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Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic
systems. Copolymerisation has been studied theoretically in a number of contexts, often by considering a Markov
process in which monomers are added or removed from the growing tip of a long copolymer. To date, the analysis
of the most general models of this class has necessitated simulation. We present a general method for analysing such
processes without resorting to simulation. Our method can be applied to models with an arbitrary network of sub-
steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover, the
approach allows for a dependency of addition and removal reactions on the neighbouring site in the copolymer, and
thermodynamically self-consistent models in which all steps are assumed to be microscopically reversible. Using our
approach, thermodynamic quantities such as chemical work; kinetic quantities such as time taken to grow; and statistical
quantities such as the distribution of monomer types in the growing copolymer can be derived either analytically or
numerically directly from the model definition.

I. INTRODUCTION

Copolymers are polymers consisting of more than one type
of monomeric unit; the order of these monomers in the chain
defines the copolymer sequence. Broadly, copolymerisation
mechanisms can be classified into two main categories: free
copolymerisation that does not rely on a template1, as shown
in figure 1(a); and templated copolymerisation, in which a
template (usually another copolymer) is used to bias the dis-
tribution of sequences produced, as shown in figure 1(b) and
figure 1(c). Polymers produced via both types of mechanism
are of relevance to both biological and industrial systems. In
living systems, O-glycans are sequences of monosaccharides
that grow by free copolymerisation from serine or threonine
amino acids2. They play a key role as a physical protec-
tive barrier for cells from pathogens, as well as participat-
ing in other cellular processes2,3. Free copolymerisation is
also a common method for producing plastics and rubbers
in commercial and industrial systems4,5. Additionally, there
have been recent experimental designs for free copolymeri-
sation systems to produce specific products utilising DNA-
nanotechnology-based reaction schemes6,7.

Templated copolymerisation is the mechanism by which
DNA, RNA and polypeptides are produced in DNA replica-
tion, RNA transcription, and protein translation, respectively.
These processes are at the heart of the central dogma of molec-
ular biology8 and are the basis of the informational and bio-
chemical complexity of life. In DNA replication, DNA tem-
plates the production of copies of itself; in transcription, DNA
templates the production of RNA; and, in translation, mRNA
is the template for the production of a polypeptide9. In-
spired by these biological templated copolymerisation mech-
anisms, there has been recent interest in designing synthetic
systems that can produce other sequence-controlled molecules
via templated copolymerisation10–16.

Free polymerisation can be modelled as a Markovian
growth process under which monomers bind to the end of a
growing polymer at a certain rate. Early free copolymerisation
models17–19 built on this framework to allow for copolymeri-
sation via the incorporation of multiple types of monomeric
unit, as shown in figure 1(a), albeit with irreversible polymeri-
sation reactions. In particular, Mayo and Lewis19 emphasised
that in polymerisation models, if the monomer binding events
are irreversible and their rates are conditional on the terminal
monomer type, then intra-sequence correlations are generated
within the copolymer.

Although the use of models with irreversible transitions
is reasonable in many contexts, thermodynamically self-
consistent models require all transitions to be microscopically
reversible.20 Specifically, if a transition from state A to state B
is possible, then transitions from B to A must also be possible.
Models with fully microscopically reversible polymerisation
reactions, as in figure 1(a), are more challenging to analyse
but can be interpreted in a thermodynamic sense.1,21,22

Templates can affect the rate at which monomers are added
or removed from a growing copolymer, and hence templated
copolymerisation models can be more complex than free
copolymerisation models. When the template consists of just
one type of templating monomer (homopolymer), a templated
copolymerisation process can be mapped onto a free copoly-
merisation model. Further, if one assumes some symme-
tries regarding interactions between monomers in the growing
copolymer and those in the template (such as all complemen-
tary bonds have equal strength and all non-complementary
bonds have equal strength), models of sequence-bearing tem-
plates may be mapped onto models with homopolymeric tem-
plates, and hence to models of free copolymerisation23–27.

Templated copolymerisation models can be further di-
vided into two main categories: templated self-assembly (fig-
ure 1(b)1,27–41 and autonomously-separating mechanisms (fig-
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(a) Free copolymerization

(d) Arbitrary internal reaction network(c) Templated copolymerization 
with simultaneous separation

(b) Templated copolymerization
“Templated self-assembly” 

FIG. 1: Comparison of the different types of copolymerisation mechanism with three types of monomer (blue, red and yellow).
(a) shows free copolymerisation, (b) templated self assembly, and (c) templated copolymerisation with autonomous separation.

In (b) and (c) the template is shown with squares and the growing polymer with circles. (d) An example of a more detailed
reaction scheme used to select the next monomer. In each of these sub-figures, different colours represent different monomer

types, with bonds coloured accordingly when their strength might depend on the monomer. In (d), different activation states of
the monomer undergoing incorporation are represented by different shapes. The dashed bubble indicates how the arbitrary set

of reactions in (d) may replace the simple reaction surrounded by a dashed bubble in (c) for a more complex model.

ure 1(c)23,24,42. Templated self-assembly models are those
in which all the monomers in the growing copolymer re-
main bound to the template. In autonomously-separating
models, the growing copolymer detaches as it extends23–25.
There has been recent interest in explicitly modelling au-
tonomous separation in templated growth in an attempt to
understand models that give a better description of transcrip-
tion or translation23–25. In autonomously-separating models,
the simultaneous growth and separation of the copolymer and
template mean that the copy-template interactions are not per-
manent, and therefore free energy released from such inter-
actions cannot be part of the driving force of polymerisa-
tion. Additionally, since these copy-template bonds are tem-
porary, they cannot stabilise the accurate copy directly in the
long time limit. Further, an ensemble of accurate polymers
is a lower entropy state than an ensemble of random poly-
mers. These conditions mean that non-equilibrium driving

is required to generate accurate copies of the template if the
copies are to spontaneously detach42. Moreover, the separa-
tion of the lagging tail from the template as the copolymer
grows naturally causes intra-sequence correlations within the
product.23

The models described above are maximally coarse-grained,
in that they treat the binding of monomers to the growing tip of
the copolymer as a simple, usually single-step, process. How-
ever, more generally, one may wish to study models in which
polymerisation occurs via a more detailed series of steps, as in
figure 1(d). For instance, in order to explain the high accuracy
observed in biological polymer copying systems, Hopfield43

and Ninio44 independently introduced the concept of kinetic
proofreading: a reaction motif in which a monomer under-
goes a free energy consuming activation reaction before it
is polymerised into the copolymer. The introduction of ki-
netic proofreading reaction motifs presaged the investigation
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of more complex copolymerisation mechanisms35,45.
In summary, models that allow for multiple monomer

types, intra-sequence correlations, reversible reactions, and
general, multi-step monomer inclusion reactions represent
a wide class of copolymerisation processes. Previous
techniques17–19,22,23,27–35,39–41,46–51 have not allowed analysis
of thermodynamically self-consistent models of generalised
free copolymerisation processes in which monomer addition
is given by an arbitrarily complex network of reversible re-
actions with rates that may depend on the terminal monomer
type, and templated copolymerisation models with high sym-
metry that can be mapped to these free processes. Investigat-
ing the most general type of model in this class would require
simulation.

In this paper we present a universal method for studying this
large class of copolymerisation models. Drawing on the work
of Gaspard and Andrieux52 for analysing linear copolymerisa-
tion processes, and Hill53,54 for analysing absorbing Markov
processes, we present analytical methods for extracting: ex-
plicit expressions for the probability of inclusion of a given
monomer; the growth rate of a copolymerisation process; and
the chemical work done by the process. Our method removes
the need to extract the same features by simulation and often
produces simple, analytic results.

In section II A, we review and refine methods relating to ab-
sorbing Markov chains that are crucial to understanding our
approach. In section II B 1 we present our method. In sec-
tion III, we apply the method to a few example processes to
demonstrate its use and power when considering models with
certain features. First, we apply the method to models for
which the rate of adding new monomers only depends on the
monomer type being added. Next we apply the method to tem-
plated copolymerisation systems with autonomous-separation
that do not have non-equilibrium kinetic proofreading cycles.
Finally, we solve a generalised version of Hopfield’s kinetic
proofreading model applied to a templated copolymerisation
system with an autonomously separating product.

II. METHODS

A. Absorbing Markov Chains

We begin by reviewing and adapting some diagrammatic
techniques introduced by Hill to analyse absorbing Markov
chains53,54. An absorbing Markov chain is a Markov chain
for which any trajectory through its state space with arbitrary
initial conditions will reach an absorbing state in finite time
almost surely55. We can decompose the state space of an
absorbing Markov chain into absorbing states, A , and tran-
sient states, X , such that the state space is V = A ∪X .
Let us denote the rate function that describes the chain as
K : V ×V → R+, such that K(x,y) is the rate of the transi-
tion from state x to state y. Then we denote a Markov process
as the tuple, (V,K).

Throughout this section, we shall refer to the absorbing
Markov chain given in figure 2(a), which possesses two ab-
sorbing states and non-trivial cycles, for illustrative purposes.

(a) Example absorbing Markov process

1 3

2 4 B

A

r12

r13

r23

r24

r34

r21

r31

r32

r42

r43

kB

kA

(b) Closed process

1 3

2 4

r12

r13

r23

r24

r34

r21

r31 + kA

r32

r42

r43

kB

(c) Cycle process for cycle
1→ 2→ 3→ 1

1 ) 2 ) 3 ) 1

4
r24 + r34

r42 + r43 + kB

FIG. 2: Graphical representations of an absorbing Markov
process to illustrate the methodology outlined in section II A.

(a) Example absorbing Markov process (X ∪A ,K), with
two absorbing states, A = {A,B}, and four transient states
X = {1,2,3,4}. (b) The closed process starting at state 1,

(X ,K1). (c) The cycle process
({c}∪X /{1,2,3}= {c,4},K1,C) for the cycle

C = 1 ) 2 ) 3 ) 1 or C′ = 1 ) 3 ) 2 ) 1.

1. Expectations of an absorbing process are steady-state
averages of a “closed process"

We will derive expressions for four main quantities: the
probabilities of reaching certain absorbing states, the expected
time taken to absorption, the expected net number of times
traversing a given edge before absorption and the expected
number of times that a trajectory goes round a cycle before
absorption. These quantities depend on the starting (tran-
sient) state σ ∈X and can be found in terms of the "closed"
process54. The closed process is a modified version of an ab-
sorbing Markov chain in which transitions to the absorbing
states are redirected to the starting state. Figure 2(b) shows



A Universal Method for Analysing Copolymer Growth 4

the closed process starting at state 1 of our example absorbing
chain of figure 2(a). The closed process for a Markov pro-
cess (X ∪A ,K) starting at state σ is a new Markov process
(X ,Kσ ) with a rate function given by:

Kσ (x,σ) = K(x,σ)+ ∑
A∈A

K(x,A) (1)

for x ∈X and agreeing with K on X ×X /{σ}.
The closed process has a unique stationary distribution for

the following reasons. From the definition of an absorbing
Markov chain, there exists a path from any state to an ab-
sorbing state, taking finite time. Thus, in the closed process,
there is a path from any state to the starting state, taking fi-
nite time. The set of states including the starting state and all
those that may be reached from the starting state is therefore
positive recurrent and further, this set is the only recurrent set
of states and will be reached from any other state. Since there
is only one recurrent set of states, there is a unique stationary
distribution55.

