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Exploring the spectrum of novel behaviors a physical system can produce can be a labor-intensive
task. Active learning is a collection of iterative sampling techniques developed in response to this
challenge. However, these techniques often require a pre-defined metric, such as distance in a space
of known order parameters, in order to guide the search for new behaviors. Order parameters are
rarely known for non-equilibrium systems a priori, especially when possible behaviors are also un-
known, creating a chicken-and-egg problem. Here, we combine active and unsupervised learning for
automated exploration of novel behaviors in non-equilibrium systems with unknown order parame-
ters. We iteratively use active learning based on current order parameters to expand the library of
known behaviors and then relearn order parameters based on this expanded library. We demonstrate
the utility of this approach in Kuramoto models of coupled oscillators of increasing complexity. In
addition to reproducing known phases, we also reveal previously unknown behavior and the related
order parameter. Finally, we demonstrate how curiosity-driven search can naturally be aligned with
human intuition.

When handed a new experimental platform, our first
instinct is to go exploring - to tune individual experimen-
tal parameter knobs and record the resulting behaviors
of the system. This scattershot investigation provides a
window into the range of behaviors that can be produced.
In this way, we build intuition for the right variables to
describe the system which in turn can serve as a prelude
for more systematic quantitative investigation.

However, as the experimental parameters we have ac-
cess to grow increasingly high-dimensional (e.g. space-
and time-dependent activity[1–4] or interactions in
many-body active systems[5, 6]), and the resulting be-
haviors grow increasingly complex, it becomes a labor-
intensive task to explore the full spectrum of behaviors.
Brute-force approaches such as grid search quickly be-
come prohibitive even in dimensions where optimization
would be feasible. Much of the parameter space may be
uninteresting, and in the absence of previously built intu-
ition or an analytical theory, it is difficult to know which
parts of parameter space might show useful or novel be-
haviors. Hence we are faced with a twinned challenge;
how to efficiently search the space of experimental pa-
rameters to reveal novel behaviors, while also learning to
characterize the behaviors in terms of order parameters.

Individually, these problems have been recognized and
addressed in creative ways. On the parameter side of the
challenge, active learning[7–14] provides iterative meth-
ods for efficiently sampling parameter spaces. In these
approaches, behaviors collected at previously sampled
parameters inform parameter sampling in the future, so
as to increase the likelihood of discovering novel behav-
iors. However, these techniques require a metric in the
space of behaviors, which often takes the form of a dis-
tance in a space of known order parameters. For most
non-equilibrium many-body systems, such order param-
eters are not known.

However, to find order parameters, one needs to know
the range of possible behaviors, thus creating a chicken
and egg problem. On the behavior side of the challenge,

data-driven dimensionality reduction techniques[15–22]
can reveal a small number of order parameters from a
library of known behaviors. But these methods require
a sufficiently comprehensive library of behaviors to infer
meaningful order parameters.

Here, we will demonstrate how a curiosity-driven
search algorithm can efficiently explore non-equilibrium
many-body systems, even in the absence of previously
known order parameters. We adapt methods that com-
bine the strengths of both active learning and dimen-
sionality reduction[13, 14, 23]. We learn order param-
eters through unsupervised dimensionality reduction on
a library of currently known behaviors; we then use ac-
tive learning in the space of current order parameters
to reveal new behaviors and iterate. Crucially, we always
search in the learned low dimensional latent space trained
on dynamical behaviors rather than the high dimensional
parameter space; in this way, active learning efficiently
samples richer parts of parameter space.

We apply our general framework to a paradigmatic
class of dynamical systems - the Kuramoto model of os-
cillators and their variants[24, 25]. We first use curiosity
search to recapitulate known results on simple Kuramoto
model variants with one or two parameters, which are
nevertheless capable of producing rich non-equilibrium
behaviors. We then explore a 3-population Kuramoto
model with 10 adjustable parameters and reveal previ-
ously un-characterized behavior and corresponding new
order parameters. Finally, we demonstrate how curiosity
search can be formulated to naturally align with human
intuition in order to target multi-population behaviors in
a 10-population Kuramoto model with 100 parameters.

Our work establishes a general framework that can be
used with other models of complex systems or can di-
rectly interface with an experimental system where no
model is available.
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FIG. 1. Overview of the curiosity-driven search for novel be-
haviors. We consider a system with a high dimensional pa-
rameter space (yellow) whose potential behaviors and order
parameters that might describe them are initially unknown.
Search is initialized by collecting behaviors corresponding to
a uniform sampling of parameter space. These dynamical
behaviors are used to train an autoencoder to obtain a low
dimensional latent space of behaviors (purple) parameterized
by putative order parameters. We then seek a new behavior
(‘curiosity’) by randomly sampling the learned latent space
(open red circle) rather than sampling parameter space. We
map the target new latent space point back to parameter
space (solid red circle), evaluate the resulting behavior and
thus expand our library of known behaviors. Autoencoder is
retrained every K training rounds on a random subset of pre-
viously sampled behaviors, thus improving the learned latent
space and order parameters. (Green, purple and blue regions
of parameter and latent spaces indicate qualitatively distinct
behaviors.)

METHOD

The curiosity sampling algorithm has three key com-
ponents shown in Fig. 1: a potentially high-dimensional
parameter space (yellow); a potentially high-dimensional
space of raw system behaviors; and a lower-dimensional
latent space of behaviors (purple). Our algorithm is as
follows: We initialize by randomly sampling parameter
space, and compile the corresponding library of behav-
iors by integrating the equations of motion for these pa-
rameter choices. We then train a dimensionality reduc-
tion method on the library of behaviors assembled so far
through parameter space exploration, revealing an up-
dated latent space of behaviors and order parameters.
Then, crucially, we search for new behaviors in this emer-
gent latent space of behaviors created by dimensionality
reduction. The new target behaviors are then mapped
back to a new point to sample in parameter space. We
evaluate the behavior for these parameter choices by in-
tegrating the equations of motion, thereby expanding our
library of known behaviors. Finally, after a certain num-

ber of new parameters are sampled, we retrain the di-
mensionality reduction and the cycle repeats.
We emphasize that the goal of this algorithm is to con-

