
Kekulé spiral order in magic-angle graphene: a density matrix renormalization group
study

Tianle Wang,1, 2 Daniel E. Parker,3 Tomohiro Soejima (副島智大),1 Johannes

Hauschild,4 Sajant Anand,1 Nick Bultinck,5, 6 and Michael P. Zaletel1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Physics, Harvard University, Cambridge, MA. 02139, USA
4Department of Physics, Technische Universität München, 85748 Garching, Germany

5Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
6Department of Physics, Ghent University, 9000 Ghent, Belgium

When the two layers of a twisted moiré system are subject to different degrees of strain, the effect
is amplified by the inverse twist angle, e.g., by a factor of 50 in magic angle twisted bilayer graphene
(TBG). Samples of TBG typically have heterostrains of 0.1− 0.7%, increasing the bandwidth of the
“flat” bands by as much as tenfold, placing TBG in an intermediate coupling regime. Here we study
the phase diagram of TBG in the presence of heterostrain with unbiased, large-scale density matrix
renormalization group calculations (bond dimension χ = 24576), including all spin and valley degrees
of freedom. Working at filling ν = −3, we find a strain of 0.05% drives a transition from a quantized
anomalous Hall insulator into an incommensurate-Kekulé spiral (IKS) phase. This peculiar order,
proposed and studied at mean-field level in Ref. [1], breaks both valley conservation and translation

symmetry T̂ , but preserves a modified translation symmetry T̂ ′ with moiré-incommensurate phase
modulation. Even higher strains drive the system to a fully symmetric metal.

Strong-coupling theories of magic-angle twisted bilayer
graphene (TBG) [2–5] combine strong interactions and
topological bands to predict insulators at all integer fill-
ings. Analytic approaches starting from the chiral flat
limit [6] predict that insulators at integer electron filling ν
are generalized quantum Hall ferromagnets with a quan-
tized anomalous Hall conductance whose parity matches

the filling: σxy = e2

~ C where C = ν (mod 2). This pre-
diction holds for the insulators observed at ν = −2, 0, 2
[7]; at ν = 3 when samples are aligned with the boron
nitride substrate [8, 9]; and in moderate magnetic fields
[10]. However, a notable exception is found in unaligned
samples at B = 0: most exhibit a C = 0 insulator at
ν = 3 and a metal at ν = −3 [7, 11–23] (see App. A).
Thus, at least at |ν| = 3, generalized QAH ferromagnets
must give way to another order, and several candidate
C = 0 insulators have been proposed [1, 24, 25]. In
this work we use accurate density matrix renormaliza-
tion group (DMRG) [24, 26–28] calculations at ν = −3
to demonstrate that realistic heterostrain qualitatively
changes the low-temperature physics in a way that leads
to excellent agreement with experiment. In particular,
performing large-scale, unbiased calculations that include
all spin and valley degrees of freedom, we find that het-
erostrain stabilizes a spin-polarized C = 0 “incommensu-
rate Kekulé spiral” order [1, 29] and a “normal metal”,
with important implications for the wider TBG phase
diagram.

Realistic models of TBG fall outside the limit of small
dispersion required for strong coupling theory. In partic-
ular, experimental samples of TBG are generally found
to exhibit heterostrain [28, 30–34] (i.e., a difference in
strain between the two graphene layers) at the seemingly-
insignificant level εGr = 0.1−0.7% [35–38]. However, the

resulting strain in the moiré lattice is enhanced by a fac-
tor of the inverse twist angle εmoiré ∝ εGr/θ, i.e. by two
orders of magnitude (see Appendix B). Even a tiny strain
at the graphene level thus leads to a visible distortion of
the moiré superlattice [Fig. 1(a)], as found in STM stud-
ies of TBG [35–37]. As a result, strain dramatically alters
the bandstructure [31], increasing the bandwidth of the
narrow bands from 2.5 meV to ∼ 16 meV at εGr = 0.2%
and ∼ 40 meV by εGr = 0.5%. Strain is therefore a signif-
icant perturbation that places many TBG samples firmly
within the intermediate coupling regime.

The phase diagram of TBG is extremely sensitive to
heterostrain. Indeed, a previous DMRG study at ν =
0 predicts a phase transition from the strong-coupling
Kramers-intervalley coherent insulator to a semimetallic
phase at only εGr ∼ 0.2% [28], consistent with the ex-
perimental finding that gapped and semimetallic phases
compete [7, 9, 11, 12, 16–18, 39–42]. Away from charge
neutrality, a comprehensive self-consistent Hartree-Fock
(SCHF) study found that strain drives a transition into
an “incommensurate-Kelulé spiral (IKS) order”[1, 29].
At |ν| = 3, the IKS order is a spin-polarized insulating
state that preserves time reversal, but breaks U(1)valley

and — crucially — has moiré-incommensurate transla-
tion breaking.

In this work we establish the phase diagram of the
|ν| = 3 filling of TBG in the presence of strain us-
ing unbiased DMRG calculations. We show heteros-
train of εGr = 0.05% − 0.1% drives a transition into
an IKS phase with incommensurate translation-breaking
[Fig. 1(d)]. This establishes the presence of IKS order in
TBG beyond the mean-field level in a model with all eight
electron species. The minute amounts of strain needed
to stabilize the IKS order suggest that it is the insulator
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FIG. 1. a) Moiré pattern from two graphene lattices with 1◦

relative twist and εGr = 0.5% uniaxial heterostrain. Strain
is amplified at the superlattice scale, significantly distort-
ing the moire unit cell. b) Non-interacting bandstructure
of TBG with εGr = 0.15% heterostrain. Heterostrain shifts
the Dirac nodes D1,2 close to the Γ point (inset). c) Valley-
resolved Brillouin zone electron occupations within DMRG in
the IKS phase (parameters match Fig. 2). The occupations
are approximately nested under a relative shift qIKS; note Γ
is depleted in both valleys. d) Conjectured phase diagram of
Eq. (1), TBG with heterostrain, at |ν| = 3.

seen in (hBN-unaligned) samples at ν = 3.
Model — We use a standard microscopic model of

TBG: eight narrow (“flat”) bands from a strained BM
model, with strong Coulomb interactions. We overview
the Hamiltonian here; see Appendix B for details (see
also [27, 28, 31]). Sub-percent level heterostrain εGr sig-
nificantly distorts the moiré unit cell [Fig. 1(a)], leading
to lattice vectors ai and reciprocal vectors gi. We use the
BM model at twist angle θ = 1.08◦, and take chiral ra-
tio κ = wAA/wAB = 0.5− 0.8 to account for some lattice
relaxation [43–45]. Strain is modelled by adding an effec-
tive vector potential to the BM Dirac cones [31, 43, 46–
55]. Remarkably, realistic strain increases the bandwidth
of the ‘flat’ bands by a factor of 5−10 relative to εGr = 0
[Fig. 1(b)].

At the many-body level, we use eight species of

fermions ĉ†k,στs, where σ = A/B, τ = K/K ′, s =↑ / ↓
label sublattice [4], valley, and spin respectively. The
Hamiltonian is (see App.C)

Ĥ =
∑
k

ĉ†khkĉk+ :
1

2

∑
q

Vqρ̂qρ̂−q :, (1)

where ρ̂q is the density at momentum q and Vq gives gate-
screened Coulomb interactions. As usual, the dispersion

hk is the sum of the BM part and contributions from inte-
grating out the remote bands [4, 27]. Separate charge and
spin conservation in each valley give a U(2)×U(2) con-
tinuous symmetry (we neglect anisotropies that are ex-
pected to enter at the 0.1 meV level [4]). Strain strongly
breaks C3z and C2x symmetry, but preserves C2z and
time-reversal. The model studied here is very close to
particle-hole symmetric [1], and hence DMRG results at
ν = −3 and 3 will be nearly indistinguishable. For nota-
tional simplicity we study ν = −3, but our results should
not be taken to distinguish between the two. We will
conclude by interpreting our results in light of the PH-
breaking observed in experiment.

Our DMRG calculations are performed on an infinite
cylinder geometry with Ly moiré unit cells in the compact
direction. We choose a computational ‘cylinder’ basis
ĉn,ky,στs of hybrid Wannier orbitals that are maximally

(exponentially) localized at nth unit cell along the cylin-
der axis, but extended around the circumference with
definite momentum ky [24, 27, 56]. Fourier transformed,
our model captures Ly line cuts through the moiré Bril-

louin zone at ky = 2πm
Ly

, −Ly2 ≤ m <
Ly
2 . MPO compres-

sion [27, 57] is used to faithfully encode the long-range
interactions of Eq. (1) to accuracy < 10−2 meV at all
distances. We highlight that all eight electron flavors are
dynamical in our model. To our knowledge, no other
DMRG studies of TBG have included all eight flavors.
Our simulations required significant numerical resources.
For instance, encoding the Ly = 4 Hamiltonian requires
MPO bond dimension χMPO ≈ 2000, and we consider
states up to χ = 24576. Each unit cell on our cylin-
der consists of Ly × 8 orbitals, already beyond normal
exact diagonalization. Each datapoint requires ∼40000
core-hours. By comparison, exact diagonalization studies
[58, 59] retain at most 3× 3 unit cells at |ν| = 3.

Flavor polarization — Experiments at ν = 3 show
singly-degenerate quantum oscillations [10, 11, 18, 23],
indicating flavor symmetry breaking, but the detailed fla-
vor ordering remains elusive. Our DMRG calculations
conserve charge, spin, and valley, allowing us to find the
ground state in each quantum number sector. We first fo-
cus on the fully spin-polarized sector with neutral valley
charge (τz, sz) = (0, 1), where IKS order is present.

Incommensurate Kekulé Spiral — The IKS is an in-
tervalley coherent (e.g. Kekulé) state in which the in-
tervalley U(1) order parameter θ is modulated in space:
θ(r) ∼ θ0 + r · qIKS. IKS order preserves time-reversal,
but breaks both U(1)valley and moiré translation symme-

try T̂ai down to a combined symmetry

T̂ IKS
ai = T̂aie

iqIKS·aiτz/2, (2)

where qIKS is incommensurate with the moire reciprocal
lattice. This results in a state with no charge-density
wave at moiré scale, but changing Kekulé pattern be-
tween moiré unit cells [1, 60].

At |ν| = 3, the IKS order additionally breaks spin ro-
tation symmetry and has a non-zero spin polarization.
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FIG. 2. a,b) Valley-resolved electron density of TBG at ν = −3, εGr = 0.2%. Dashed hexagons denote the first Brillouin
zone, and the dot in the middle is the Γ point. c) Total electron density NqIKS(k) in Eq.(4), after a relative boost by qIKS,
whereupon the density becomes uniform. d) IKS correlations along the cylinder. As χ → ∞, correlations approach a power
law of Eq.(6) (black dashed line). e) Fourier transform of the IKS correlation function. The peak at q ≈ 0.89π matches c).
Parameters: κ = 0.65, εGr = 0.2%, Ly = 6, spin-polarized & valley-neutral sector.

