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ABSTRACT

In this paper, we calibrate the Amati relation (the Ep-Eiso correlation) of gamma-ray bursts (GRBs)

in a cosmology-independent way. By using Gaussian process to reconstruct the smoothed luminosity

distance from the Pantheon type Ia supernovae (SNe Ia) sample, we utilize the reconstructed results to

calibrate the Ep-Eiso correlation with the Markov Chain Monte Carlo method and construct a Hubble

diagram with the A220 GRB data, in which there are A118 GRB data with the higher qualities

appropriate for cosmological purposes. With 98 GRBs at 1.4 < z ≤ 8.2 in the A118 sample and

the observed Hubble data, we obtain Ωm=0.346+0.048
−0.069, h=0.677+0.029

−0.029 for the flat ΛCDM model, and

Ωm=0.314+0.072
−0.055, h=0.705+0.055

−0.069, w=−1.23+0.33
−0.64 for the flat wCDM model, which are consistent with

those from fitting the coefficients of the Amati relation and the cosmological parameters simultaneously.

1. INTRODUCTION

Observations of type Ia supernovae (SNe Ia) provide a powerful probe in modern cosmology, from which the

accelerated expansion of the universe has been found (Riess et al. 1998; Perlmutter et al. 1999). The maximum

redshift observed by SNe Ia is about z ∼ 2.3 (Scolnic et al. 2018). Thus, to explore the cosmic evolution at the high-

redshift region requires observing more luminous objects than SNe Ia. Gamma-ray bursts (GRBs) are the strongest

bursts of high-energy gamma rays from cosmological space in a short time, which are the most intense explosions

observed so far. At present, the maximum redshift of the GRB can reach at z = 9.4 (Cucchiara et al. 2011).

Therefore, GRBs can be used to probe the universe at the high redshift. Utilizing GRB in cosmology requires

its luminosity relations, which are connections between measurable properties of the instantaneous gamma-ray

emission and the luminosity or energy. Several empirical GRB luminosity relations have been proposed (Fenimore

& Ramirez-Ruiz 2000; Norris et al. 2000; Amati et al. 2002; Ghirlanda et al. 2004a; Yonetoku et al. 2004; Liang &

Zhang 2005; Firmani et al. 2006; Dainotti et al. 2008; Yu, Qi & Lu 2009; Tsutsui et al. 2009a; Izzo et al. 2015), see

e.g., Ghirlanda et al. (2006), and Schaefer (2007) for reviews. According to these relations, the GRBs have been

used as the cosmic probe for researching the evolving history of our universe and the properties of dark energy

(Ghirlanda et al. 2004b; Dai et al. 2004; Firmani et al. 2005; Xu et al. 2005; Liang & Zhang 2006; Wang & Dai

2006; Schaefer 2007). For recent reviews of GRB luminosity relations and their applications in cosmology, see e.g.

Wang et al. (2015), Dainotti & Del Vecchio (2017) and Dainotti & Amati (2018).

In the early cosmological research works of GRBs, a certain cosmological model was assumed to calibrate the

GRB luminosity relation (Schaefer 2003; Dai et al. 2004; Schaefer 2007). When using these model-dependent GRB

data to constrain the cosmological model, it suffers the so-called circularity problem (Ghirlanda et al. 2006). In

order to avoid this circularity problem in the application of GRBs in cosmology, the simultaneous fitting method

has been proposed (Amati et al. 2008; Li et al. 2008; Wang 2008), in which the coefficients of relations and the

parameters of the cosmological model are constrained simultaneously. However, the circularity problem cannot be

circumvented completely by means of statistical approaches, because a particular cosmological model is required in

doing the joint fitting. Recently, Khadka & Ratra (2020) fitted simultaneously the cosmological and GRB relation
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parameters in a number of different cosmological models, and found that the Amati relation parameters are almost

identical in all cosmological models, which seems to indicate that these GRB data sets are standardizable within

the error bars.

On the other hand, Liang et al. (2008) proposed a cosmological model-independent method to calibrate the

luminosity relations of GRBs by using the SNe Ia data. It is obvious that objects at the same redshift should have

the same luminosity distance in any cosmology. Therefore, in the same sense as using Cepheid variables to calibrate

SNe Ia, if regarding SNe Ia as the first-order standard candles, GRBs can be calibrated from SNe Ia in a completely

cosmological model-independent way. The luminosity distances at the redshift of the low-redshift GRB data can

be derived by interpolating the SNe Ia data directly, and then the values of the coefficients of the GRB luminosity

relation can be obtained from these low-redshift GRB data. Extrapolating these results on the high-redshift GRB

data can build the GRB Hubble diagram. Thus, the standard Hubble diagram method can be used to constrain

the cosmological model (Capozziello & Izzo 2008, 2009; Izzo et al. 2009; Wei & Zhang 2009; Wei 2010; Liang et

al. 2010, 2011; Freitas et al. 2011; Wang et al. 2011; Wei 2015; Wang et al. 2016). Similar to the interpolation

method, GRBs are calibrated from the SNe Ia by using the polynomial fitting (Kodama et al. 2008; Tsutsui et al.

2009b), an iterative procedure (Liang & Zhang 2008), the local regression (Cardone et al. 2009, 2011; Demianski

& Piedipalumbo 2011; Demianski et al. 2011, 2017a), the cosmography methods 1(Capozziello & Izzo 2010; Wang

& Dai 2011; Gao et al. 2012; Wang & Wang 2014), a two-steps method minimizing the use of SNe Ia (Izzo et al.

2015; Muccino et al. 2021), and the Padé approximation method (Liu & Wei 2015).