struct a space which captures different possible behaviors
of the underlying physical system. Intuitively, the latent
behavior space is a more efficient space for sampling than
parameter space or the full space of behaviors with an
arbitrary metric, as the latent space represents the most
relevant aspects of behavior. Additionally, sampling in
the latent space of behaviors can up-weight behaviors
that are rare in parameter space but constitute a signifi-
cant region of a phase diagram.
The key feature of the curiosity-driven search is there-

fore the way latent spaces are constructed from the time-
series output of the dynamical system, and not the con-
trol parameter space.
Our algorithm, outlined in general above, has several

choices in the details of how different steps are imple-
mented. The mapping from dynamical behavior to la-
tent space involves both pre-processing and dimension-
ality reduction. In our results, we will preprocess by
mean-centering and binning sampled time-points to ac-
count for permutation invariance and global mean rota-
tions. For dimensionality reduction, we use a convolu-
tional variational autoencoder[26] (VAE) with relatively
simple encoder and decoder architectures. In part to
guard against cherry-picking model architectures, we also
compare the results of the VAE-based dimensionality re-
duction to other non-neural net methods. See Appendix
C for further details.
Additionally, the sampling and backmapping of latent

space points to parameter space can occur through sev-
eral different methods. In what follows, we choose a
particularly simple implementation of the back-mapping;
when sampling a new latent space goal, we look to the
nearest previously sampled latent space point, and iden-
tify its associated parameter space point. We can then
make a random step from this nearest-neighbor param-
eter space point. In this way, we make a guess at what
points in parameter space are likely to produced a dy-
namical behavior with our targeted latent space goal.
Our choice for latent space sampling is similarly sim-
ple; we uniformly sample the bounding hypercube of the
current set of collected latent space points. For further
details, see Appendix B, and Limitations and Extensions
for a discussion of other latent space and backmapping
methods.

RESULTS

To evaluate the performance of a curiosity-driven
search in a well-characterized setting, we turn to the orig-
inal formulation of the Kuramoto model[24],

θ̇i = ωi +
K

N

N∑
j=1

sin(θi − θj), (1)
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FIG. 2. Curiosity search reveals all known phases and order parameters for the uniformly connected Kuramoto model more
efficiently than random search. (A) In the canonical Kuramoto model, N oscillators are coupled to favor alignment (coupling
strength K) Here number of oscillators N = 33. (B) Unlike a random search of K space, our algorithm samples non-uniformly,
focusing on the less common desynchronized state at small K. Vertical line indicates phase boundary Kc computed for N → ∞.
Behaviors and the associated colors are computed from latent space. (C) Autoencoder latent space at the start and end of
curiosity search; the final latent space identifies a quasi-1-dimensional structure for oscillator behavior, indicating one useful
order parameter. Clustering in latent space categorizes collective behaviors, corresponding to distinct regions of parameter
space. (D) Phase coherence examples from dynamical states identified through latent space clustering. (E) Curiosity search
increasingly focuses on sampling lower K as training proceeds. (F) Curiosity search works with other dimensionality reduction
methods, consistently generating better parameter sampling than random sampling (no latent space). Error bars indicate
variance over 10 replicates.

where the ωi are drawn independently from a distribution
N (0, .1), and the coupling strength K > 0 is the one
tunable parameter (Fig. 2A). We set N = 33 for our
simulations.

In the limit of infinite N , this model is characterized
by a critical coupling strength[25] Kc = .16 for our pa-
rameters. For values of K < Kc, the oscillators move
independently of each other, creating a desynchronized
behavior. For values of K > Kc, the oscillators synchro-
nize and have exactly the same phase θ.

Let’s pretend that we are approaching this system
without prior knowledge about the behaviors that can
arise, and where these transitions occur. In other words,
the only information we have about the system is that
there is one parameter that we can manipulate, which is
K. We will make the assumption that interesting behav-
iors occur in the system when the coupling strength is
O(1) or less. One way to approach exploration of this
system would be to randomly sample values of K, and
observe the behavior at these sampled values. With this
approach, only a small fraction of the observed behaviors
would be desynchronized, since Kc is O(.1).

Running our curiosity search in the one-dimensional
parameter space of coupling strength demonstrates the
features of successful system exploration. In the final en-
semble of collected parameters, samples are drawn with

frequencies weighted towards couplings of O(.1), where
we expect the infinite-N synchronization to occur (Fig.
2B). We can interpret this weighted sampling as the cu-
riosity search algorithm having learned to distinguish
the synchronized and desychronized phases. The fully-
trained latent space also provides evidence for “learning”
of the Kuramoto model behaviors, as the final latent
space is a thin 1D manifold with the same ordering as
the parameter space. Clustering by agglomerative clus-
tering, as a post-data collection step, can readily reveal
this ordering by showing how contiguous regions of la-
tent space are mapped to parameter space (Fig. 2C). By
plotting as a summary statistic the traditional Kuramoto

phase coherence | 1N
∑N

j=1 e
iθj |, we see that individual ex-

amples of the dynamical behaviors confirm this picture
as well (Fig. 2D), revealing desynchronized (behavior 1),
synchronized (behavior 2), and intermediate (behavior 3)
behaviors. Finally, we see that sampling bias towards the
desynchronized region increases as sampling progresses,
indicating that the curiosity search is changing its latent
space over time to better reflect the relevant behaviors
(Fig. 2E).

To test whether other algorithms could have performed
the same task, we considered multiple variants of the di-
mensionality reduction technique: PCA, a random au-
toencoder which was never trained, and a random linear
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FIG. 3. Curiosity search efficiently reveals the full phase diagram for a 2-population Kuramoto model. (A) Kuramoto model
with two populations of oscillators considered by Abrams et al [27], with intra-population coupling µ, inter-population coupling
ν and shifted phase offset β, with number of oscillators N = 32. (B) The curiosity search samples non-uniformly across
parameter space, focusing on the small region where rare chimera behaviors occur. (inset) Clustering in latent space reveals
that this region has the structure of the chimera stability diagram identified by Abrams et al [27]. (C) Autoencoder latent
space at the start and end of curiosity search; desynchronized states occupy more space relative to synchronized states than
in the parameter space. (D) Phase coherence examples from each of the states identified through latent space clustering. (E)
As training proceeds, curiosity search increasingly focuses on parameter space where desynchronized states are found. (F)
Curiosity search works with other dimensionality reduction methods, consistently generating better parameter sampling than
random sampling (no latent space). Error bars indicate variance over 10 replicates.

projection (see Appendix C for further detail). As we
have access to a prior understanding of the dynamical be-
haviors present in the model, we can post-collection com-
pare the distribution of sampling to an ideal distribution
which samples the known behaviors equally (Fig. 2F). All
dimensionality reduction consistently outperformed ran-
dom sampling of parameter space. We note the surprising
result that random projection outperformed even itera-
tively trained methods. The success of random methods
parallels observations made in the context of timeseries
featurization with random convolutions[28]. It also in-
dicates that there was enough structure already present
in the raw dynamical systems output such that a ran-
dom low-dimensional projection was able to separate the
various accessible behaviors.