The order parameter manifold of the spin-polarized IKS
state thus corresponds to the orbit of the following order
parameter under the U(2)×U(2) symmetry action,

∆̂IKS(qIKS) =
∑
k

ĉ†k+qIKS
P↑σ

xτ+ĉk, (3)

where P↑ projects on the spin up component. Con-
cretely, the order parameter manifold is given by the

space of matrices U†+P↑U−, where U± implements the
spin/charge symmetry action in valley ±K. This space
is SU(2)×SU(2)/U(1), where U(1) corresponds to the
group of identical spin rotations along the z-axis in both
valleys.

At zero temperature in two spatial dimensions, the
IKS state has true long-range order. However, in the
quasi-1D cylinder geometry used in our DMRG simula-
tions, the situation is more subtle. Despite the tendency
of strong fluctuations to destroy symmetry breaking in
1+1D [61–63], the spin rotation symmetry can be spon-
taneously broken because the spin polarization order pa-
rameter commutes with the Hamiltonian, and hence does
not suffer from quantum fluctuations. In the completely
spin-polarized sector, the order parameter manifold of
the IKS state at |ν| = 3 becomes U(1). This is the same
universality class as the 2D XY or 1D XXZ model, and
we expect that the spin-polarized IKS state will show up
in cylinder DMRG as a phase with algebraic correlations
of the IKS order parameter in Eq. (3).

We devised two schemes to identify the quasi-long-
range IKS order and the value of qIKS from the ground
states on the cylinder: 1) a heuristic “Brillouin zone
shift” method, 2) finding algebraic correlations of the IKS
order parameter. We first focus on εGr = 0.2% at filling
ν = −3.

The Brillouin zone shift method is based on the Slater
determinant representation of the IKS [1]. As an insula-
tor, we expect constant electron occupation n(k) in mo-

mentum space for such a state. However, due to T̂ IKS
ai

symmetry, we first need to shift the two valleys by qIKS

in order to obtain uniform occupation of the Brillouin
zone:

NqIKS
(k) = nK(k) + nK′(k − qIKS) = 1 (4)

To the extent that the true ground state reflects this
expectation, the condition NqIKS

(k) ≈ 1 can be used to
infer qIKS.

In Fig. 2(a, b), we show the electron density nK,K′(k)
in each valley of the DMRG ground state, computed by
taking a Fourier transform of the electron correlation
matrix in the cylinder basis. While electron densities
respect time-reversal i.e. nK(−k) = nK′(k), the total
electron density nK(k) + nK′(k) is highly non-uniform.
In particular, the occupation in both valleys dips to zero
at the Γ point, reflecting the effective band dispersion
once accounting for the Hartree interaction with the fi-
nite density of ν = −3 of holes [1]. However, a shift by
qIKS = 0.448g1 reveals NqIKS

(k) ≈ 1 is nearly uniform
[Fig. 2 (c)], consistent with the ‘model’ IKS Slater deter-
minant state projected into the τz = 0 charge sector.

We next investigate the order parameter more directly
in the cylinder basis. It is (see App. D for details)

∆̂IKS(n; qy) =
∑
ky

ĉ†n,ky+qy
σxτ+ĉn,ky . (5)

Recall here that n indexes the unit cells along the cylin-
der. While the expectation value of this operator is al-
ways zero due to U(1)valley conservation, its correlator

CIKS(n; qy) = 〈∆̂IKS(n; qy)∆̂†IKS(0; qy)〉 can show alge-
braic correlation (see App. D)

CIKS(n� 1; qy = qyIKS) ∝ n−ηei(qIKS·a1)n, (6)

where the phase factor reflects the translation-breaking
nature of the IKS, and algebraic decay is only observed
at qy = qyIKS (see App. D). Due to the finite DMRG bond
dimension χ, the correlations will decay at long distance
as CIKS ∼ e−n/ξIKS(χ), with Eq. (6) recovered only in the
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limit χ→∞. In Fig. 2(d) we show that the correlations
indeed approaches a power law for a particular choice of
qy; the resulting exponent can be calculated via “finite
entanglement scaling” [64–66], see App. E 4.

Finally, the correlator gives qIKS directly. First, we
can determine qyIKS = 0 since it gives the largest correla-
tion length in CIKS(n; qy). Moreover, the discrete Fourier
transform of such correlator with respect to n, denoted as
C̃IKS(q), reveals a peak at qIKS · a1/(2π) ≈ 0.445 (Fig. 2
(e)). Combining these gives qIKS = 0.445g1 , consistent
with that found from Eq. (4).

Summing up, we have shown the spin-polarized, valley-
neutral ground state at ν = −3 is consistent with a 2D
phase that breaks U(1)valley and translation symmetry

but preserves T̂ IKS
ai and time-reversal symmetry, which

are the defining properties of the IKS order. We have
checked that this order is robust to changing: the chiral
ratio κ [Fig. 1 (d)], cylinder circumference, the strength
and direction of heterostrain, and interaction strength
(but not to hBN alignment [1]). IKS order is therefore
remarkably flexible and robust.

Strain favors Γ-depleted states — Why is IKS order
favored in the intermediate coupling regime? A key rea-
son is electron-depletion near the Γ point (Fig. 2) [1]. A
combination of interaction effects and the heterostrain-
driven dispersion gives rise to an energy peak near the Γ
point (App. C). As a momentum-offset superposition be-
tween different valley flavors, IKS order evades populat-
ing this region while still avoiding the exchange penalty
resulting from a Fermi surface. In the absence of spin po-
larization, there are more ways to avoid populating the Γ
point, giving rise to a set of Γ-depleted states with sym-
metry breaking. If heterostrain is large enough, on the
other hand, we expect a metallic state due to the large
single-particle dispersion. We now confirm these expecta-
tions by investigating, as a function of heterostrain, four
quantum number sectors where valley and spin are either
polarized or neutral: (τz, sz) = (1, 1), (1, 0), (0, 1), (0, 0).
See App. D for precise details of symmetry sectors.

In Fig. 3(c), we show the electron density near the Γ
point for different quantum number sectors. Above a
low heterostrain of εGr = 0.05%, all but the fully flavor
polarized sector has a substantial reduction in Γ electron
population.

At εGr = 0, we find the ground state is a spin-polarized
QAH insulator consistent with strong-coupling theory.
This phase is detected via the T -breaking order param-

eter ∆̂QAH =
∑
k ĉ
†
kσ

zτz ĉk (see App. E for further de-
tails.) When sz = 0, we find long-range spin correlations
consistent with spin polarization into the xy-plane. The
QAH state comes in two nearly-degenerate varieties: a
valley-polarized QAH when τz = 1, and an inter-valley
coherent QAH when τz = 0 [Fig. 3(a)]. At κ = 0, an
emergent U(4)+×U(4)− symmetry rotates these states
into each other [4]. Since the QAH and QAH-IVC states
are physically similar, it is unsurprising that they remain
nearly degenerate at κ = 0.65. Therefore the predictions
of strong coupling theory are borne out at εGr = 0.

Phase τz sz U(1)V T Translation |C|
QAH 1 1 X × T̂ai 1

QAH-IVC 0 1 X × T̂ai 1

NSM 1 1 X × T̂ai 0

IKS 0 1 × X T̂ IKS
ai = T̂aie

iq·aiτz/2 0

CSS 1 0 X × T̂CSS
ai = T̂aie

iq′·aisz/2 0

NM 0 0 X X T̂ai 0

TABLE I. Ground state candidates at |ν| = 3. Here τz and sz

specify the flavor polarization, U(1)V is valley conservation, T
is time-reversal, and C is the Chern number. The top and bot-
tom sections are energetically competitive at strain εGr = 0
and εGr ≥ 0.05%, respectively. (QAH) flavor-polarized quan-
tum anomalous Hall; (QAH-IVC) spin-polarized, intervalley
coherent QAH; (NSM) flavor-polarized nematic semimetal;
(IKS) incommensurate kekule spiral; (CSS) commensurate
spin-spiral; (NM) fully symmetric “normal” metal.

The phases found at εGr ≥ 0.05% are summarized
in Table I, and App. E-G give numerical details of their
identification. The ground state in the spin- and valley-
polarized sector, (1, 1), is a nematic semimetal (NSM)
with two Dirac cones near the Γ-point in each valley
[1, 27, 28, 67]. This state is at relatively high energy,
as it cannot benefit from Γ-depletion. The spin-neutral
valley-polarized sector (1, 0) has a commensurate spin-
spiral (CSS) order, characterized by the order parameter

∆̂CSS = ĉ†k+q′s
xĉk + h.c. where q′ = g2

2 . In the 2D
limit, this doubles the unit cell, but respects a combined
translation-times-spin-rotation symmetry T̂CSS

ai . The
q′ = g2/2 CSS is collinear, and thus has an unbroken
U(1) spin rotation symmetry. In the valley-neutral, spin-
polarized sector (0, 1), IKS order (5) is the ground state,
as previously discussed.

Finally, the fully-neutral sector (0, 0) features both
flavor-polarized and unpolarized states: At εGr = 0.05%,
we find IKS order with spontaneous spin-polarization
into the xy-plane. Both the energy and qIKS vector
match the IKS order in the (0, 1) sector, suggesting that
spin-polarized IKS is the ground state in the moderate
strain regime. At higher strain εGr = 0.2% we find a
state consistent with a fully-symmetric “normal metal”
(NM). This state has four nascent flavor-degenerate
Fermi surfaces which sharpen with the DMRG bond di-
mension and closely match the flavor-symmetric metal
found within Hartree-Fock (App. G 1). Since the result-
ing metal should have central charge c = 4Ly = 16, it is
exceptionally difficult to converge with DMRG, and we
are not able to perform a definitive scaling analysis even
at χ = 24576. For εGr = 0.1−0.15%, the same signatures
of the putative “normal metal” are present, but coexist
with a strong spin-density wave and valley/spin fluctua-
tions. This region, close to the transition between flavor
polarized and unpolarized phases at intermediate strain,
is denoted as “mixed” order (see App. G 3).
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FIG. 3. a) Ground state energy as a function of heteros-
train εGr for various flavor polarizations. Energy is measured
relative to the spin- and valley-polarized ground state, and
symbols correspond to phases in Table I. Heterostrain of only
εGr ≈ 0.025% drives a transition from QAH-type order to
IKS-type order. b) Ground state competition between flavor
polarization sectors at εGr = 0.2%. c) Electron density per
momentum near Γ: n(k ∼ Γ) =

∑
|k|<1/5 n(k). Parameters

match Fig. 2, except with Ly = 4.

Fig. 3(b) shows the remarkably close energetic compe-
tition between the flavor polarization sectors at εGr =
0.2%. This suggests there are competing orders which
are split at ∼ 0.1 meV, two orders of magnitude below
the Coulomb scale — a phenomenon found in other in-
termediate coupling models (see e.g. [68]). Note that this
energy difference is much smaller than the uncertainty in
the Hamiltonian itself. So while we may conclude the
high-strain ground state is likely to live somewhere in
the set of Γ-depleting states, our present numerics do
not definitively choose a unique order.

