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Abstract

We consider 1 + 1-dimensional Dirac equation with rationally extended scalar
potentials corresponding to the radial oscillator, the trigonometric Scarf and the
hyperbolic Poschl-Teller potentials and obtain their solution in terms of exceptional
orthogonal polynomials. Further, in the case of the trigonometric Scarf and the
hyperbolic Poschl-Teller cases, new family of Dirac scalar potentials are generated
using the idea of parametric symmetry and their solutions are obtained in terms of
conventional as well as exceptional orthogonal polynomials.

1 Introduction

Dirac equation plays an important role in the study of the dynamics of the relativistic
systems with spin A/2. Dirac equation has been applied to solve many problems in
nuclear and high energy physics [I} 2, 3]. In the quantum mechanical context, by now
solutions of the Dirac equation have been obtained in the case of several scalar and
vector potentials [4] B [6l, [7, 8, 9 [10] using different approaches such as supersymmetric
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quantum mechanics (SQM) approach, Nikiforov-Uvarov approach, the point canonical
transformation approach, the group theoretic approach etc. Dirac equation has been
solved for a broad class of potentials such as the Morse potential [I1], the Coulomb
potential [I2], the Péschl-Teller potential [I3], the Hulthen potential [I4] and the Scarf
potential [15] etc. In the last few decades, it has been observed that the techniques of
SQM [4, 16, 17, 18, 19, 20, 21, 22] play an important role in solving Dirac equation in
1+ 1 space time in the case of various scalar potentials.

In recent years, the discovery of two new orthogonal polynomials namely the X,, ex-
ceptional Laguerre and X, exceptional Jacobi orthogonal polynomials [23] 24] 25] (where
the degree m > 1 instead of zero as in the case of usual polynomials) has lead to the dis-
covery of rational extensions of several exactly solvable potentials in non-relativistic QM.
In particular, the solution of the Schrodinger equation corresponding to the rationally
extended potentials have been obtained in terms of exceptional orthogonal polynomials
(EOPs) [26]-[43] or in the form of combination of usual orthogonal polynomials [44], 45].

Another development in non-relativistic QM is that of the parametric symmetry [46,
A7) . It has been shown that while for some potentials the parametric symmetry leads to
another set of solutions keeping the same form of the conventional potentials, but in the
case of the corresponding rationally extended potentials this symmetry generates another
form of the extended potentials and hence completely different solutions.

In contrast, in the relativistic case only few attempts have been made so far to solve
the Dirac equation corresponding to the rationally extended scalar potentials [48], [49] [50].
Besides, the role of the parametric symmetry has not been explored in the Dirac case.
The purpose of this paper is to obtain solutions of the Dirac equation in the case of few
rationally extended scalar potentials and also study the role of the parametric symmetry
in Dirac equation with scalar potentials.

In particular, in this paper, we consider the (1 + 1)-dimensional Dirac equation with
three different forms of the scalar potentials ¢(x) whose solutions are well known. We
consider the corresponding rationally extended Dirac scalar potentials and obtain their
solution in the form of the EOPs. Further, we show that similar to the Schrédinger case,
there is also a parametric symmetry in the case of some of the Dirac equation with some
of the scalar potentials. In particular, extending the idea of the parametric symmetry
discussed in [46], [47] to the relativistic case, we generate a family of new form of the
conventional as well as the rationally extended scalar potentials and obtain the solution
of the corresponding Dirac equation.

The plan of the paper is as follows. In Section 2, we review the 1+ 1 dimensional Dirac
equation with scalar potential and discuss how its solutions can be obtained using SQM
approach. In Sec. 3 we obtain the solution of the Dirac equation with rationally extended
radial oscillator, trigonometric Scarf potential and the hyperbolic Péschl-Teller potential
and obtain their solutions in terms of EOPs using the SQM approach. In all these cases, for
simplicity we first obtain solutions in terms of the X; Jacobi or X; Laguerre polynomials
and then generalize to the general the X, case. In Sec. 4, we show that the trigonometric
Scarf and the hyperbolic Poschl-Teller Dirac problems have novel parametric symmetry.