While the uniformly-connected Kuramoto model is an
ideal testing ground, the range of dynamical behaviors it
can produce is fairly simple. We extend our approach to
a Kuramoto model variant whose phase diagram has been
equally well-characterized, but is capable of producing a
wider range of behaviors, including chimera states.

Specifically, we investigate a 2-population Kuramoto
model with a coupling K11 = K22 = µ between all
oscillators within the same population, and a coupling
K12 = K21 = ν between all oscillators in different pop-
ulations. Subscripts indicate the oscillator population

index. We introduce a phase offset α to the coupling
between any two oscillators and write the model as:

θ̇σi = ω +

2∑
σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσ
′

j − θσi − α), (2)

This model was introduced by Abrams et al [27], where
the parameter space was given by the variables β = π

2 −α
and A = µ − ν (Fig. 3A), with µ + ν = 1. Here, we
specifically investigate the case ω = 0 and total N = 32,
with equal population sizes. We will term this model the
“chimera” model, as it was shown to produce chimera
states, where two identical populations of oscillators exist
with one synchronized and the other desynchronized[29–
32].
Employing curiosity search in this 2-dimensional pa-

rameter space results in a distribution of samples that
is concentrated on a narrow strip of the total parameter
space, roughly in the area with A > 0 and θ < .25 (Fig.
3B). This is precisely the region of parameter space which
is known to support the emergence of chimeric behavior.
In fact, the latent space trained through our curiosity
sampling procedure is able to distinguish between the
two types of chimeras originally identified by Abrams et
al [27] (Fig. 3B(inset), C), despite the fact that our anal-
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ysis is done on a smaller number of oscillators, and those
results were derived in an infinite-N limit.

Visualizations of the dynamical behaviors provide ad-
ditional evidence that automated curiosity sampling is
capturing a wide variety of behaviors in the chimera
model (Fig. 3D), and the temporal changes in sampling
indicate that the parameter regions which contain the
richest dynamical behaviors are preferentially sampled
as the latent space is trained (Fig. 3E). Behaviors 1 and
6 correspond to the breathing and stable chimeras re-
spectively. As we have access to a prior understanding
of some of the dynamical behaviors present in the model,
we can post-collection compare the distribution of sam-
pling to an estimated ideal distribution which samples
the known behaviors equally (Fig. 3F). All dimension-
ality reduction consistently outperformed random sam-
pling of parameter space.

Having investigated the utility of automated curiosity
sampling in a non-trivial but still thoroughly explored
model, we now turn to previously unexplored models. We
initially define a 10-dimensional variant of the chimera
model, with three populations with phase offset (Fig.
4A):

θ̇σi = ω +

3∑
σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσ
′

j − θσi − α), (3)

with ω = 0 and total N = 30 divided equally among
individual populations. The coupling matrix between the
populations is not restricted to be symmetric, though we
require all matrix elements to be positive.

Due to the 10-dimensional nature of the parameter
space, we forego the direct visualization of parameters

and instead focus on visualizing our (4-dimensional) la-
tent space. We select the two dimension in latent space
which contribute the most to the largest principal com-
ponent of the trained latent space, and project our data
on these axes (Fig. 4B). Clustering of behaviors in latent
space shows that the latent space structure significantly
changes between initial and final rounds of sampling.

To understand the behavior regimes in this latent
space, we can visualize representatives of each group for
qualitative analysis; both the overall phase coherence as
well as the phase coherence of each individual population
(Fig. 4C). We find a variety of behaviors, most of which
can be interpreted in the light of previous behaviors un-
covered in Kuramoto models – fully synchronized[24] (be-
haviors 6, 7), chimera[27] (behaviors 1, 9), chiral[33] (be-
haviors 2, 8), antialigned[33] (behavior 4), and combina-
tion chiral + chimera phases (behaviors 5, 10).

Finally, to conclude our automated analysis of the 3-
population Kuramoto model, we quantitatively confirm
the relative diversity of samples compared to a random
sampling baseline (Fig. 4D). The collapse of all curves
below 800 samples corresponds to the initial random
sampling. In contrast to the uniformly-connected and
chimera models, we lacked any prior knowledge of the
phase behavior in parameter space. We therefore adopted
a model-agnostic measure of diversity corresponding to
the total volume of trained autoencoder latent space oc-
cupied by another sampling distribution. See Appendix
E 2 for further detail.

In our exploration of the 3-population Kuramoto
model, we identified a particular set of parameters that
led to an unexpected behavior (Fig. 4C, behavior 3),
where the phase coherence of each individual oscillator
family was saturated, but the overall phase coherence
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displayed periodic variability. We were particularly inter-
ested in understanding this behavior, as it did not neatly
fit into any categories that we had previously encoun-
tered, resembling a chiral phase identified in Fruchart et
al [33], but with periodic breathing.

We took a closer look at these “chiral breather” dy-
namics, and found that the behavior came as a re-
sult of 2 populations completely synchronizing with each
other, while a third population internally synchronised
but moved at a different period relative to the other pop-
ulations (Fig. 5A).