Experimental Implications — We briefly conclude with

experimental implications. Our results suggest that the
amounts of heterostrain expected to be present in vir-
tually all experimental samples are more than sufficient
to push TBG into the intermediate coupling regime. In
this regime, our numerics suggest IKS order is the pri-
mary insulating ground state candidate at |ν| = 3. We
note this is specific to samples not aligned to an hBN
substrate; alignment strongly favors the QAH phase. Al-
though we have used a realistic microscopic model (1),
there are a number of phenomena on the meV scale we
have not captured, such as for example lattice relaxation
and particle-hole symmetry breaking [69]. The great ma-
jority of experiments (Table in App. A) find a C = 0 in-
sulator at ν = 3 — consistent with IKS — but a metallic
state at ν = −3. We suggest the metallic state might
be the “normal metal” we find at εGr = 0.2% and above.
Our prediction of an IKS phase at ν = 3 could be directly
confirmed by graphene-scale STM experiments [60, 70].
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ulation of moiré materials using the density matrix renor-
malization group,” Phys. Rev. B 102, 205111 (2020).

[28] Daniel E. Parker, Tomohiro Soejima, Johannes
Hauschild, Michael P. Zaletel, and Nick Bultinck,
“Strain-Induced Quantum Phase Transitions in Magic-
Angle Graphene,” Phys. Rev. Lett. 127, 027601 (2021).

[29] Glenn Wagner, Yves H. Kwan, Nick Bultinck, Steven H.
Simon, and S. A. Parameswaran, “Global phase diagram
of the normal state of twisted bilayer graphene,” Phys.
Rev. Lett. 128, 156401 (2022).
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Supplementary Information

The Appendices to this work are organized as follows.

Appendix A: overviews insulators found in experiments at integer fillings of TBG.

Appendix B: shows how small strains on the graphene scale are amplified at the moiré scale.

Appendix C: is a self-contained description of the Hamiltonian and computational basis used in this work. This
section also describes the “Hartree peak”.

Appendix D: gives numerical details of our DMRG computations, including the quantum number sectors used in
the main text, and defines some common correlation functions.

Appendix E: details the phases that appear at ν = −3 not in the (0, 0) sector and discusses their identification in
the thin-cylinder limit.

E 1: the quantized anomalous Hall (QAH) phase, and its intervalley coherent variant (QAH-IVC).

E 2: the compensated semimetal in the (1, 1) sector.

E 3: the commensurate spin spiral (CSS) phase.

E 4: further details of the IKS order in the spin-polarized (0, 1) sector.

Appendix F: is a brief analogy to the 1D Heisenberg model in the sz = 0 sector, which highlights some features
that will appear in the (0, 0) sector.

Appendix G: details the phases that appear in the (0, 0) sector.

G 1: the symmetric metallic order at large strain in the (0, 0) sector, both in DMRG and its manifestation
within self-consistent Hartree-Fock.

G 2: the spinful IKS order in the (0, 0) sector at εGr = 0.05%.

G 3: aspects of the “mixed” order at intermediate strain in the (0, 0) sector.

G 4: The putative phase diagram of ν = −3 as a function of εGr, including higher-strain data.

Appendix A: Overview of TBG Experiments at integer fillings

This appendix reviews measurements of integer filling states in TBG at zero field and without hBN-alignment. We
focus on correlated insulating (CoI) states, and consider three broad classes of experimental probes:

Transport measurements: Direct measurements of resistance ρxx. Correlated insulators manifest as a peak in
resistance. As these measurements go across the entire sample, they are affected by sample inhomogeneity
(strain, twist angle disorder, etc). This tends to suppress the signals associated with insulating states relative
to local probes.

STM: By measuring the local density of states above a state at a given filling as a function of bias voltage, STM
can directly measure the one-electron gaps. Some experiments use point-contact spectroscopy to distinguish
superconductors (SC) from correlated insulators.

SET: Single electron transistors are a local probe that directly measures the inverse compressibility dµ
dn . Insulating

states appear as peaks in dµ
dn , which may be integrated to estimate the spectral gap. SET measurements can be

used to infer where flavor polarization occurs.

Table I gives a non-exhaustive overview of experimental results at all integer fillings. As discussed in the introduc-
tion, the results display a strong particle-hole breaking pattern, especially at filling ν = ±3.



10

Report θ (°) Gate type D (nm) −3 −2 −1 0 1 2 3 Notes

Transport

Ref. [11] 1.10 single 10 (CoI) CoI (CoI) CoI CoI CoI CoI 16 mK

Ref. [12], D1 1.15 single 7 CoI 25 mK

Ref. [12], D2 1.04 single 9.8 CoI (CoI) 25 mK

Ref. [12], D3 1.10 single 12.5 CoI CoI (CoI) CoI CoI 25 mK

Ref. [13] 1.04 single 9.5 SC CoI (SC) CoI 40 mK

Ref. [14] 1.08 single 7 CoI CoI “ChI” CoI CoI 30 mK

Ref. [7], D1 1.08 single 10-30 CoI CoI CoI 300 mK

Ref. [7], D2 1.10 single 10-30 (CoI) CoI CoI 300 mK

Ref. [7], D3 1.12 single 10-30 CoI CoI (CoI) 100 mK

Ref. [7], D4 1.16 single 10-30 CoI CoI CoI (CoI) 300 mK

Ref. [15] ∼1.07 single 42 CoI CoI CoI CoI 50 mK

Ref. [16] 1.07 dual ? CoI CoI (CoI) CoI CoI 70 mK

Ref. [17], DA 1.09 single 50 CoI CoI (CoI) CoI CoI 70 mK

Ref. [18], D1 1.14 dual 30-60 (CoI) CoI CoI CoI 10 mK

Ref. [18], D3 1.10 dual 30-60 CoI CoI CoI CoI CoI 300 mK

Ref. [18], D5 1.08 dual 30-60 CoI CoI (CoI) CoI CoI 10 mK

Ref. [19], D1 1.08 single 68 CoI CoI (CoI) CoI CoI 50 mK

Ref. [19], D2 1.09 single 6.7 CoI CoI CoI CoI 50 mK

Ref. [19], D3 1.04 single 38 CoI CoI CoI 50 mK

Ref. [19], D4 1.18 single 7.5 CoI 50 mK

Ref. [19], D5 ([71]) 1.12 single 45 (40) CoI CoI CoI CoI 10 mK

STM

Ref. [20]([21], DB) 1.06 STM tip - (SC) CoI CoI CoI CoI CoI CoI εGr = 0.1%

Ref. [21], DA 1.13 STM tip - SC CoI CoI CoI CoI εGr = 0.4%

Ref. [21], DA’ 1.01 STM tip - SC CoI CoI CoI CoI εGr = 0.2%

Ref. [22] 1.27→ 0.97 STM tip - CoI CoI (CoI) CoI CoI εGr < 0.3%

Ref. [22] (Supp.) 1.26→ 0.99 STM tip - CoI CoI CoI CoI CoI

SET

Ref. [15] 1.13 single 42 (CoI) (CoI) (CoI) - CoI CoI CoI 4 K

Ref. [23] 1.06 single 40 (CoI) CoI - CoI CoI 330 mK

TABLE I. An overview of integer filling states in TBG visible in selected experimental data. This list is non-exhaustive and is
restricted to samples not aligned to hBN and without an applied magnetic field. Correlated insulators (CoI), superconductors
(SC), and Chern insulators (ChI), are observed at the labeled integer fillings. If an insulator at filling +ν is substantially weaker
than those at other fillings, in particular its particle-hole partner at −ν, then it is shown in parentheses, e.g. as “(CoI)”. We
have labelled integer filling states as “SC” if there is a superconductor near that integer filling, e.g. at ν = −3 + 0.1.

Appendix B: Effect of Strain on the Moiré Superlattice

This appendix shows how heterostrain acts on the moiré superlattice of twisted bilayer graphene. We will conclude
that its effect is enhanced by a factor of the inverse of twist angle.

Consider two layers of graphene (` = ±) with opposite twist angle θ` = `θ/2 and uniaxial strain ε` = `ε/2. Suppose
Ri are the lattice vectors of graphene and Gj are the corresponding reciprocal lattice vectors so that Ri ·Gj = 2πδij .
The twisted lattices on each layer are then given by

R`
i = R(θ`)S(ε`)Ri, i = 1, 2, (B1)
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where R,S are matrix representations of rotation and strain operation:

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
, S(ε) =

(
1 + ε 0

0 1− νε

)
, (B2)

where ν = 0.16 is the Poisson ratio of graphene.

For θ, ε� 1, this is approximated to leading order by

R`
i ≈M(θ`, ε`)Ri; M(θ, ε) =

(
1 + ε −θ
θ 1− νε

)
. (B3)

Similarly, the reciprocal lattice vectors of each layer are

G`
i ≈

[
M−1(θ`,−ε`)

]T
Gi = M(θ`,−ε`)Gi. (B4)

The moir e superlattice of the two layers has a reciprocal lattice

gi = G+
i −G−i = (M(θ/2,−ε/2)−M(−θ/2, ε/2))Gi =

(
−ε −θ
θ νε

)
Gi. (B5)

Note that we can view the contribution of strain separately from the twist operation:

gi[θ, ε] =

(
1 −ε/θ

−νε/θ 1

)
︸ ︷︷ ︸

M̃θ(ε)

(
0 −θ
θ 0

)
Gi = M̃θ(ε)gi[θ, 0]. (B6)

Diagonalizing T̃θ(ε), we can consider the effect of strain as a dilation on the moiré scale:

S̃θ(ε) = UT̃θ(ε)U
† =

(
1 +
√
νε/θ 0

0 1−√νε/θ

)
, (B7)

which acts on transformed reciprocal lattice vectors {g̃i = Ugi} and the corresponding superlattice basis {r̃i}.

g̃i[θ, ε] = S̃θ(ε)g̃i[θ, 0], (B8)

r̃i[θ, ε] = S̃−1
θ (ε)r̃i[θ, 0]. (B9)

Comparing Eq. (B3) and (B7), we conclude that heterostrain εGr on graphene lattice is equivalent to an amplified
strain

εmoiré ∝
εGr

θ
(B10)

on the moire superlattice. In the experimentally relevant case of θ ∼ 1°, εGr ∼ 0.2%, we have εmoiré ∼ 10%, which is
not a negligible perturbation.

Appendix C: Microscopic Model of Strained TBG

This appendix describes the microscopic model of strained TBG used in the main text. This model is standard; it
is essentially identical to the models used in Ref. [27], which introduced our DMRG method, and Refs. [28, 31] that
studied strained TBG.
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1. Single Particle Hamiltonian

Strained TBG is described at the single-particle level by a generalized Bistritzer-MacDonald Hamiltonian [31, 43,
72, 73]. Strain affects the Hamiltonian in two separate ways. First, as shown above, it distorts the lattice and
superlattice. Second, it changes the inter-atomic distance between carbon atoms, thereby modulating the hopping
integrals and changing the energetics directly. We incorporate both effects.

