age group is
given my Binomial with χn,k as the number of foragers
(by definition). This is described as below

χn+1,1|χn ∼ Poisson(B(
60

∑
k=20

χn,k))

Yn,k|χn ∼ Binomial(χn,k,1− e−Dk)

(8)

The definitions of the random variables give rise to
some useful relations. The number of foragers of age
k in (n+ 1)th step is given by the foragers who were
of age k− 1 in nth and then removing those who died
in the previous step. This relation also expresses the
conditional expectation with respect to χn,k−1.

χn+1,k = χn,k−1−Yn,k−1

E[χn+1,k|χn] = E[χn,k−1−Yn,k−1|χn]

= E[χn,k−1|χn]−E[Yn,k−1|χn]

= χn,k−1−χn,k−1(1− e−D(k−1))

= χn,k−1e−D(k−1)

(9)

The total number of foragers in the (n+1)th step,Zn+1 is
given by sum of χn,k over all age groups. Conditioning
on χn we can get the conditional expectation of Zn+1 as
shown in Eq. 10.

Zn+1 =
∞

∑
k=1

χn+1,k

E[Zn+1|χn] =
∞

∑
k=1

E[χn+1,k|χn]

= E[χn+1,1|χn]+
∞

∑
k=2

χn,k−1e−D(k−1)

= B(
60

∑
k=20

χn,k)+
∞

∑
k=2

χn,k−1e−D(k−1)

(10)

The Eq. 10 shows that once the χn,k = 0 ∀k≤ 60, then
no more foragers are born neither any of the foragers
with the ability to reproduce are left. In that case the old
foragers perish as time grows, which is evident from
the factor of e−D(k−1) which tends to 0 as k increases.

This phenomena where the species die out on long run
is defined to be Population Collapse. Such a phenomena
is highly criticized as it is not beneficial for the species
to survive.
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