In order to understand the chiral breather, we used
the ansatz of internally synchronized families with a

externally desynchronized phase to identify its emer-
gence in a simpler system. We chose to investigate a 2-
population version of the 3-population model (Fig. 5B),
which is identical to Eq. 2, without the inter- and intra-
population coupling symmetry assumptions.
Following the procedure outlined for the chimera

model by Abrams et al [27], we derive a set of coupled
differential equations for the phase difference and coher-
ence of the two oscillator populations in the limit of in-
finite population size. Using our ansatz inspired from
our data-driven exploration in Fig. 4, we compute the
steady-state behavior of the oscillators as a function of
the model parameters (Fig. 5C(left)).
To derive these equations, we can take as a starting

point Eq. (9) in Abrams et al [27], which is:

0 = ȧ1 +
1

2
a21(K11a

∗
1 +K12a

∗
2)e

−iα

− 1

2
(K11a

∗
1 +K12a

∗
2)e

iα,

(4)

with the equation for ȧ2 being identical under the inter-
change of subscripts 1 and 2. The ai are the amplitudes
of the remarkable Ott-Antonsen ansatz[34] for the oscilla-
tor phase density in the N → ∞ limit. Unlike in Abrams
et al [27], we do not yet make any assumptions on the Ks.
In Abrams et al [27], the amplitudes ai are rewritten in

polar form, with ai = ρie
−iϕi . However, because we are

instead interested in the behavior exhibited in Fig. 5A,
we make a different ansatz, and assume that ρi = 1 for
both i. In this case, Eq. 4 reduces to:

0 = ϕ̇1 +K11 sinα+K12 sin(α+ ϕ1 − ϕ2), (5)

with the associated equation for index 2 simply involving
the exchange of subscripts for 1 and 2. We can define
ψ = ϕ1 − ϕ2, in which case we have one equation

ψ̇ = − [(K11 −K22) sinα+K12 sin(α+ ψ)

−K21 sin(α− ψ)].
(6)

Integrating yields

ψ(t) = 2 tan−1

[
D tan(− Dt

2
√
2
+ c0)−A

B

]
A = (K12 −K21) cosα,

B =
√
2 sinα((K11 −K22)− (K12 −K21))

D = ((K11 −K22)
2 − 2(K2

12 +K2
21)

− ((K11 −K22)
2 + 4K12K21) cos 2α)

1
2 ,

(7)

where c0 is a constant of integration.
We note that there are two behaviors embedded in this

solution, depending on Im(D). When D is real, ψ con-
tinues to change over time as t→ ∞, indicating a chiral
breather. If D is imaginary, then because of the conver-
sion between tan and tanh, ψ goes to a constant in the
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of an initial curiosity searcher. Behavior samples drawn for subsequent curiosity search can be screened through the initial,
frozen latent space, where samples are accepted or rejected based on probabilities assigned to different parts of latent space by a
human observer. Following screening through this human-evaluated latent space, sampling proceeds as Fig. 1, with a separate
autoencoder for the new, human-aligned latent space. (B) A 10-population Kuramoto model with 100 population-population
couplings, and one global phase offset α. Couplings Kij are positive and sum to 1, with number of oscillators N = 100. (C)
(left) Autoencoder latent space following initial curiosity search without human alignment. Latent space clusters identified in
initial search are human-evaluated for interest and assigned acceptance probabilities. (right) Final latent space at the end of
human-aligned curiosity search. (D) Phase coherence examples from each of the states identified through latent space clustering.
Solid lines represent overall phase coherence, dashed lines are phase coherence of indiviual populations.

long-time limit. In the case where K12 = K21 = Kinter

and we define ∆Kintra = (K11 − K22)
2, the boundary

between these two behaviors simplifies to:

∆K2
intra = 4K2

inter tan
2 β, (8)

where β = π
2 − α is the shifted phase offset.

Indeed, when we simulate specific parameters with
N = 32 oscillators (Fig. 5C(right)), we find this tran-
sition from chiral breather to stable chiral behavior, as
predicted from the infinite-N analysis.

In order to demonstrate the flexibility and capacity of
our curiosity search framework, we present an algorith-
mic extension which naturally incorporates human in-
sight (Fig. 6A). We employ this human-aligned approach
to explore a 100-dimensional model.

In particular, we define a 10-population Kuramoto
model with global phase offset α (Fig. 6B):

θ̇σi = ω +

10∑
σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσ
′

j − θσi − α), (9)

with ω = 0 and total N = 100 divided equally among 10
individual populations. We restrict all elements of Kσσ′

to be positive, and further require them to sum to 1. This
model is therefore 100-dimensional. Initial exploration of
the 10-population model through our non-human-aligned
procedure identified several interesting behaviors, but
many of the non-trivial dynamics were confined to a sin-
gle population. Having previously discovered such behav-
iors in the 3-population Kuramoto model, we no longer
considered these behaviors to be novel, and decided to

prioritize the discovery of behaviors involving multiple
populations.

In order to focus sampling on multi-population behav-
iors, we introduce the concept of human evaluation of la-
tent spaces, inspired by the HOLMES algorithm[35]. Our
human-aligned curiosity search relies on the construction
of an initial latent space following the procedure outlined
in Fig. 1. We subsequently freeze the initial latent space
and assign acceptance probabilities to each cluster, based
on a human evaluation of the cluster’s interest. We now
perform curiosity-driven search in a new latent space, but
with sampled behaviors filtered through the initial latent
space; samples are rejected or accepted based on the ac-
cepted probability of the cluster they are best associated
with in the initial latent space (Fig. 6C, right).

In this particular case, we scored clusters based on the
presence of behaviors involving the simultaneous pres-
ence of non-trivial dynamics in multiple oscillator pop-
ulations. Therefore, the new latent space is constructed
solely from sampled behaviors which have been screened
through the human-evaluated initial latent space. See
Appendix F for further detail.

Following human-aligned curiosity search, we con-
struct a latent space of behaviors and cluster in that
space (Fig. 6C, left). We choose representatives of each
cluster and analyze the behaviors of those representatives
by integrating the phase coherence curves of the whole
oscillator ensemble, as well as the phase coherence curves
for each of the 10 individual populations.

We find a wide variety of behaviors with non-trivial
multi-population dynamics, in accordance with the hu-
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man intuition we aligned our curiosity searcher with (Fig.
6D). We can qualitatively identify certain behaviors such
as breathing chimeras (behaviors 7, 14), nearly synchro-
nized (behaviors 13, 15), and chiral phases (behavior 11).
Many of the behaviors sampled involve multiple popula-
tions overlaying in regular (behavior 1) or chaotic pat-
terns (e.g. behaviors 3, 4, 5, 8, 9), aligning with our
human-informed scoring criterion. Even behaviors in-
volving a single unsynchronized population can display
subtle combinations of chiral and chimeric behavior; note
for example the way in which the overall coherence is
never complete in behavior 10, despite the periodic re-
currence of coherence in all populations.