Within each layer ` = ±, we use the standard model of graphene:

hGr(k) = −t
(

0 D(k)

D(k) 0

)
, D(k) =

2∑
µ=0

e−ik·τµ , (C1)

where τµ are the three vectors from A to B sublattices. We use t = 2.8 meV and lattice constant aGr = 0.236 nm.
At low energies, this model reduces to the Dirac equation h(k)τ=K = vFσ · (−i~∇). A long line of work (see e.g.
[31, 43, 46–55]) has shown that strain on the graphene scale is incorporated into the Dirac equation as an effective
vector potential −i∇→ −i∇ +A, or k→ k +A in momentum space. For the K-valley, we have

h`=±,τ=K(k) = hGr(M(θ`,−ε`)[k +A`,τ ]), A` = − `
2

β
√

3

2a

(
[1− νP ]ε, 0

)
(C2)

where M(θ, ε) is given in Eq. (B3), σ ∈ {A,B} label the graphene sublattices, a = |Ri| is the lattice constant of
graphene, β ≈ 3.14 characterizes how much the carbon-carbon hopping integral changes under lattice deformations,
and νP ≈ 0.16 is the Poisson ratio of graphene. Crucially C3z symmetry is broken by the lattice distortion. so the
Dirac points are no longer pinned to the K,K ′ points and are shifted by A` [31].

We now consider the morié superlattice with reciprocal lattice vectors gi defined above. We choose conventions for
graphene so that g1 is along the x-axis of reciprocal space (up to corrections from strain). In this setting, the BM
model becomes (K-valley)

hK =

[
h+,K T (r)

T (r)† h−,L

]
, T (r) = T0 + T1e

−ig2·r + T2e
i(g1−g2)·r, Tn = wAB

(
κ e−i2πn/3

ei2πn/3 κ

)
(C3)

where T (r) is the interlayer tunneling, whose form we assume is unchanged apart from the lattice distortion, with
wAB = 110 meV. Due to lattice relaxation effects, the realistic range for the chiral ratio κ is thought to be κ = 0.5−0.8
[43–45]. As usual, the harmonics that appear in Eq. (C3) are the lowest harmonics that connect the K-points of the
two graphene layers.

The Hamiltonian for both valleys is

hTBG =

(
hK ⊗ s0 0

0 hK′ ⊗ s0

)
(C4)

where sµ are the spin Pauli matrices and hK′ is defined as the time-reversal conjugate of hK , making hTBG time-
reversal symmetric. In fact, hTBG inherits the C2z symmetry of graphene. However, both C3z and C2x symmetries
are explicitly broken by strain [31]. If one makes the approximation T (θ`,−ε`) → T (0,−ε`) in the Dirac equation,
then the single-particle Hamiltonian becomes particle-hole symmetric in the absence of strain [4] Even in the presence
of strain, the Hamiltonian is still largely particle-hole symmetric. We therefore expect the physics at ±ν to be at
least qualitatively similar (though this is not the case in experiments).

2. Many-Body Hamiltonian

For our many-body Hamiltonian, we take the single-particle model discussed above, add gate-screened Coulomb
interactions, and integrate out the remote bands at the mean-field level. We review this procedure here; in-depth

treatments are given in Refs. [4, 27, 74, 75]. Consider a basis f̂ †k = f̂†kbτs, where b labels bands of the BM model,
τ ∈ {K,K ′} labels valleys, and s ∈ {↑, ↓} indexes spin. We start from the microscopic Hamiltonian

Ĥfull =
∑
k∈BZ

f̂ †k[hTBG(k)− hcounter(k)]f̂k +
1

2A

∑
q∈R2

Vq : ρ̂qρ̂−q :, Vq =
1

2εrε0q
tanh(|q| d) (C5)
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where the sums on k always run over the Brillouin zone, while q is unrestricted, Vq represents double gate-screened
Coulomb interactions with gate distance d = 25 nm and relative permittivity εR = 10, and A is the sample area. The

charge density at wavevector q is given by ρq =
∑
k f̂
†
k 〈uk|uk+q〉 f̂k+q in terms of the periodic part of the Bloch

wavefunctions of hTBG. The counterterm hcounter(k) is discussed below.
We partition the Hilbert space into the space of the active band A and the remote bands R. As the active bands are

relatively well-separated, we make the assumption that the ground state density matrix ρ̂full factorizes into a remote
part and an active part:

ρ̂full = ρ̂R ⊗ |ΨA〉 〈ΨA| . (C6)

We further assume that ρ̂R is a product state: fully-filled below the active bands and fully-empty above, which allows
us to integrate out the remote bands at mean-field level. Up to a constant this yields

ĤA = trR
[
Ĥfullρ̂R

]
=
∑
k∈BZ

ĉ†k

[
hTBG(k) + hHF[PR](k)− hcounter(k)

]
ĉk +

1

2A

∑
q∈R2

Vq : ρ̂Aq ρ̂
A
−q :, (C7)

where ĉ is the restriction of f̂ to the flat bands, and ρ̂Aq is the corresponding flat band density operator. Here hHF[PR]

is the standard Hartree-Fock Hamiltonian corresponding to the correlation matrix [PR(k)]bb′ = Tr[ρRf̂
†
kbf̂kb′ ], which

is the identity matrix on remote bands below the active band, and identically zero otherwise [4, 75]. (Spin and valley
indices are left implicit.) Physically, hHF[PR] encodes a background charge density from the filled Fermi sea that

affects active electrons. We use ĤA as the effective Hamiltonian for the active bands.
The final ingredient is the counterterm [4, 27, 74, 75]. A counterterm is needed because hHF[PR] diverges un-

physically with the number of bands. The root of this issue is that some parameters of the BM model already take
interactions into account, such as the experimentally-derived Fermi velocity, leading to an unphysical double-counting
of some Coulomb interactions. In principle, “ultraviolet” Hamiltonian hTBG − hcounter should be fixed by matching
to ab initio or experimental observations in the “infrared”. (See also [76].) We use the “decoupled” subtraction
scheme: the counterterm is given by the half-filled state of two decoupled layers of graphene. Explicitly, suppose

h0
K = diag

(
h+ h−

)
[c.f. Eq. (C3)] and is diagonalized as h0U0 = ε0U0. Then define

hcounter = hHF[∆]; ∆bb′(k) = U†0 PCNP,decoupled U
0 (C8)

where PCNP,decoupled is the diagonal density matrix of graphene at half-filling. The Hartree-Fock correction to the
Hamiltonian is therefore

hHF[PR](k)− hcounter(k) = hHF[PR −∆]. (C9)

As PR and ∆ are approximately equal far from charge neutrality, we make the approximation that bands very far
from the Fermi level are irrelevant [4]. In practice we retain 5 bands above and 5 bands below charge neutrality in
PR −∆ (times valley and spin), and just the two “flat” bands in hHF[PR −∆]. (Another popular choice is “infinite
temperature subtraction”, which leads to hHF[PR − ∆] = hHF[−IA/2], see e.g [75]). (Ref. [1] checked that the
phenomenology of IKS depends only weakly on the subtraction scheme.)

Altogether, our Hamiltonian for the active bands is

ĤA =
∑
k∈BZ

ĉ†kh
′
0(k)ĉk +

1

2A

∑
q∈R2

Vq : ρ̂Aq ρ̂
A
−q :, h′0(k) =

[
hTBG(k) + hHF[PR −∆]

]
(C10)

As 2-fermion terms may be shuffled between the dispersion and interaction by, e.g., changing the normal ordering
reference, h′0(k) cannot be interpreted directly as a dispersion. However, relative changes in the bandwidth of h′0(k)
are meaningful.

We note that if one defines δ̂ρq to be the charge density measured relative to (a reference density matrix at)

charge neutrality, then the Hamiltonian takes the convenient “strong-coupling” form ĤA =
∑
k∈BZ ĉ

†
khTBG(k)ĉk +

1
2A

∑
q∈R2 Vq : δ̂ρq δ̂ρ−q : [4].

3. Strain-induced bandwidth and the “Hartree Peak”

A key effect of heterostrain is to greatly increase the bandwidth. We note that “bandwidth” is not a strictly well-
defined concept in strongly interacting systems, as one can always shuffle 2-fermion terms between the “dispersion” and
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FIG. S1. Single-particle energetics of our interacting model. Here hBM refers to the strained BM model and h′0, defined in
Eq. (C10) is related to the total dispersion. (a) The bandwidth of hTBG and h′0 as a function of strain. Note the bandwidth
increase dramatically with εGr. (b) The two flat bands of the BM model for εGr = 0.2% in meV (c) The lowest band of h′0
for εGr = 0.2% showing the “Hartree peak” (the upper band is similar). (d) Same as (c), but as a contour plot. This “cat’s
eye” pattern will appear below in the normal metal phase. The dashed white hexagon shows the moiré Brillouin zone, which
is distorted by strain. Parameters match Table II.

“interaction” parts of the Hamiltonian. Here we consider the “dispersion“ to be h′0 = hBM+hHF[Premote−∆counterterm].
Fig. S1(a) shows the bandwidth of the single-particle Hamiltonians hTBG and h′0 as a function of strain. One can see
that the bandwidth increases significantly with strain. For comparison, the interaction scale is ∼ 50 meV.

Fig. S1(b) shows hTBG at εGr = 0.2%. The bandwidth has increased to ∼ 33 meV from ∼ 2.5 meV at εGr = 0. As
C3 is broken, the Dirac nodes are no longer pinned to K±, and instead migrate inwards to the vicinity of Γ. (Recall
that the fragile topology of each valley prevents the Dirac nodes within each valley from being gapped out unless C2T
is broken.)

Fig. S1(c,d) show the lower band of h′0 at εGr = 0.2%. The spectrum is dominated by the “Hartree peak” of
∼ 30 meV near the Γ point. This peak is due to the spatial structure of the wavefunctions [77]. The Hartree potential
can be thought of as an inhomogeneous background charge density from the filled Fermi sea, which happens to be
peaked in the AA region of each unit cell. Holes (electrons) added at generic momentum will be attracted (repelled)
from this charge density, thereby lowering (raising) the quasiparticle energy. However, ψΓ(r) vanishes in the AA
region at εGr = 0 due to C3 symmetry, and is generically small in the AA region even in the presence of strain.
Therefore the energies at the Γ point are essentially unaffected by the Hartree potential, causing the large Hartree
peak (dip) for hole (electron) doping relative to charge neutrality.

Any order that can avoid populating electrons near Γ therefore gains a large energetic advantage. Metallic states
can always do this by forming a Fermi surface partially up the peak, but we shall see below that IKS and spin spirals
can also take advantage of this structure.

4. Computational Basis & Numerical Details

We now specify our computational basis. We start from the band of energy bands of hTBG: ĉkbτs, where b ∈ {1, 2}
labels the flat bands. We apply a change of basis

ĉ†kστs = Uσb(k)ĉ†kbτs, ĉ†n,ky,στs =

∫
dkx√
Gx

e−ik·a1nĉ†kστs, (C11)

where U(k) is a 2 × 2 unitary that adjusts the gauge so that ĉ†n,ky,στs create hybrid Wannier orbitals: maximally

localized along a1, but plane-waves with definite momentum ky [27]. We have taken a rectangular moiré Brillouin
zone Gx×Gy, and U(k) is complex conjugated for the K ′ valley so that time-reversal is preserved. At the same time,
U(k) transforms to the “sublattice” basis σ ∈ {A,B}. It has the property that the microscopic sublattice operator,
defined in the band basis as Ibb′(k) = 〈ukb|σz|ukb′〉 is diagonal with eigenvalues ±γ ≈ ±1, which is always possible
[4]. We underscore that Eq.(C11) is a computational basis for all eight active bands, all of which will be dynamical
in our model.