A Gaussian process is a fully Bayesian approach for smoothing data, which can effectively reduce the errors of

reconstructed results compared to the approaches mentioned in the above. In recent years, a Gaussian process

method has been widely applied to the field of cosmology and astrophysics (Seikel et al. 2012a,b; Busti et al. 2014;

Yu & Wang 2016; Yu et al. 2018; Lin et al. 2018; Wei 2018; Pan et al. 2020; Sun et al. 2021; Avila et al. 2022). For

examples, Seikel et al. (2012a) used a Gaussian process to reconstruct the luminosity distance with its derivatives

and the dark energy dynamics from SNe Ia. Lin et al. (2018) constrained the distance duality relation with the

Gaussian process from SNe Ia, galaxy clusters, and baryon acoustic oscillations. Sun et al. (2021) investigated the

influence of the bounds of the hyperparameters on the reconstruction of the Hubble constant with the Gaussian

process.

The Amati relation (Amati et al. 2002), which connects the spectral peak energy and the isotropic equivalent

radiated energy (the Ep-Eiso correlation) of GRBs, has been widely used in GRB cosmology (Amati et al. 2008; Wei

& Zhang 2009; Demianski & Piedipalumbo 2011; Demianski et al. 2011, 2017a,b; Liu & Wei 2015; Feng & Li 2016).

Wei (2010) calibrated 109 GRBs with the Amati relation, using the cosmology-independent calibration method

proposed by Liang et al. (2008).Wang et al. (2016) used two model-independent methods to standardize the Amati

relation with 151 GRB data (including the update 42 GRBs). Recently, Amati et al. (2019) proposed another

similar cosmological model-independent method to calibrate the Amati relation by using the observed Hubble data

(OHD) through the Bézier polynomial, and built up a new data set consisting of 193 GRBs (with firmly measured

redshift and spectral parameters taken from Demianski et al. (2017a) and references therein). Fana Dirirsa et al.

(2019) found that the Amati relation is satisfied by the 25 Fermi GRB sample. For comparisons, the authors also

use a sample of 94 GRBs selected from 151 GRBs analyzed by Wang et al. (2016). For recent works that used the

Amati relation for the application in cosmology, see, e.g. Wang & Wang (2019); Khadka & Ratra (2020); Shirokov et

al. (2020); Demianski et al. (2021); Montiel et al. (2021); Tang et al. (2021); Luongo & Muccino (2021a,b); Khadka

et al. (2021); Cao et al. (2021); Cao & Ratra (2022); Gowri & Shantanu (2022); Jia et al. (2022), and Muccino,

Luongo & Jain (2022).

More recently, Khadka et al. (2021) used the Amati relation and the Combo-correlated GRB data sets2 to

simultaneously derive the correlation and cosmological model parameter constraints. For the Amati relation, the

authors compile a data set of 118 bursts (the A118 sample), including recent Fermi observations samples from

the total 220 GRBs (the A220 sample) with the smallest intrinsic dispersion, which is suitable for constraining

cosmological parameters. With the A220 and the A118 GRB samples, Cao et al. (2022a,b) have used the Amati

relation in conjunction with the Dainotti-correlated GRB data sets3 compiled recently by Hu et al. (2021) and

1 Model-independent techniques to calibrate GRB correlations have been investigated in the field of cosmography (see, e.g. Luongo &
Muccino (2020)). The results look similar to those here presented, which are reasonable and interesting. Moreover, the cosmographic
technique has been wildly used by several approaches in pure cosmology to investigate the expansion history of the universe (see, e.g.
Aviles et al. (2012); Gruber & Luongo (2014); Dunsby & Luongo (2016); Capozziello, D’Agostino, & Luongo (2018) ).

2 The Combo relation (Izzo et al. 2015) is an hybrid correlation involving prompt and afterglow GRB parameters (i.e., the plateau
luminosity L0, the rest-frame duration τ , and the late power-law decay index α) with a small data scatter, which has been investigated
by Muccino et al. (2021); Luongo & Muccino (2021a) and Tang et al. (2022).

3 The Dainotti relation (Dainotti et al. 2008) between the plateau luminosity (L0) and the end time of the plateau in X-ray afterglows
(tb) have been used for cosmological purposes (Hu et al. 2021; Wang et al. 2022; Cao et al. 2022a,b; Dainotti et al. 2022a,b,c). The
similar relations with the plateau in the X-ray afterglows have been used in Xu et al. (2021).
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Wang et al. (2022) to constrain cosmological model parameters; Liu et al. (2022a,b) have proposed the improved

Amati relations, which contains a redshift-dependent term, via a powerful statistical tool called copula.

In this paper, we plan to use the Gaussian process to reconstruct the luminosity distance from the Pantheon SNe

Ia sample (Scolnic et al. 2018), without assuming any specific form of the distance-redshift relation of SNe Ia, and

then calibrate the Amati relation with the total 220 GRB samples and the A118 sample (Khadka et al. 2021) to

obtain the GRB Hubble diagram at the high redshift. With 98 GRB data at 1.4 < z ≤ 8.2 in the A118 sample and

the OHD, we constrain the ΛCDM model and wCDM model in flat space. Finally, we also use GRB data sets to

constrain the cosmological models and GRB relation parameters simultaneously.

2. GRB HUBBLE DIAGRAM FROM LOW-REDSHIFT CALIBRATION

2.1. GRBs calibration with the Amati relation at z < 1.4

The Gaussian process can reconstruct effectively a smooth function from the discrete data points without assuming

explicit fitting forms of the function. In the Gaussian process, the reconstructed function is a Gaussian random

variable at a reconstructed point, which is completely confirmed by its mean function and covariance function.

The function values f(z) are correlated by a covariance function k(z, z̃) to characterize the connection between

the function values at different reconstructed points (Seikel et al. 2012a). There are a lot of covariance functions

available that we can choose. The advantage of the squared exponential covariance function is that it is infinitely

differentiable, which is useful for reconstructing the derivative of a function (Seikel et al. 2012a). The squared

exponential covariance function is given by

k(z, z̃) = σ2
f exp

[
− (z − z̃)2

2l2

]
. (1)

The hyperparameter σf , which determines the typical change of f(z), and l, which determines the length in the

z-direction, can be optimized by maximizing the marginal likelihood.