Using this symmetry, we obtain another form of the rationally extended Dirac scalar
potentials and obtain their solutions. Finally, in Sec. 5 we summarize our results and
point out few open problems.

2 Formalism

In this section, we review the solutions of the Dirac equation with general scalar potentials
in 141 dimension and show how the problem can be reduced to two decoupled Schrodinger
equations. In this way, using the well known SQM approach one can obtain the exact
solutions of the corresponding Dirac problems in several cases.

The Dirac Lagrangian in 1 + 1D with a Lorentz scalar potential ¢(z) is given by
L =i0y"9, 0 — ¢(z)0¥,  p=0,1 (1)
where W is the Dirac spinor. The Dirac equation following from Eq. () is

V9,0 (x,t) — o)W (z,t) = 0. 2)

Let
U(x,t) = exp(—iet){(v), (3)

so that the above Dirac equation reduces to

et () +in' S-E(x) — Br)e(x) = 0. g

Now, we choose the following 2D representation of the gamma matrices i.e,

and get two coupled equations

d L

%\i/(l)(x) + () (z) = 0P (2), (6)
and p
%‘i’@ () = ¢(2)¥P(2) = =¥ W(z). (7)
These two equations can be decoupled easily and we obtain
d* - ~ ~ ~
— @\D(l)(m) + VO ()T (z) = 20D (2) (8)
and P
- @w (z) + VO ()03 () = 20 () (9)



respectively. These two equations (8) and (@) are equivalent to two independent Schrodinger
equations with potentials

702 (2) = 3(2) 7 & (2). (10)
The solutions of these equations can be easily obtained for several (5(3:) using the well
known SQM approach [16] by defining two operators A and At as

A:%W(I) and AT:—%W(:C). (11)
In this way, the Eqs. (8) and (@) are reduced to
ATAT®W = 250 and  AATT® = 23 (12)

respectively. On comparing with the well known formalism of SQM [16], we see that there
is a supersymmetry in the problem and the scalar potential <;~S(x) is just the superpoten-
tial of the Schrodinger formalism. Further U@ and ¥ are the eigen functions of the
Hamiltonians H; = At A and H, = AAT respectively with V(12 (z) being the partner po-
tentials. Thus the eigenvalues and the eigen functions of the two Hamiltonians are related
except that one of them has an extra bound state at zero energy so long as q;(x — +00)
have opposite signs. Without loss of generality we shall always choose <;~S(x) such that the

ground state energy of Hi is zero. In that case the eigen functions and eigenvalues (E,(LI)

and Er(?)) corresponding to these two Hamiltonians are related to each other as follows
[16]

VP(2) = (B2 AT, (), (13)
U (x) = [EP) 2 AN () (14)
and ) ) .
EQ =EY,, E’=0. (15)
Here n =0,1,2,.... Thus once we have the eigen functions \ifg)(x) and the energy eigen-

values E5, we can easily obtain \ifg)(x) and E using Eq. ([I3)) and (I5) respectively.

3 Rational Dirac Potentials

We shall now discuss three examples of the rational scalar Dirac potentials qg(x), i.e. the
radial oscillator, trigonometric Scarf and the Poschl-Teller potentials. To motivate the
discussion we first mention the well known results about the corresponding conventional
Dirac scalar potentials and then obtain the solution of the corresponding rational cases.
For simplicity, we first discuss the X; case and then generalize to the general X, case.