Let us reiterate the symmetries of our model. Each valley has a separate U(1) electric charge and SU(2) spin
conservation, which gives a combined U(2) × U(2) continuous symmetry (at the level of the Lie algebra). We also
have time-reversal T , C2z and the anti-unitary combination C2zT , which is k-local. Of course, we also have moiré
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Parameter Value(s)

Twist angle θ 1.08°

Strain εGr 0% – 0.2%

Chiral parameter κ 0.5 – 0.8

Interlayer tunnelling wAB 110 meV

Gate distance d 25 nm

Relative permitivity εr 10

Active bands (per valley per spin) 2

Subtraction Scheme (see text) Decoupled

Remote bands for subtraction (per valley per spin) 10

Cylinder circumference Ly 4, 6

MPO accuracy εMPO 10−2 meV

MPO bond dimension χMPO 250− 1500

State bond dimension χ 1024− 24, 576

TABLE II. Parameters our model and DMRG calculation.

scale translation symmetry Tai along a1,2. Maximal localization along a1 implies the Wannier orbitals are eigenstates
of the projected position operator P(a1 · r̂)P, where P projects to the active bands. Finally, we note that the BM
Hamiltonian is approximately particle-hole symmetric, but strain breaks particle-hole symmetry further. The full
symmetry content of the model is discussed in Ref. [4].

Appendix D: Details of the DMRG Calcuations

This section gives numerical details of our DMRG computations, including flavor polarization, and defines the
correlation functions we study in the main text and below.

In practice we select Ly cuts through the Brillouin zone at evenly spaced momenta ky = 2πm
Ly

for integer m. We

then resolve ĤA in the computational basis as an matrix product operator (MPO). Naively, such an MPO would
have bond dimension χMPO ≈ 100, 000 − 300, 000 (typical MPOs are χMPO ≈ 60 for short-range 2D systems). We
apply MPO compression [27, 57] to reduce the MPO bond dimension to χMPO < 1500, while retaining an accuracy of
εMPO =10× 10−2 meV or better, making the computation tractable. We note that DMRG simulations have memory
requirements O(χMPOχ

2) where χ is the bond dimension of the state (hundreds or thousands of gigabytes of memory
for our largest simulations).

We use two “rings” around the cylinder as a unit cell for infinite DMRG. This allows breaking of translation
Ta1

along the cylinder down to 2Ta1
(possibly times a phase), but enforcing ky momentum conversation prevents

translation breaking around the cylinder. Our ansatz always permits Ta1
to be modified by a phase factor.

1. DMRG Flavor Sectors

Our simulations explicitly conserve a U(1)4 ⊂ U(2)×U(2) symmetry, corresponding to: total electric charge, valley
charge, and spin-z in each valley, respectively. These are measured by n̂, τz, szK , and szK′ respectively. As usual,
the Hamiltonian is block-diagonal, with sectors labelled by the integer charges of these four symmetries. DMRG will
find a ground state within each sector, based on the charge of the initial state. We consider the four “least charged”
sectors, which should contain the global ground state. These are labeled by their distinct charge sectors (τz, sz). Here
sz = szK + szK′ is the sum of the spins in both valleys. We only consider the diagonal sectors with szK = szK′ . We work
at filling ν = −3, which fully specifies the electric charge sector. Explicitly, we consider the following four sectors:

1. (τz, sz) = (1, 1): electrons are populated only in the τ = K, s =↑ sector.

2. (τz, sz) = (0, 1): electrons are equally populated between the two τ = K/K ′, s =↑ sectors.
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3. (τz, sz) = (1, 0): electrons are equally populated between the two τ = K, s =↑ / ↓ sectors.

4. (τz, sz) = (0, 0): electrons are equally populated between all four τ = K/K ′, s =↑ / ↓ sectors.

2. 2D Correlators

The key tool to identify phases in DMRG is correlation functions. In simple cases, phases have well-defined order
parameters that are two-point correlation functions. However, even simple phases in 2D can be difficult to diagnose
on a quasi-1D cylinder due to enforced algebraic order from the Hohenburg-Mermin-Wagner theorem. These must
be characterized by the trend of correlators as a function of the bond dimension. This section introduces the 2D
correlators whose 1D versions are evaluated in DMRG.

A key correlator is the 2-electron correlation matrix

Pβα(k) = 〈c†k,αck,β〉 , (D1)

an 8× 8 matrix for each k, where α, β ∈ {σ, τ, s} index sublattice, valley, and spin as above. We frequently consider

the diagonal component of this correlator, such as nK↑(k) =
∑
σ 〈c
†
k,σ,K,↑ck,σ,K,↑〉.

To detect IKS order and other phases, it is frequently useful to consider k-nondiagonal operators. Define

∆̂ijk
q (k) = ĉ†k+qσ

iτ jskĉk, (D2)

which picks out a particular combination of Pauli matrices in flavor space. To convert from 2D to the quasi-1D

cylinder, we apply a Fourier transform ĉ†k,στs :=
∑
n∈Z e

i(k·na1)ĉ†n,ky,στs where n ∈ Z labels the hybrid Wannier

orbital centered at na1 along the cylinder. Then

∆̂q(k) =
∑
m,n∈Z

eik·ma1∆̂n,qy (m, ky); ∆̂ijk
n,qy (m, ky) = ĉ†n+m,ky+qy

σiτ jsk ĉn,ky . (D3)

Therefore, if some 2D order operator 〈∆̂q(k)〉 is peaked at q = q0, then we expect 〈∆̂n,qy (m, ky)〉 ∼ δ(q0,y)e−in(q0·a1),
and the two components of q0 can be extracted accordingly. When taking the quasi-1D limit, the Hohenberg-Mermin-
Wagner theorem ensures that U(1) symmetries (e.g.) are not spontaneously broken. So, if ∆̂ an order parameter for
a continuous symmetry G in 2D, in the quasi-1D (thin cylinder) limit we expect either algebraic or exponential decay

(depending on G) of 〈∆̂n∆̂0〉 along the cylinder. This becomes a 4-point correlation function

C∆(n, qy) = L−2
y

〈∑
ky

∆0,qy (0, ky)
∑
k′y

∆†n,qy (0, k′y)

〉
. (D4)

When symmetry breaking is present, we expect C∆(n, qy) ∼ δ(q0,y)ein(q0·a1), allowing us to extract the 2D q from
DMRG data.

At finite bond dimension χ, the correlator must decay exponentially at the largest scales: C∆(n, qy) ∼ e−n/ξ∆ .
If the correlator is algebraic, then we expect a divergence ξ∆ → ∞ as χ → ∞. In fact, the subleading eigenvalues
of the transfer matrix will diverge as well, which may be used to assess scaling relations in extremely high-bond
dimension data [78]. For spin-polarized IKS order, which breaks U(1)valley we indeed expect such algebraic decay

|CIKS(n, qy)| ∼ n−η(Ly) as χ → ∞. As Ly → ∞, η(Ly) → 0, recovering the 2D limit. In complex systems such as
the one under consideration here, one cannot reliably determine if a given correlation length ξ∆ is truly diverging or
simply approaching a finite value slowly as a function of χ. Nevertheless, we qualitatively observe that there often is
a “scaling regime”: a sufficiently large χ after which the behavior ξ∆(χ) either plateaus or grows regularly. We take
such behavior as a indication that our bond dimension is sufficiently large to capture the “true” ground state.

Appendix E: Phase diagram analysis at flavor-polarized sectors

In the following two sections, we will discuss the various phases found within DMRG and indicate the resulting
phase diagram. This section focus on the phases not in the (τz, sz) = (0, 0) sectors, where certain choices of flavor
polarization are enforced.
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1. Quantized Anomalous Hall order

This section will discuss the quantized anomalous Hall (QAH) order that appears at low strain in all sectors. The
QAH insulator is a ground state within strong coupling theory in the chiral flat limit at |ν| = ±1,±3 [4, 5]. The
simplest example is described by the correlation matrix PQAH = ( 1

2 [1 + σz])( 1
2 [1 + τz])( 1

2 [1 + sz]), which entirely fills
the (A,K, ↑) sector. This state has full polarization of the QAH order parameter

CQAH =
1

Nk

∑
k

〈ĉ†kσzτz ĉk〉 . (E1)

As C = σzτz measures the Chern number, states with CQAH = ±1 correspond to full polarization in Chern bands,
and are thus Chern insulators with C = ±1. Even when CQAH is away from polarization, we expect the state is
adiabatically connected to the fully polarized Chern insulators. We therefore use sign(CQAH) as a signature of the
Hall conductance of the state. We also define

Cσ+ =
1

Nk

∑
k

〈ĉ†kσ+ĉk〉 , (E2)

which is small in the QAH phase, but will appear in the semimetal discussed below.
The chiral flat limit features an emergent U(4)+ × U(4)− symmetry acting within each Chern sector [4]. Acting

with any U+ ∈ U(4)+ on PQAH gives another ground state in this limit. For instance, the state PQAH−IVC =
1
2 (I + σxτx) (1

2 [1+sz]) with equal occupations in (A,K, ↑) and (B,K ′, ↑). Working perturbatively in deviations from
the chiral limit, one expects that PQAH and PQAH−IVC are still competitive ground state candidates at κ ≈ 0.65, and
should still be nearly degenerate. This is borne out in our DMRG results.

We find that the ground state of each sector is a variant on QAH, adapted for that particular symmetry sector.
For simplicity, we focus on the (0, 1) and (1, 1) sectors where spin does not play a role; the other sections are similar.
Fig. S2 shows the value of the order parameter CQAH as a function of εGr. It is nearly unity at εGr = 0 for both
sectors, but strain quickly drives a transition to CQAH = 0. For the (1, 1) sector, the state we find is adiabatically
connected to PQAH, similar to previous reports [27]. For (τz, sz) = (0, 1), however, the requirement that occupations
are balanced between valleys excludes the PQAH state; the (0, 1) state is instead descended from PQAH−IVC. In 2D,
this breaks U(1)valley symmetry. In 1D, however, U(1) symmetry cannot be spontaneously broken; instead algebraic
order will manifest in intervalley correlation functions. Define operators

∆̂TIVC(m, ky) = ĉ†m,kyσ
xτxĉ0,ky , ∆̂KIVC(m, ky) = ĉ†m,kyσ

xτy ĉ0,ky , (E3)

and the corresponding correlators CTIVC/KIVC :=
∑
n∈Z | 〈∆̂(n, 0)∆̂(0, 0)〉 |2 [28]. Fig. S2 (a) shows both CTIVC/KIVC

are large in the low-εGr phase. In fact, the intervalley correlation length diverges with χ, indicating the expected
algebraic correlations. We note that TIVC and KIVC correlations are not distinct when only a single sublattice is
occupied. However, note that after the transition, CKIVC approaches zero while CTIVC remains finite, a fact that will
return below in our discussion of IKS order.