Expected quantities of an absorbing Markov chain, such as
the expected probability that a particular absorbing state is
reached, can be found in terms of steady state quantities in the
closed process. Whenever a trajectory of the original process
reaches an absorbing state, in the closed process that same
trajectory would have been reset back to the starting state.
Hence, running the closed process for long times is equiva-
lent to generating many independent trajectories to absorption
for the original chain. Thus, averaging quantities in the steady
state of the closed process is equivalent to taking expectations
over independent trials of quantities in the absorbing chain.
It is worth noting that the dependence of expected quantities
on the starting state is encoded in the definition of the closed
process. Finally, we can see that the definition of the closed
process may permit self-transitions, σ → σ , which, for con-
tinuous time Markov processes, have little meaning. However,
for the purposes of calculating steady state probabilities of the
closed process they may be ignored.

2. Steady State averages of the closed process are
calculated using the Markov chain tree theorem

Given that we can turn the calculation of expectations of ab-
sorbing processes into steady-state averages over closed pro-
cesses, we can make use of tools developed for analysing the
steady state of Markov processes, such as the Markov chain
tree theorem (MCTT)56. The MCTT states that the steady
state distribution of a Markov chain with a unique stationary
distribution may be found by summing over rooted spanning
trees of the process, where the transition rates are taken as
weights on the edges of the graph. Explicitly, let G be a di-
rected weighted graph, with weight K(e) for an edge e of G .
A spanning tree of G , rooted at a vertex, ν , is a subgraph of
G with no cycles that connects all the vertices of G and for
which the out degree of every vertex, except ν , is one. The
sets of spanning trees rooted at nodes 3 and 4 of the closed
process, figure 2(b), are shown in figure 3. Denote by T (x)
the set of all spanning trees rooted at x. The MCTT states that

the steady state probability to be in state x, π(x), is given by:

π(x) =

∑
T∈T (x)

∏
e∈T

K(e)

∑
v∈X

∑
T∈T (v)

∏
e∈T

K(e)
, (2)

with e∈ T representing the edges of the tree. The denominator
here is simply a normalisation constant.

We can define steady state currents from the steady state
distribution of the closed process that corresponds to expected
currents of the absorbing chain. Let a subscript σ denote
quantities in the closed process starting at state σ . Then πσ is
the steady state probability distribution and Kσ the rate func-
tion. The current along a given edge, e= x→ y, is given by the
probability to be in state x, πσ (x), multiplied by the rate along
said edge. We can, therefore, write the steady state current
along all edges that originally led to absorbing states as:

JTot(σ) = ∑
A∈A

∑
x∈X

πσ (x)K(x,A), (3)

where, as before, X is the set of transient states and A , the
set of absorbing states. JTot(σ) is the expected total current to
absorbing states from state σ , and, therefore, its reciprocal is
the expected time to absorption.

For the example process shown in figure 2, we present the
spanning trees of the corresponding closed process rooted at
node 3 and 4 in figure 3. Given the spanning trees, we can
directly write down the total current to absorbing states as:

JTot(1) =
1

N

[
kA
[
r12r24r43 + r12r23(r42 + r43 + kB)

+ r13((r43 + kB)(r21 + r23 + r24)+ r42(r21 + r23))
]

+ kB
[
r12r23r34 + r12r24(r31 + kA + r32 + r34)

+ r13r34(r21 + r23 + r24)+ r13r32r24
]]
, (4)

where N is the normalisation term, given in appendix B. The
terms multiplied by kA are the partial current to absorbing state
A, i.e. the current along transition 3→ A, coming from the
trees rooted at node 3, and equivalently for kB with state B,
i.e. the current along transition 4 → B, coming from trees
rooted at node 4.

3. Absorbing probabilities

Given a Markov chain with multiple absorbing states, we
can ask for the probability of absorption in each absorbing
state in the long time limit. The probability that a trajectory
eventually ends in a specific absorbing state can be calcu-
lated from the closed process, by dividing the expected cur-
rent along transitions that originally led to the absorbing state
in question by JTot(σ) (eqn. 3). Therefore the absorption prob-
abilities can be written

P[σ → A] =
∑

x∈X
πσ (x)K(x,A)

∑
B∈A

∑
x∈X

πσ (x)K(x,B)
, (5)
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(a) Spanning trees rooted at node 3.

1 3

2 4

(b) Spanning trees rooted at node 4.

FIG. 3: Spanning trees of the closed processes rooted at (a) node 3 and (b) node 4 derived from figure 2 (b), with nodes labelled
in the first spanning tree and all other trees following the same positioning. The spanning trees have been arranged in terms of
the self-avoiding walk between nodes 1 and 3 for the trees rooted at node 3 and arranged in terms of the self-avoiding walks

between nodes 1 and 4 for the trees rooted at node 4. More details on the relationship between self avoiding walks and
spanning trees are given in appendix A.

using the notation P[σ → A] to denote probability of being
absorbed to A given that the trajectory started in state σ . It is
worth noting here that given that this quantity is a ratio of cur-
rents, there is a factor of πσ in both the denominator and the
numerator of the expression. In practice, we see that the nor-
malisation factor from the MCTT (eqn. 2) cancels out, which
simplifies the quantities in the calculation.

For our example process shown in figure 2, we can use the
partial currents to absorbing states A and B to write down the
absorbing probabilities:

P [1→ A] =
1

N JTot(1)
kA
[
r12r24r43 + r12r23(r42 + r43 + kB)

+ r13((r43 + kB)(r21 + r23 + r24)+ r42(r21 + r23))
]
,

P [1→ B] =
1

N JTot(1)
kB
[
r13r34(r21 + r23 + r24)+ r13r32r24

+ r12r23r34 + r12r24(r31 + kA + r32 + r34)
]]
. (6)

The normalisation factor, N , propagated through from eqn. 2,
conveniently cancels out with the 1/N implicit in Jtot.

4. Counting edge and cycle transitions

In this subsection, we shall calculate the expected net num-
ber of times traversing a given edge of an absorbing Markov
process before absorption. Additionally, we shall calculate

the expected number of times a non-recurrent cycle of an ab-
sorbing Markov process is traversed before absorption. Both
of these will be of use later in defining a notion of chemical
work.

To calculate the net number of times crossing a given edge
we find the expected current along the transition, x� y, be-
tween states x and y of an absorbing process, (X ∪A ,K),
as in section II A. The expected current through this edge, de-
noted Jx�y(σ), given starting in state σ ∈X , can be calcu-
lated from the closed process, (X ,Kσ ), as in eqn. 1, as the
difference between the steady state probability to be in state x
multiplied by the rate from x→ y and the steady state proba-
bility to be in state y multiplied by the rate from y→ x,

Jx�y(σ) = πσ (x)K(x,y)−πσ (y)K(y,x). (7)

The net number of times traversing this edge (number of ob-
served transitions x → y - number of observed transitions
y→ x) before absorption is then just the ratio between this
current and total current to absorbing states:

Nx�y(σ) =
Jx�y(σ)

JTot(σ)
. (8)

The current, eqn. 7, is intimately linked to the notion of cy-
cles as pointed out by Wachtel et al.57 and detailed in ap-
pendix C. Thus, we also wish to find the expected num-
ber of times traversing a non-recurrent cycle. We define
a non-recurrent cycle for a Markov chain to be a cycle of
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states, where each state, aside from the originating state,
does not appear more than once in the cycle. For ex-
ample, the cycle A→B→C→D→A is non-recurrent, but
A→B→C→D→B→A is recurrent. Note that the originat-
ing state is arbitrary, and so A→B→C→D→A is equivalent
to B→C→D→A→B. For a stationary process, the expected
frequency with which a cycle is completed can be calculated
from the one-way cycle current54,58, which is the probability
current going around the cycle. For a chosen non-recurrent
cycle, the one-way cycle current can be calculated diagram-
matically from three terms. First, a cycle term given by the
product of rates around the cycle in the chosen direction. Sec-
ond, a spanning tree term that can be found by collapsing the
nodes in the cycle into a single node (in figure 2c, the cycle
1→ 2→ 3→ 1 has been collapsed in this way) and finding the
sum of spanning trees of this new graph rooted at the collapsed
cycle node. Finally, there is a normalisation factor, which is
the same normalisation factor as for the current, N . Explic-
itly, consider an absorbing Markov chain, G = (X ∪A ,K)
and its closed process starting at σ ∈ X , Gσ = (X ,Kσ ).
Let C denote both the set of edges and set of nodes of a
cycle in the closed process. To calculate the spanning tree
term for the one-way cycle current, construct a new Markov
chain, the cycle process, Gσ ,C = ({c}∪ (X /C),Kσ ,C), where
{c}∪ (X /C) is the set of transient states of the original pro-
cess with the states in the cycle replaced by the single node, c,
and Kσ ,C is given by:

Kσ ,C(x,c) = ∑
i∈C

Kσ (x, i)

Kσ ,C(c,x) = ∑
i∈C

Kσ (i,x)

Kσ ,C(c,c) = 0 (9)

for x ∈X /C and agreeing with Kσ elsewhere. The cycle pro-
cess for the cycle C = 1231 (or C′ = 1321) of the example sys-
tem in figure 2(a) is shown in figure 2(c). Let Tσ (x),TC(x) be
the sets of spanning trees rooted at x of the closed process, Gσ ,
and cycle process, Gσ ,C, respectively. Then, the cycle current
is given by58:

JCyc(σ ,C) =

Cycle︷ ︸︸ ︷(
∏
e∈C

K(e)

) Spanning Trees︷ ︸︸ ︷
∑

T∈TC

∏
e∈T

Kσ ,C(e)

∑
x∈X

∑
T∈Tσ (x)

∏
e∈T

Kσ (e)︸ ︷︷ ︸
Normalisation

. (10)

Note for the cycle term, the edges are taken from the original
process rather than the closed process. Given the cycle current
for the closed process, the expected number of circulations
of the cycle before absorption, NCyc(σ ,C), is the ratio of the
cycle current to the total current to absorbing states:

NCyc(σ ,C) =
JCyc(σ ,C)

JTot(σ)
. (11)

For our example process, the expected number of circulations

of C = 1231 is

NCyc(1,C) =
(r12r23r31)(r42 + r43 + kB)

N JTot(1)
, (12)

with the same implicit cancellation of normalisation as before,
since JTot ∝

1
N .

For an absorbing process starting at a given state, we may
divide the cycles into internal and external cycles. External
cycles are those which appear in the closed process and in-
volve edges which were absorbing edges in the original pro-
cess. The set of all cycles, sorted into internal and external,
for the example process fig 2, is shown in appendix D. The
external cycles correspond to the pathways from the starting
state to an absorbing state. Therefore, the expected number
of times traversing an external cycle before absorption will be
at most one and corresponds to the probability of following a
given path to absorption. Further, the sum of eqn. 11 over all
external cycles will be one.

B. Copolymer Methods

1. Philosophy of coarse-graining complex underlying
copolymerisation reactions networks

Armed with the techniques for solving absorbing Markov
chains, here we set out the method for the analysis of copoly-
merisation processes. Gaspard and Andrieux52 presented a
method to analyse Markov polymerisation processes in which
each monomer is added in a single step (i.e. if the internal
reaction network shown in figure 1d were trivial), assuming
long polymers. We shall present a method for mapping more
complex models for the individual polymerisation step onto
coarse-grained descriptions that can be analysed using this
framework, and then subsequently show how to back out the
behaviour of the full model from the results.