We use public python package GaPP4 to calibrate the GRB relation from the SNe Ia. For the GRB data set, we

use the total 220 GRB data (A220)5 including the recent Fermi observations (Khadka et al. 2021), as well as the

higher-quality 118 data set (A118)6 with a tighter intrinsic scatter. For SNe Ia data sets, we use the Pantheon

sample (Scolnic et al. 2018), which contained 1048 SNe Ia data points with the apparent magnitude. The distance

modulus relates to the luminosity distance dL through µ = m − M = 5log10( dL
Mpc ) + 25, where m and M are

the apparent magnitude and the absolute magnitude, respectively. In this procedure, we reconstruct the apparent

magnitude of GRBs from SNe Ia. The apparent magnitudes reconstructed from the Gaussian process with the 1σ

uncertainty from SNe Ia data are plotted in Figure 1.

We find that the reconstructed function presents strange oscillations with a large uncertainty in the range where

data points are sparse at 1.4 ≤ z ≤ 2.3. Thus, the lack of SNe Ia at z ≥ 1.4 in the GaPP procedure will produce the

limits of Gaussian processes, which may affect the overall analysis of data comparisons. However, after removing

SNe Ia data at 1.4 ≤ z ≤ 2.3, we find that the apparent magnitudes reconstructed from SNe Ia data at z < 1.4

are almost identical with those reconstructed from SNe Ia data at z ≤ 2.3. This indicates that this limitation does

not affect the reconstructed results in the redshift region z < 1.4, which can be seen in Figure 1. Therefore we can

use the luminosity distance reconstructing from SNe Ia at z < 2.3 to calibrate the Amati relation with 79 GRBs of

A220 and 20 GRBs of A118 at z < 1.4.

The Amati relation can be expressed as

y = a+ bx, (2)

where y = log10
Eiso

1erg , x = log10
Ep

300keV , Ep and Eiso are the spectral peak energy and the isotropic equivalent

radiated energy, and a and b are free coefficients needing to be calibrated from the observed data. Eiso and Ep can

be calculated through

Eiso = 4πd2
L(z)Sbolo(1 + z)−1, Ep = Eobs

p (1 + z), (3)

where Eobs
p and Sbolo are the GRB spectral peak energy and bolometric fluence, which are the observables.

4 https://github.com/astrobengaly/GaPP
5 The A220 data set is composed of 220 long GRBs (Khadka et al. 2021), including A118 data sets, as well as 102 data sets (A102) from

193 GRBs analyzed by Amati et al. (2019) and Demianski et al. (2017a), which have not already been included in the A118 sample.
6 The A118 data set is composed of 118 long GRBs (Khadka et al. 2021), including 25 long GRBs with Fermi-GBM/LAT data and

well-constrained spectral properties (Fana Dirirsa et al. 2019), as well as 93 bursts updated from a sample of 94 GRBs (with GRB
020127 removed because its redshift is not secure) selected from 151 GRBs analyzed by Wang et al. (2016).

https://github.com/astrobengaly/GaPP
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Figure 1. The apparent magnitudes reconstructed through the Gaussian process from SNe Ia data at z ≤ 2.3 (left panel),
and those reconstructed from SNe Ia data at z < 1.4 (right panel). The blue curves present the reconstructed function
with the 1σ uncertainty from the SNe Ia data (red dots). The apparent magnitudes of GRBs at z < 1.4 (black dots) are
reconstructed from SNe Ia through the Gaussian process. The dashed line denotes z = 1.4.

We determine the parameters of the Amati relation from the GRB sample at z < 1.4, which are shown in Figure. 1,

by using the method of the likelihood function (D’Agostini 2005)

L(σ, a, b,M) ∝
N1∏
i=1

1

σ2
× exp

[
− [yi − y(xi, zi; a, b,M)]2

2σ2

]
. (4)

Here N1 = 79 or 20 denotes the number of low-redshift GRBs in A220 or A118 data sets, σ =
√
σ2

int + σ2
y,i + b2σ2

x,i,

σint is the intrinsic scatter of GRBs, σy = 1
ln10

σEiso

Eiso
, σx = 1

ln10

σEp

Ep
, σEp

is the error magnitude of the spectral

peak energy, and σEiso = 4πd2
LσSbolo

(1 + z)−1 is the error magnitude of isotropic equivalent radiated energy, where

σSbolo
is the error magnitude of bolometric fluence.

We use the python package emcee (Foreman-Mackey et al. 2013), which is optimized on the basis of the Metropolis-

Hastings algorithm, to implement Markov Chain Monte Carlo (MCMC) numerical fitting method. The absolute

magnitude M of SNe Ia should be fitted simultaneously with the calibration parameters a and b.7 The number of

points that have been used in each emcee procedure is 8000. The calibrated results are summarized in Table 1,

and plotted in Figure 2. We find that the values of absolute magnitude with the A220 GRB data set and the A118

GRB data set are almost the same (M = −19.50+1.40
−1.40). The results of the intercept a with the A220 GRB data set

are well consistent at 1σ with the A118 GRB data set, while the difference of the slope b between A220 and A118

is very significant. Moreover, the value of the 1σ uncertainty of the slope b in A220 is smaller than that in A118,

which is attributed to the number of calibrated GRBs in A220 (79 GRBs) and this is apparently larger than the one

in A118 (20 GRBs). Furthermore, the value of the 1σ uncertainty of the slope b in the A220 and A118 data sets is

smaller than that obtained in Liu et al. (2022b)(b = 1.290+0.126
−0.126 in A220, and b = 0.99+0.205

−0.205 in A118, respectively),

by the linear interpolation from SNe Ia with setting M = −19.36 as a constant. The intrinsic scatter σint from the

A118 GRB data set is smaller than the one from the A220 GRB data set. This character agrees with the results

obtained in Khadka et al. (2021), which indicate that the A118 data set is a higher-quality one compared to the

A220 data set.