We therefore identify the order in the (1, 1) sector as QAH order, and the (0, 1) sector as QAH with intervalley
coherence (QAH-IVC). The (1, 0) sector is consistent with the ferromagnet in xy-plane, similar to the 1D Heisenberg
chain discussed in App. F. We treat (0, 0) sector, which shows spinful QAH-IVC order, separately in App. G 2. In fact,
Fig. 3 of the main text shows all four sectors have similar energies.

2. Nematic Semimetallic Order

This phase describes the large-strain phase in the (1, 1) sector, which we identify as a nematic semimetal, closely
resembling the nematic semimetal discovered previous in the strong coupling regime [1, 27, 67]. Previous studies have
shown the nematic semimetal phase to be a competitive ground state candidate favored by C3 symmetry-breaking
terms, in our case the uniaxial heterostrain. The nematic semimetal descends from a “parent state” within strong-
coupling theory after the application of a singular gauge transformation which eliminates the Berry flux [79]. At
εGr = 0, the gap to the nematic soft mode decreases with κ, eventually driving a transition from QAH to the nematic
semimetal [27, 79]. Adding a small amount of strain, which breaks C3 explicitly, has a similar effect [1, 28].

We examine the state at εGr = 0.15%, κ = 0.7 in detail. As we are in the (1, 1) sector, electrons only occupy the
K-valley with spin ↑. The first observation is the state is quite close to a Slater determinant. To assess this, we define
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FIG. S2. (a) Correlation functions and order parameters in the (0, 1) sector as a function of εGr. See text for details. (b)
Correlation functions in the (1, 1) sector as a function of εGr. We note that the phase boundaries change slightly between the
Ly = 6 data here and Ly = 4 results shown in the main text. Parameters: χ = 3072, κ = 0.7, Ly = 6, otherwise matching
Table II.

the single-particle Shannon entropy

SSh = − 1

Nk

∑
k

Tr[P (k) lnP (k)], (E4)

where P (k) is the 2-body correlation matrix defined in Eq. (D1). A state may be represented as a Slater determinant if
and only if P (k) is a projector i.e. P (k)2 = P (k). In this case, its eigenvalues are either 0 or 1, so Tr[P (k) lnP (k)] = 0
for all k. One may therefore use SSh to assess how far a given state is from a Slater determinant. In this case,
SSh ≈ 0.02, so the state is extremely close to a Slater determinant, and we may understand the state through
single-particle considerations.

To better display the physics of this phase, we employ a “superresolution” technique. Namely, we thread flux φ

through the cylinder so that momentum cuts move to ky(m,φ) = 2π(m+φ)
Ly

for 0 ≤ φ < 1. So long as no transitions

occur as a function of φ (which holds here, but is non-generic), we may combine data from DMRG runs at multiple
φ to improve our ky resolution significantly.

Fig. S3(c) shows the electron occupations across the Brillouin zone. Since the state is Slater-like, we can interpret
this in terms of an effective Hartree-Fock bandstructure of two bands. The electron density is almost uniform, which
indicates the state fills one of the two bands. However, there are additional features near Γ, which are due to Dirac
nodes. To see this, Fig. S3(a) shows the phase winding of

arg[σ+(k)] = arg 〈ĉ†k,A,K,↑ĉk,B,K,↑〉. (E5)

For states close to a Slater determinant, this winds by ±2π around Dirac nodes [27]. Two vortices are clearly visible
near Γ, each with a +2π winding. We note that, due to fragile topology, one cannot choose a gauge which is both
smooth and periodic. We choose a periodic gauge with a discontinuity across ky = 0. Fig. S3(b) shows the electron-
electron correlation length ξ1e, which diverges at precisely the same ky values as the vortex centers, indicating gapless
electrons. We may conclude that we an effective bandstructure with two Dirac nodes of the same chirality in the
vicinity of Γ — quite similar to the phenomenology of the nematic semimetal, but also similar to the underlying
bandstructre of TBG in the presence of strain.

In the presence of C3 breaking, the Dirac nodes are not pinned to half-filling of the two bands, and may shift in
energy. The slight deviation from uniform filling in Fig. S3(c) may thus be a consequence of such effect, though the
variation is too small to be conclusive. We note that the occupied band shows Hartree peaks feature, as seen in
Fig. S3(d): upon hole-doping, the holes enter almost entirely at Γ. In summary, this state is a semimetal with two
Dirac nodes of the same chirality.

3. Commensurate Spin Spiral Order

The ground state in the (1, 0) sector above a low strain εGr = 0.05% has commensurate spin spiral order. Similar

to IKS, this order breaks both U(1)spin and moiré translation symmetry T̂ai , but preserves a combined symmetry

T̂CSS
ai = T̂aie

iqCSS·aisz/2 (E6)
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hole pocket has expanded greatly. Parameters: χ = 2048, εGr = 0.15%, κ = 0.7, Ly = 6, (τz, sz) = (1, 1) sector.

for some offset vector qCSS. We will see that qCSS = g/2 for some reciprocal lattice vector g.
Fig. S4 shows the properties of the commensurate spin spiral state [compare to Fig. 2 in the main text]. Panels

(a,b) show the electron occupations for spin ↑, ↓ respectively. Note that the occupations are virtually identical; the
state is symmetric under sx-symmetry. Just like in IKS, we observe that

N (S)
qCSS

(k) = n↑(k) + n↓(k − qCSS) ≈ 1, (E7)

where, in this case, qCSS = g1/2 is half of a reciprocal lattice vector.
Such commensurate spin spiral ordering will break U(1)spin, and therefore manifest as an increasing correlation

length in the appropriate correlation function. Define the operator

∆̂CSS(k) = ĉ†k+qCSS
s+ĉk =

∑
m,n∈Z

eik·ma1∆̂n,qy (m, ky); ∆̂CSS
n,qy (m, ky) = ĉ†n+m,ky+qCSS,y

s+ĉn,ky , (E8)

and put CCSS(n, qy) := L−2
y

∑
ky,k′y

〈∆̂0,qy (0, ky)∆̂n,qy (0, k′y)〉. Fig. S4 (d) shows the absolute value of CCSS(n, qy =

[g1/2]y), whose correlation length is increasing quickly with χ, a sign of order that breaks U(1)spin but restores the

product T̂CSS
ai . Fig. S4 (e) shows the discrete Fourier transform of CCSS with respect to n along the cylinder, which is

strongly peaked at q = π. Therefore CCSS independently finds qCSS = g1/2.
Spin-flip symmetry enforces a commensurate offset vector. Given n↑(k) = n↓(k), the same state can also be

described by CSS order with −qCSS. Since qCSS and qCSS + g are equivalent for any reciprocal lattice vector g, we
must have qCSS = g/2 to ensure consistency. This is a key difference between IKS order and CSS order.

Let us note a few other properties of this state. The CSS order described here is not spin density wave order
(though that will appear in the (0, 0) sector considered below). We have explicitly checked that the spin occupations

are equal in each ring of the cylinder, as expected for a state with T̂CSS
ai symmetry but not for an SDW. As only

the K valley is populated, time-reversal symmetry is explicitly broken. However, there is equal occupation in both
sublattices, suggesting no net Hall conductance. As noted in the main text, the phenomenology of CSS and IKS order
are similar in that both depopulate the region near Γ in all sectors. We conclude that the high-strain phase of the
(1, 0) sector exhibits commensurate spin spiral ordering.

4. Spin-Polarized IKS order

This section focuses on the spin-polarized IKS order in the (τz, sz) = (0, 1) sector, expanding the discussion in
the main text. As mentioned there, IKS features intervalley correlations with a momentum offset q = qIKS, which is
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measured by the operator

∆̂IKS(k) = ĉ†k+qIKS
σxτ+ĉk =

∑
m,n∈Z

eik·ma1∆̂IKS
n,qy (m, ky); ∆̂IKS

n,qy (m, ky) = ĉ†n+m,ky+qIKS,y
σxτ+ĉn,ky . (E9)

We define the qy-dependent correlation function

CIKS(n, qy) := L−2
y

∑
ky,k′y

〈∆̂IKS
0,qy (0, ky)∆̂IKS

n,qy (0, k′y)〉 n�1−−−→ e−n/ξIKS[qy ], (E10)

where ξIKS[qy] is the IKS correlation length regarding the qy sector. Since sz = 1, we ignore spin in this discussion;
the spinful variant of IKS is discussed below.

We measure the four-point correlation function CIKS(n, qy) for each qy. Fig. 2(d) of the main text shows the qy = 0
case, and we plot the evolution of the correlation lengths ξIKS[qy] with χ in Fig. S5(a). For χ > 1024, ξIKS[qy = 0]
is clearly dominant, and is diverging with system size. This matches the expectation that U(1)valley breaking in 2D
manifests as algebraic order in CIKS(n, qy) on the cylinder, discussed in the main text.

We note that the correlation length can also be extracted from eigenvalues of the MPS transfer matrix. Let λIKS,qy
be

the largest eigenvalues of the MPS transfer matrix in the IKS sector ∆QIKS = (∆qelectron = 0,∆qvalley = 2,∆ky = qy).

For each qy, these obey λ = e−1/ξ. Furthermore, λIKS,qy=0 is the largest eigenvalue in all sectors of the transfer matrix
— and indeed the only substantial one.

We note that single-electron correlation length ξ1e, shown in Fig. S5 (a), is also growing as a function of χ. In some
cases this behavior is associated with metallic order. However, ξ1e may just be slowly converging to a relatively large
value. If the state was metallic, one would likely expect ξ1e (from n(k) ∼ [k − kF ]α) or ξ0e (gapless particle-hole
modes) to be the dominant correlation length in the system, which is the case in the normal metal below. This data is
therefore not sufficient to determine if the state is metallic or insulating but, given that the BZ occupation is uniform
after the shift by qIKS, the latter seems more plausible.

Finally, we demonstrate the unified scaling collapse of the IKS correlation functions as

|CIKS(n, ξIKS)| = ξ−ηIKS |CIKS(n/ξIKS, 1)| , (E11)

which is performed according to Ref. [28]. Given that all correlations functions must decays exponentially at finite
bond dimensions, we perform fits on CIKS(n� 1, ξIKS) ≡ C0(ξIKS)e−n/ξIKS to extract the n-independent prefactor. If

the scaling collapse holds true, we will expect C0(ξIKS) ∼ ξ−ηIKS, from which the exponent η is extracted. Fig. S5(b-c)
shows the fitting results for all correlation functions among χ = 2048 − 16384, where an excellent scalling collapse
is established at η = 0.24. This relation predicts an algebraic behavior for CIKS(n) at the 2D limit: CIKS(n, ξIKS →
∞) ∼ n−η, which firmly supports that IKS order is robust in our DMRG ground state.