LIMITATIONS AND EXTENSIONS

While our method is successful in identifying novel
phases and order parameters with minimal human effort,
there are limitations on the effectiveness of our curiosity
search as currently implemented. Many of these limi-
tations can be traced to the geometry of the parameter
space-to-behavior space map, and can be improved upon
in future work.

One set of issues comes from the strength of gradi-
ents in behavior as a function of design parameters. If
the behavior is constant in a region of parameter space,
then our choice to sample from locally perturbed of pre-
viously explored parameter values can result in search
dynamics that is equivalent to diffusion in that region
of parameter space. This local diffusion can result in a
heavy dependence upon the behaviors initially sampled
to seed the curiosity search. Furthermore, the problem
becomes more acute as the dimension of parameter space
increases.

This limitation suggests that “messier” physical sys-
tems, away from thermodynamic limits with sharp tran-
sitions in behaviors, may be more amenable to methods
of curiosity search that operate in the space of behav-
iors. There may be hints of one type of behavior hidden
in examples of another behavior, and hence the curiosity
search can follow a gradient, rather than relying solely
on diffusion to randomly find a phase boundary. The
tradeoff of being away from a thermodynamic limits is
that behaviors might not be as clearly apparent. How-
ever, in both the case of diffusive and gradient-following
dynamics, we expect that whenever a new behavior is
discovered, the curiosity search algorithm will sample it
with elevated frequency.

A key part of the curiosity search framework is the
backmapping from behavior space to parameter space.
Our nearest-known-neighbor choice was particularly sim-
ple, and as discussed, potentially introduces a decrease
in exploration efficiency and an increased dependence on
initial conditions when sampling in higher dimensions.
One possibility for decreasing the reliance on previously
sampled parameters is to translate geometrical informa-
tion in behavior space back into parameter space. For

example, if a target behavior sampled in behavior space
lies between two points, we might sample between the
two corresponding points in parameter space. However,
approaches in this vein assume that the geometry of pa-
rameter space and the geometry of behavior space are at
the very least diffeomorphic. Another possibility would
be to treat the backmapping as a supervised deep learn-
ing problem, which would require iterative updates as
latent space changed.
Another component of the curiosity search framework

for which we made a simple choice was in latent space
sampling. While our current methodology samples la-
tent space uniformly, it might be more efficient to explic-
itly sample in regions of latent space which have lower
sample densities. Another possibility is to forgo explicit
sampling in latent space altogether, and instead select
candidate behaviors of interest preferentially based on
high reconstruction error following dimensionality reduc-
tion. This approach is akin to novelty detection[36]. A
final possibility is to construct latent space in a way that
more fully takes advantage of the temporal nature of the
behavior, for example by using a recurrent autoencoder
architecture to predict system evolution, as opposed to
the vanilla convolutional VAE used here.
Finally, we made choices in the analysis of our latent

space post-data collection, in particular performing ag-
glomerative clustering on these data. We emphasize that
the clustering is a computational device to render the la-
tent space more human-interpretable, but is not crucial
for the success of the algorithm; we could have equally
well have simply binned latent space. However, to check
to make sure that the choice of clustering algorithm does
not significantly change the interpretation of the latent
space and associated behaviors identified, we performed
clustering with HDBSCAN[37] on all data sets generated,
and were able to de novo discover the same interesting
behaviors as identified in post-processing with agglom-
erative clustering (Fig. 7) Additionally, while agglom-
erative clustering requires us to specify a number of ex-
pected phases, we found that HDBSCAN could automat-
ically chose similar numbers of phases when the minimum
cluster size hyperparameter was set to reasonable values
(Fig. 7).

DISCUSSION

We have demonstrated that it is feasible to perform
exploration of dynamical systems despite not knowing
how to characterize the salient features of their behaviors
(e.g., in terms of order parameters). This curious explo-
ration learns the metrics which characterize a novel sys-
tem without having a pre-defined target or goal[13, 38].
We achieved this curious exploration by combining the
complementary strengths of active learning and dimen-
sionality reduction; dimensionality reduction enables the
iterative construction of a low-dimensional latent space of
behaviors, while searching in latent space improves the
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efficiency of data collection. While active learning and
dimensionality reduction have individually been applied
in the context of physical systems, this approach allows
us to solve a qualitatively new challenge that has yet to
be confronted in a physical domain.

We applied our method to the well-studied Kuramoto
model, reproducing known behaviors in some cases and
revealing novel behaviors and related novel order param-
eters in others. Further, the known behaviors of the
canonical Kuramoto model are not thought to transfer
immediately to related models such as those with ex-
citable oscillators or for different functional forms of os-
cillator coupling[25, 39, 40]; repeating the years of human
effort that went into the canonical equations for these
other models would be impractical. Our framework can
be used to reveal behaviors for related models that might
be of interest as accurate models of natural systems.

Crucially, curiosity-driven search allows for the princi-
pled exploration of systems which would be intractable
via brute-force grid search. A grid search requires rd

samples, where r is the resolution of each grid axis and
d is the dimensionality of the parameter space. For the
3-population Kuramoto model with d = 10 parameters
we considered, implementing a coarse grid search with a
resolution of r = 3 values per dimension would require
the computation of 6e4 timeseries. For the 10-population
Kuramoto model with 100 parameters, a similar reso-
lution would require 5e47 timeseries. The prohibitive
cost of grid search underscores the contrast between the
computational requirements of optimization versus ex-
ploration; while optimization requires only a fraction of
the exhaustive number of evaluations required for explo-
ration, optimization is only possible if an objective func-
tion exists to guide the search.