Table 1. Calibration Results (a and b) of the Amati Relation at z < 1.4 and the absolute magnitude M of the Pantheon
sample fitted by emcee with A220 and A118 GRB Data Sets with the 1σ Uncertainty.

Data Sets a b σint M

A220 (79 GRBs) 52.77+0.58
−0.58 1.298+0.090

−0.080 0.521+0.027
−0.034 −19.50+1.40

−1.40

A118 (20 GRBs) 52.93+0.58
−0.58 1.01+0.14

−0.14 0.466+0.046
−0.063 −19.50+1.40

−1.40

7 In the calibration procedure, it is inappropriate to directly use the distance moduli of SNe Ia samples since the absolute magnitude M
is unknown.
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Figure 2. Calibration results (a and b) of the Amati relation at z < 1.4 and the absolute magnitude M of the Pantheon
sample fitted by emcee with GRB data A220 (left panel) and A118 (right panel), respectively.

2.2. GRB Hubble diagram

Extrapolating the results from the low-redshift GRBs to the high-redshift ones, we are able to obtain the energy

(Eiso) of each burst at high redshift (z > 1.4). Therefore, the luminosity distance (dL) can be derived. Then, we

obtain the GRB Hubble diagram with the A219 sample8 and A118 sample, which are plotted in Figure 3. The

derived distance moduli of 140 GRBs (A219) and 98 GRBs (A118) at 1.4 < z ≤ 8.2 are listed in the Appendix.

The uncertainty of the GRB distance modulus with the Amati relation is

σ2
µ =

(
5

2
σ

log
Eiso
1erg

)2

+

(
5

2ln10

σSbolo

Sbolo

)2

, (5)

where

σ2

log
Eiso
1erg

= σ2
int +

(
b

ln10

σEp

Ep

)2

+
∑(

∂y(x; θc)

∂θi

)2

Cii . (6)

Here θc={σint, a, b}, and Cii means the diagonal element of the covariance matrix of these fitting coefficients.

Figure 3. GRB Hubble diagram with the A219 sample (left panel) and the A118 sample (right panel). The GRBs at z < 1.4
are obtained by Guassian process from SNe Ia data (purple dots), and the GRBs at z > 1.4 (blue dots) are obtained with
the Amati relation calibrated with the sample at z < 1.4. The solid green curve is the CMB standard distance modulus with
H0 = 67.36 km s−1Mpc−1, Ωm=0.315 (Plank Collaboration 2020), and the green long dotted curve is the SNIa standard
distance modulus with H0 = 74.3 km s−1Mpc−1, Ωm=0.298 (Scolnic et al. 2018). The black dashed line denotes z = 1.4.

8 We remove one point GRB 051109A in the A220 (A102) sample (Khadka et al. 2021) to obtain the A219 sample, in which 140 GRBs
at 1.4 < z ≤ 8.2 (see the Appendix for details).
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3. CONSTRAINTS ON COSMOLOGICAL MODELS

When using GRB data at z > 1.4 to constrain cosmological models, the cosmological parameters can be fitted by

using the minimization χ2 method:

χ2
GRB =

N2∑
i=1

[
µobs(zi)− µth(zi; p,H0)

σµi

]2

. (7)

Here N2 = 140 or 98 denotes the number of high-redshift GRBs in A219 or A118 data sets, µth is the theoretical

value of distance modulus calculated from the cosmological model, H0 is the Hubble constant, p represents the

cosmological parameters, and µobs is the observational value of distance modulus and its error σµi . Considering a

flat space9, for the wCDM model that has a constant equation of state of dark energy, the theoretical value of the

luminosity distance can be obtained from

dL;th =
c(1 + z)

H0

∫ z

0

dz

[Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w)]
1
2

. (8)

Here c is the speed of light, and Ωm and ΩΛ are the present dimensionless density parameters of matter and dark

energy, respectively, which satisfy Ωm + ΩΛ = 1. For the flat ΛCDM model, w = −1.

Except for the GRB data, we also include the OHD to constrain cosmological models. The OHD can be obtained

from the galactic age differential method (Jimenez & Loeb 2002), which has advantages to constrain cosmological

parameters and distinguish dark energy models. The 31 Hubble parameter measurements at 0.07 < z < 1.965

(Stern et al. 2010; Moresco et al. 2012; Moresco 2015; Moresco et al. 2016; Zhang et al. 2014; Ratsimbazafy et al.

2017) are used in our analysis. For the OHD data set, the χ2 has the form

χ2
OHD =

N3∑
i=1

[
Hobs(zi)−Hth(zi; p,H0)

σHi

]2

. (9)

Here N3 = 31 denotes the number of the Hubble parameter measurements. Thus, the total χ2 of GRB and OHD

data is

χ2
total = χ2

GRB + χ2
OHD. (10)

We use the python package emcee (Foreman-Mackey et al. 2013) to constrain cosmological models. In each emcee

procedure we generate 8000 datasets. The results only with 140 GRBs (A219) and 98 GRBs (A118) are shown

in Figure 4 (ΛCDM model) and Figure 5 (wCDM model); and the joint results from 140 GRBs (A219) and 98

GRBs (A118) combined with 31 OHD are shown in Figure 6 (ΛCDM model) and Figure 7 (wCDM model). The

constraints of Figure 4-7 with the 1σ confidence level are summarized in Table 210. With 98 GRBs at 1.4 < z < 8.2

in the A118 sample, we obtained Ωm = 0.51+0.11
−0.17 for the flat ΛCDM model, and Ωm = 0.47+0.21

−0.17, w = −0.98+0.75
−0.48

for the flat wCDM model. Combining 98 GRBs in the A118 sample with 31 OHD, we obtained Ωm = 0.346+0.048
−0.069

and h = 0.677+0.029
−0.029 for the flat ΛCDM model, and Ωm = 0.314+0.072

−0.055, h = 0.705+0.055
−0.069, w = −1.23+0.33

−0.64 for the flat

wCDM model. Here h ≡ H0

100km/s/Mpc . It should be noted that the ΛCDM model (w = −1) is consistent within 1σ

with 98 GRBs at 1.4 < z < 8.2 in A118 sample and 31 OHD data sets for the flat wCDM model. Our results are

more stringent than the previous analyses (Ωm = 0.34+0.13
−0.15, w = −0.86+0.36

−0.38 at the 2σ confidence level), which made

use of 193 GRBs combined with the SNe Ia (Amati et al. 2019). Here we must point out that only the ΛCDM and

wCDM models are considered in our discussions since these two models have less model parameters. However, the

dark energy models with the redshift-evolving equation of state appear crucial because several scenarios of them

are intriguing in order to heal the H0 tension11. We will go further with the evolving dark energy models in future

work and we would expect higher error bars on parameters that predict possible dark energy evolution.