3.1 Radial oscillator
3.1.1 The conventional case

Let us consider the scalar potential defined on the half line (0 < r < 00) of the form

- ~ 1 (41
3(r) — ) = gr — (16)
On using Eq. (I0) it gives rise to
‘7(1) — ‘70(0172 (T) = Nzon(r) - qglcon(r)
wr? A0+ 1) 3
- - 2 1

which is the well known radial oscillator potential ( w > 0,¢ > 0) whose solutions [16] are

1
given in terms of the classical Laguerre polynomials Lgf +2)(z)
con,n con,n 2

g (r) = NGL bl exp <_ M)Lngé)(z(r)), n=0,1,2, .. (18)

2 . .
where z(r) = “~ and the normalization constant

NEL [ nlw?3) } 1/2 (19)
ot L2+ DT+ ]
The corresponding energy eigenvalue are
. N 3
EY — FEU —2—w@n+l+2). (20)

con,n 2

3.1.2 The Rationally Extended Case

(a) The X; Case

In this case, we consider the scalar potential (ﬁ(r) which is defined as the sum of the
conventional scalar potential (¢eon(r)) as given by Eq. (I6) and a rational term ¢,.q(r)
ie,

Cb(r) — Qze:ct(r) = QNSCOn(T’) + szt(r)a (21)

where
4wr

(22(r) + 20+ 1)(22(r) + 20+ 3)

On using Eq. (2I)) in Eq. (I0), we get the rationally extended radial oscillator potential
[206]

Q;rat(r) -

(22)

V) = V() + VS (), (23)

rat con rat



with

y 1 2(20 4 1)
VG (r) =4 - 24
rat (7) “((2z(r)+2e+ 1) (2z(7°)—|—2€—|—1)2)’ (24)
while V.0 (r) is as given by Eq. (7). The solution of the corresponding Schrédinger
equation is [26]

Wl (r) = N

nit (2(r)); (25)

where [A/,(ﬁ)l (z(r)) is X} exceptional Laguerre Polynomials while the normalization constant
is [26]
lw(E+3) 1/2
Tl +n+1+ D0 +n+ 1)
Notice that the energy eigenvalues are same as that of the conventional one and are given
by

Eilgxt - 6e:nt = 2nw. (27)
(b) The X,, Case

The above results for the X; case are immediately generalized to the general X, case.
In this case the scalar potential is defined as ¢(1) — Pexr.m(r), given by

&ext,m(r) = Q;con(r) + ng,rat(r); (m = 07 1a 27 ) ) (28)
where écon(r) is again as given by Eq. (1) while the rational term émmt(r) is given by
(+3) (e+3)
. L) e
Srnrat (1) = wr Zj)( ) _ g;)( 2] (29)
Lm 2 (=2(r))  Lm *(—2(r))
On using q;extvm(r) instead of gz;con(r) in Eq. (I0), we get [28, 135]
Vistm(r) = VENr) + Vi (r) (30)

where 176(0172(7“) is again as given by Eq. (I7) while

(+3) (t+3)
V) = 22t OO oy 4 g gy P 20D
L 2 (=2(r)) L 2 (=2(r))
Ly P (=)’

The solutions of the corresponding Schrodinger equation are in terms of X,, Laguerre
(4L
Polynomials (L(M?)(z)) and are given by

n-+m

=)
L P(=2(r)

6

A 1
o) )Lifirz’@(r)), m=12., (32

ext,n,m

(r,w, ) = N,

ext,n,m




where

L) (2) = L (=2) LoD (2) + LE D (=) LY, (2); n>m (33)
with the normalization constant being
lw+3) 1/2
Niym = —— - (34)

2+ (Ut n+m+ DT +n+1)

As a check on our calculations, for m = 0 and 1, we recover the results corresponding to
the conventional and the X; extended rational scalar Dirac potentials respectively. The
energy spectrum is again the same as of the conventional case and given by Eq. (20).

The plots of the Dirac scalar potentials &mt,m(r) and the corresponding normalized
ground state eigen functions ®§;1,07m(r, w, f) are given for m = 0, 1,2 in figs. 1(a) and 1(b)
respectively in case w =2, £ = 1.
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Fig.1: (a) Rationally extended Dirac scalar potentials for m = 0,1 and 2.
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Fig.1: (b) Normalized ground-state wave functions for m = 0,1 and 2.