Consider a growing copolymer with M monomer types,
which are assumed to be present in the environment at fixed
concentrations. At a coarse grained level, we can define
a a state space of finite length sequences {x1x2 · · ·xl | xi ∈
{1,2, · · ·M}, l ≥ 0}, where l is the length of the sequence.
Let us refer to the coarse-grained states in this state space as
completed states. On this coarse-grained level, a sequence
of length l may increase in length by one unit by poly-
merising one of M units at the growing tip (x1x2 · · ·xl →
x1x2 · · ·xlxl+1), or it may decrease in length by one unit
(x1x2 · · ·xl → x1x2 · · ·xl−1). Such a coarse grained model is
depicted in figure 1(a,b,c) for free polymerisation, templated
self-assembly and templated polymerisation with simultane-
ous separation.

In general, copolymerisation processes may be best de-
scribed by models in which the underlying copolymerisa-
tion reaction networks are complex, featuring multiple sub-
steps in arbitrarily complex networks connecting the com-
pleted states, as suggested in figure 1d. Hence, overall, we
could consider a copolymerisation process as having a tree-
like structure with networks of reactions connecting com-
pleted states, as in figure 4. Such a class of models is wide-
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reaching, with many examples from the literature included in
this class17–19,22,23,27,28,30–35,39–41,45–51 .

We will define a Markov process at the level of the coarse-
grained completed states that, by construction, preserves
probabilities of transitions between the completed states of
the fine-grained process, and therefore preserves the statis-
tics of the sequences produced. The coarse-grained Markov
process does not preserve the distribution of transition times
between completed states implied by the fine-grained model,
which will in general be non-Markovian. Moreover, it does
not provide fine-grained information on trajectories between
the coarse-grained completed states. However, temporal de-
tails and information about the fine-grained dynamics can be
added back in at a later stage, once statistics have been anal-
ysed at the coarse-grained level.

2. Identifying propensities in the coarse-grained model

We find the transition rates of the coarse-grained model
(hereafter labelled propensities to avoid confusion with the
underlying rates of the fine-grained process) by considering
first passage problems between completed states. From a
given completed state, there are M + 1 completed states that
may be reached, corresponding to the M possible additions
of a monomer and the removal of the monomer currently at
the tip of the copolymer. For a first passage problem, we can
convert each of these reachable completed states into an ab-
sorbing state by removing the transitions out of said states, as
in figure 4(a), in the same vein as Cady and Qian59. Let us re-
fer to this absorbing Markov process as the step-wise process
and define step to mean the addition/removal of a monomer.

We shall work with the assumption that the transition rates
depend on the two monomers at the growing tip of the copoly-
mer, following1,17–19,21–23,36–38,52,60. There will therefore be
M2 flavours of this process corresponding to the combina-
tions of the two terminal monomers of the copolymer, the cen-
tral state &xy (here & represents an arbitrary sequence). We
wish to find the absorbing probabilities, P[&xy→ &xyz], z ∈
{1, · · ·M}, P[&xy→&x] given an initial condition of the cen-
tral state, &xy. As outlined in the previous section, eqn. 5, we
can find these probabilities by constructing the closed process
and finding sums over spanning trees rooted at different states.
The step-wise process has M + 1 petal-like graphs each con-
nected to the central state, but disconnected from each other.
Due to this structure, any sums over spanning trees of the full
process will factorise into a product of sums over spanning
trees of the petals. Thus, we find that the absorbing probabili-
ties take the following form:

P[&xy→&xyz] =
1

N
Λ
+(z,y)

[
∏
z′ 6=z

Q(z′,y)

]
Q(y,x),

P[&xy→&x] =
1

N
Λ
−(y,x)∏

z
Q(z,y). (13)

Here z ∈ {1, · · ·M}, N is the normalisation factor from
eqn. 2; Λ+(z,y) is the sum over spanning trees of the petal

connecting states monomers &xy and &xyz, rooted at the for-
ward completed state, &xyz; Λ−(y,x) is the sum over spanning
trees of the petal connecting states monomers &x and &xy,
rooted at the backwards completed state, &x, figure 4(b); and
Q(y,x) is the sum over spanning trees of the petal connecting
states &x and &xy, linked back to the central state and rooted
at the central state, i.e. with edges redirected to the starting
state as in the closed process, as in figure 4(c). Since Q is
a sum over spanning trees rooted at the node to which edges
have been redirected, the sum takes the same form for both
the forwards and backwards petals, only depending on which
two completed states it is connecting.

From these probabilities, we see that choosing propensities
ω±yx for the transitions &x

ω+yx−−−→&xy and &xy
ω−yx−−−→&x such

that

ω±yx =
Λ±(y,x)
Q(y,x)

(14)

not only preserves the ratios of probabilities of transitions to
completed states, but also ensures that ω±yx only depends on
monomers x and y. We note here that this coarse graining pro-
cess is different from lumping55,61, in which the state space
is reduced while attempting to retain trajectory dynamics. In
our approach, the coarse-grained process does not reproduce
the dynamics of the fine-grained process, only the statistics of
the completed states that are visited. However, dynamic quan-
tities may be extracted exactly from the step-wise process, as
we show in Sec. II B 4.

3. Solving the coarse-grained model

We now use the methods developed by Gaspard and
Andrieux52 to solve the coarse-grained Markov model over
the completed states, with propensities, ω±yx. Gaspard and
Andrieux’s approach considers a frame of reference that is
comoving with the tip of the growing polymer, and assumes
that the state of the tip and nearby monomers reaches a sta-
tionary distribution, to derive quantities at this steady state,
such as the set of tip incorporation velocities, vx (the rates of
adding monomers to a copolymer &x), the tip probabilities,
µ(x) (the probability at a given time that the growing poly-
mer is in state &x), and the pair tip probabilities, µ(x,y) (the
probability of being in state &xy). However, we note that the
time-dependent information is not physical at this stage due to
the coarse-graining process. The above quantities are found
from solving the following equations52:

vx =
M

∑
y=1

ω+yxvy

ω−yx + vy
, (15)

µ(x) =
M

∑
y=1

ω+xy

ω−xy + vx
µ(y), (16)

µ(x,y) =
ω+yx

ω−yx + vy
µ(x). (17)

Using µ and v, we can calculate the statistics of the copoly-
mer sequence far behind the growing tip52. We note that the
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(a) Stepwise copolymerisation process with complex
underlying reaction networks

Bidirectional arrows are reversible transitions.
Unidirectional arrows are irreversible transitions to absorbing states.

(b) A complex polymerisation reaction network:
One “petal” of the stepwise absorbing process

(c) Closed “petal” process: 
One “petal” linked back to the starting state

  &𝑥𝑦1

  &𝑥𝑦2

  &𝑥𝑦3

 &𝑥𝑦&𝑥

  &𝑥𝑦𝑧 &𝑥𝑦

 &𝑥𝑦

FIG. 4: a) The step-wise process for an arbitrary model with 3 monomer types. This step-wise process is for a copolymer &xy.
The edges coloured red are the completion edges. The flower like structure of the step-wise process can be seen with 4 petals

each connected at the starting state, &xy. b) One of the petals of the step-wise process, which we use to define Λ±(z,y).
Λ+(z,y) is defined as the sum of spanning trees rooted at the rightmost state, &xyz and Λ−(z,y) the sum of trees rooted at the
leftmost state, &xy. c) One of the petals (connecting &xy to &xyz, as in b)) which has been linked back to the starting state.

This graph is used to define Q(z,y) as the sum of spanning trees rooted at the leftmost state, &xy.

distribution of monomers at the tip, µ(x), is different from
the distribution of monomers at sites behind the tip; we as-
sume that this distribution reaches some limit far behind the
growing tip, in the bulk of the copolymer. This limiting dis-
tribution describes the probability that a monomer in the bulk
of the copolymer takes a value x. Using ε(x) to denote the
frequency of monomer x in the bulk of the copolymer,52

ε(x) =
µ(x)vx

∑
y

µ(y)vy
. (18)

We may similarly define ε(y|x) as the probability that in the
bulk of the copolymer, a monomer y is observed given a
monomer x behind it. ε(x) and ε(y|x) fully characterise the
statistics of the bulk copolymer since under our assumptions -
transitions only depend on the two monomers at the tip - the
completed copolymer sequence is itself a Markov chain23.

4. Extracting properties of the fine-grained model from the
solution of the coarse-grained model

The easiest quantities to extract are the frequencies of
monomers in the bulk of the copolymer. These quantities are
identical in the coarse-grained and fine-grained models, since
the coarse-graining preserves the statistical distribution of se-
quences produced. Therefore ε(x) as defined in eqn. 18 and
ε(y|x) apply directly to the fine-grained process.

The tip probabilities, µ , above give the fraction of time
spent in each tip state in the coarse-grained model. However,
the coarse-grained model will not reproduce the time series
of the fine-grained model, only the sequences of completed
states visited. We therefore quotient out the lifetime of tip
state (x,y), τ(x,y), to obtain the frequency with which the tip
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states are visited in the coarse-grained model,

ξ (x,y) =
1

M
∑

x′,y′=1

µ(x′,y′)
τ(x′,y′)

µ(x,y)
τ(x,y)

, (19)

τ(x,y) =
1

ω−yx +
M
∑

z=1
ω+zy

. (20)

This frequency defines a new tip distribution, ξ . ξ (x,y) is the
frequency that a given pair of monomers x,y is observed at the
tip of the growing copolymer in the sequence of transitions.
This distribution, ξ (x,y), applies to both the coarse-grained
model and the sequence of completed states visited in the full
fine-grained model. It can therefore be used to find averages
of key dynamic properties.

For example, we can calculate the probability, P, that a
growing copolymer increases in length at each step of the step-
wise process. P is calculated by averaging the probability of
adding a monomer over the possible states &xy:

P =
M

∑
x,y=1

ξ (x,y)

M
∑

z=1
ω+zy

ω−yx +
M
∑

z=1
ω+zy

. (21)

Upon averaging out the sequence information we may treat
the growth of a polymer as a random walk with probability
P of stepping forwards and 1−P of stepping back. We can
find the expected number of monomer inclusion/removal steps
per net forward step as 1/(2P−1) (for proof see appendix E).
A number of quantities scale with the total number of steps
rather than the net number of steps, making the number of
steps per net forward step a necessary quantity. For example
in order to find the expected time taken per net forward step,
one can find the expected time to absorption for the step-wise
process, figure 4(a), T (x,y), for a copolymer in state &xy by
calculating 1/JTot(&xy) for the step-wise process using eqn. 3.
The expected time per net forward step is then

τstep =
1

2P−1

M

∑
x,y=1

ξ (x,y)T (x,y). (22)

1/τstep is therefore the physical average growth rate of the
copolymer in the fine-grained model.

We may also calculate the chemical work done by the sys-
tem in producing the copolymer. In a purely chemical sys-
tem, with no time-varying externally applied protocols, the
entropy increase of the universe is given by the decrease in
the generalised free energy of the chemical system, including
any coupled reservoirs of fuel molecules.20. Since the total
free energy must decrease, any increase in one contribution
must be paid for by a decrease of at least the same magnitude
in another contribution. It is common to describe the latter
subsystem as doing work on the former.