We find that the H0 value from GRBs at high redshift and OHD (h = 0.677+0.029
−0.029) seem to be favor to the one from

the Planck cosmic microwave backgroud (CMB) observations, which is consistent with previous analyses (Liu et al.

9 The cosmological models have been usually constrained with flat spatial curvature; however, recently works constrain nonspatially flat
models with GRBs and results are promising (see, e.g. Khadka et al. (2021); Cao et al. (2022a); Luongo & Muccino (2022)).

10 GRB data alone are unable to constrain H0 because of the degeneracy between H0 and the correlation intercept parameter; therefore
H0 is set to be 70 km s−1Mpc−1 for GRB-only analyses in previous works (Khadka et al. 2021; Cao et al. 2022a). In order to compare
with the previous analyses, we also set H0=70 km s−1Mpc−1 for the cases only with GRBs. For a free H0 in the fitting procedure,
emcee will provide the similar numerical outcome of the Ωm value, and H0 is a bound parameter if the absolute magnitude M of SNe
Ia is set as a concrete value in the low-redshift calibration.

11 The constraint on the Hubble constant H0 can be given with very high-redshift CMB data based on the ΛCDM model (H0 = 67.36 ±
0.54 km s−1Mpc−1) (Plank Collaboration 2020), which has a more than 4σ deviation from the value of obtained directly from the very
low-redshift SNe Ia data (H0 = 74.3±1.42 km s−1Mpc−1) (Riess et al. 2018). The H0 tension seems to suggest that there are potentially
unknown systematic errors in observational data, or ΛCDM model used to determine the Hubble constant may be inconsistent with the
present universe. Observational data at the redshift region (2 < z < 1000) are necessary to precisely identify the possible origin of H0

tension.
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Figure 4. Constraints on Ωm in the ΛCDM model at high redshift z > 1.4 only with 140 GRBs (left panel), and 98 GRBs
(right panel). H0 is set to be 70 km s−1Mpc−1.

Figure 5. Constraints on Ωm and w in the wCDM model at high redshift z > 1.4 only with 140 GRBs (left panel), and 98
GRBs (right panel). H0 is set to be 70 km s−1Mpc−1.

Table 2. Constraints on the ΛCDM and wCDM Models at the 1σ Confidence Level from GRBs at high redshift z > 1.4,
A219 (z > 1.4) + 31 OHD, and A118 (z > 1.4) + 31 OHD Data Sets.

Models Data Sets Ωm h w

A219 (140 GRBs) 0.54+0.10
−0.15 - -

ΛCDM A118 (98 GRBs) 0.51+0.11
−0.17 - -

A219 (140 GRBs) + 31 OHD 0.351+0.050
−0.067 0.677+0.029

−0.029 -

A118 (98 GRBs) + 31 OHD 0.346+0.048
−0.069 0.677+0.029

−0.029 -

A219 (140 GRBs) 0.48+0.22
−0.15 - −0.97+0.76

−0.84

wCDM A118 (98 GRBs) 0.47+0.21
−0.17 - −0.98+0.75

−0.48

A219 (140 GRBs) + 31 OHD 0.336+0.048
−0.070 0.710+0.055

−0.064 −1.30+0.30
−0.59

A118 (98 GRBs) + 31 OHD 0.314+0.072
−0.055 0.705+0.055

−0.069 −1.23+0.33
−0.64

Note—For the cases only with GRBs, h is set to be 0.7.

2022b). We also find the Ωm value of our results for the flat ΛCDM model with GRBs at high redshift and OHD

(Ωm = 0.346+0.048
−0.069) is consistent with the one from the Planck CMB observations (Ωm = 0.3153± 0.00073)(Plank

Collaboration 2020) at the 1σ confidence level. Our result of the H0 value for the flat ΛCDM model appears very

well confirmed, while much less for the flat wCDM, which indicate that the H0 tension instead still persists.
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Figure 6. Joint constraints on parameters of Ωm and h in the ΛCDM model at high redshift z > 1.4 with 140 GRBs + 31
OHD (left panel), and 98 GRBs + 31 OHD (right panel).

Figure 7. Joint constraints on parameters of Ωm, h and w in the wCDM model at high redshift z > 1.4 with 140 GRBs +
31 OHD (left panel), and 98 GRBs + 31 OHD (right panel).