3.2 Trigonometric Scarf case
3.2.1 The Conventional Case

In this case, the scalar potential ¢(z) —= ¢eon(, A, B) (defined on —
by

7 <z < 7)is given

Geon(2, A, B) = Atanz — Bsec; —g <z< g, 0<B<A-1. (35)

On using this gzgcon, 4.5(x) in Eq. (I0), we get the well known trigonometric Scarf potential
[16]

VO(z) — V(2 A, B) = [(A — 1)A + B¥sec’ v — B(2A — 1)secztanz — A%, (36)

con

The solution of the Schrodinger equation corresponding to this potential is well known
and is given in terms of the classical Jacobi polynomial plP )(z) as

(A=B)

Ui a2, A, B) = NG (@, B)(L = 2(2)) "7 (L+2(x)) = PP (2(2).  (37)

Here « = A — B — % , B=A+ B — %, z(x) = sinz and the normalization constant is
given by

1
2
Nc(iivn(a,ﬁ) e+ B2+ DI +a+ B +1)

|20 (n+ BT (n+ o+ DI(n + B) (38)

The energy eigenvalues are

e2=EY = (A+n)?— A% (39)

con,n

8



3.2.2 The Rationally Extended Case
(a) The X; Case: In the extended X case, the function

O() — Gear(, A, B) = Geon(, A, B) + brar(, A, B) (40)
where (;360”(3;’, A, B) is as given by Eq. (B8]) while

1 1
2A—1—2Bz(x) 24+1—2Bz(z)|

drar(x, A, B) = —2B% () (41)
Here 2/(x) is the first derivative of z(x) with respect to x. Using Eq. (I0)), the corre-

sponding rationally extended trigonometric Scarf potential ‘76(;2 (x, A, B) turns out to be
[26]

‘7e(mlt)(x7AuB> :‘70(0172(;571473)_'_‘77"%12(3571473) (42>
where V.1 (x, A, B) is as given by Eq. (B6]) while
= (1) _ (24 -1) ~2A-1)?-B7
Vit (4, B) = 2((2A —1-2Bz(z)) (2A—1-2Bz(x))? (43)

The solutions of the Schrodinger equation corresponding to this potential are given in the
form of exceptional Jacobi Polynomials (P,(Lilﬁ ) (9(x))) as [26]

(A=B) (A+B)

@%m@szﬁmmwﬁ“_Zgﬁwiéigég)2 PedG)  (44)

where the normalization constant is

O (0. ) = nln+a+1)(a+B+2n+ 1D (n+a+B+1) :
extm\¥ P) = 2046+ (n + a)(n+ 1+ B)I'(n+a+ DI(n + B)

(45)

Here Pl(_a_l’ﬁ _1)(z) is the classical Jacobi Polynomial for n = 1.

The spectrum &2 = E)

ext,n

case and is given by Eq. (B9).
(b) The X,, Case:
Here, we replace ¢(z) — qzm,ext(x, A, B) given by

is however unchanged compared to the conventional Scarf

J)m,egct(xa A, B) = Q;COTL('I7 A, B) _'_ ém,rut(xa A, B)v (46>

where Q;con(xa A, B) is again given by Eq. (B5) while ngmt(x, A, B) is given in terms of
the Jacobi polynomials by
(B-atm—1) , [B5 " e@) P ()
2 @) e (—a—1,5-1)
2 Py 70 (2(x) P (2(2)

ém,rat(xa A7 B) = - . (47)

9



Using Eq. (I0)), the corresponding potential v

ext,m

(z, A, B) turns out to be
Zgg,m(IaAa B) = f/con(xaAa B) + Vm,mt(IaAa B) ) (48)

where Vion(z, A, B) is again given by Eq. (36) while the m dependent rational potential
is

P () )
P (a(w)
(-2B-m+1)? , f PUY@)

2 (Z (I)) (Pr(n_a_l’ﬁ_l)(z(l')))
— 2m(—2B-m—-1); —-n/2<z<7/2, 0<B<A-1. (49)