For the polymerisation systems analysed here, the gener-
alised free energy can be split into a term corresponding to

the chemical free energy of the system, averaged over the un-
certain state of the system, and a term related to the entropy
arising due to the uncertainty of the state occupied.62

G = ∑
a

p(a)Gchem(a)+∑
a

p(a) ln p(a), (23)

where we use natural units such that kBT = 1. Here, a is a
chemical state of the system as a whole, Gchem(a) is the chem-
ical free energy of state a, and p(a) is the probability that
the system occupies the state a. Gchem(a) = − lnZa, where
Za is the partition function of the system (explicitly includ-
ing any large chemical buffers) restricted to the chemical state
a, and represents the contribution of concentrations and bond
strength to the favourability of a molecular state. The princi-
ple of detailed balance20 states that the chemical free energy
change associated with a transition from a to b is given by

Gchem(b)−Gchem(a) =− ln
(

K(a,b)
K(b,a)

)
. (24)

The second term in eqn. 23 is information theoretic in char-
acter; it is equal to the negative of the Shannon entropy as-
sociated with the distribution over chemical states. For the
systems studied here, in which we consider infinitely long
copolymers that have reached steady state growth, the only
relevant contribution to this term is the increase in Shannon
entropy of the copolymer sequence produced as the polymer
gets longer. Since the copolymer sequence is itself a discrete
time Markov chain23 the additional entropy per net forward
step (the entropy rate) can be readily calculated63:

H =−
M

∑
x,y=1

ε(x)ε(y|x) lnε(y|x), (25)

with x,y representing the monomer types. Since the purpose
of a copolymerisation system is often to produce a low entropy
(or “accurate”) sequence, it is reasonable to think of the chem-
ical free-energy decrease per net forward step as the chemical
work done to reduce the information entropy of eqn. 25 below
that of a uniform, random polymer. Extending the definition
provided by Poulton et al.23, we may define the efficiency of
copolymerisation as:

η =
lnM−H

lnM+Wchem
≤ 1, (26)

lnM is the entropy per monomer (or entropy rate) of a uni-
form, random copolymer with M monomer types, and Wchem
is the average decrease in chemical free energy per net for-
ward step. This efficiency is then ratio between the entropy
drop due to the accuracy of the copolymer compared to a ran-
dom one (lnM−H) and the chemical work used to drive the
system (Wchem) above that required to make a random copoly-
mer in equilibrium (-lnM)64.

The expected work done during a transition adding or re-
moving a monomer given starting in completed state &xy can
be calculated by summing the contribution from eqn. 24 mul-
tiplied by the expected net current along the edge a� b prior



A Universal Method for Analysing Copolymer Growth 10

to absorption over all edges in the step-wise process:

wchem(x,y) = (27)

−∆Gchem(x,y) = ∑
b>a

ln
(

K(a,b)
K(b,a)

)
Na�b(&xy), (28)

where Na�b(&xy) is the expected net number of times travers-
ing edge a� b before absorption giving starting in the central
state of the step-wise process, &xy, as in eqn. 8. This sum will
also require contributions from edges which lead to absorbing
states. For such edges, the rate for the reverse transition in the
logarithm of eqn. 28 is the rate from the full process.

Equivalently, however, as outlined in appendix C, we may
find this chemical work by considering the non-recurrent cy-
cles of the process57. For a given internal cycle, C, we may
define the affinity20,

A(C) = ln
∏

e∈C
K(e)

∏
e∈C′

K(e)
, (29)

where the sum is over the edges, e, composing the cycle and
C′ is the cycle with edges in revered direction. For external
cycles, we may define the affinity in the same way, inferring
the rate for the reversed edge of the transition to absorbing
states from the full process. The expected work done before
absorption of the cycle, C, given starting in the state &xy is

wchem(x,y) = (30)

−∆Gchem(x,y) = ∑
C

A(C)
JCyc(σ ,C)− JCyc(σ ,C′)

JTot(&xy)
. (31)

Averaging wchem(x,y) with ξ and multiplying by the expected
number of steps per net forward step gives the expected chem-
ical work done per net forward step,

Wchem =
1

2P−1

M

∑
x,y=1

ξ (x,y)wchem(x,y). (32)

Further, the forms of eqns. 22 and 32 may be applied to an
arbitrary quantity for which one can find the expected value
in the step-wise process starting in state &xy. Let this arbi-
trary quantity be A(x,y). One can then average this using the
distribution, ξ , to obtain the expected value of the quantity
per step. Then, if appropriate, multiplying by 1/(2P−1), gives
the expected value of the quantity per net forward step. In
practice, as shall be seen in section III C, since the quantities
we wish to calculate may be written in terms of sums over
spanning trees, the quantities for the step-wise process may
be written as a sum over the terms per petal, with the quantity
for a given petal factorising into some quantity which depends
on the petal multiplied by Q’s for the other petals.

5. Stalled growth

Explicit simulation of copolymer growth is particularly
challenging in regimes where P & 0.5, since many back-
ward and forwards steps are taken per net forwards step. At

P = 0.5, then the process will not reliably produce copoly-
mers; for P < 0.5 polymers will tend to shrink. In general,
for P = 0.5, we can say the model has stalled. Our approach
is particularly beneficial in this case; indeed, it is possible to
check whether a model is at the stall point by considering an
M×M dimensional matrix of the ratios of forward to back-
wards propensities52, Zyx =

(
ω+yx
ω−yx

)
= Λ+(y,x)

Λ−(y,x) . The model is
at the stall point if and only if:

det(Z−1M) = 0, (33)

where 1M is the M×M identity matrix, and shrinking if neg-
ative. Since Z gives the ratios of adding a monomer to remov-
ing one, this condition essentially says that models will stall
if the total rate of adding a monomer is equal to the total rate
of removing one.

In a typical model, there exists at least one parameter that
controls the driving. Often this parameter is related to the
backbone strength of the polymer produced: e.g. the free en-
ergy drop associated with the formation of a generic back-
bone bond, ∆Gpol. This parameter will be present in the rates
of each external cycle so that by tuning it, the model can
be moved all the way from stalling to irreversible driving,
whereby monomers cannot be removed once polymerised. If
such a parameter exists, we may rephrase the stall condition,
eqn. 33, in terms of this parameter. For example, for the case
of the parameter being ∆Gpol, we may find some threshold
value Γ such that the model will stall for ∆Gpol = Γ.

6. Limiting behaviour

We shall note two limits for which we may give analytic ex-
pressions for the frequency of monomer types in the copoly-
mer bulk for all models. First, consider the case that the sys-
tem is at the stall point (eqn. 33). In general, entropy pro-
duction can still occur within cycles in the step-wise process;
therefore, these frequencies cannot be determined from equi-
librium arguments and are non-trivial. Nonetheless, at the stall
point, we may express the monomer frequencies in the bulk
relatively simply. The frequency of monomer x, εstall(x), is
proportional (up to normalisation) to the cofactor of the di-
agonal element (corresponding to monomer x) of the matrix
(1M−Z), as proven in appendix F. For example, for M = 2,

εstall(1) ∝ 1− ω+22

ω−22
,

εstall(2) ∝ 1− ω+11

ω−11
, (34)

and for M = 3, we have

εstall(1) ∝

(
1− ω+22

ω−22

)(
1− ω+33

ω−33

)
− ω+23

ω−23

ω+32

ω−32
,

εstall(2) ∝

(
1− ω+11

ω−11

)(
1− ω+33

ω−33

)
− ω+13

ω−13

ω+31

ω−31
,

εstall(3) ∝

(
1− ω+11

ω−11

)(
1− ω+22

ω−22

)
− ω+12

ω−12

ω+21

ω−21
. (35)
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On the other end of the spectrum, we can also solve for
monomer bulk frequencies in the irreversible limit, where
ω−yx = 0 for all x,y. Intuitively, we could consider the Markov
process on the state space {1, · · · ,M} representing copoly-
mers with a given monomer at its tip, and transitions between
those states with rates, Kirrev(x→ y) = ω+yx. The steady state
of this process will give the time dependent frequencies of
having a given monomer at the tip of the copolymer. There-
fore, dividing by the time spent in each state will give the bulk
frequencies. A nice way to write out these frequencies in the
style of the methods described thus far is as a sum over the
spanning trees on the complete graph on M vertices with rate
functions Kirrev(x,y) = ω+yx. Explicitly, we may write these
frequencies (up to normalisation) as:

εirrev(x) ∝

(
∑

T∈T (x)
∏
e∈T

Kirrev(e)

)
M

∑
y=1

ω+yx, (36)

where T (x) is the set of spanning trees of the complete graph
on M vertices. This expression is derived formally in ap-
pendix G. For example, with M = 2,

εirrev(1) =
ω+12(ω+11 +ω+21)

ω+12(ω+11 +ω+21)+ω+21(ω+12 +ω+22)
,

εirrev(2) =
ω+21(ω+12 +ω+22)

ω+12(ω+11 +ω+21)+ω+21(ω+12 +ω+22)
.

(37)

7. Simplification for factorisable propensities

The presented method applies to arbitrary complex copoly-
merisation models obeying the structure of figure 4. However,
if we make some further common assumptions, much of the
analysis simplifies. For example, consider the case in which
the ratios of propensities may be factored:

ω+yx

ω−yx
=

Λ+(y,x)
Λ−(y,x)

= Y (y)X(x), (38)

where Y is a function of monomer y only and X is a func-
tion of monomer x only. Intuitively, such a condition holds
in the cases where there is no direct, type-dependent inter-
actions between monomers in the growing polymer, such as
when monomers only interact with a template1,23,24,27–38. Un-
der such an assumption, multiple calculations simplify, see
appendix H. For example, the stall condition becomes simply
that the model will stall at

∑
x

X(x)Y (x) = 1, (39)

Bulk frequencies at stall are just:

εstall(x) = X(x)Y (x). (40)

III. EXAMPLE APPLICATIONS

We shall now consider some exemplar classes of models to:
provide examples of how to utilise the methods; validate their

accuracy; and to show the types of quantities and information
that may be extracted.

A useful initial classification of models is into those which
we shall call balanced. We shall refer to a model as being
balanced if its petals (see figure 4(b)) are detailed balanced.
Such models are useful baseline checks as their cycles all have
zero affinity, meaning no chemical work is done internally and
hence the only contributions to chemical work are from exter-
nal cycles. Further, these models exhibit a proper equilibrium
at the stall point, and as such allow for equilibrium arguments
to validate the method at this point. It is worth noting that
although related to the notion of detailed balanced, the full
model with its infinite state space is not detailed balanced.

A. Stalling behaviour in a polymerisation model with no
neighbour-neighbour interactions

We shall start with the simplest case, where the propensi-
ties in the coarse-grained model only depend on the monomer
type being added/removed: ω±yx = ω±y, such as in a simple
model for templated self assembly, figure 1(b). Assume there
exists a backbone free energy, ∆Gpol controlling the driving
as in section II B 5. Any spanning tree in Λ± must involve at
least one incidence of ∆Gpol, since it appears in every exter-
nal cycle. Therefore, we can split the ratio of propensities as
follows:

ω+y

ω−y
= e∆Gy e∆Gpol , (41)

where ∆Gy encompasses the rest of the details about the mod-
els. We note in general, ∆Gy may be a function of ∆Gpol,
however in many cases, it is not. These cases include when
there is only one completion reaction (highlighted in red in
figure 4(a)) that contains the dependence on ∆Gpol or if the
model is balanced. We may then interpret −∆Gy as an effec-
tive binding free energy of monomer y. If we think of ∆Gpol
as the free energy drive of the model away from stall, we look
for a threshold value ∆Gpol = Γ above which the model will
not stall. Using eqn. 39, we see that

Γ =− ln

(
∑
y

e∆Gy

)
=− lnZ , (42)

where Z is the partition function for a system with one state
for each monomer type, each state labelled by y and with free
energy −∆Gy. Furthermore, using eqn. 40, the bulk frequen-
cies at the stall point may be written:

εstall(y) =
e∆Gy

∑x e∆Gx
=

1
Z

e∆Gy , (43)

which is the probability of selecting a state y, with free en-
ergy, −∆Gy as predicted by equilibrium statistical mechanics.
In these results, −∆Gy looks like the equilibrium contribution
to free energy, and the results follow fairly directly in equilib-
rium. However, these results hold even if the process involves
fuel-consuming cycles: entropy may still be being produced
at stall. In such cases, the effect of breaking equilibrium will
be to change the effective free energies of selecting a given
monomer type.
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B. Balanced models of templated polymerisation with
autonomous separation

Next we shall consider a class of models where the ratio of
propensities may be written:

ω+yx

ω−yx
= e∆Gye−∆Gx e∆Gpol . (44)

As before, ∆Gpol, coming from the polymerisation reactions
represents the driving of this process. Such a class of models
includes, most notably, balanced models of templated poly-
merisation with autonomous separation,23. In these cases the
breaking of the previous copy-template bond every time a new
bond is formed enforces the structure in eqn. 44. We shall as-
sume, as in Ref. 23, that ∆Gy is independent of ∆Gpol.