Finally, we also use the A219 and A118 data set to constrain the ΛCDM and wCDM models by using the method

of simultaneous fitting. In this calculation, the parameters of cosmological models (Ωm, h, and w) and the relation

parameters (a and b) are fitted simultaneously. The number of points that have been used in each emcee procedure

is 8000. The results from the A219 and A118 samples combined with the OHD data set are shown in Figure 8

(ΛCDM model) and Figure 9 (wCDM model), and summarized in Table 3 with the 1σ confidence level. With the

A118 sample and 31 OHD, we obtained Ωm = 0.341+0.050
−0.070, h = 0.673+0.029

−0.029, a = 52.984+0.049
−0.049, b = 1.189+0.084

−0.084 for

the flat ΛCDM model, and Ωm = 0.325+0.052
−0.064, h = 0.702+0.048

−0.065, w = −1.25+0.51
−0.40, a = 52.980+0.049

−0.049, b = 1.185+0.084
−0.084

for the flat wCDM model. It is found that the values of the coefficients of the Amati relation for the flat ΛCDM

model and the flat wCDM model are almost identical, which are consistent with the results calibrating from the

low-redshift data at the 1σ confidence level. The values of the 1σ uncertainty of the relation parameters (a, b) and

the intrinsic scatter σint in simultaneous fitting are smaller than those listed in Table 1, which is attributed to the

number of calibrated GRBs in the A220 or A118 data set, these are apparently larger than those of the 79 GRBs

in the A220 sample and 20 GRBs in the A118 sample at z < 1.4. We also find that the simultaneous fitting results

from only GRBs are consistent with previous analyses (Liu et al. 2022a).12

12 Our simultaneous fitting results with the A219 sample and the A118 sample are slightly different from those with the A220 sample and
A118 sample obtained in Khadka et al. (2021) and Cao et al. (2022b). It should be pointed out that there is an error in the peak energy
of GRB 081121 data released in Fana Dirirsa et al. (2019) that corresponds to the distance modulus (47.23± 1.08) rather than the peak
energy (871 ± 1.23) in Table 4 of Wang et al. (2016). Therefore, we correct this error in our work.
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Table 3. Simultaneous Fitting Results of Ωm, h, a, b and σint in the ΛCDM and wCDM Models, with A219 GRB + 31
OHD, and A118 GRB + 31 OHD Data Sets.

Models Data Sets Ωm h w a b σint

ΛCDM
A219 GRB + 31 OHD 0.378+0.053

−0.074 0.659+0.029
−0.029 - 52.841+0.039

−0.039 1.327+0.073
−0.073 0.465+0.022

−0.025

A118 GRB + 31 OHD 0.341+0.050
−0.070 0.673+0.029

−0.029 - 52.984+0.049
−0.049 1.189+0.084

−0.084 0.392+0.024
−0.030

wCDM
A219 GRB + 31 OHD 0.351+0.074

−0.067 0.672+0.047
−0.064 −1.14+0.45

−0.45 52.842+0.039
−0.039 1.330+0.074

−0.074 0.463+0.022
−0.026

A118 GRB + 31 OHD 0.325+0.052
−0.064 0.702+0.048

−0.065 −1.25+0.51
−0.40 52.980+0.049

−0.049 1.185+0.084
−0.084 0.392+0.025

−0.031

Figure 8. Simultaneous fitting parameters of Ωm, h, a, b and σint in the ΛCDM model with A219 GRBs + 31 OHD (left
panel), and A118 GRBs + 31 OHD (right panel).

Figure 9. Simultaneous fitting parameters of Ωm, h, a, b, σint and w in the wCDM model with A219 GRBs + 31 OHD
(left panel), and A118 GRBs + 31 OHD (right panel).
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4. CONCLUSIONS AND DISCUSSIONS

In this paper, we use the Gaussian process to calibrate the Amati relation of GRB from SNe Ia data and obtain

the GRB Hubble diagram with GRB data sets of the A219 and A118 samples. Then, these GRB data are used to

constrain the ΛCDM and wCDM models. With 98 GRBs at 1.4 < z ≤ 8.2 in the A118 sample, we obtained Ωm

= 0.51+0.11
−0.17 for the flat ΛCDM model, and Ωm = 0.47+0.21

−0.17, w = −0.98+0.75
−0.48 for the flat wCDM model at the 1σ

confidence level. With 98 GRBs at 1.4 < z < 8.2 in the A118 sample and 31 OHD, we obtained Ωm = 0.346+0.048
−0.069

and h = 0.677+0.029
−0.029 for the flat ΛCDM model, and Ωm = 0.314+0.072

−0.055, h = 0.705+0.055
−0.069, w = −1.23+0.33

−0.64 for the flat

wCDM model at the 1σ confidence level. With GRBs at high redshift and OHD date sets, we find that the H0

value seems to favor the one from the Planck CMB observations, and the Ωm value of our results for the flat ΛCDM

model is consistent with the one from the Planck CMB observations at the 1σ confidence level. We also use GRB

data sets of A219 and A118 samples to fit Ωm, h, a, b, σint and w parameters simultaneously. It is found that the

simultaneous fitting results are consistent with those obtained from the low-redshift calibration method.

Furthermore, there are some discussions on possible evolutionary effects in GRB relations (Li 2007; Basilakos &

Perivolaropoulos 2008; Ghirlanda et al. 2008; Tsutsui et al. 2009b; Wang et al. 2011). Recently, Lin et al. (2016)

investigated the six relations in two redshift bins, and found moderate evidence for the redshift evolution in four

relations. Demianski et al. (2017a) found no redshift evolution in the Amati relation with 162 GRB samples. Wang

et al. (2017) found the Amati relation evolves with redshift. More recently, Khadka et al. (2021) found that the

Amati relation is independent of redshift within the error bars with the A220 GRB data set. Dai et al. (2021) found

strong evidence that the Amati relation shows no, or marginal, evolution with redshift. Tang et al. (2021) found

that the intercept and slope of the Amati relation for the low-z subsample and high-z subsample differ at more

than 2σ. As a result, whether the GRB relations are redshift dependent or not is still under debate. Nevertheless,

further examinations of possible evolutionary effects should be required for considering GRBs as standard candles

for a cosmological probe.
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Table 4. List of the derived distance moduli of 140 GRBs in the A219 sample at 1.4 < z ≤ 8.2.