Appendix F: 1D Heisenberg model in Sz = 0 sector

This section briefly reviews some physics of the Heisenberg model, which will be crucial to understand the spin
correlations of TBG in App. G 2. Namely, we will argue there that the following phenomena in the Sz = 0 sector are
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indicative of ferromagnetic order:

1. Because the state has in-plane long range order, the correlation length for the sector that contains S+(x)S−(0)
diverges with χ.

2. Because the state breaks rotational symmetry, the correlation length for the Sz(x)Sz(0) sector is much smaller
than that of the S+(x)S−(0) sector.

3. Because the state is ferromagnetic, the Fourier transform of the correlation function CXY (n) = 〈Sx(n)Sx(0) +
Sy(x)Sy(0)〉 does not have a dominant peak away from q = 0.

In this appendix, we corroborate this claim by showing the 1D Heisenberg model exhibits this behavior. The
Heisenberg Hamiltonian is

H = J
∑
i

Si · Si+1. (F1)

When J < 0, the model is ferromagnetic and its ground state sponteneously breaks rotational symmetry. On the
other hand, for J > 0, the model is antiferromagnetic. Its ground state is a rotationally invariant S = 0 state with
gapless excitations (see e.g. [80]). We show that the above criteria are sufficient to distinguish between these two
possibilities.

1. Ferromagnetic Heisenberg model

We start in the ferromagnetic case J = −1. A ground state of ferromagnetic Heisenberg model is a product state
|↑↑ · · · ↑↑〉. Other ground states can be obtained by applying the lowering operator S− to this state. For a finite
system with N spins, there are N + 1 ground states.

We now look at the ground state in infinite system via infinite DMRG. Numerically, it is standard to conserve
quantum number per unit cell. In our case we can conserve Sz quantum number. Taking a two-site unit cell, we
have a choice of Sz = 1 or Sz = 0, corresponding to initial states |↑↑〉⊗∞ or |↑↓〉⊗∞, respectively. The former state
is already a ground state. The latter state is not a ground state, of course, but is a good initial state for DMRG to
find the ground state in the Sz = 0 sector.

We now show that the Sz = 0 ground state of the Heisenberg model cannot be realized at any finite bond dimension.
To see this, consider the following correlator:

CXY Z(n) = 〈Sz(n)Sz(0) + Sx(n)Sx(0) + Sy(n)Sy(0)〉 = 〈Sz(n)Sz(0) +
1

2
(S+(n)S−(0) + S−(n)S+(0))〉. (F2)

This correlator has constant expectation value 1/4 for the Sz = 1 ferromagnet. Since the correlator is rotationally
symmetric, we should also have CXY Z = 1/4 in the Sz = 0 ground state. However, at any finite bond dimension, this
correlator approaches 0 exponentially fast as n→∞ (assuming the state is injective). This is because the connected
component of correlation function asymptotically goes as e−n/ξ where ξ is the correlation length of MPS. Since the
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correlators of the Heisenberg model. (c) Fourier transform of the CXY correlator. (d)(e)(f) Same as (a)(b)(c), except for the
antiferromagnetic Heisenberg model.

on-site expectation values are 〈Sz(0)〉 = 〈Sx(0)〉 = 〈Sy(0)〉 for the Sz = 0 state, this means CXY Z(n) itself decays
exponentially fast.

Therefore, in order to approximate the ground state, the correlation length ξ of the MPS found from DMRG at
bond dimension χ diverges rapidly as a function of χ. In Fig. S6 (a), we show the correlation length corresponding to
〈S+(n)S−(0)〉 and 〈Sz(n)Sz(0) extracted from transfer matrix eigenvalues. The correlation length for 〈S+(n)S−(0)〉
diverges rapidly as a function of χ, indicating in-plane ordering of spins. On the other hand, the correlation length
for 〈Sz(n)Sz(0)〉 is much smaller, indicating a strong rotational symmetry breaking.

To confirm this interpretation, we measure the following in-plane and out-of-plane correlators:

CXY (n) = 〈Sx(n)Sx(0) + Sy(x)Sy(0)〉 =
1

2
〈S+(x)S−(0) + S−(x)S+(0)〉, (F3)

CZ(n) = 〈Sz(n)Sz(0)〉. (F4)

In Fig. S6 (b), we show the value of the correlators at χ = 20 as a function of n. The in-plane correlator CXY is
close to constant at 1/4, reflecting the large correlation length of 4000, while the out-of-plane correlator CZ is close
to zero. This shows that all of the spin ordering is in-plane.

Fig. S6 (c) shows C̃XY (q), the Fourier transform of CXY (n). There is a single dominant peak at q = 0, confirming
1D ferromagnetic Heisenberg model satisfies the three criteria laid out above.

2. Antiferromagnetic Heisenberg model

We now look at the antiferromagnetic (AFM) Heisenberg model to contrast with the ferromagnetic scenario. As
the ground state of AFM Heisenberg model has S = 0, we can find it in the Sz = 0 sector with DMRG. Due to its
gapless nature, there are superficial similarities in its behavior to the ferromagnetic case. In the following, we show
how the criteria above can be used to distinguish it from the ferromagnetic case.

We show in Fig. S6(d) the correlation length of AFM Heisenberg model as a function of χ. Unlike in the ferro-
magnetic case, 〈S+(n)S−(0)〉 and 〈Sz(n)Sz(0)〉 have similar correlation length, reflecting the SO(3) invariance of the
ground state. A similar feature can be observed in the correlators plotted in Fig. S6(e); the CZ correlator is roughly
the half of CXY correlator.
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FIG. S7. The correlation lengths in the (τz, sz) = (0, 0) sector as a function of bond dimension χ. Here ξ0e corresponds to
neutral (density-density) correlations, ξ1e is the maximum electron-electron correlation length among all momentum sectors,

and ξIVC, ξSIVC, and ξCSS correspond to ∆̂IKS, ∆̂SIVC, and ∆̂CSS correlations respectively (defined in the text).

Finally, we show the Fourier transform of CXY correlator in Fig. S6 (f). Reflecting the antiferromagnetic nature
of spin correlation, we see the dominant peak is at q = π. These observations fully distinguish the antiferromagnetic
case from the ferromagnetic case.

Appendix G: Phase diagram analysis at the neutral sector

This final appendix details the phases found in the (τz, sz) = (0, 0) sector This is the only sector where flavor
polarization is not enforced by quantum numbers, allowing a rich array of phases to appear. As a result, two
challenges arise in the numerical simulation: 1) With more active degrees of freedom, the strongly correlated state
cannot be represented or characterized until reaching sufficiently large bond dimensions. 2) With close competition
between different low-energy states, including flavor-polarized and unpolarized ones, DMRG ground states are more
likely to exhibit a mixture of several orders at finite bond dimensions.

As an overview, Fig. S7 displays the correlation lengths categorized by charge sectors for each state at different
strains εGr and bond dimensions χ. Accordingly, we will break down our phase diagram discussion into three non-
disjoint regions:

1. At εGr ≥ 0.1%, the states feature leading correlations in both neutral (0e) and one-electron (1e) charge sector,
signaling a symmetric metal. We will take εGr = 0.2% as an example to illustrate the characteristics of this
order.

2. At εGr ≤ 0.05%, the states feature leading correlations in inter-valley and inter-spin sectors, much stronger than
neutral/one-electron correlation at large χ, signaling spontaneous flavor polarization. We will confirm that
the states at εGr = (0, 0.05)% are each consistent with the spin-polarized QAH-IVC and IKS order discussed in
previous sections.

3. At εGr = (0.1, 0.15)%, the states also feature a VDW/SDW order coexisting with the metallic order, signaling
a mixed order (unlike the case at εGr = 0.2%). This indicates close competition between different orders in
the regime of intermediate strain.

We note that the states in this sector may only be the overall ground state of the system for εGr > 0.2%, a fact we
return to at the end of this appendix.

1. Symmetric (“Normal”) Metal at high εGr

We start with a discussion of the symmetric or “normal” metal state: a metallic state where all discrete and
continuous symmetries are preserved, with Fermi surfaces in all four Fermion flavors. This phase is the natural
ground state in the limit of weak interactions; it is what results from the non-interacting band structure to filling
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FIG. S8. The symmetric metal in the (0, 0) sector at large strain εGr = 0.2%. (a,b) Electron occupations within DMRG in
the (K,K′) valleys respectively. The state has spin flip sx symmetry, so the ↓ occupations are identical. Note that the region
around Γ (black dot) is fully depleted. (c,d) Energies of the normal metal within fully-symmetric Hartree-Fock. Energies E(k)
(e) The DMRG electron occupations in the K valley along the ky = 0 wire at various bond dimensions. Dashed black lines
give the corresponding occupations in SCHF. One can see the DMRG occupations are slowly increasing outside of the nascent
“Fermi pocket”. (f) Derivatives of the electron occupations dn/dk. One can see the occupations are increasing most quickly
near the “Fermi surfaces”. Also shown are qx = arg λ1e, the momentum associated to the 1e correlation channel in the system.
Note that it matches the SCHF Fermi surfaces extremely well. Parameters: κ = 0.65, εGr = 0.2%, Ly = 4, χ = 24576 for (a-b).

ν = −3. Fermi liquid theory tells us that metals are relatively stable in the presence of interactions. The normal
metal is therefore a reasonable phase to appear in the intermediate coupling regime. Unfortunately, we shall see that
it is inherently difficult to resolve in DMRG.

The zeroth order expectation is that one starts with non-interacting dispersion in Eq.(C10) and fills the lower band
to 1/4 filling. Due to the large Hartree peak near Γ as shown in Fig. S1(c), one expects Fermi surface(s) which do not
enclose Γ, i.e. the normal metal depletes the Γ point just as the IKS and CSS phases do.

To incorporate the effect of interactions, we first work at the mean-field level to understand the phenomenology.
We performed self-consistent Hartree-Fock (SCHF) at ν = −3 at size 16 × 16 with all 8 active bands. By enforcing
all symmetries, we stabilize a self-consistent normal metal. Fig. S8(d,e) shows the Hartree-Fock bandstructure of the
lowest (partially filled) band in both valleys, as well as the sharp Fermi surfaces within SCHF. As expected, the region
near Γ is unoccupied in both valleys.