Using eqn. 39 and eqn. 40, we find the stall point to be
∆Gpol =Γ=− lnM and bulk frequencies at stall, εstall(y)= 1

M ,
where M the number of monomer types. Physically, we can
understand these results by considering balanced models of
templated polymerisation with autonomous separation. For
such models, by definition there is no entropy production in
internal cycles and therefore, the stall point must be thermo-
dynamic equilibrium. In such models, the only driving comes
from the polymerisation, ∆Gpol, and the entropic effect hav-
ing M monomers to choose. These two effect balance at
equilibrium.64

Next let us consider the limit that the completion reactions
highlighted in red in figure 4 (a) are much slower than the
other reactions. Explicitly, let k be some rate constant at the
same order of magnitude of the rates of the process that are
not the rates for the completion transitions indicated in red
in figure 4 (a). Write the completion rates as kcomR+

com(y,x),
where kcom� k is a rate constant controlling the overall speed
of the completion reactions and R+

com(y,x) provides any se-
quence dependence. Similarly, the reverse transitions along
the completion edges have the rate kcomR−com(y,x). Further, let
there be ncom such completion reactions in a given petal of the
step-wise process (we shall assume this number is the same
for all pairs of monomers, x,y)

Assume for simplicity that all completion reactions,
R±com(y,x), take the same form in a given petal. Then, we can
write the sum over spanning trees, Q(y,x) as

Q(y,x) =
1

ncom

Λ−(y,x)
kcomR−com(y,x)

+O

(
kcom

k

)
, (45)

since Λ−(y,x) has first order terms in kcom/k. This fact can
be seen from noting that the leading order terms in Q(y,x)
are the trees with no completion reactions and the leading or-
der terms in Λ−(y,x) are those same leading order trees of
Q(y,x), except with one completion reaction added in. There
are ncom such completion reactions and each adds the same
leading order term to Λ−(y,x). With Q(y,x) taking this form,
and remembering eqn. 44, the propensities take the following

form:

ω+yx = ncomkcomR−com(y,x)e
∆Gy−∆Gx+∆Gpol +O

(
kcom

k

)2

,

ω−yx = ncomkcomR−com(y,x)+O

(
kcom

k

)2

. (46)

The ncomkcom term cancels in ratios of ω±yx variables, and
therefore does not affect the sequence statistics. Thus, in
the slow completion limit, such models are only affected by
the binding free energy differences (∆Gy−∆Gx), the driving
(∆Gpol), and the nature of the final completion step (R−com).
Therefore, the fine details do not affect the statistics of the
polymers.

Assuming that all completion edges are associated with the
same free energy change−∆Gpol, so that R−com(y,x) = e−∆Gpol ,
we may solve for the statistics explicitly. For the case of two
monomer types, M = 2, we find the bulk frequency to be (ap-
pendix I):

ε(1) =
(

1− 1
2
(e−∆Gpol −1)(e−DG−1)

+
1
2

√
(e−∆Gpol −1)2(e−DG−1)2 +4e−DG

)−1

, (47)

where DG=∆G1−∆G2. This expression is plotted in figure 5
for DG = 4. From this expression, we can confirm explicitly
by substituting in the stall driving, ∆Gpol = − ln2, that the
bulk frequency indeed becomes ε(1) = 1

2 . Further, taking the
irreversible limit, ∆Gpol→ ∞, we find the bulk frequency be-
comes:

ε(1) =
e∆G1

e∆G1 + e∆G2
, (48)

the equilibrium statistical mechanics probability of choosing
state 1 with free energy −∆G1, given state 2 has free en-
ergy −∆G2. Since the completion reactions are slow and ir-
reversible, in this limit, the process selecting the monomers
is allowed to equilibriate. Therefore, copolymerisation is sim-
ply sampling from the equilibrium distribution of this process,
and hence tends to the result predicted by equilibrium statisti-
cal mechanics.

Eqn.46 shows that in the slow completion limit, the fine de-
tails of the reaction network leading to selection of a specific
monomer become unimportant and the models collapse onto
a single accuracy curve determined by DG, ∆Gpol and R−com.
Conversely, if we fix all parameters except kcom, we seem to
see that the bulk frequencies will tend monotonically to their
limits as kcom/k→ 0, either from above or below.

We can use this fact to compare bulk frequencies for
certain types of model. For example, we may compare
on-rate discrimination,26 where incorrect monomers bind
more slowly, to off-rate discrimination,26 where incorrect
monomers unbind more quickly. An example model compar-
ing on-rate and off-rate discrimination is plotted in figure 5 for
a model defined in appendix J. Consider the bulk frequency of
an incorrect monomer. On-rate discrimination benefits from
fast polymerisation and therefore tends to its slow polymerisa-
tion limit from below, whereas off-rate discrimination benefits
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FIG. 5: Plots of the frequency of the less stably-bound
(incorrect) monomer with smallest binding free energy,
labelled 2 for on- and off-rate discrimination balanced
models with kcom = 100 and kcom→ 0. The binding

free-energy difference for these models is
DG = ∆G1−∆G2 = 4. The models are topologically the

Hopfield model as in figure 6a, with ∆Gact = 0 and
Min = Mact = 1. However, for the on-rate discrimination, the
free-energy terms are in the binding reactions instead of the

unbinding ones. The specific models are given in appendix J.

from allowing the process selecting monomers to equilibriate
and hence tends to its slow copolymerisation limit from above.
This fact sets up a hierarchy for a given set of parameters, and
moderate or strong driving, for the bulk frequency of incorrect
monomers, off-rate discrimination > slow copolymerisation >
on-rate discrimination. This observation is consistent with the
results of Sartori and Pigolotti26 and Poulton et al.23 for ki-
netic (on-rate) and energetic (off-rate) discrimination.

C. Hopfield’s Kinetic Proofreading in a model of templated
copying with autonomous separation

For our final example, we shall consider an explicit model
of copolymerisation, with Hopfield’s kinetic proofreading
mechanism incorporated into a templated copolymerisation
system with autonomously separating product in a thermo-
dynamically valid way. From this setup, we can provide a
fully worked example of an explicit model, as well as demon-

strating the power of the method for analysing sequences of
models with recursive structures as we look at a generalised
version of Hopfield’s proofreading incorporated into a model
of templated polymerisation with autonomous separation.

Explicitly, we first consider the one-loop model of kinetic
proofreading shown in figure 6 (a). There are two monomer
types, the right ones x = r and wrong ones x = w. Note that
we have already transformed the model so that the sequence
of the copy is defined relative to that of the template35. These
monomer types exist in inactive and active states with concen-
trations Min and Mact, respectively, relative to some reference
concentration, with each monomer type having the same con-
centration. As previously, we shall assume the environment is
sufficiently large such that these concentrations remain con-
stant.

The monomers may bind to the template either in an ac-
tive or inactive state with binding free energies −∆Gx for
monomer type x. Inactive monomers may be activated on
the template with a free-energy change of ∆Gact. Finally, ac-
tive monomers may be polymerised into the copolymer chain,
with free-energy change −∆Gpol. Subsequently, the penulti-
mate monomer of the copolymer unbinds from the template.
Each of these reactions is assigned a forwards and reverse re-
action rate consistent with the thermodynamic model; the full
model is illustrated in figure 6 (a). Conceptually, the proof-
reading motif functions by providing two opportunities to re-
ject the unwanted monomer w: first, when the un-activated
monomer binds, and second, after it has been activated. To
be effective, a non-zero affinity is required to drive the sys-
tem around the cycle of states in the correct order: unbound
template site → unactivated monomer bound → activated
monomer bound.20,43 We emphasise that this model differs
from Hopfield’s original description in two important ways:
firstly, we consider a full, microscopically reversible poly-
merisation process, rather than a single incorporation step
with irreversible polymerisation; and secondly, we embed the
proofreading motif into a non-trivial polymerisation process
involving autonomous detachment from the template.

Given the model as described in figure 6 (a), we first iden-
tify the propensities ωxy connecting completed states. Due
to the petal-like structure, we can follow eqn. 13 and simply
consider spanning trees of the petal sub-processes illustrated
in figure 6; Λ−(y,x) rooted at &x, Λ+(y,x) rooted at &xy, and
Q(y,x), for a petal connecting &x and &xy. Explicitly writing
out the sums of spanning trees, we obtain:

Λ
+
1 (y,x) =

[
k1kactMin + kKPMact(k1e−∆Gy + kact)

]
kpole−∆Gx , (49)

Λ
−
1 (y,x) =

[
k1kacte∆Gact−∆Gy + kKPe−∆Gy(k1e−∆Gy + kact)

]
kpole−∆Gpol , (50)

Q1(y,x) =
[

k1kacte∆Gact−∆Gy +(kKPe−∆Gy + kpole−∆Gx)(k1e−∆Gy + kact)

]
. (51)

Here, we add a subscript 1 to denote these as for the sim-
ple, "1-loop", Hopfield model, which we shall extend to allow
more loops later. We note that the ratio, Λ+(y,x)/Λ−(y,x)

factorises as eqn. 38 and so we can easily write down the stall
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FIG. 6: Reaction rates of the (a) 1-loop and (b) N-loop Hopfield kinetic proofreading models implemented in a templated
polymerisation model with autonomous separation system. Each of these subfigures represents a single petal of the step-wise
process as in figure 4, going from completed state &x→&xy. In both cases, the template is represented by red squares. In (a)
the inactive monomer is represented by a white circle and the activated monomers by a dark blue circle. In (b), different levels
of activation are represented by increasingly dark shades of blue circles. Further, in (b) the numbers by the states represent the

activation level of the monomer. In each case, the desired pathway is highlighted with red arrows.

condition as ∆Gpol = Γ with

Γ =− ln
(

k1kKPMacte−∆Gr + kact(kKPMact + k1Min)

k1kKPe−∆Gr + kact(k1e∆Gact + kKP)

+
k1kKPMacte−∆Gw + kact(kKPMact + k1Min)

k1kKPe−∆Gw + kact(k1e∆Gact + kKP)

)
. (52)

Note that setting Min = Mact = 1,∆Gact = 0, in eqn. 52, Γ col-
lapses to − ln2 as these conditions reduce the system to a bal-
anced one with a stall point at equilibrium, as in Section III B.

The frequency of right and wrong monomers, ε(x = r,w)
may be calculated from eqn. 18 (the calculation is imple-
mented in the supporting information). We plot copying
error, as represented by ε(w), in figure 7 (a), and demon-
strate that it agrees well with the results found from a Gille-
spie simulation65 of the same model. We also compare to
a “0-loop” version of the model, in which the inactivated
monomers and the inactivated monomer bound state are omit-
ted. As can be seen, the proofreading motif generally im-
proves accuracy when driven above its stall point ∆Gpol = Γ.
Indeed, we may write down expressions for the bulk fre-
quency in the irreversible limit (∆Gpol → ∞) using eqn. 36.
In this irreversible limit, we recover Hopfield’s classic argu-
ment by taking some further limits consistent with his analy-
sis. Namely, letting Mact,kact,kpol → 0, we find ε(w)/ε(r) =

e2(∆Gw−∆Gr). In this limit, the ratio of incorrect monomers to
correct ones involves the square of the binding free energy
difference, reflecting the fact that two steps of discrimination
have occurred.