GRB z µGRB ± σµ,GRB GRB z µGRB ± σµ,GRB GRB z µGRB ± σµ,GRB

120711A 1.405 45.44 ± 1.96 070521 2.0865 45.87 ± 1.95 050401 2.9 45.63 ± 1.99

160625B 1.406 42.69 ± 1.95 150206A 2.087 44.93 ± 1.96 141109A 2.993 46.52 ± 2.00

151029A 1.423 46.53 ± 1.99 061222A 2.088 45.95 ± 1.97 090715B 3 46.45 ± 2.00

050318 1.44 44.78 ± 1.97 130610 2.09 47.23 ± 1.96 080607 3.036 45.80 ± 1.96

100814 1.44 44.89 ± 1.96 100728B 2.106 47.38 ± 1.95 081028 3.038 45.62 ± 2.03

141221A 1.452 46.61 ± 1.97 090926A 2.1062 43.82 ± 1.95 060607A 3.082 47.52 ± 2.01

110213 1.46 44.31 ± 2.00 011211 2.14 45.55 ± 1.96 120922 3.1 44.34 ± 1.95

010222 1.48 43.62 ± 1.95 071020 2.145 47.34 ± 2.02 020124 3.2 46.15 ± 2.00

120724 1.48 45.19 ± 1.99 050922C 2.198 46.76 ± 2.01 060526 3.21 46.61 ± 2.04

060418 1.489 45.22 ± 1.99 120624B 2.2 44.18 ± 1.95 140423A 3.26 45.57 ± 1.95

150301B 1.5169 47.09 ± 1.95 121128 2.2 45.34 ± 1.95 140808A 3.29 47.67 ± 1.95

030328 1.52 43.34 ± 1.96 080804 2.2045 46.89 ± 1.95 160629A 3.332 47.08 ± 1.95

070125 1.547 44.03 ± 1.96 110205 2.22 45.47 ± 2.05 080810 3.35 47.41 ± 1.96

090102 1.547 45.78 ± 1.97 180325A 2.248 46.36 ± 1.97 061222B 3.355 46.32 ± 1.97

161117A 1.549 42.76 ± 1.95 081221 2.26 44.27 ± 1.94 110818 3.36 47.62 ± 1.97

060306 1.559 45.72 ± 2.05 130505 2.27 46.58 ± 1.95 030323 3.37 47.98 ± 2.06

040912 1.563 44.24 ± 2.24 140629A 2.275 46.19 ± 1.99 971214 3.42 47.15 ± 1.97

100728A 1.567 43.95 ± 1.95 060124 2.296 45.55 ± 2.02 060707 3.425 47.33 ± 1.96

990123 1.6 43.84 ± 1.99 021004 2.3 46.77 ± 2.05 170405A 3.51 45.64 ± 1.95

071003 1.604 46.18 ± 1.96 141028A 2.33 45.90 ± 1.95 110721A 3.512 48.63 ± 1.97

090418 1.608 46.67 ± 2.00 151021A 2.33 44.18 ± 1.96 060115 3.53 47.30 ± 1.96

110503 1.61 45.07 ± 1.95 110128A 2.339 50.15 ± 2.01 090323 3.57 45.60 ± 1.95

990510 1.619 44.72 ± 1.96 051109A 2.346 47.09 ± 2.02 100704 3.6 47.67 ± 1.96

080605 1.6398 45.04 ± 1.95 131108A 2.4 45.75 ± 1.95 130514 3.6 45.91 ± 2.00

131105A 1.69 44.46 ± 1.96 171222A 2.409 45.22 ± 1.95 130408 3.76 47.63 ± 1.97

091020 1.71 47.61 ± 2.19 060908 2.43 46.66 ± 1.97 120802 3.8 46.72 ± 2.01

100906 1.73 44.30 ± 2.14 080413 2.433 47.13 ± 2.01 100413 3.9 47.53 ± 2.00

120119 1.73 44.12 ± 1.96 090812 2.452 47.02 ± 2.02 060210 3.91 46.68 ± 2.10

150314A 1.758 44.59 ± 1.95 120716A 2.486 47.12 ± 1.95 120909 3.93 47.29 ± 1.95

110422 1.77 43.39 ± 1.94 130518A 2.49 45.30 ± 1.95 140419A 3.956 46.56 ± 2.19

080514B 1.8 45.61 ± 1.97 081121 2.512 46.51 ± 1.97 131117A 4.04 48.81 ± 1.97

120326 1.8 45.06 ± 1.95 170214A 2.53 44.97 ± 1.95 060206 4.048 48.50 ± 1.96

090902B 1.822 44.15 ± 1.95 081118 2.58 46.03 ± 1.96 090516 4.109 46.92 ± 2.04

131011A 1.874 43.92 ± 1.96 080721 2.591 45.85 ± 1.97 120712A 4.1745 47.68 ± 1.97

140623A 1.92 47.31 ± 2.05 050820 2.612 45.70 ± 1.97 080916C 4.35 47.93 ± 1.98

080319C 1.95 46.52 ± 2.00 030429 2.65 46.57 ± 1.97 000131 4.5 46.07 ± 2.04

170113A 1.968 47.57 ± 2.06 120811C 2.67 45.06 ± 1.96 090205 4.6497 49.35 ± 2.09

081008 1.9685 45.25 ± 1.97 080603B 2.69 46.45 ± 1.98 140518A 4.707 47.97 ± 1.97

030226 1.98 45.07 ± 1.97 161023A 2.708 45.15 ± 1.98 111008 5 47.65 ± 1.99

130612 2.01 47.49 ± 1.96 060714 2.711 45.60 ± 2.08 060927 5.6 48.34 ± 1.96

170705A 2.01 44.88 ± 1.95 140206A 2.73 45.65 ± 1.95 130606 5.91 49.79 ± 1.99

161017A 2.013 47.27 ± 1.96 091029 2.752 46.11 ± 1.99 050904 6.29 48.96 ± 2.02

140620A 2.04 45.61 ± 1.95 081222 2.77 45.84 ± 1.95 140515A 6.32 49.29 ± 2.05

081203A 2.05 46.41 ± 2.11 050603 2.821 46.42 ± 1.95 080913 6.695 49.96 ± 2.09

150403A 2.06 46.12 ± 1.95 161014A 2.823 47.38 ± 1.95 120923A 7.8 50.47 ± 2.00