While we applied curiosity search to a canonical but in
silico model of a complex system, our algorithm can in-
stead directly interface with a physical system by taking
control of experimental knobs. This direction will allow
for discovering functional behaviors that exploit unmod-

eled or unexpected effects in experimental systems such
as non-linearities[41] or feedbacks. Much like reservoir
computing[42] or model-free control[43], our work here
gives a systematic way of revealing behaviors that ex-
ploit complex unmodellable effects, rather than discover-
ing them through serendipity. However, questions of time
and resource cost of experimental iterations and the ef-
fectiveness of our method with only partial observations
remain to be explored.
Natural applications along these lines include active

matter systems with spatial structure. Recent exper-
imental advances increasingly allow for the control of
activity[1, 4] and particle interactions [5, 6] in a space-
time dependent manner, allowing for detailed density
and orientation dependent motility. These experimen-
tal methods have opened up complex high-dimensional
spatiotemporal design spaces; since order parameters are
typically not available a priori for these systems, the
methods in this work might provide exciting opportu-
nities for revealing novel behaviors.
An appealing feature of curiosity search is that it

admits a natural way for aligning search with human
intuition, a key concern in many domains of machine
learning[44]. Crucially, alignment is accomplished with-
out requiring explicit instructions on which areas of pa-
rameter space should be explored. We anticipate that
alignment methods will be particularly important in ex-
ploration of experimental systems with potentially wide
arrays of behavior classes with features at multiple scales.
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Appendix A: simulation details

Our primary goal is to investigate and discover novel
dynamical behaviors in variants of the Kuramoto model,
all of which can be compactly written in the following
form:

θ̇i = ωi +

N∑
j=1

Kij sin(θj − θi − α), (A1)

where Kij is the matrix of couplings between oscillators,
α is a global phase offset, the intrinsic frequencies ωi

are (potentially) drawn from a distribution, and N is
the number of oscillators. In all figures, N is gener-
ally on the order of 30, and ωi = 0 except for in the
uniformly-connected model considered in Figure 2. In the
uniformly-connected model, ωi is drawn from the distri-
bution N (0, .1). Additionally in the uniformly-connected
model, α = 0.
In order to investigate these dynamical systems, we

need to integrate Eq. A1 for specificKij and α, for which
we use the SciPy odeint function. We supply a regular
time grid of domain [0, 750] with step size dt = .05. Initial
oscillator phases are drawn from a uniform distribution
from [0, 2π].

Traditionally, the output of these models has been in-
vestigated using a “phase coherence” order parameter,

which can be defined as | 1N
∑N

j=1 e
iθj |. There is also the

associated complex phase arg
[

1
N

∑N
j=1 e

iθj
]
, but we fo-

cus on this less in our current work.
Instead of interpreting and processing the output of

our dynamical system with these traditional metrics, we
allow unsupervised dimensionality reduction techniques
(see Appendix C) to extract the relevant order parame-
ters. In order to pass the raw output of the dynamical
systems integration to the dimensionality reduction tech-
nique, we sample the last quarter of the raw output time-
series in 7 evenly-spaced intervals. At each sample, we
use the NumPy arctan2 function to compute the mean os-
cillator phase, and then compute the distribution of sines
of oscillator angles relative to the mean. The sine values
are subsequently binned in the range [−1, 1] with 7 bins,

and the histogram is normalized by the number of oscil-
lators. Having done this for 7 timepoints, we have trans-
formed our raw dynamical output into a 7× 7 greyscale
image, which is the input to a dimensionality reduction
technique. Note that by mean-centering at each time
point and binning, we imposed invariance to oscillation
index, as well as invariance to global rotations. In the
context of coupled oscillator models, these assumptions
seem relatively benign, but may not be appropriate for
other systems.

Appendix B: active learning details

Having described how we compute the behavior for a
given set of Kuramoto model parameters, we can now
turn to the active learning procedure by which we sam-
ple model parameters. All our explorations are seeded by
collecting 200 (uniformly-connected and chimera models)
or 800 (3-population model) samples randomly through-
out parameter space. Each parameter space axis has an
upper and lower bound: for phase offsets, this is [0, π2 ];
for oscillator couplings, this is [0, 1] in the chimera and 3-
population models, and [0, 2] in the uniformly-connected
model.
The parameters are then used to integrate the dynam-

ical equation described in Appendix A. We note that,
for the chimera and 3-population models, initial oscil-
lator phases are sampled once at the beginning of the
active learning procedure, and subsequently fixed for the
duration of the exploration. In contrast, for the fully-
connected model, the initial oscillator phases and the
intrinsic frequencies are resampled with each new pa-
rameter selected. The output of these initial simulations
are passed through a dimensionality reduction technique
(Appendix C). If the employed technique requires train-
ing, training is also performed before the dynamical be-
haviors are converted to their latent space representa-
tions.
We have now initialized our active learning explo-

ration, by creating a collection of tuples containing all
our relevant information: (parameters, dynamic behav-
iors, latent space representation). Following initializa-
tion, we now select a “target” behavior in latent space
that we wish to explore. While there are many possi-
ble options for performing this latent space sampling, we
pick a particularly simple one; we construct the hyper-
rectangle that contains all the currently sampled latent
space representations, and then uniformly sample within
that hyperrectangle.
With this target behavior in hand, we now seek a point

in parameter space that will ideally lead us to this tar-
get point in latent space. Again, there are many possible
options for implementing this parameter point selection,
and we choose a simple one. In this case, we return to
our dictionary of all previously sampled parameters, and
select the parameter whose latent space representation is
closest to our target. We then “mutate” this selected pa-
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rameter by adding a random amount along each parame-
ter space axis. The magnitude of this random step along
each parameter space axis is bounded by 10% (uniformly-
connected and chimera models) or 20% (3-population) of
the allowed domain length of that axis. Within these
bounds, the step length is sampled uniformly. If the mu-
tated parameter falls outside the lower or upper bound of
any of the parameter axes, we resample the mutation un-
til the mutated parameter falls within the allowed ranges.

We can continue this process, collecting more (pa-
rameter, dynamic behavior, latent space representation)-
tuples. We can also iteratively train the associated di-
mensionality reduction techniques with this newly col-
lected data. For the uniformly-connected and chimera
model explorations, we updated the dimensionality re-
duction technique once every 100 samples collected, until
we had a total of 1600 collected samples, inclusive of the
initial samples. For the 3-population model exploration,
we updated the dimensionality reduction technique once
every 400 samples collected, until we collected a total
of 4000 samples. When we select samples for training,
we utilize 50% from the most recent samples, and 50%
randomly chosen from the previous samples.

Appendix C: dimensionality reduction details

For each coupled oscillator model exploration, we con-
sider four dimensionality reduction techniques in the pa-
per: a convolutional variational autoencoder (VAE), a
random VAE, PCA, and random projection. All neu-
ral network code was run using PyTorch, and the linear
models were implemented with Scikit-learn.