We may also write down expressions for the expected
chemical work done per net step of the process. This quan-
tity will involve the total current to absorbing states of the
step-wise process for starting with a copolymer &xy, which
we may write as:

JTot(y,x) =
1

N (y,x)
(Λ+

1 (r,y)Q(w,y)Q(y,x)

+ Λ
+
1 (w,y)Q(r,y)Q(y,x)+Λ

−
1 (y,x)Q(r,y)Q(w,y)),

(53)

where N is a normalisation factor that will cancel out of cal-
culations. In order to track each of the terms here, we shall
break down the contributions to the chemical work done into
three parts, one for each of the petals present in the step-wise
process. These three petals correspond to adding a monomer
type r, adding a monomer type w or removing a monomer
type y. Let us label each of these contributions to the chemical
work with a subscript, Gr(y,x) for the transition &xy→&xyr,
Gw(y,x) for the transition &xy→ &xyw, and Gq(y,x) for the
transition &xy→&x. From the r petal, we have:

Gr(y,x) =

[(
−∆Gact + ln

Min

Mact

)
k1kactkKPe−∆Gr(Min +Macte∆Gact)

+ (∆Gpol +∆Gr−∆Gy + lnMin−∆Ga)(k1kactkpolMine−∆Gy)

+ (∆Gpol +∆Gr−∆Gy + lnMact)kKPkpolMacte−∆Gy(k1e−∆Gr + kact)

]

× Q(w,y)Q(y,x)
N (y,x)JTot(y,x)

. (54)

The first line of eqn. 54 corresponds to the chemical work associated with the internal cycle (inactive monomer binds,
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gets activated, and activated monomer unbinds). The second
line corresponds to an external cycle: an inactive monomer
binds to the template, is activated and is polymerised into the
chain with the previous monomer, y, detaching from the tem-
plate. The third line corresponds to the alternative external

cycle: an active monomer binds to the template and is poly-
merised with monomer y unbinding from the template. We
may similarly write down Gw(y,x) as eqn. 54, except swap-
ping r and w. Finally, the contribution to the chemical work
from the petal for removing monomer y may be written:

Gq(y,x) =

[
− (∆Gpol +∆Gy−∆Gx + lnMin−∆Ga)(k1kactkpole∆Gact−∆Gy−∆Gpol)

− (∆Gpol +∆Gy−∆Gx + lnMact)kKPkpole−∆Gpol−∆Gy(k1e−∆Gr + kact)

]

× Q(r,y)Q(w,y)
N (y,x)JTot(y,x)

. (55)

Here, only external cycles are possible. The first line cor-
responds to monomer x rebinding to the template, monomer
y being depolymerised, this monomer being deactivated and
an inactive monomer y unbinding from the template; and the
second line to x rebinding, y being depolymerised and active
monomer y unbinding from the template. The distribution,
ξ (y,x) may be calculated from eqn. 20 and P from eqn. 21
(both demonstrated in the supporting information), letting the
chemical work done per net step of the the 1-loop model be
written:

∆G =
1

2P−1 ∑
x,y∈{r,w}

ξ (y,x)(Gr(y,x)+Gw(y,x)+Gq(y,x)) .

(56)

This chemical work done is plotted for a certain set of pa-
rameters in figure 7 (b) and is also compared both to the results
of direct simulation and the simpler “0-loop" model which has
chemical work, ∆Gpol. The free-energy cost of the proofread-
ing mechanism diverges as ∆Gpol→ Γ since there will be a fi-
nite chemical work done per monomer addition/removal step
due to the proofreading internal cycle, and the number of ad-
dition/removal steps per net step diverges. Further, for large
∆Gpol, the work tends to be dominated by ∆Gpol, albeit very
slowly, as shown by the orange line gradually approaching
∆Gpol (the blue line) in figure 7(b).

Additionally, we can find an expression for the time taken
per net step forwards, eqn. 22. For this quantity, we need
the explicit expression for the normalisation, N . Similarly to
the chemical work, we can split this term into contributions
from the petal adding an r, Nr(y,x); from the petal adding
a w, Nw(y,x); from the petal removing monomer y, Nq(y,x)
and a contribution from the central node. These normalisation
terms come from the sums of spanning trees directed to the
individual nodes in the closed step-wise process. We see that

Nr(y,x) =
[
k1Min(kacte∆Gact + kKPe−∆Gr + kpole−∆Gy)

+kKPkactMacte∆Gact + k1kactMin + kKPkactMact + k1kKPe−∆Gr
]

× Q(y,x)Q(w,y), (57)

with a similar result for Nw(y,x) except swapping r and w.

Finally, for the monomer removal petal, we have:

Nq(y,x) = kpole−∆Gpol(k1e−∆Gy + kact

+ kacte∆Gact)Q(r,y)Q(w,y). (58)

The total normalisation is then:

N (y,x) = Nr(y,x)+Nw(y,x)+Nq(y,x)
+ Q(y,x)Q(r,y)Q(w,y), (59)

with the last term being the contribution from the starting, cen-
tral node. This normalisation can be used in eqn. 53 to give
the current to absorbing states, which can be used in eqn. 22
to find the expected time per net step. This time is plotted
in figure 7 (c), alongside a simulation of the same model and
the simplified 0-loop model for comparison. Like the chem-
ical work in figure 7 (b), the time per net step diverges as
∆Gpol → Γ, since each monomer addition/removal step will
take finite time, but the number of such steps required for a
net forwards step diverges. Unsurprisingly, the time taken for
a given driving for the Hopfield model is longer than that of
the simple model, due to the proofreading cycle.

Hopfield’s model for proofreading may be naturally ex-
tended to include N activation stages instead of just one.48,50

We shall call these extensions the N-loop Hopfield models.
These models can be solved recursively to write down expres-
sions for the sums over spanning trees, Λ

±
N (y,x), QN(y,x), as

a function of the number of loops, N. We shall consider the
model as in figure 6 (b). A detailed derivation of the sums over
spanning trees is given in appendix K. From these sums over
spanning trees, we calculate the bulk frequencies, the time
taken per net step and the chemical work done per net step
using recursive relations (see appendix K).

For simplicity, we shall discuss the case where the
monomer binding free energy is only dependent on monomer
type, not on activation stage; each activation stage is associ-
ated with a free energy change of ∆Gact; each active monomer
is present in the environment at a concentration Mact except
the inactive monomers at concentration Min; and the overall
rate constants are k1 for binding of inactive monomer, kKP for
binding of active monomers, kact for activation of monomers.
Under these assumptions, the corresponding rates are given in
appendix K.
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FIG. 7: The analytical method applied to a 1-loop
proofreading model (figure 6 (a)), compared to Gillespie

simulation of the same model and a simpler 0-loop model.
For these data, the following parameters were used:
∆Gr = 2, ∆Gw =−2, ∆Gact =−1 Min = 1, Mact =

0.01, k1 = kact = kKP = 1. The stall point, Γ, is marked on
each of the plots. The Gillespie simulations used a template

of length 2000 and were run till completion with the first
monomer being chosen as either r or w with probability 0.5.
The statistics were averaged over 2000 copolymers per data

point. The chemical work was calculated from the simulation
as (Inactive monomers)∗ (∆Gact− ln(Mact/Min))+L∗

(∆Gpol + lnMact) where “Inactive monomers" is the number
of inactive monomers taken out of the environment and L is

the length of the template.

To reduce the frequency of incorrect monomers in the
product, we wish to have a low concentration Mact of active
monomers in solution to force the system into utilising the
proofreading cycles. Indeed, the bulk error probability in the
irreversible limit (calculated using eqn. 36 and plotted in fig-
ure 8 (a) shows a strong improvement with loop number for
low Mact, but larger values of Mact lead to much worse per-
formance and limited (or negative) returns to increasing the
number of loops.

However, for finite driving strength ∆Gpol, we cannot allow
this concentration to be arbitrarily small. To see why, consider
the stall point, Γ(N), derived in appendix K and plotted for a
certain set of parameters in figure 8 (b). It is observed that the
stall point driving increases monotonically with N, and that
this increase is faster and tends to a higher limit for smaller
Mact. We find that the limiting Γ scales approximately lin-
early with − ln(Mact). Intuitively, introducing more monomer
states at low concentration in the environment destabilises the
polymer. For small Mact and driving ∆Gpol, the depolymerisa-
tion of the polymer into these activated states competes with
its tendency to grow by binding to and activating the inactive
monomers.

One drawback of proofreading with a large number of loops
is therefore that the tendency to disassemble the growing poly-
mer increases. A second effect is a tendency to introduce er-
rors by alternate pathways if Mact is non-zero. Specifically,
for Mact 6= 0, we observe in figure 8 (a) a minimum in εirrev(w)
for a relatively small value of N. This minimum can be ex-
plained by splitting the pathways by which a monomer can
go from solution to being incorporated into the polymer into
two, either starting from a fully inactive monomer or from a
partially activated one. The pathway starting with an inactive
monomer will have the highest discrimination between right
and wrong monomers and will improve exponentially with
more loops, as demonstrated by the exponential decrease in
error for Mact = 0. However, the probability that a monomer,
taking this path, will reach polymerisation falls exponentially
with loop number at the same time. On the other hand, the
pathway from partially active monomers will give an error
that reaches some non-zero limit as the number of loops, N,
increases. Further, the rate with which activated monomers
bind to an available template site and subsequently get incor-
porated into the polymer will also tend to a constant. As such,
the error will initially decrease exponentially with N, but for
non-zero Mact will eventually become dominated by the less
discriminating, partially active monomer pathways through
which monomers are more likely to be incorporated into the
polymer.

Having calculated the error probability ε(w) at finite driv-
ing, plotted in figure 9 (a); used ε(x,y) to calculate the entropy
rate; and calculated ∆G ; we can evaluate the efficiency η , as
in eqn. 26 (see supporting information for demonstrations).
This efficiency is plotted in figure 9 for N = 0,1,5,10 and
a certain set of parameters. Although accuracy is generally
increased above the stall point, we see that in this particu-
lar model kinetic proofreading requires much more work than
the minimum required to generate information and as such are
inefficient. Additionally, the gradient of the efficiency at min-
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FIG. 8: Many-loop models have limited efficacy for finite
Mact for the proofreading model introduced in figure 6. Plots

of the error in the irreversible limit, εirrev(w) and the stall
point driving, Γ, for different values of the active monomer

concentrations, Mact, and other parameters:
∆Gr = 2, ∆Gw =−2, Min = 1, ∆Gact =−1, ks = 1. The

N = 0, error is not shown for clarity, but is 0.5 for all Mact.

imum driving, ΓN , is zero for N > 0, reflecting how at mini-
mum driving, the number of monomer addition/removal steps
diverges, but the chemical work done per such step remains
finite.

FIG. 9: Plots of (a) the error and (b) efficiency of the N-loop
proofreading model (figure 6) for a range of N, with the same

parameters as in the one loop Hopfield case, figure 7, as a
function of driving ∆Gpol. Proofreading is observed to

generally increase accuracy above its stall point, but in a
thermodynamically inefficient way. The enhanced plot in the
second graph shows the efficiencies near the stall point for

each of the loop numbers on a non-logarithmic scale to
emphasise the decreasing gradient at stall.