V)2, A,B) = (2B —m—1)[2A 1+ (=2B + 1)z(z)] <

The eigen functions \i/gc)tnm (x, A, B) of the Schrédinger equation with this potential turn
out to be

(A—B) (A+B)
- 1— = (1 ~(a
VY, (o, 4, B) = N, gy S22 UFAO 2 pemiy) (50
P "7 (2 ()
where
1
1) nn+a+1)*(a+B+2n+1DI(n+a+5+1) ’
Nemtnm(a7ﬁ> = 5 (51)
o 2068t (n+a—m+ 1) (n+m+ ) T(n+a+2)I(n+ B)
while the X, exceptional Jacobi polynomials satisfy
~(a, ml—i—oz—l—ﬁ—i—n —a—1.8— a+2,
Binl(2) = (=1) [m@ — NPT ()R g)
l+a—m
P(—2—a,ﬁ) P(a-l'lﬁ—l) . > (). 2
TP ) Pt g) 2 0 (52)

The energy spectrum is again same as that of the conventional or X; case and is given by
Eq. (39).

The plots of the Dirac scalar potentials qzext,m(x, A, B) and the corresponding normal-
ized ground state eigen functions W'Y (x, A, B) are shown for m = 0, 1,2 in figs. 2(a)

ext,0,m

and 2(b) respectively in case A =3 and B = 1.

10
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Fig.2: (a) Rationally extended Dirac scalar potentials for m = 0,1 and 2.
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Fig.2: (b) Normalized ground state wave functions for m = 0,1 and 2.

3.3 Hyperbolic Poschl-Teller case
3.3.1 The Conventional Case
In this case we define

QE(T) — Qgcon(r, A, B) = Acothr — Beosechr, 0<r < oo

11

(53)



with B > A+1 > 1 which gives rise to the conventional hyperbolic Poschl-Teller potential
[16] .
V(1) = [(A + 1)A + B?|cosech® — B(2A + 1)cosechr cothr + A2 . (54)

con
The corresponding eigen functions of the Schrdinger equation are

(B—A) (B+A)

3 (r,A,B) = N (o, ) (z(r) — 1)T (z(r) + 1)_ 2 P,SO"B)(Z(T)). (55)

con con,n

where « = —A+ B — %, f=—A—B-— %, z(r) = coshr and the normalization constant is
yes _ [Pca—B—2n-Dn+a+D(a+n+DI(=E—n) 12 (56)
con 2068+ (a+ 1) a4+ n+ 1) (—a—  —n) '
The energy eigenvalue spectrum turns out to be
e? = E~C(2m =A2—(A—n)%, n=01,2,..., 0w < A. (57)
3.3.2 The Extended Case
(a) The X; Case:
In this case, the Dirac scalar potential is defined as
q;e:ct(ra Aa B) = qzcon(/ra A> B) + QET’at (Ta A> B) (58)
where ¢eon(r, A, B) is given by Eq. (53) while
- ) 1 1
Grat(r, A, B) = 2Bz (1) (59)

2Bz(r) —2A—1 2Bz(r)—24A+1]

Using Eq. (I0), this leads to the rationally extended hyperbolic Poschl-Teller potential[26],
34]

Vil (r, A, B) = V) (r, A, B) + V3 (r, A, B) (60)
where V.1 (r, A, B) is given by Eq. (54]) while
~ 2A+1 AB? — (2A + 1)?
V;“gt)(ruAvB):z ( i ) - ( ( + ) ) +A2 (61)

(2Bz(r) —2A—1) (2Bz(r) —2A—1)2

The corresponding eigen functions of the Schrédinger equation turn out to be [26, 34]

(B—A) _(B+4)

A0

ext,n

(r, A, B) = N3 .(a, B)

where the normalization constant is

Nl aler, B) = nl(—a—B-2n—1(a+n+HI'(-F-n+1) 1/2.