The convolutional VAE has a relatively simple encoder
architecture: 1. a 2D convolutional layer with 2-4 filters,
followed by ReLU activation and flattening; and then
2. a fully-connected layer into a latent space of dimen-
sion 2-4. The decoder follows analogously: 1. a fully-
connected layer which expands from the latent space, fol-
lowed by unflattening and ReLU activation; and then 2.
a transposed 2D convolution followed by sigmoid activa-
tion. For the chimera and uniformly-connected models,
we use 2 filters and 2 latent dimensions, whereas for the
3-population model we use 4 filters and 4 latent dimen-
sions. Every time the VAE is trained, it is trained on a
batch size of 200 or 800 (chosen as described in Appendix
B) for 2000 epochs. We train with ADAM, using a learn-
ing rate of 1e − 3 and weight decay 1e − 5. Weights are
initialized with PyTorch standard initialization, which in
linear and convolutional layers with ReLU activation is
he normalization. The random VAE is constructed in
exactly the same architecture and initialization as the
corresponding trained VAE, but is never trained over the
course of the active learning.

PCA is performed using the Scikit-learn PCA method,
and we utilize the same number of dimensions as used
for the VAEs in order to construct the PCA latent space.
Random projection is performed using the Scikit-learn

GaussianRandomProjection function, projected onto the
same number of dimensions as used for the VAE latent
spaces.

Appendix D: clustering and behavior example
selection

In order to interpret latent space, we employ agglom-
erative clustering as implemented in the scikit-learn Ag-
glomerativeClustering function with Ward linkage. We
choose 3, 6, and 10 cluster for Figures 2, 3, and 4 re-
spectively. In order to gain a qualitative understanding
of these clusters, we select the sample closest to the clus-
ter median (in latent space) and then assess the result-
ing dynamics for the corresponding point in parameter
space. The precise values of the selected parameters are
presented in Supplemental Table 1. Note that in the 3-
population model, the listed couplings are normalized to
1 before being used as model input.
To evaluate the robustness of our clustering-

related conclusions, we also perform clustering using
HDBSCAN[37] on the same dataset analyzed in the main
figures. In contrast to agglomerative clustering, HDB-
SCAN does not require the number of desired clusters
as a hyperparameter. Hence as a first check on the
consistency of our results, we checked whether our cho-
sen agglomerative cluster numbers could be reproduced
with reasonable values of the HDBSCAN hyperparam-
eter min cluster size, which sets the minimum allowable
cluster size. For the uniformly-connected model, we were
most interested in coarse features, so we set a minimum
cluster size of 100 (out of 1600 samples) to select 3 clus-
ters (Fig. 7Ai). For the chimera model, we were more
interested in fine-grained distinctions, so we set a min-
imum cluster size of 20 (out of 1600 samples) to select
5 clusters (Fig. 7Bi). For the 3-population model, we
were again interested in fine-grained distinctions, so we
set a minimum cluster size of 80 (out of 4000 samples) to
select 9 clusters (Fig. 7Ci).
As a second check on the robustness of our results,

we asked whether we could identify the same interest-
ing phases we found using agglomerative clustering in
an HDBSCAN-derived clustering. Note that HDBSCAN
identifies a category of points as noise, which in all
panels we color as grey and label as behavior 0. For
the uniformly-connected model, we again recovered the
low (behavior 3), intermediate (behavior 2), and fully-
synchronized (behavior 1) regimes (Fig. 7Aiii). For the
chimera model, we were able to distinguish chimeric (be-
haviors 4 and 5) from fully-synchronized regimes (behav-
ior 1) (Fig. 7Bii). There is also some distinction between
breathing and stable chimeras, though the splitting is less
clean than in the agglomerative clustering case. This sug-
gests that the latent space is capable of distinguishing
between the two chimera variants, but that this partic-
ular clustering is slightly too coarse to cleanly find the
dividing line. Finally, we again discover a similar range of
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FIG. 7. Clustering with HDBSCAN on curiosity search data reveals novels dynamical behaviors in Kuramoto model variants.
(A) Clustering with HDBSCAN in the latent space of the uniformly-connected model identifies 3 clusters (i), which map to
regimes of low, intermediate, and high synchronization in parameter space (ii, iii). (B) Clustering with HDBSCAN in the latent
space of the chimera model identifies 5 clusters (i) which can roughly distinguish between chimeric and fully-synchronized phases
(ii, iii). (C) Clustering with HDBSCAN in the latent space of the 3-population model identifies 9 clusters (i), which reveal
similar behaviors to those identified in the main text (ii), including the chiral breather behavior (behavior 6).

behaviors in the 3-population model as under the agglom-
erative clustering analysis: fully-synchronized (behaviors
1, 3), chimera (behaviors 4, 8), chiral (behaviors 7, 5),
anti-aligned (behavior 2), chiral breathers (behavior 6),
as well as behaviors with some combination of chimeric
and chiral characteristics (behavior 9) (Fig. 7Ciii).

Appendix E: algorithm performance metrics

1. ideal sampling comparison incorporating prior
model knowledge

To assess the performance of the various parameter ex-
ploration schemes outlined in the main text, we want to

quantify the quality of the sampling distributions they
generate in parameter space. In particular, an ideal
benchmarking measure would compare curiosity searches
against a known, desired, sampling distribution.
In the uniformly-connected Kuramoto model, we have

prior knowledge about the various phases we expect to
see. In the infinite-N limit, we know that there are two
well-defined phases; a fully incoherent phase in which the
Kuramoto order parameter r = 0, and above a critical
coupling Kc a synchronized parameter regime in which
r > 0. With this prior, we would ideally like our sampling
to be evenly distributed, with half the samples coming
from above Kc and half below. However, our simulations
are performed with finite N, and hence we should not
expect such cleanly delineated phases.
Instead, we define an ideal sampling by the computa-
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tion of r in our simulations as a function of K. We se-
lect three regimes: one phase for which r < .3, with the
corresponding parameter values K < .13, one for which
r > .95 and hence K > .34, and the phase intermediate
to those two. We posit that the ideal sampling distri-
bution should be evenly distributed between these three
regimes in parameter space.

To quantitatively make the comparison between our
sampled distributions and the ideal distribution, we use
the scipy.special.kl div function to compute the KL diver-
genceDKL(sampled|ideal) between the two distributions.
This is the number we use as our performance metric for
a particular sampling distribution.