IV. CONCLUSION

We have presented a method for analysing copolymerisa-
tion models with complex networks of reactions leading to
the incorporation or removal of monomers. By coarse grain-
ing, a model may be transformed into a simpler model which
may be solved and then afterwards, information from the fine-
grained process may be put back into the model to extract
thermodynamic or kinetic quantities such as chemical work
done, molecule exchange or time taken. The approach allows
for complex incorporation motifs to be considered alongside
nearest neighbour interactions in a thermodynamically well-
defined model of polymerisation with microscopic reversibil-
ity. We note that all of these features were present in the ki-
netic proofreading example in Section III C. Moreover, phe-
nomena such as the shift in stall point with loop number and
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the non-monotonicity of error rate with loop number rely on
these features being present in the model.

In general, this method provides a way to extract model pre-
dictions numerically quickly and without the need for simula-
tions. Doing so is particularly useful when simulating poly-
mer growth is slow, either due to the details of the incorpo-
ration process or because the polymer is near its stall point.
Additionally, the approach makes screening of a large param-
eter space for a given model topology feasible.

In addition to the numerical performance, the approach al-
lows for analytic results in simpler models or those with help-
ful symmetries, as well as in certain limits for more complex
models. The process of summing over spanning trees is par-
ticularly well suited to identifying the structure of the process
and providing simplified results.

Moving forwards, it is an open question as to whether com-
ponents of the techniques developed here can be applied out-
side of the context of infinitely long polymers whose tips have
reached steady state. An obvious goal would be a simplified
way to analyse finite-length “oligomers".24. More generally,
we believe the key equation of this paper, eqn. 14, may be ap-
plied more generally for the coarse graining of Markov pro-
cesses. Specifically, that if a set of states are enclosed between
two boundary states, in the sense that any path from one of the
trapped states to outside must pass through one of the bound-
ary states, then this set of states may be replaced by a pair of
edges analogously to eqn. 14 which shall preserve steady state
properties of the Markov process.

This framework could be applied to explore models
of copolymerisation processes such as those presented
in17–19,22,23,27,28,30–35,39–41,45–51 more straightforwardly or
more thoroughly. Alternatively, the method would allow for
more complex reaction steps to be included in such mod-
els. The framework presented here is particularly useful
when backwards steps are relevant, either when the system
is weakly driven and thus operating near stall, or when ther-
modynamics is of importance or interest. We also predict
that it will be useful to guide design principles for synthetic
copolymerisation systems, which are often particularly well-
described by the class of models studied here.

SUPPLEMENTARY MATERIAL

The supplementary material contains a C++ script imple-
menting the Gillespie algorithm that reproduces the data for
the 1-loop Hopfield kinetic proofreading model presented in
figure 7, and a MATLAB script for numerically calculating
quantities of the 1-Loop and N-Loop Hopfield kinetic proof-
reading models presented in section III C and shown in the
solid lines of figure 7, the points of figure 8 and figure 9.
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Appendix A: Factorising sums of spanning trees

We note here that sums of spanning trees can be factorised in terms of Self-Avoiding Walks (SAWs), a result which is both
useful for generating sets of spanning trees and allows us to make statements about ratios of propensities of balanced models. For
a given process, G = (X ,K), for which we wish to find the sum of spanning trees rooted at x1 ∈X , we may factorise this sum
in terms of self-avoiding walks (SAWs) between two vertices in the graph. Select some other arbitrary vertex x2 ∈X /{x1} and
let S (x2,x1) be the set of SAWs from x2 to x1. For each S ∈S (x2,x1), we can construct GS = ({s}∪ (X /S),KS) analogously
to eqn. 9, whereby we collapse the nodes in the SAW, S, into the single node s. The sum over spanning trees rooted at x1 may
then be written:

∑
T∈T (x1)

∏
e∈T

K(e) = ∑
S∈S (x2,x1)

[
∏
e∈S

K(e)

]
︸ ︷︷ ︸

SAW term

[
∑

T∈TS(s)
∏
e∈T

KS(e)

]
︸ ︷︷ ︸

Spanning tree term

,

(A1)

where T (x),TS(x) are the sets of spanning trees directed to x for the original process, G , and the new process, GS. For
example, in figure 3(a), the spanning trees are arranged in terms of SAWs from node 1 to node 3, with the first row for SAW:
1→ 2→ 4→ 3; the second row for 1→ 2→ 3; and the last three rows for 1→ 3. Similarly for figure 3(b), the trees are arranged
in terms of SAWs from node 1 to node 4 with row one for 1→ 2→ 3→ 4; row two for 1→ 2→ 4; row three for 1→ 3→ 4;
and row four for 1→ 3→ 2→ 4.

Appendix B: Normalisation constant for example absorbing Markov process

The normalisation constant for the closed example process, figure 2(b), can be found by considering the spanning trees rooted
at each of the nodes. Factorising these in terms of SAWs, we write:

N =
[
r34r42r21 + r32r24kB + r32r21(r43 + r42 + kB)+ r34kB(r24 + r23 + r21)

+ (r31 + kA)(r21r43 + r21kB + r42r21 + r23r43 + r23kB + r42r23 + r24r43 + r24kB)
]

+
[
r13r34r42 + r13r32(r43 + r42 + kB)

+ r12(r34r42 + r43r32 + r32kB + r32r42 + r43(r31 + kA)+ kB(r31 + kA)+ r42(r31 + kA)+ r34kB)
]

+
[
r12r24r43 + r12r23(r42 + r43 + kB)+ r13((r43 + kB)(r21 + r23 + r24)+ r42(r21 + r23))

]
+
[
r13r34(r21 + r23 + r24)+ r13r32r24 + r12r23r34 + r12r24(r31 + kA + r32 + r34)

]
. (B1)

The first square bracket corresponds to the trees rooted at node 1, organised by SAWs from node 3; the second to trees rooted
at 2 organised by SAWs from 1; the third to trees rooted at 3 organised by SAWs from 1 and the fourth to trees rooted at 4
organised by SAWs from 1.

Appendix C: Equivalence between chemical work calculated from Edges and cycles.

Here, we shall show the equivalence of chemical work for a process calculated by summing over edges versus summing
over cycles. For this, consider a process (X ,K), without any absorbing states (for simplicity) and such that every edge is
microscopically reversible and let π(x) be the steady state probability to be in state x. For an edge x� y, as described in
section II A 4, the net current through this edge is:

Jx�y = π(x)K(x,y)−π(y)K(y,x). (C1)

We can write π(x) in terms of spanning tress by MCTT, and by appendix A, we may expand the sum over spanning trees by
SAWs from y to x. For π(y), we may expand by SAWs from x to y such the spanning tree terms of both expansions are the same
and only the direction of edges in the SAW terms is flipped. The net current may then be written:

Jx�y =
1

N ∑
S∈S (y,x)

[
K(x,y)∏

e∈S
K(e)−K(y,x) ∏

e′∈S
K(e′)

][
∑

T∈TS(s)
∏
e∈T

KS(e)

]
(C2)

where S (x,y) is the set of SAWs from node x to node y; N is the normalisation as in eqn. 2, and e′ is the edge in the opposite
direction, i.e. if e = x→ y, e′ = y→ x; and the last bracketed term is the spanning tree part for SAW, S, as in eqn. A1. One of
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the SAWs from y to x will simply be the single transition x→ y, however, this term will cancel out from the sum leaving just
the non-trivial SAWs. Taking a non-trivial SAW from y to x and multiplying by the rate K(x,y) gives a cycle containing the
edge x→ y. Therefore, the current may be written as a sum over cycle currents, as in section II A 4, of cycles which contain the
edge x→ y minus those which contain y→ x. Each of the edges contains a contribution to chemical work ln

(
K(x,y)
K(y,x)

)
. The total

chemical work before absorption is the sum over all edges of these contributions:

Wchem = ∑
x�y

ln
(

K(x,y)
K(y,x)

)
Jx�y

JTot
. (C3)

Since, in this sum the Jx�y may be split up as a sum over cycles, we may collect the parts of this corresponding to given cycles
and convert the sum over edges into a sum over cycles. Doing so we find the contribution to the chemical work from cycle, C, to
be ln

(
A(C)
A(C′)

)
, i.e. the affinities as we might expect. Hence, the sum over cycles is equivalent to the sum over edges.

Appendix D: Cycles of the example absorbing process

We make divide the cycles of the example process, figure 2(a), into internal cycles, external cycles to absorbing state A and
external cycles to absorbing state B. Firstly, the internal cycles are:

1 3

2 4

1 3

2

3

2 4

1→ 2→ 4→ 3→ 1 1→ 2→ 3→ 1 2→ 4→ 3→ 2

where the cycle is written out below in the clockwise direction. Similarly, we find the external cycles to state A:

1 3 A 1 3

2

A 1 3

2 4

A

1→ 3→ A 1→ 2→ 3→ A 1→ 2→ 4→ 3→ A

Finally, the external cycles to absorbing state B are:

1

2 4 B

1 3

2 4 B

1 3

2 4 B

1 3

4 B

1→ 2→ 4→ B 1→ 2→ 3→ 4→ B 1→ 3→ 1→ 4→ B 1→ 3→ 4→ B

Appendix E: Number of steps per net forward step of a random walk

Here we shall derive the number of steps per net forward step of a random walk. Let us set up a random walk as follows. Let
the state space be the nodes {0,1, · · ·L} where L is the length of the walk (polymer). Let the transition 0→ 1 have probability
1, i→ i+ 1 for i = 1, · · ·L− 1 have probability p, i→ i− 1 for i = 1, · · ·L− 1 have probability q = 1− p and let state L be an
absorbing state as in figure 10.

We then wish to find the expected number of steps to absorption, given starting in state 0, for which we can utilise the spanning
tree methods with eqn. 22. Since the total rate out of any state sums to one, the expected number of steps equals the expected
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0 1 2 · · · L
1

q

p

q

p

q

p

FIG. 10: Graphical representation of the random walk process considered.

time to absorption. Thus, we can form the closed process starting at 0. Let f (n) be the sum over spanning trees rooted at node n
for the closed process. f (n) is given by:

f (n) =


L−1
∑

i=0
piqL−1−i for n = 0

pn−1
L−1−n

∑
i=0

piqL−1−n−i for n = 1, · · · ,L−1
. (E1)

From this, the expected number of steps before absorption is:

E[steps] =

L−1
∑

n=0
f (n)

p f (L−1)
. (E2)

By utilising the formulae for finite geometric series, we can find the expected number of steps to be:

E[steps] =
1

2p−1

(
L−1− q

pL

(
pL−qL

p−q

)
+

qL

pL +
pL−qL

pL−1

)
. (E3)

Most of this expression is sub-linear in L, and as such:

lim
L→∞

E[steps]
L

=
1

2p−1
, (E4)

which is the net number of steps per net forward step.

Appendix F: The frequency at stall is given by the diagonal cofactors of a matrix

We wish to show that, at stall, the frequency with which a monomer appears in the bulk of the copolymer is proportional to
the cofactor of the corresponding diagonal element of a matrix:

ε(x) ∝ Axx, (F1)

where Ai j is the cofactor of element i, j of the matrix 1− Z. To show this relation we will rely on the relationship between
cofactors and vectors of the nullspace of a matrix. Let M be an arbitrary matrix with a one dimensional nullspace, and let A be
its matrix of cofactors. Recall that

MAT = det(M)1= 0. (F2)

Thus, any column of AT is in the nullspace of M. In anticipation, let −→µ be a vector in the nullspace of M and −→v be a vector in
the nullspace of MT . Since M has a one dimensional nullspace, then

µx

µy
=

Aix

Aiy
, (F3)

for some arbitrary i. Similarly,

vx

vy
=

Ax j

Ay j
, (F4)

for arbitrary j.
Looking at eqns. 15, 16, noting that near the stall point, vz << ω±y,x, we see that, the tip probabilities, µ(x), form a vector in

the nullspace of 1M−Z and the tip velocities, vx, form a vector in the nullspace of 1M−ZT . Hence, we have that

µ(y)vy

µ(x)vx
=

A jyAyi

A jxAxi
, (F5)
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for arbitrary i, j. Thus, we may choose j = y and i = x leading to cancellation such that

µ(x)vx

µ(y)vy
=

Axx

Ayy
. (F6)

Since

ε(x) =
µ(x)vx

∑
y

µ(y)vy
=

Axx

∑
y

Ayy
, (F7)

we get the required result.