~ |2 (A - (@) (a + )l (—a — 5 —n) (63)

12



The energy spectrum is same as that of the conventional case and given by Eq. (57]).
(b) The X,, Case:

In this case the Dirac scalar potential (for any arbitrary m) is given by
&emt,m(rv A7 B) = &con(ru Av B) _'_ &m,rut (7’, Av B) ) (64>
where ¢eon(r, A, B) is again given by Eq. (53) while

B-a+m=1)_, [PCTEr) P ()
1.8

ng,rat(rv A7 B) = - (65>

zZ(r — .
2 B0 B )
Using Eq. (I0) this leads to the potential which is now m-dependent [28 34] and is given
as

Ve (r A B) =V (r, A, B) + V). (r, A, B), (66)

con rat,m

where V. (r, A, B) is again given by Eq. (54]) while

7w

rat,m

(rnA,B) — (2B-m+1[2A+1— (2B + 1)2(r)] (

. @B-m+1) <z/<7~>>2< PP (2(r)) 2
2 P ()
+ 2m(—2B—-m—1); 0<z<o00, B>A+1>1 (67)

The corresponding eigen functions of the Schrodinger equation turn out to be

(B=A) (B+A)
G177+ swp
P(_a_l’ﬁ_l)(z(fr’)) Pn—l—m (Z(T))v (68>

0

ext,n,m

(r, A, B) = N&) . (@, B)

where the normalization constant is given by

N ) = Ny (22D (69)

The energy eigenvalue spectrum is again same as in the conventional case and is given by
Eq. (57).

The plots of the Dirac scalar potentials q;emm(r, A, B) and the corresponding normal-
ized ground state eigen functions \ifgizt’(],m(r, A, B) are shown for m = 0,1,2 in figs. 3(a)
and 3(b) respectively in case A =1 and B = 3.

13
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Fig.3: (a) Rationally extended Dirac scalar potentials for m = 0,1 and 2.
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Fig.3: (b) Normalized ground-state wave functions for m = 0,1 and 2.

4 Parametric symmetry and new forms of Dirac Scalar
Potentials

Recently, the role of the parametric symmetry has been discusses in the case of Schrodinger
equation [46] [47]. It is then worthwhile to discuss the role of the parametric symmetry

in the context of the Dirac equation. It turns out that out of three examples discussed
in this paper, this symmetry only exist in the two cases, i.e. the trigonometric scarf and

14



the hyperbolic Poschl-Teller potentials which we discuss one by one. We shall see that in
the conventional cases, this symmetry generates new Dirac scalar potentials keeplng the
corresponding Schrédinger potential V., unchanged but having a new partner Vcon On
the other hand, in the extended cases, one finds that the corresponding Vm and Vm are
both modified.

4.1 Trigonometric Scarf Case
4.1.1 The Conventional Case

If we replace the parameters B <— A—% in the conventional scalar potential gfsm(x, A, B)

as given in [46], we get a new form of ng&’;ll(x,A, B) generated due to this parametric
transformation i.e.,

o) = o) (v, A, B) = (chon(x,A—)B—i-%,B—)A—%)

1 1
= (B+§)tan:c— (A—§)seca:; B>A-1>0
(70)
which is different from the @eon(z, A, B) as given by Eq. (35). Remarkably, this scalar
potential leads to the same potential VP (x,A,B) = /A (x, A, B) as given by Eq. (36)
but different ‘70(()2,;p)(:c) = Vien(z,A, B — B +1). In other words, ‘76(0173(:6,14, B) has two

different SUSY partners. Thus we have another set of ¢(i.e qﬁcon(:c,A, B)) leading to
different eigenvalues and eigen functions, i.e,

1 1
\Ifconn(xAB) \Ifconn(xA—>B+2B—>A—§); B>A-1>0 (71)
and
UPP) (2, A, B) = VP (2, A, B — B +1), (72)
with the energy eigenvalues
. 1
e? = E(P) = (B+n+§)2, n=0,1,2, .. (73)
4.1.2 The extended Case
(a) The X, case:
In the extended case as B +— A — %, we have
- ~ 1 1
¢(x) — ¢ewt($ A B) = ¢6xt(zaA — B+ §aB — A - 5)
= ¢con('x A B) + gbrat(l” A? B)’ (74)