We also have ground truth knowledge in the case of
the chimera model, allowing us to compare the qual-
ity of sampling distributions analogously. We identify
three phases as stable chimeras, breathing chimeras, and
synchronized phases outside of the previous two regions.
These phases and their boundaries in parameter space
were identified in Abrams et al.[27]; while other phases
might in principle exist, we do not incorporate this pos-
sibility into the analysis.

Based on the work of Abrams et al., we can es-
timate these boundaries using the shapely python
package to define points that lie within the tri-
angle [(0, 0), (0, 0.2679), (0.2239, 0.3372)] to be sta-
ble chimeras; points that lie within the triangle
[(0, 0.2679), (0.2239, 0.3372), (0, 0.5)] to be breathing
chimeras; and points outside these triangles to be syn-
chronized phases. Given this procedure of computing
phases in parameter space, we follow the same procedure
as we did for the uniformly-connected Kuramoto model;
we assume ideal sampling is even across the three phases,
and then compute the KL divergence between each sam-
pling distribution and ideal sampling.

2. model-agnostic diversity and entropy measures

Running the curiosity algorithm with different dimen-
sionality reduction techniques (see Appendix C) gener-
ates different distributions of samples. We would like to
compare the performance of each technique in terms of
generating a more diverse collection of samples, relative
to a random parameter sampling baseline.

In order to compare sampling distributions, we must
construct a measure of diversity. For the fully-connected
and chimera models, we have prior knowledge of how
many phases exist, so we can simply characterize how
well the different techniques sample these known phases.
However, for the 3-family model, we do not have this
prior knowledge. Therefore, we want to construct a di-
versity measure which does not depend on complete prior
knowledge.

One way to do this is construct a measure which cap-
tures the diversity of sampling in latent space, as latent
space is a representation of the system behaviors. How-
ever, each dimensionality reduction technique constructs

a different latent space. We make the assumption that
the trained autoencoder latent space is the most tailored
latent space, and so to create comparable representa-
tions, we run each distribution of collected dynamical
behaviors through the same trained autoencoder. We
then normalize the autoencoder latent-space based on
the full collection of latent-space representations from all
distributions.
Finally, to calculate a measure of diversity for a distri-

bution of samples, we divide each dimension of the nor-
malized latent space into 80 bins. This divides the latent
space into hyper-cubes, the size and number of which is
determined by the bin number. Each latent space value
fits into one of these cubes. We subsequently define our
measure of diversity for our sample distribution as the
number of unique cubes occupied by all samples. Note
that the number of samples which lie in each cube is not
considered, only the number of unique cubes filled.
From this construction, we can similarly measure the

entropy of the various latent space sampling distribu-
tions. Higher entropy indicates more uniform coverage of
latent space. For each model we investigated, we found
that the entropy of latent space samples from each di-
mensionality reduction technique was greater than the
entropy of the behavior distributions generated from ran-
dom parameter sampling (Fig. 8).

3. temporal sampling of fully-connected model

To construct a representation of how the fully-
connected model sampled over time with a periodically
retrained autoencoder, we divided the parameter space
(coupling strength) into 8 bins, and then normalized each
bin individually from 0 to 100 percent. Since the samples
were saved in the order in which they were collected, di-
viding the array of samples into quartiles is equivalent to
dividing it into four sequential temporal bins. We plotted
what percent of the samples in each parameter space bin
lay in each quartile. This method of visualization shows
where the algorithm preferentially sampled over time.

Appendix F: human-aligned curiosity search

Human intuition can naturally be incorporated into
the curiosity search framework presented in Fig. 1 with
a simple, potentially iterative modification, following the
spirit of Ref. [35]. At arbitrary times within the curios-
ity search loop, latent space can be frozen, and a human
observer can score the behaviors presented in the various
parts of that frozen latent space for human interest. This
scoring can in turn be converted to acceptance probabili-
ties. Subsequent curiosity sampling can run all produced
behaviors through that latent space, and the sample is re-
jected or accepted according to those human-derived ac-
ceptance probabilities. In principle, this process of latent
space freezing and human-alignment can be continued it-
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FIG. 8. Curiosity search generates higher entropy sampling distributions compared to random parameter space sampling.
Higher entropy indicates more uniform sampling in the autoencoder latent space of the (A) uniformly-connected, (B) chimera,
and (C) three-population models.

eratively, with freezing occurring on human-set intervals
or triggered autonomously by quantitative criteria[35].

We demonstrate this algorithmic variant in the con-
text of a Kuramoto model with 10 populations. We first
performed a naive curiosity search with an autoencoder
with 8 latent dimensions and 8 filters in the initial convo-
lutional layer. Input to the autoencoder was constructed
as before, but with 13 bins for computing oscillator phase
space density as opposed to the original 7. These densi-
ties were computed at 13 timepoints, as opposed to 7. In
this initial search, collected a total of 4000 samples and
updated the dimensionality reduction technique once ev-
ery 400 samples.

We found that the algorithm identified several inter-
esting behaviors, but many of the non-trivial dynamics
were confined to a single population. Having already seen
such behaviors in the 3-populaton Kuramoto model, we
no longer considered these behaviors to be novel, and
decided to prioritize the discovery of behaviors with non-
trivial dynamics occurring in multiple populations simul-
taneously. Therefore, we clustered our naive latent space
using the scikit-learn KMeans function with 15 clusters
and default hyperparameters. We visualized the behav-

iors present at the sample closest to the mean of each
cluster, and assigned an acceptance probability to that
cluster; if the cluster was synchronized or nearly syn-
chronized, it received an acceptance probability of 0; for
non-trival dynamics involving a single-population, we as-
signed a probability of .5; and for non-trivial dynamics
involving multiple populations, we assigned a probability
of 1.
We now began a human-aligned portion of our search.

We initialize with the samples from clusters in the initial,
naive run which received an acceptance probability of 1.
Our new autoencoder is initialized with weights from the
trained autoencoder saved at the end of the naive run.
Every time we sample a new behavior, we run it through
the old, naive autoencoder, and determine the cluster of
the old latent space the new sample lies by calling the
KMeans predict method. Based on the acceptance prob-
ability of the predicted cluster, that sample is accepted
or rejected. If the sample is accepted, the algorithm pro-
ceeds normally. If the sample is rejected, a new sample
is taken in parameter space. We collect 3200 (accepted)
samples following this procedure. The new autoencoder
was retrained for 2000 epochs every 400 samples. De-
tails concerning integration of the dynamical system are
identical to those presented in Appendix A.
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