Appendix G: The frequencies in the irreversible limit are given by the steady state of a process of the complete graph

We wish to find an expression for the frequency with which monomer x appears in the bulk of the copolymer in the irreversible
limit. This limit is such that the backwards propensities, ω−yx = 0. With this assumption, from eqn. 15, we have

vx = ∑
y

ω+yx. (G1)

With this form for the velocities, we may manipulate eqn. 16:

µ(x) = ∑
y

ω+yx

∑
z

ω+zx
µ(y),

∑
z 6=x

ω+zxµ(x)+ω+xxµ(x) = ∑
y 6=x

ω+xyµ(y)+ω+xxµ(x). (G2)

This last line is the equation for steady state of a Markov process with probability µ(x) to be in state x and rate ω+yx of transition
from state x to state y. Thus, set µ(x) to be the steady state probability distribution of the Markov process on M states with
transition rates from state x to y given by ω+yx, and vx = ∑y ω+yx. Then, calculating

ε(x) ∝ µ(x)vx, (G3)

gives the required result. Finding the distribution, µ(x), in terms of spanning trees of the complete graph on M elements gives
eqn. 36.

Appendix H: Simplification of results for factorisable ratios of propensities

We shall show that, if the ratio of propensities factorises as in eqn. 38, then we may simplify the stall condition and frequency
of monomers at stall. Thinking of the functions X and Y as column vectors, since they have a discrete domain, the matrix Z may
be written,

Z =
−→
X
−→
Y T . (H1)

By a well known result70,

det(1M−
−→
X
−→
Y T ) = 1−−→Y T−→X = 1−∑

x
X(x)Y (x). (H2)

rearranging gives eqn. 39. At stall, this bound is saturated. As shown, the frequency of monomer x in the bulk of the copolymer
is given by the cofactor of the diagonal elements of 1M−

−→
X
−→
Y T . The cofactor, Axx, may be written:

Axx = det(1M−1−
−→
X [x]
−→
Y T

[x]) = 1−∑
y6=x

X(y)Y (y) = X(x)Y (x), (H3)

using the stall condition, and where
−→
X [x] is the vector

−→
X , missing element X(x), i.e.

−→
X [x] = (X(1), · · ·X(x−1),X(x+1), · · ·X(M))T . Additionally, because of the stall condition ∑x X(x)Y (x) = 1,

εstall(x) = X(x)Y (x) (H4)

is already normalised.
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Appendix I: Frequency for a balanced model with two monomer types in the slow polymerisation limit

We shall derive the frequency of monomer x in the bulk of the copolymer with propensities given by eqn. 46, cancelling
ncomkcom, with R−com = e−∆Gpol , and with M = 2. With these propensities eqn. 15 becomes

v1 =
v1

e−∆Gpol + v1
+

e−DGv2

e−∆Gpol + v2
(I1)

v2 =
eDGv1

e−∆Gpol + v1
+

v2

e−∆Gpol + v2
, (I2)

where DG = ∆G1−∆G2. These equations may be solved by the following form the velocities:

vx = e∆Gy−∆Gx vy. (I3)

Doing so, reduces eqn. 15 to a quadratic equation,

0 = eDGv2
1 +(1+ eDG)(e−∆Gpol −1)v1 + e−∆Gpol(e−∆Gpol −2) (I4)

with one positive root,

v1 =
1
2

(
(1− e−∆Gpol)(e−DG +1)+

√
(e−∆Gpol −1)2(e−DG−1)2 +4e−DG

)
, (I5)

when the system is not stalling. v2 can be found from in terms of v1 as v2 = eDGv1. Further, a quick check confirms v1 = 0 if
∆Gpol =− ln2. Further, with vy known, eqn. 16 is a simple linear equation, µ can be found as the eigenvector of the matrix 1

e−∆Gpol+v1

eDG

e−∆Gpol+v1
e−DG

e−∆Gpol+v2

1
e−∆Gpol+v2

 , (I6)

with eigenvalue 1 and normalised to sum to 1. Combining the solutions for µ and v, using eqn. 18, gives eqn. 47.

Appendix J: Model used for balanced on-rate vs off-rate discrimination comparisons

FIG. 11: Reaction rates of the (a) off-rate and (b) on-rate discrimination models used to produce the results of figure 5. These
reactions represent a single petal of the step-wise process (figure 4) between completed states &x and &xy. For the results in
figure 5 for the off-rate and on-rate curves, the following parameters were takes, ∆G1 = 2, ∆G2 =−2, k1 = kKP = kact = 1,

kcom = 100.

Appendix K: Equations for N-loop Hopfield model

The sum over spanning trees of the N-loop model can be written in terms of sums over spanning trees of the lower loop
number models. We label the reaction rates for the N-loop process as shown in figure 6. The N-loop model has one more node
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and two more edges than the N−1-loop model. Let a subscript, N, denote the sums over spanning trees for the N-loop models.
Tracking the spanning trees, we see,

Λ
+
N = R+

act(N)Λ+
N−1 +R+

KP(N)
R+

pol

R−pol

N

∑
i=0

[
i−1

∏
j=0

R+
act(N− j)

]
Λ
−
N−1−i, (K1)

Λ
−
N = R−act(N)Λ−N−1 +R−KP(N)

N

∑
i=0

[
i−1

∏
j=0

R+
act(N− j)

]
Λ
−
N−1−i, (K2)

QN =
1

R−pol

(
Λ
−
N +R+

pol

N

∑
i=0

[
i−1

∏
j=0

R+
act(N− j)

]
Λ
−
N−1−i

)
, (K3)

with initial conditions

Λ
±
−1 = R±pol,

Λ
±
0 = R±polR

±
in,

Q0 = R+
pol +R−in. (K4)

The sum-product can be eliminated by subtracting terms proportional to Λ
±
N−1,QN−1, leaving just:

Λ
+
N =

(
R+

act(N)+
R+

KPR+
act(N)

R+
KP(N−1)

)
Λ
+
N−1−

R+
KP(N)R+

act(N)R+
act(N−1)

R+
KP(N−1)

Λ
+
N−2 +R+

KP(N)
R+

pol

R−pol
Λ
−
N−1, (K5)

Λ
−
N =

(
R−act(N)+R−KP(N)+

R−KP(N)R+
act(N)

R−KP(N)

)
Λ
−
N−1−

R−KP(N)R+
act(N)R−act(N−1)

R−KP(N−1)
Λ
−
N−2, (K6)

QN = R+
act(N)QN−1 +

Λ
−
N

R−pol
+(R+

pol−R+
act(N))

Λ
−
N−1

R−pol
, (K7)

with the same initial conditions as above. This system of recursion relations may be used to generate the terms of the spanning
tree sums quickly.

In certain simple cases eqns. K5, K6, K7 can be solved as a function of N. For example, when the reaction rates are not a
function of N, such as:

R+
in = k1Min,

R−in = k1e−∆Gy ,

R+
act(n) = kact,

R−act(n) = kacte∆Gact ,

R+
KP(n) = kKPMact,

R−KP(n) = kKPe−∆Gy , (K8)

for n ∈ {1, · · ·N}, for the step-wise process with monomer tip &xy, where ki are some overall rates, Min, Mact represent the
concentrations of inactive or active monomers, ∆Gact represents the chemical work upon moving a monomer up one activation
stage. The rates in eqn. K8 are used for the numeric results in figures 8 and 9. In this case, the sums over spanning trees are:

Λ
+
N (y,x) = kpole−∆Gx

(
kN

act

(
k1Min− k1Mact + kacte∆GyMact(e∆Gact −1)

)
+

kKPMacte−∆Gy

∆

[
(k1λ++ kact(kKP− k1))

(λ+− kact)2 λ
N+1
+ − (k1λ−+ kact(kKP− k1))

(λ−− kact)2 λ
N+1
−

])
, (K9)

Λ
−
N (y,x) =

kpole−∆Gpole−∆Gy

∆

[
(k1λ++ kact(kKP− k1))λ

N
+ − (k1λ−+ kact(kKP− k1))λ

N
−

]
, (K10)

QN(y,x) =
kpole−∆Gx

∆

[
(k1e−∆Gy + kact−λ−)λ

N
+ − (k1e−∆Gy + kact−λ+)λ

N
−

]
+

e−∆Gy

∆

[
(k1λ++ kact(kKP− k1))λ

N
+ − (k1λ−+ kact(kKP− k1))λ

N
−

]
, (K11)
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where

λ± =
1
2

(
kact + kKPe−∆Gy + kacte∆Gact ±∆

)
, (K12)

∆ =

√(
kact + kKPe−∆Gy + kacte∆Gact

)2−4(kact)2e∆Gact . (K13)

From eqns. K9, K10 we may write the stall condition. Noting that, Λ+(y,x) is independent of ∆Gpol and Λ−(y,x) is proportional
to e−∆Gpol , we may write the stall point as

Γ(N) =− ln

(
Λ
+
N (r,r)

e∆GpolΛ
−
N (r,r)

+
Λ
+
N (w,w)

e∆Gpol Λ
−
N (w,w)

)
, (K14)

such that the dependence on ∆Gpol in the logarithm is cancelled out.


	A Universal Method for Analysing Copolymer Growth
	Abstract
	I Introduction
	II Methods
	A Absorbing Markov Chains
	1 Expectations of an absorbing process are steady-state averages of a ``closed process"
	2 Steady State averages of the closed process are calculated using the Markov chain tree theorem
	3 Absorbing probabilities
	4 Counting edge and cycle transitions

	B Copolymer Methods
	1 Philosophy of coarse-graining complex underlying copolymerisation reactions networks
	2 Identifying propensities in the coarse-grained model
	3 Solving the coarse-grained model
	4 Extracting properties of the fine-grained model from the solution of the coarse-grained model
	5 Stalled growth
	6 Limiting behaviour
	7 Simplification for factorisable propensities


	III Example Applications
	A Stalling behaviour in a polymerisation model with no neighbour-neighbour interactions
	B Balanced models of templated polymerisation with autonomous separation
	C Hopfield's Kinetic Proofreading in a model of templated copying with autonomous separation

	IV Conclusion
	 Supplementary Material
	 Acknowledgements
	 Author Declarations
	 Conflict of Interest
	 Author Contributions

	 Data Availability Statement
	A Factorising sums of spanning trees
	B Normalisation constant for example absorbing Markov process
	C Equivalence between chemical work calculated from Edges and cycles.
	D Cycles of the example absorbing process
	E Number of steps per net forward step of a random walk
	F The frequency at stall is given by the diagonal cofactors of a matrix
	G The frequencies in the irreversible limit are given by the steady state of a process of the complete graph
	H Simplification of results for factorisable ratios of propensities
	I Frequency for a balanced model with two monomer types in the slow polymerisation limit
	J Model used for balanced on-rate vs off-rate discrimination comparisons
	K Equations for N-loop Hopfield model