15



where gbcon(x, A, B) is as given by Eq. ({0) while

1

1 1 : 1 L
Gria(w, A= B3, B = A—3) = 2<A_§)z (@) [23 +2— (24— 1)z(z) 2B — (24— 1)z(2)

(75)
Note that this scalar extended Dirac potential Eq. (74]) is different from (@0) and unlike

the conventional case it leads to both Ve(mltp (z, A, B) and Vm (x,A, B) being different
and are given as

~ ~ 1 1
VP (A B) = V) (z, A= B+, B—>A—§) (76)
and
V&P (2, A, B) = VP (2, A, B — B+ 1) (77)

The corresponding eigen functions of the Schrodinger equation can be written as

1 1
\I]extn(xAB) = \Ilgctn(va_)B_'_ivB_)A_?% B>A_1>0

(B—A+1) (A+B)
2

— N(l p)( 5)(1 - Z(I))

H(7,9)
ext (2B _ 2(14 . %)Z LU)) Pn-l—l (Z(ZIZ')) (78)

and
2, A,B) = UlP (z,A,B = B+1), (79)

ext,n

WD
Wherefy:B—AjL% and5:A+B—§.
The corresponding energy eigenvalues are however unchanged from the conventional
case and are again given by Eq. (Z3)).
(b) The X,, Case:

For the more general X, case, in the extended case, as B «+— A — %, the Dirac scalar
potential is

ewtm(I A B) ¢con(x A B) +¢ratm(x>A’ B) (80)
where (bcon(a:, A, B) is again given by Eq. (Z0) while

7 ~ 1 1
¢£‘atm($ A, B) = ¢mt,m(xaA_>B+§7B—>A—§)

_ ‘(‘QAW_—2)2'@)[Pr(‘bici_l’“l’(Z(x)) PO @)
? A O A a CCN
(81)

This scalar extended potential leads to both V.;"(z, A, B) and V.2”)(z, A, B) being dif-

ext ext
ferent.
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The corresponding eigen functions of the Schrodinger equation can be written as
7 (Lp) () 1 1
Vertmn(@, A, B) =W 4 (2, A— B+ §,B — A— 5); B>A-1>0 (82)

and
Ve (2, A, B) =0 (2, A,B— B+1). (83)

ext,m,n

The energy eigenvalues are however unchanged and are again given by Eq. (73)).

The plots of the scalar potential ¢{(p))esr.m(z, A, B) and the normalized ground state
eigen function g ) (x, A, B) for A= %, B = % and different values of m(= 0,1 and 2)

ext,0,m
corresponding to the conventional, X; and X, respectively are given in Figs. 4(a) and

4(b) respectively.

6
al i}
— X
wTa 2[ — X i
™ o .
S
_E 0 i 1
\T-sag
oL i}
_al i}
-15 -1.0 -0.5 0.0 0.5 1.0 15

Fig.4: (a) Rationally extended parametric Dirac scalar potentials for m = 0,1 and 2.
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Fig.4: (b) Normalized ground-state wave functions for m = 0,1 and 2.

4.2 Hyperbolic Poschl-Teller Case
4.2.1 The Conventional Case

Similar to the trigonometric Scarf case, in this case under the parametric transformation
B+ A+ % the scalar potential ¢..,(r, A, B) as given by Eq. (53] becomes

q;g;)n(ra/LB) = QNSCOTL(T)A_)B_%,B—)A—I—%)
1 1
= (B- 5) cothr — (A + §)cosechr; 0<r<oo. (84)

Remarkably, under this transformation, the potential VP (r,A,B) = /A (r, A, B) re-
mains the same as given by Eq. (B4]), however the partner potential V2P (r, A, B) gets
changed i.e,

V0P A B) = VA B 3 B> A+ )=Vl AB) ()
and ) )
VEP(r A B) = VP (r,A,B— B—1) (86)