000926 2.07 44.45 ± 1.96 110731 2.83 46.60 ± 1.95 090423 8.2 49.63 ± 2.05

080207 2.0858 45.55 ± 2.18 111107 2.89 48.04 ± 2.00

Note—For the A220 sample (Khadka et al. 2021), there are two distance moduli of GRB051109A at z = 2.346 calculated by
different peak energy and bolometric fluence. In Table 7 of Khadka et al. (2021) for the A118 sample, Ep=539 ± 200,
Sbolo=0.51 ± 0.05; while in Table 8 of Khadka et al. (2021) for the A102 (A220) sample, which are compiled from those listed in
Demianski et al. (2017a), Ep=538.706 ± 274.372, Sbolo=0.519357 ± 0.269718. However, we find that Ep=539 ± 200,
Eiso=6.84516 ± 0.730151 in Table 5 of Demianski et al. (2017a), and Ep=539 ± 200, Sbolo=0.51 ± 0.05 in Table 1 of Amati et al.
(2008). We remove GRB051109A in A102 (A220) sample, therefore we obtain 140 GRBs at 1.4 < z ≤ 8.2 in the A219 sample.
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Table 5. List of the derived distance moduli of 98 GRBs in the A118 sample at 1.4 < z ≤ 8.2.

GRB z µGRB ± σµ,GRB GRB z µGRB ± σµ,GRB GRB z µGRB ± σµ,GRB

160625B 1.406 42.57 ± 1.87 130610 2.09 47.28 ± 1.87 090715B 3 46.67 ± 1.90

050318 1.44 45.48 ± 1.88 090926A 2.1062 43.89 ± 1.86 080607 3.036 45.66 ± 1.88

100814 1.44 45.28 ± 1.87 011211 2.14 46.10 ± 1.87 081028 3.038 46.10 ± 1.91

110213 1.46 44.81 ± 1.89 071020 2.145 47.35 ± 1.94 120922 3.1 44.94 ± 1.86

010222 1.48 43.73 ± 1.86 050922C 2.198 47.06 ± 1.91 020124 3.2 46.43 ± 1.89

120724 1.48 46.05 ± 1.90 120624B 2.2 44.14 ± 1.87 060526 3.21 47.34 ± 1.95

060418 1.489 45.42 ± 1.89 121128 2.2 45.81 ± 1.86 080810 3.35 47.31 ± 1.88

030328 1.52 43.71 ± 1.87 110205 2.22 45.58 ± 1.93 110818 3.36 47.61 ± 1.88

070125 1.547 44.08 ± 1.87 130505 2.27 46.38 ± 1.88 030323 3.37 48.41 ± 1.94

090102 1.547 45.76 ± 1.88 060124 2.296 45.64 ± 1.91 971214 3.42 47.30 ± 1.88

040912 1.563 45.24 ± 2.07 021004 2.3 47.21 ± 1.92 060707 3.425 47.76 ± 1.87

100728A 1.567 44.05 ± 1.86 141028A 2.33 45.83 ± 1.87 170405A 3.51 45.55 ± 1.87

990123 1.6 43.70 ± 1.91 051109A 2.346 47.31 ± 1.90 110721A 3.512 47.98 ± 1.93

071003 1.604 45.97 ± 1.89 131108A 2.4 45.73 ± 1.87 060115 3.53 47.71 ± 1.87

090418 1.608 46.55 ± 1.91 060908 2.43 46.90 ± 1.87 090323 3.57 45.39 ± 1.88

110503 1.61 45.27 ± 1.86 080413 2.433 47.32 ± 1.91 100704 3.6 47.76 ± 1.87

990510 1.619 45.01 ± 1.87 090812 2.452 46.83 ± 1.93 130514 3.6 46.15 ± 1.89

080605 1.6398 45.20 ± 1.86 130518A 2.49 45.18 ± 1.87 130408 3.76 47.65 ± 1.88

131105A 1.69 44.67 ± 1.87 081121 2.512 46.58 ± 1.88 120802 3.8 47.15 ± 1.90

091020 1.71 48.03 ± 2.03 170214A 2.53 44.76 ± 1.88 100413 3.9 47.37 ± 1.92

100906 1.73 44.62 ± 1.99 081118 2.58 46.65 ± 1.88 120909 3.93 47.15 ± 1.88

120119 1.73 44.42 ± 1.87 080721 2.591 45.70 ± 1.89 131117A 4.04 49.30 ± 1.88

150314A 1.758 44.62 ± 1.86 050820 2.612 45.63 ± 1.88 060206 4.048 48.82 ± 1.87

110422 1.77 43.68 ± 1.86 030429 2.65 47.23 ± 1.88 090516 4.109 46.95 ± 1.93

080514B 1.8 45.78 ± 1.88 120811C 2.67 45.66 ± 1.87 080916C 4.35 47.35 ± 1.92

120326 1.8 45.72 ± 1.86 080603B 2.69 46.77 ± 1.88 000131 4.5 46.10 ± 1.93

090902B 1.822 43.93 ± 1.88 140206A 2.73 45.92 ± 1.86 111008 5 47.70 ± 1.89

080319C 1.95 46.57 ± 1.90 091029 2.752 46.59 ± 1.88 060927 5.6 48.60 ± 1.87

081008 1.9685 45.70 ± 1.87 081222 2.77 46.08 ± 1.86 130606 5.91 49.60 ± 1.91

030226 1.98 45.48 ± 1.87 050603 2.821 46.36 ± 1.87 050904 6.29 48.62 ± 1.93

130612 2.01 48.04 ± 1.87 110731 2.83 46.57 ± 1.87 080913 6.695 50.09 ± 1.96

150403A 2.06 45.86 ± 1.88 111107 2.89 48.33 ± 1.89 090423 8.2 49.88 ± 1.93

000926 2.07 44.84 ± 1.87 050401 2.9 45.89 ± 1.89
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