We now turn to DMRG. As gapless systems, metals are inherently difficult to capture within DMRG, and a 2D
Fermi surface with four Fermion species is even harder. Fig. S8 shows the electron occupations in both valleys at
χ = 24576, the largest accessible bond dimension. The electron occupations manifestly respect time-reversal and
spin-flip sx symmetry. Furthermore, electrons are fully depleted near Γ in both valleys, and Fermi (electron) pockets
closely match the Fermi surfaces from SCHF. We can even identify nascent “Fermi surfaces” forming in the electron
occupations, where the derivative dn/dk is peaked and increases with χ [Fig. S8(c,f)]. The location of the Fermi
surfaces agrees well with the ones predicted by SCHF, and also coincides with the corresponding eigenvalues λ1e of
the one-electron sector of the transfer matrix [Fig. S8(f)]. Therefore the occupations and general phenomenology are
consistent with the expectation for a normal metallic state.
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The observed correlation lengths are also consistent with a normal metal, albeit not wholly conclusive. Recall that
interacting Fermi liquids in 1d are described by c = 1 Luttinger liquids via bosonization. Both particle-hole excitations
and charge ± excitations are gapless, and the occupations near the “Fermi surface” are power-law rather than a step
function like in higher dimensions. A quasi-1D cylinder can be thought of as a coupled wire construction with Ly
wires, each containing Nf flavors. In our case, this gives a model of c = NfLy = 16 coupled Luttinger liquids. Recall
that the entanglement entropy divergences with the correlation length as [64]

S =
c

6
log ξ =

1√
12
c + 1

logχ (G1)

when representing gapless systems. This large central charge means the normal metal is extremely challenging to
capture within DMRG. We indeed see apparently-diverging correlation lengths in both the 0e and 1e sectors. We
identify the source of the correlations (qx, qy) in the Brillouin zone using the phase information and symmetry sector
as in the IKS phase described above. We see that the 1e correlations come from the vicinity of the SCHF Fermi
surface, and the 0e correlations come from the vectors between the nascent Fermi surfaces. Using the alternative form
S ∝ logχ, we find that the correlations are consistent with c = 16, but even the largest accessible bond dimension
of χ = 24576 is insufficient to determine the scaling behavior precisely. Meanwhile, the intervalley and interspin
correlations are subleading but still substantial in the state, which can be viewed as particle-hole excitation between
different sectors. Therefore the DMRG state at εGr = 0.2% is consistent with a normal metal state in a variety of
non-trivial ways. We suggest the normal metal is indeed the ground state order at εGr = 0.2%.

2. Ferromagnetic QAH-IVC & IKS order at low εGr

This section will establish that the state at εGr = 0% has QAH-IVC order and the state at εGr = 0.05% is consistent
with ferromagnetic IKS order. The nature of the two states is summarized in Fig. S9.

As mentioned in the main text, we identify the εGr = 0 state as a flavor-rotation of the QAH state discussed above.
The first piece of evidence is time-reversal symmetry breaking: the order parameter CQAH = 0.87. Together with the
near-uniform occupation of the Brillouin zone, Fig S9(a), we can identify this an an anomalous Hall insulator. From
S9(c,e) one can see the intervalley correlations are substantial, but the state has qIKS = 0 (i.e. no IKS ordering).
Since we are in the τz = 0 sector, we identify this as the intervalley coherent version of the Hall insulator, QAH-IVC.
Both this state and the εGr = 0.05% state are consistent with ferromagnetic spin ordering, as we describe below.

For εGr = 0.05%, CQAH = 0.003 so time-reversal symmetry is unbroken. Fig. S9(d) show that intervalley cor-
relations are increasing quickly with χ. As before, both the shifted BZ occupations in Fig. S9(a) and the Fourier
transform of the IKS correlation function Fig. S9(d) give qIKS ≈ (0.277, 0.25). We therefore identify this state as
having IKS order.

Finally, we use spin-spin correlations to establish the ferromagnetic ordering of the spins. As a starting note, the
simplest ferromagnetic order — spins aligned in the +z direction — is incompatible with the (τz, sz) = (0, 0) sector.
Given that we only conserve U(1) ⊂ SU(2), we must deduce ferromagnetism in a slightly indirect way. As discussed
in App. F, the hallmarks of ferromagnetic states in the sz = 0 sector are:

1. The correlation length for 〈s+(n)s−(0)〉 diverges with χ.

2. The correlation length ξSzSz for 〈sz(n)sz(0)〉 is much smaller than ξSxSx for 〈s+(n)s−(0)〉.
3. The correlation function doesn’t have peaks at nonzero momenta.

The first condition establishes spin ordering, the second shows rotational symmetry breaking, and the final condition
rules out antiferromagnetic order. In Figs. S9(c,d), we see that the correlation length ξSxSx are increasing rapidly with
χ, establishing the first property. (This correlation length corresponds to CCSS , which is defined below Eq. (E8).)
We see there is no corresponding increase in ξSzSz = ξ0e, establishing property 2. (We note that the corresponding
correlation function “〈sz(n)sz(0)〉” cannot be directly computed due to spin conservation in both valleys.) Finally
the Fourier transform of CCSS shows a single peak at q = 0 in Fig. S9(g,h), establishing condition 3. Combining
these observations, we identify both εGr = 0, 0.05% as having ferromagnetic order alongside their QAH-IVC and IKS
orders in the sublattice/valley flavors.

3. “Mixed” order at intermediate εGr

The εGr = (0.1, 0.15)% states of the (τz, sz) = (0, 0) sector feature what we will term “mixed” order, with features
of both normal metal and flavor-polarized states, complicated by possibly-transient translation-breaking order. We
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correlations, which shows a peak at q = 0. (Unlike previous figures, q = 0 is positioned at the center in (e-h) for a better view.)

start with Fig. S7 showing the correlation lengths at these strain values. One can see their leading correlations in 0e
and 1e sectors, consistent with a normal metal. However, they also manifest strong spin asymmetry in intervalley
correlations, namely with ξSIVC (between opposite spins) much larger than ξIVC (between the same spins) in both
states. This behavior deviates from the observation in either the normal metal or the ferromagnetic orders, which we
hypothesize to result from “partial” spin polarization to be further examined.

Next, we take a closer look at the pattern of flavor polarization in these states, which reveals a strong spin density
wave (SDW) order and a transient valley density wave (VDW) order. These orders break translation Ta1

along the
cylinder down to 2Ta1

, and are detected by order parameters that probe flavor-resolved charge imbalances between
adjacent rings on the cylinder: Let −1/2 ≤ P (ky)σ,τ < 1/2 be the polarization (center of charge) of the hybrid
Wannier orbitals [27], then the order parameters are defined as

NVDW(π) =
1

Lx

∑
n,ky,στs

eiπnP (ky,σ,τ)〈c†n,ky,στs[τ
z]ττ cn,ky,στs〉, (G2)

NSDW(π) =
1

Lx

∑
n,ky,στs

eiπnP (ky,σ,τ)〈c†n,ky,στs[s
z]sscn,ky,στs〉. (G3)

The sum is taken over some segment with unit cells n = 1, 2, . . . , Lx, and here we choose Lx even since the density
waves double the unit cell.

Fig. S10(a-b) show the behavior of VDW and SDW orders in the ground states at all strain values. In all cases,
the VDW order is present at smaller bond dimensions χ but disappears at the largest χ = 24576. Note that they
share a common trend of “finite-χ phase transition”: NVDW has a substantial value, perhaps decreasingly slightly,
until it abruptly vanishes. As for the SDW order, at εGr = (0, 0.05, 0.2)% it has vanished by χ = 16384, but



27

12
8

25
6

51
2

10
24

20
48

40
96

81
92

24
57

6

χ

0

1

2

3

4

5

6
V

a
ll

ey
D

en
si

ty
W

av
e

O
rd

er
εGr

0.00

0.05

0.10

0.15

0.20

(a) (b) (c)
12

8
25

6
51

2
10

24
20

48
40

96
81

92

24
57

6

χ

0

1

2

3

4

5

6

S
p

in
D

en
si

ty
W

av
e

O
rd

er

εGr

0.0

0.05

0.1

0.15

0.2

12
8

25
6

51
2

10
24

20
48

40
96

81
92

24
57

6

χ

3

4

5

6

m
a
x
im

u
m

E
n
ta

n
g
le

m
en

t
E

n
tr

o
p
y εGr

0.0

0.05

0.1

0.15

0.2

FIG. S10. Other characteristics of (τz, sz) = (0, 0) states at different εGr as a function of bond dimension χ. (a) Valley density
wave measured by NVDW; (b) Spin density wave measured by NSDW; (c) Entanglement entropy.

at εGr = (0.1, 0.15)% it persists even at the largest χ. This is consistent the hypothesis of “partial polarization”
from correlation lengths: the SDW order results in nonzero sz polarization alternating in each unit cell (thus not
violating the net sz = 0), arguably leading to the spin asymmetry found in intervalley correlations. Meanwhile, unlike
ferromagnetic orders, there is no net spin polarization either in the z direction or in the xy plane, which agrees with
the weak spin-spin correlations. Nevertheless, we caution that the SDW order could also be a finite-χ effect, which
may disappear suddenly if one access even larger bond dimensions.

For completeness, we also comment on some other characteristics of the “mixed” order. Fig. S10(c) includes the
entanglement entropy of the ground states at different εGr, where the states with “mixed” order show similar growth
in entanglement as other phases. We also find that no choice of qIKS makes their electron occupations entirely uniform
across the Brillouin zone, though certain choices that offset the Hartree peaks work somewhat well.

Given the mix of signals for εGr = (0.1, 0.15)% states — metallic order, spin-asymmetric correlations, and possibly
transient spin density waves — we do not make a definitive claim of the phase at intermediate εGr, and instead refer
to these states as “mixed” order on phenomenological grounds. We note that these states has very close energy to
the spin-polarized IKS states in the (0,1) sector (as shown in Fig. 3(a)), suggesting the close competition between
different orders in this regime.

4. Higher Strain and the Phase Diagram at ν = −3

We conclude with some data on higher strain values and speculation on the true phase diagram. Fig. S11 gives
DMRG ground state energies in all four sectors up to εGr = 0.5%. Due to numerical expense, we restrict to χ = 8192
or less. Recall in Fig. 3(a) of the main text that (0, 0) [normal metal] is the global ground state at εGr = 0.2%, with
an energy difference of < 0.01 meV from the (0, 1) [IKS] state. For even larger strains, we see the (0, 0) sector is
the clear energetic winner. As more strain continues to increase the bandwidth of the flat bands, this is physically
reasonable. We note, however, that our assumptions that the active bands are relatively well-isolated from the remote
bands likely breaks down for sufficiently large strain.

Taking the identifications of states in our model at face value and incorporating all sectors, we arrive at the following
possible phase diagram of ν = −3.

1. Quantized anomalous hall order at εGr ≤ 0.05%.

2. IKS order at 0.05% < εGr < 0.2%.

3. A normal metal at 0.2% ≤ εGr.

This is shown in Fig. 1(d). We note that the exact phase boundaries are expected to change somewhat depending
on finite-size effects and other parameters such as κ. For instance, using Ly = 6 stabilizes QAH at a larger strain
value (as does decreasing κ to approach the chiral limit). Furthermore, the energy differences between these phases
are only slightly larger than the numerical precision of our Hamiltonian and ground state — and much larger than
the physical uncertainty in our model. Nevertheless, we expect the basic picture of the three phases to be robust.
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is expected to be above (0, 0) and (0, 1) in energy. Note that the (0, 0) is clearly the lowest energy for εGr > 0.2%. The phases
and transitions are discussed in the text in detail.

Finally, we comment on the phase transitions. As QAH and IKS order lie in different quantum number sectors,
we expect a first-order phase transition between them. For the (0, 0) sector, the ferromagnetic IKS order breaks
symmetries, whereas the normal metal does not. The transition between them may in principle be second-order
(though we do not rule out a first-order transition). If this is the case, any quantum critical behavior would manifest
in the region where we have found the “mixed” order.
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