In other words, ‘76%172(55,14, B) has two different SUSY partners. The eigen functions

UD,(r, A, B) and W22, (r, A, B) are different from the conventional case and related
to them by

- - 1 1 1
Gp) (r A B) = Bl (7,714_>B—§,B—>A—|——), A>—§, B >0 (87)

con,n con,n 2
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and

\I]con n(r A B) \I]con n(r A B — B - 1) (88>
The corresponding energy eigenvalue are
- 1 1
EWP) =2 = (B—n— 5)2, n=0,1,2 0y < B 3. (89)

4.2.2 The extended Case

(a) The X; Case:

In this case, under the transformation B +> A + % the extended scalar potential is
given by

gbext(r A B) = ¢e(r,A— B— % B— A+ %)
= (bcon(?”, A, B) (bmt(rv A, B) (9())
where gbcon(r, A, B) is as given by Eq. (53) while
- 1 1
rat(r A B) = gbr’at(raA_) B — §>B — A+ 5)
20 A+ - )2 () ! !
= — |2 (x — .
2 2(A+1)z(r)—2B  2(A+3)z(r) —2B +2

(91)

The extended potentials under this transformation are completely different and are given
by
1

. - 1
VP (r A B) = velg(rA—uB—5 B—A+) (92)
and . .
V" (r A, B) = Vi (r, A,B — B~ 1). (93)
The associated eigen functions of the Schrodinger equation are
1 1
VP (r, A, B) = O, (A — B — 5B A+ (94)
and
\Ilemtn(r A B) \Ilemtn(/r A B — B - 1) (95)

The energy eigenvalues though are unchanged and are given by Eq. (89).
(b) The X,, Case:

For the X,,-case, we define

ngn emt(r A B) gbcon(r A B) + ¢m rat (T’ A> B) (96)
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where ¢ (r, A, B) is again given by Eq. (53) while

P G) P )
Pr ") P )]

2(4+1) = m]
)

o) W (r, A, B) = (97)

heren = A—B +% and( = —A—B— % The extended potentials under this transformation
are again completely different. The associated eigenfunctions of the Schrodinger equation
are

i . 1 1
o A B =0Y (A B--B—sA+=); A+1>B>0 (98)

ext,m,n ext,m,n 2 2
and . .
Ul n(r A B) = Ul (r, A, B — B - 1). (99)

The energy eigenvalues are remain unchanged and given by Eq. (89). The plots of the
Dirac scalar potential ¢{(p))est.m (7, A, B) and the normalized ground state eigen functions
\ifgvfz],m(r, A, B) for the parameters A =2, B =3 and m = 0, 1,2 are shown in Figs. 5(a)

and 5(b) respectively.

2
0r i
(40} TC\I
o N -2 :
=
=% I
IS8
4+ i
_6 L 4
0.0 0.5 1.0 1.5 2.0 25 3.0

r

Fig.5: (a) Rationally extended parametric Dirac scalar potentials for m = 0,1 and 2.
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10—

Fig.5: (b) Normalized ground-state wave functions for m = 0,1 and 2.

5 Summary and Possible Open Problems

In this paper we have obtained exact solutions of the 1 4+ 1-dimensional Dirac equation
for three different extended scalar potentials, i.e. radial oscillator, trigonometric Scarf
and hyperbolic Poschl-Teller potentials in terms of exceptional orthogonal polynomials
by connecting them to the corresponding Schrodinger problems. Further, using the idea
of the parametric symmetry in the case of the trigonometric Scarf and the hyperbolic
Poschl-Teller Dirac scalar potentials we have generated a new class of conventional as
well as rational scalar potentials and have obtained their exact solutions in terms of
conventional as well as exceptional orthogonal polynomials.

This paper raises few obvious questions. For example, are there other exactly solvable
Dirac scalar potentials whose solutions are also in terms of the exceptional orthogonal
polynomials. Secondly, are there other Dirac scalar potentials admitting parametric sym-
metry and if yes can one obtain the solutions of the newly generated Dirac scalar problem?
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